2018 Annual Groundwater Monitoring and Corrective Action Report

CCR Landfill

R.M. Heskett Station Mandan, North Dakota

Prepared for Montana-Dakota Utilities Co.

January 2019

2018 Annual Groundwater Monitoring and Corrective Action Report

CCR Landfill

R.M. Heskett Station Mandan, North Dakota

Prepared for Montana-Dakota Utilities Co.

January 2019

2018 Annual Groundwater Monitoring and Corrective Action Report

CCR Landfill

R.M. Heskett Station Mandan, North Dakota

January 31, 2019

Table of Contents

1.0	Introduction	2
1.1	Purpose	
1.2	CCR Rule Requirements	
2.0	Groundwater Monitoring Program	
2.1	Groundwater Monitoring System	3
2.2	Actions Completed/Problems Encountered	
2.3	Data and Collection Summary	
2.	2.3.1 October 2017 Detection Monitoring Event	
2.	2.3.2 April 2018 Detection Monitoring Event	
2.	2.3.3 October 2018 Detection Monitoring Event	
2.4	Activities for Upcoming Year	
3.0	References	[

List of Tables

Table 1 CCR Rule Requirements and Compliance

List of Figures

Figure 1 Site Layout and CCR Monitoring Well Network

List of Appendices

Appendix A Laboratory Reports and Field Sheets

Appendix B Alternative Source Demonstration: October 2017 Event

Alternative Source Demonstration: April 2018 Event

Acronyms

Acronym	Description
ASD	Alternative Source Demonstration
CCR	Coal Combustion Residuals
CFR	Code of Federal Regulations
MDU	Montana Dakota Utilities Co.
SSI	Statistically Significant Increase
TDF	Tire-derived fuel
TDS	Total dissolved solids

1.0 Introduction

MDU owns and operates R.M. Heskett Station, a coal-fired generating station and a gas fired turbine located in Mandan, North Dakota (Figure 1). One CCR landfill, as defined by 40 CFR 257.53, is located on the property. Wastes contained in the CCR landfill primarily consist of coal combustion by-products, asbestos wastes generated from construction activity associated with MDU-owned facilities, and ash derived from the burning of TDF at the facility.

This 2018 Annual Groundwater Monitoring and Corrective Action Report (Annual Report) describes the monitoring program and results for the CCR landfill at MDU's R.M. Heskett Station (Site).

1.1 Purpose

As stated in Section §257.90 (e), the Annual Report must:

- Document the status of groundwater monitoring and any corrective action programs for the CCR unit.
- Summarize key actions completed,
- Describe any problems encountered,
- Discuss actions to resolve the problems, and
- Project key activities for the upcoming year.

1.2 CCR Rule Requirements

Additional requirements for the Annual Report, as outlined in §257.90 (e) of the CCR Rule and this Site's compliance with the CCR Rule, are summarized in Table 1.

Table 1 CCR Rule Requirements and Compliance

CCR Rule Reference	Content Required in Report	Location
§257.90(e)(1)	Monitoring System Figure: A map, aerial image, or diagram showing the CCR unit and all background (or upgradient) and downgradient monitoring wells, to include the well identification numbers, that are part of the groundwater monitoring program for the CCR unit;	Section 2.1 Groundwater Monitoring System; see Figure 1.
§257.90(e)(2)	Monitoring System Adjustments: Identification of any monitoring wells that were installed or decommissioned during the preceding year, along with a narrative description of why those actions were taken;	Section 2.1 Groundwater Monitoring System
§257.90(e)(3)	Data and Collection Summary: In addition to all the monitoring data obtained under §257.90 through §257.98, a summary including the number of groundwater samples that were collected, and whether the sample was required by the detection monitoring or assessment monitoring programs;	Section 2.3 Monitoring and Analytical Results
§257.90(e)(4)	Monitoring Program: A narrative discussion of any transition between monitoring programs (e.g. the date and circumstances for transitioning from detection monitoring to assessment monitoring in addition to identifying the constituent(s) detected at a statistically significant increase over background levels); and	Section 2.3 Monitoring and Analytical Results
§257.90(e)(5)	Other Information: Other information required, if applicable, to be included in the annual report as specified in §257.90 through §257.98. - Alternative Monitoring Frequency Demonstration (§257.94(d) and §257.95 (c)(3)) - Appendix III Alternative Source Demonstration Report (§257.94(e)(2)) - Assessment Monitoring Results and Discussion (§257.95(d)(3)) - Appendix IV Alternative Source Demonstration Report (§257.95(g)(3)(ii)) - Demonstration for Additional Time for Assessment or Corrective Measures (§257.96(a))	Section 2.3 Monitoring and Analytical Results

2.0 Groundwater Monitoring Program

This section documents the status of the groundwater monitoring and corrective action program for the CCR unit in 2018. The groundwater monitoring system is described in Section 2.1, key actions completed and problems encountered are described in Section 2.2, the monitoring and analytical results are described in Section 2.3, and key activities planned for 2019 are described in Section 2.4.

2.1 Groundwater Monitoring System

The groundwater monitoring system is consistent with the Groundwater Monitoring System Certification (Barr, 2017a); no adjustments or changes were made to the groundwater monitoring system in 2018.

2.2 Actions Completed/Problems Encountered

The following actions were completed in 2018:

- **Detection Monitoring Sampling**: Groundwater samples were collected from each well in the groundwater monitoring system on April 2-4, 2018 and October 1-4, 2018; samples were analyzed for Appendix III constituents, per the detection monitoring program of the CCR Rule (§257.94).
- **SSI Evaluation:** SSI evaluations were conducted in accordance with the Groundwater Statistical Method Selection Certification (Statistical Certification; Barr, 2017b) for the October 2017 and April 2018 detection monitoring events, both of which resulted in potential SSIs.
- Verification Retesting: Retesting was conducted, per the Statistical Certification (Barr, 2017b) on the potential SSIs for the October 2017 detection monitoring event (in January 2018) and April 2018 detection monitoring event (in August 2018). All SSIs were verified.
- Alternative Source Demonstration (ASD): ASDs were conducted on the verified SSIs for the October 2017 and April 2018 detection monitoring events. Both ASDs were able to demonstrate an alternative source, as allowed by the CCR rule (§257.94(e)(2)). More details are provided in Section 2.4.

During the October 2018 sampling event, no sample was collected from MW3-90 due to the water level being located below the base of the dedicated pump (situated approximately two feet above the bottom of the well to minimize turbidity issues). Historically, water levels have been recorded lower than the current base of the pump (prior to installation), but not with any consistency. However, if this problem persists, the dedicated pump may be lowered. No other problems were encountered during the report period.

2.3 Data and Collection Summary

2.3.1 October 2017 Detection Monitoring Event

As mentioned in the 2017 Annual Report, an SSI evaluation was to be conducted on the results of the October 2017 detection monitoring event. Four potential SSIs (pH at MW-80R, chloride at MW-105, and sulfate and TDS at MW-104) were identified and subsequently verified through retesting conducted on

January 22, 2018, per our Statistical Certification. Field data sheets and analytical laboratory reports for detection monitoring sampling and verification resampling are included in Appendix A.

An Appendix III ASD was conducted on the verified SSIs and was able to successfully demonstrate that a "source other than the CCR unit" caused the SSIs, that the SSIs resulted from analytical error, or natural variations in groundwater quality, as allowed by §257.94(e)(4). The Alternative Source Demonstration: October 2017 Event Report is included in Appendix B.

2.3.2 April 2018 Detection Monitoring Event

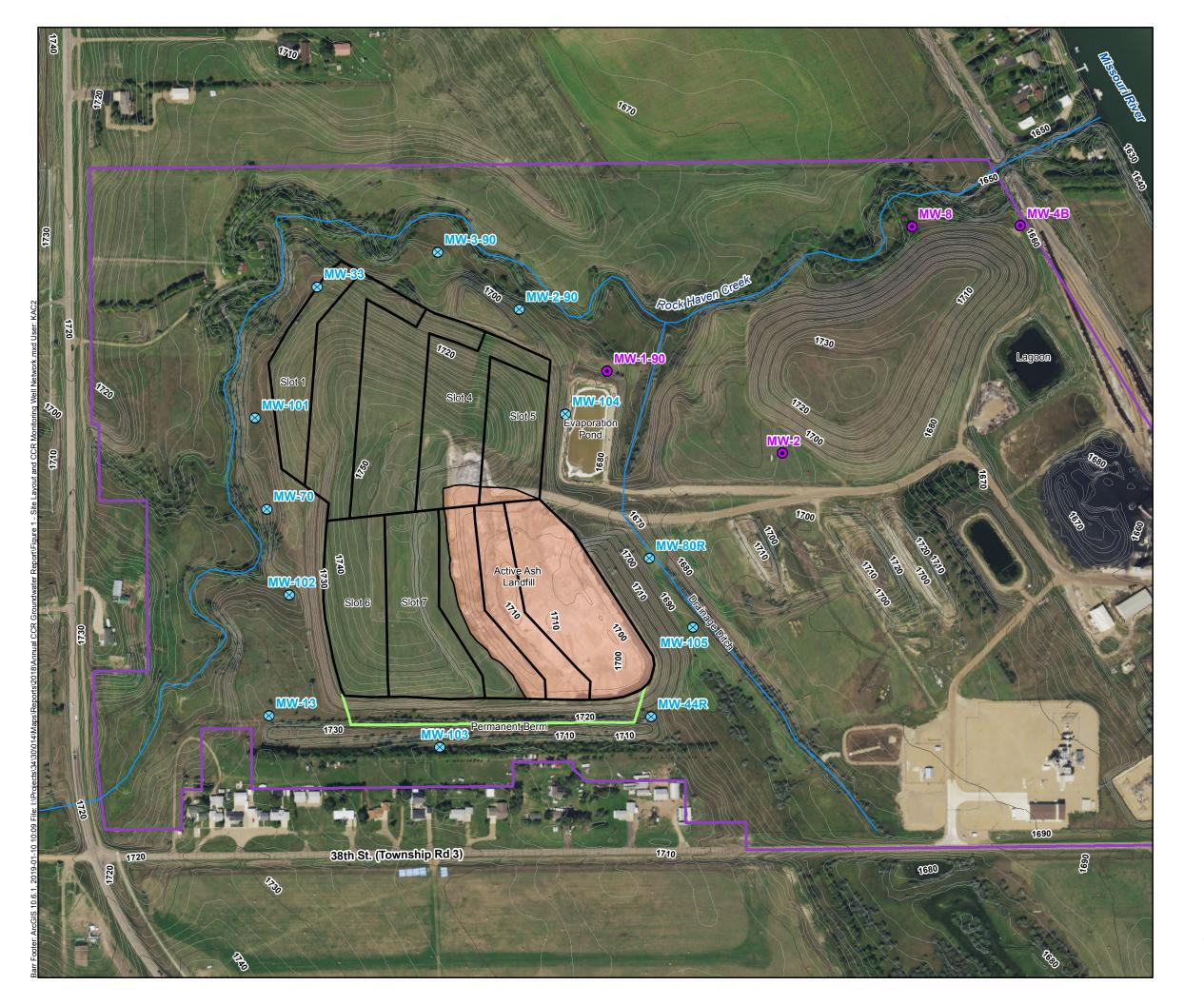
Groundwater samples were collected from all 12 monitoring wells at the Site on April 2, 3, and 4, 2018. Four potential SSIs (fluoride at MW2-90, chloride at MW-105, and sulfate and TDS at MW-104) were identified and subsequently verified through resampling on August 13, 2018. Field data sheets and analytical laboratory reports for detection monitoring sampling and verification resampling are included in Appendix A.

An Appendix III ASD Report was prepared for the verified SSIs and as reported, a "source other than the CCR unit" caused the SSIs. The SSIs resulted from analytical error, or natural variations in groundwater quality, as allowed by §257.94(e)(4). The Alternative Source Demonstration: April 2018 Event is included in Appendix B.

2.3.3 October 2018 Detection Monitoring Event

Groundwater samples were collected from 11 monitoring wells at the Site on October 1, 2, 3, and 4, 2018. No sample was collected from MW3-90 due to the water level being located below the base of the dedicated pump. Field data sheets and analytical laboratory reports for detection monitoring sampling are included in Appendix A.

2.4 Activities for Upcoming Year


No significant events are planned for 2019 other than semi-annual detection monitoring per the CCR Rule.

3.0 References

Barr Engineering Co. (Barr), 2017a, Groundwater Monitoring System Certification, October 2017.

Barr, 2017b, Statistical Method Selection Certification, October 2017.

Figures

Monitoring Well Location
 Monitoring Well Location - Water Level Only
 Existing Slot Boundaries
 Streams
 Property Line
 Future Landfill Boundary

10ft Contours

2ft Contours

Image Source: 2017 Statewide Imagery (ND GIS Hub)

Active Portion of Landfill

CAD Data Source: Slot Linework.dwg

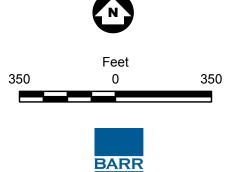


Figure 1

SITE LAYOUT AND CCR
MONITORING WELL NETWORK
R. M. Heskett Station
2018 CCR Groundwater Monitoring Report
Montana Dakota Utilities
Mandan, North Dakota

Appendix A

Laboratory Reports and Field Sheets

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2 North German St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

January 24, 2018

Montana Dakota Utilities Attn: Samantha Marshall 400 N. 4th St. Bismarck, ND 58501

RE: Groundwater Sampling Event - MDU Heskett Ash Site

Dear Ms. Marshall:

On January 22, 2018, MVTL Laboratories' Field Services division collected groundwater samples at the MDU Heskett site near Mandan, ND for the Heskett Coal Combustion Rule Apendix III.

4 wells were purged and sampled during this event. Wells were located and were found to be in generally good condition. The wells for CCR were purged and sampled using a dedicated bladder pump and BARR's SOP for low flow purging and sampling. The samples collected were, placed on ice and transported back to the MVTL laboratory in Bismarck, ND for analysis. The field data report for the sampling event accompanies this letter.

Thank you for your trust and support of our services. If you have any questions, please call me at (800) 279-6885.

Sincerely,

Jeremy Meyer

MVTL Field Services

82-0130

WO#

Field Data Report

MDU Heskett

GROUNDWATER SAMPLING

Attn: Samantha Marshall

400 N. 4th St

Bismarck, ND 58501

701-222-7829

WELL ID	PURGE DATE	START PURGE TIME	SAMPLE DATE	TIME OF SAMPLE	WELL CASING ELEVATION	STATIC WATER LEVEL (ft)	WATER LEVEL START	WATER LEVEL END	VOLUME REMOVED (mL	SAMPLE METHOD	TEMP (°C)	EC	pН	Turbidity NTU	SAMPLE APPEARANCE OR COMMENT
80R	22-Jan-18	11:03	22-Jan-18	11:43	NA	NA	13.74	13.97	4000.0	Bladder	6.29	5698	7.12	4.39	clear
44R	22-Jan-18	9:02	22-Jan-18	9:37	NA	NA	26.82	26.93	3500.0	Bladder	6.48	9251	6.58	2.33	clear
104	22-Jan-18	10:05	22-Jan-18	10:45	NA	NA	13.76	14.00	4000.00	Bladder	6.16	14348	6.94	1.28	clear
105	22-Jan-18	12:18	22-Jan-18	13:03	NA	NA	11.88	NR	4500.0	Bladder	5.07	7048	6.76	1.45	clear
		1 1 1 1				,			1.500.0	2.2300					

NR = Not Recorded on Field Sheet NA = Not Applicable

Groundwater Assessment

Company:	MDU Heskett
Event:	January 2018
Sample ID:	44R
Sampling Personal:	Parces Nice

Phone: (701) 258-9	720)
Weather Conditions: Temp: / P					Wind: h	rest	@ 6		Cloudy / Clou	dy			
	Well Info	rmation	1					Sa					
Well Locked?	Yes	SNO			Γ	Purgi	ing Method:	1			***		
Well Labeled?	Æs	No			Ī	Sampli	ing Method:	Blad	lder	1	Co	ntrol Settings	*****
Casing Straight?	Yes	No			Ī	Dedica	ted Equip?:	(Yes>	No		Purge:	5/3	sec
Grout Seal Intact?	Grout Seal Intact? Yes No Not Visible			Duplicate	Sample?:	Yes	(No)		Recover:	55/27	7 sec		
Repairs Necessary:					Ī	Duplicate	Sample ID:				PSI:		
Casing	Diameter:		2"		Ī			*************************************		•			
Water Level Bef	ore Purge:	2	6.82	ft		Purge Date		22 Tan 18		Time Purg	ing Began:	2090	₂amı/pm
							urged Dry?	, ,	(NO)	Time F	urged Dry:	Separate and project of the same billion region to a more consensati	am/pm
						Sa	ample Date:	22 Jan	18	Time of	Sampling:	0937	am/pm
Depth to Top	of Pump:	3.	5.16	ft									
Water Level After	er Sample:	26	93	ft		Bottle	1L Raw	500mL Nitri	С				
Measurement Method:		Electric \	Nater Level In	dicator		List:							
				Field N	- Measurer	nents							

Stabiliz	zation	Temp	Spec.		DO	ORP	Turbidity	Water	Pumping	mL	Description:
(3 consecutive)		(°C)	Cond.	pН	(mg/L)	(mV)	(NTU)	Level (ft)	Rate	Removed	Clarity, Color, Odor, Ect.
SEQ#	Time		±5%	±0.1	±10%	±20 mV	±10%	0.25 ft	ml/min		Clear, Slightly Turbid, Turbid
1 (0907	5,28	9338	6.59	5.05	53,2	5,83	26,89	100	500	Clean
2	0912	5,22	9325	6.59	2,317	49,6	3,49	26,88	100	500	cler
3	0917	4.67	9339	6.60	6.22	49,4	2.16	26,88	100	500	ca_
4	0922	0,96	9459	6.64	4.68	520	2,29	26,90	100	520	1100
5	092.7	0,33	9296	6.60	4.92	57). 0	2,55	26,93	100	5-08	- CL
6	P932	6,22	9286	bisa	4.87	4915	2,35	26.43	100	500	ce
7	1937	6,48	9251	600	4,91	49,5	2,33	26,93	100	(00	a company of the comp
8	0.5,			V 5				,			
9											
10	6										
Stabilized:	Yes	No					T	otal Volume	Removed:	3500	mL

Stabilized: Yes Comments:

At 0922 line was freezing up had to unthow,

Groundwater Assessment

Company:	MDU Heskett
Event:	January 2018
Sample ID: SDR	
Sampling Personal: Nacces	alización a

Phone: (701) 258-9	720												
Weather Conditions:		Temp:	18 °F		Wind:	Nest	@ 5		Precip	Sunt	ny / Partly (Cloudy / 🕬	oudy
	Well Info	rmation						Sa	mpling I	nformatio	on	d	and the second s
Well Locked?	Yes	(No)				Purgi	ng Method:	Blac	der				
Well Labeled?	Yes	No				Sampli	ng Method:	Blac	der		Co	ntrol Settin	
Casing Straight?	Yes	No				Dedicat	ed Equip?:	(Yes)	No		Purge:		sec
Grout Seal Intact?	Xes	No	Not Visil	ole		Duplicate	Sample?:	(Yes)	No		Recover:	27	sec
Repairs Necessary:		.,				Duplicate	Sample ID:	Dun	-1		PSI:		×*************************************
Casing	Diameter:		2"					- peg			<u></u>		
Water Level Befo	ore Purge:		13.74	ft		F	urge Date:	22 Jan	18	Time Purg	ing Began:	1/03	am/pm
						Well P	urged Dry?	Yes	(NO)	Time P	urged Dry:	***************************************	am/pm
						Sa	mple Date:	22 Jan /8	7	Time of	f Sampling:	1143	(am/pm
Depth to Top	of Pump:	j	9,30	ft									
Water Level Afte	er Sample:	•	13,97	ft		Bottle ₂ -	1L Raw 1-	500mL Nitri	С				
Measuremen	t Method:	Electric	Water Level Ind	icator		List:							
				Field I	Measure	ments							

Stabil	ization	Temp	Spec.		DO	ORP	Turbidity	Water	Pumping	mL	Description:
(3 consecutive)		(°C)	Cond.	рН	(mg/L)	(mV)	(NTU)	Level (ft)	Rate	Removed	Clarity, Color, Odor, Ect.
SEQ#			±5% .	¥ ±0.1	±10%	±20 mV	±10%	0.25 ft	ml/min		Clear, Slightly Turbid, Turbid
1	1108	7,20	5684	56850	13) 6 63	51.9	5.31	13,97	100	500	Ch-
2	1113	6.03	5709	7.14	4.87	51,9	2,31	14.03	100	500	clea-
3	1118	5.56	57017	7,12	3,20	51.4	2,04	13,99	100	500	d
4	1123	5.69	5709	7.12	1.81	5-1,4	231	13.99	100	700	de
5	1128	5,59	5709	7/2	1,00	5-1,4	2,22	13,99	100	C00	d
6	1133	5,65	5711	7,12	1.05	5113	4,74	17,99	100	500	d
7	1138	5 94	5708	7.12	1.13	51,4	9.60	13.97	100	500	cl-
8	1143	6,29	5698	7.12	1,03	51,4	4,39	13,97	100	500	
9			3 - 0 - 0	.,,,	•						
10											

Stabilized: No Total Volume Removed: 4000 mL

Groundwater Assessment

Company:		MDU Heskett
Event:		January 2018
Sample ID:	104	_
Sampling Personal:	Darren	Mieron

Phone: (701) 258-9	720										***			
Weather Conditions:		Temp:	14	°F		Wind:	10/est	@ (Precip	: Suni	ny / Partly (Cloudy (Clo	udy
1	Well Info	rmation	•						Sa	ampling	Informatio			
Well Locked?	Yes	(No)					Purg	ing Method	: Blac	dder				
Well Labeled?	(Yes	No					Sampl	ing Method	: Blac	dder		Co	ontrol Setting	ıs
Casing Straight?	Xes .	No					Dedica	ted Equip?	Yes	No		Purge:	3	sec.
Grout Seal Intact?	Xes	No	No	t Visible			Duplicate	Sample?:	Yes	(No		Recover:	27	sec.
Repairs Necessary:							Duplicate	Sample ID):		1	PSI:	<u> </u>	
Casing	Diameter:		2"											
Water Level Befo	ore Purge:		13,76	/ 2	ft		Purge Date:		: 22 Ja.	118	Time Purg	ing Began:	1005	am/pm
and the state of t							Well F	urged Dry	? Yes	(No	Time F	urged Dry:		am/pm
							Sa	ample Date	: 22 Jan	18	Time of	Sampling:	1045	am/pm
Depth to Top	of Pump:				ft									
Water Level Afte	r Sample:		4,00		ft		Bottle	1L Raw	500mL Nitr	ic			***************************************	
Measurement	t Method:	Electric \	N ater Lev	el Indicat	or		List:							
				Fi	eld	Measure	ements							

Stabilia	zation	Temp	Spec.		DO	ORP	Turbidity	Water	Pumping	mL	Description:
(3 conse	ecutive)	(°C)	Cond.	рН	(mg/L)	(mV)	(NTU)	Level (ft)	Rate	Removed	Clarity, Color, Odor, Ect.
SEQ#	Time		±5%	±0.1	±10%	±20 mV	±10%	0.25 ft	ml/min		Clear, Slightly Turbid, Turbid
1	1010	6.01	14340	6.95	4.82	51,7	6,23	13,97	100	500	ch
2	1015	6112	14337	6.95	3,95	51,8	3,43	13,97	100	500	((_
3	1020	5167	14288	6.95	3,02	5115	2.11	13.97	100	500	d_
4	1025	5,89	14313	6.95	3,68	51,9	1.41	13.97	100	500	den
5	1030	6.04	14325	6.95	4,97	52.1	1.31	14,02	100	500	clan
6	1035	6,02	14323	6,94	1,71	51.9	1.34	14,02	100	500	ch
7	1040	6.18	14343	6,95	1.86	52,2	1.21	14,05	100	500	Cl
8	1045	6.16	14240	6.94	1.81	52,2	1.28	14,05	100	500	Cl
9						· · · · · · · · · · · · · · · · · · ·			· • •		
10											

Stabilized: No Total Volume Removed: 4000 mL

Comments:

Groundwater Assessment

Company:		MDU Heskett	
Event:		January 2018	
Sample ID:	105		
Sampling Personal:	Dacces	1 Cie Carlling	

										A J Chill To VI	/ / /	300000	
Phone: (701) 258-97	720										, ,		
Weather Conditions:		Temp:	23	°F	Wind:	West	@ 5		Precip:	Sunr	ny / Partly 0	Cloudy	Cloudy
	Well Info	rmation						Sa	ampling l	nformatio	on		
Well Locked?	Yes	Nø				Purg	ing Method:	Blac	lder				
Well Labeled?	Yes	No				Sampl	ing Method:	Blac	ider		Co	ntrol Set	tings
Casing Straight?	Yes	No				Dedica	ted Equip?:	Yes	No		Purge:	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	sec.
Grout Seal Intact?	Yes	No	Not \	Visible		Duplicate	Sample?:	Yes	(No		Recover:	27	sec.
Repairs Necessary:						Duplicate	Sample ID:				PSI:	_	
Casing	Diameter:		2"										
Water Level Befo	re Purge:		1.88	ft			Purge Date:	22 Jan	18	Time Purg	ing Began:	1218	am/pm
						Well F	urged Dry?	Yes	No)	Time P	urged Dry:		am/pm
						Sa	ample Date:	22 Tanl	8	Time of	Sampling:	1303	am/pm
Depth to Top	of Pump:	21	,24	ft									C
Water Level Afte	r Sample:			ft		Bottle	1L Raw	500mL Nitr	ic				
Measurement	Method:	Electric \	N ater Level	Indicator		List:							
				Field	Mossura	monte							

Field Measurements

Stabil	lization	Temp	Spec.		DO	ORP	Turbidity	Water	Pumping	mL	Description:
(3 cons	secutive)	(°C)	Cond.	pН	(mg/L)	(mV)	(NTU)	Level (ft)	Rate	Removed	Clarity, Color, Odor, Ect.
SEQ#	Time		±5%	±0.1	±10%	±20 mV	±10%	0.25 ft	ml/min		Clear, Slightly Turbid, Turbid
1	1223	4,50	6442	6,82	0,98	53,0	2,72	11,96	100	500	Clean
2	1228	4.95	6117	6.81	1,47	53.0	1.70	11.98	100	500	Ch
3	1233	5,71	6071	6.79	3,35	52,0	2,12	11.98	100	500	de
4	1238	5,29	6186	6 79	2,25	52,1	1.41	11.98	100	500	(lea,
5	1243	5.61	6445	6.78	2.68	52,1	1.07	12.00	100	500	il
6	1248	5,72	6558	6.77	2,74	52,0	10/5	12:00	100	500	u
7	1253	508	6813	6.76	0.72	52,6	1.58	12,03	100	500	cl
8	1258	56	6923	6,76	0.74	52,3	1,47	12.03	100	500	ce
9	1303	5.07	4-7048	6.76	0,75	52,6	1.45	12.03	100	500	d
10											

Stabilized:

Total Volume Removed: 4500 mL

Comments:

* DN 22 Jan 18 A

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2 North German St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mytl.com

CASE NARRATIVE

MVTL Lab Reference No/SDG:

201882-0130

Client:

Montana Dakota Utilities

Location:

MDU Heskett

Project Identification:

CCR January 2018

MVTL Laboratory Identifications:

18-W101 through 18-W106

Page 1 of 1

MDU Sample Identification	MVTL Laboratory #
44R	18-W101
80R	18-W102
104	18-W103
105	18-W104
Dup1	18-W105
FB1	18-W106

I. RECEIPT

- All samples were received at the laboratory on 23 Jan 18 at 1358.
- Samples were collected and hand delivered by MVTL Field Service personnel to the laboratory.
- Samples were received on ice and evidence of cooling had begun.
 - o Temperature of samples upon receipt was 6.1°C.
- All samples were properly preserved unless noted here and/or flagged on the individual analytical laboratory report.
- No other exceptions on sample receipt were encountered on this sample set unless noted here.

II. HOLDING TIMES

• With the exception of pH, all holding times were met for both preparation and analysis unless noted here.

III. METHODS

Approved methodology was followed for all sample analyses.

IV. ANALYSIS

 All acceptance criteria was met for calibration, method blanks, laboratory control samples, laboratory fortified matrix/matrix duplicates unless noted here and/or flagged on the individual analytical laboratory report.

All laborator	y data has been approved Claudytte	by MVTL Laboratories		
SIGNED:	Claudite	amia	DATE: 1 FEB 18	
Clau	dette Carroll - MVTL Bism	arck Laboratory Mana	iger	

MVTL

1126 N. Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 E. Broadway Ave. ~ Bismarck, ND 58502 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Highway ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

MEMBER ACIL

Page: 1 of 1

Quality Control Report

Analyte	LCS Spike Amt	LCS Rec %	LCS % Rec Limits	Matrix Spike Amt	Matrix Spike ID	Matrix Spike Orig Result	Matrix Spike Result	Matrix Spike Rec %	Matrix Spike % Rec Limits	MSD/ Dup Orig Result	MSD/ Dup Result	MSD Rec %	MSD/ Dup RPD	MSD/ Dup RPD Limit (<)	Known Rec (%)	Known % Rec Limits	Method Blank
Boron - Total mg/l	0.40	102	80-120	2.00	18-W101	0.56	2.34	89	75-125	2.34	2.31	88	1.3	20	-	-	< 0.1 < 0.1
Calcium - Total mg/l	20.0	110	80-120	500	18W101q	456	945	98	75-125	945	950	99	0.5	20	-	-	< 1 < 1
Chloride mg/l	30.0 30.0	91 92	80-120 80-120	30.0	18-W71	37.2	69.1	106	80-120	69.1	68.3	104	1.2	20	-	-	< 1 < 1
Fluoride mg/l	0.50 0.50	104 106	90-110 90-110	0.500	18-W101	0.66	1.09	86	80-120	1.09	1.09	86	0.0	20	-	-	< 0.1 < 0.1
pH units	-	-	-	-	-	-	-	-	_	7.3	7.3	-	0.0	20	-	-	<u></u>
Sulfate mg/l	100	105	80-120	100	18-W93	72.6	162	89	80-120	162	164	91	1.2	20	-	-	< 5
Total Dissolved Solids mg/l	-	-	-	- - -	-	- - -	-	-	-	655 381 < 10	636 384 < 10	-	2.9 0.8 0.0	20 20 20	- - -	-	< 10

Approved by: Cawlo

MINNESOTA VALLEY TESTING LABORATORIES, INC. 1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2 North German St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarco, ND 58001 ~ 800-779-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

Page:

1 of 6

CERTIFICATE of ANALYSIS - CCR

Samantha Marshall Montana Dakota Utilities 400 N 4th St Bismarck ND 58501

Project Name: MDU Heskett Sample Description: 44R

Event and Year: January 2018

Report Date: 30 Jan 18 Lab Number: 18-W101 Work Order #: 82-0130 Account #: 002800

Date Sampled: 22 Jan 18 9:37 Date Received: 22 Jan 18 13:58 Sampled By: MVTL Field Services

Temp at Receipt: 6.1C ROI

	As Receiv Result	ed	Method RL	Method Reference	Date Analyzed	Analyst
Metal Digestion				EPA 200.2	22 Jan 18	SVS
pH - Field	6.58	units	NA	SM 4500 H+ B	22 Jan 18 9:37	DJN
рН	* 6.8	units	0.1	SM4500 H+ B	22 Jan 18 17:00	SVS
Temperature - Field	6.48	Degrees C	NA	SM 2550B	22 Jan 18 9:37	DJN
Conductivity - Field	9251	umhos/cm	1	EPA 120.1	22 Jan 18 9:37	DJN
Fluoride	0.66	mg/l	0.10	SM4500-F-C	22 Jan 18 17:00	SVS
Sulfate	6520	mg/l	5.00	ASTM D516-07	25 Jan 18 16:06	RAG
Chloride	233	mg/l	1.0	SM4500-Cl-E	23 Jan 18 14:41	RAG
Total Dissolved Solids	9140	mg/l	10	I1750-85	24 Jan 18 9:14	SVS
Calcium - Total	456	mg/l	1.0	6010D	29 Jan 18 14:20	SZ
Boron - Total	0.56	mg/l	0.10	6010D	26 Jan 18 15:33	SZ

* Holding time exceeded

Approved by: Clauditte K. Canto

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

The reporting limit was elevated for any analyte requiring a dilution as coded below:

@ = Due to sample matrix # = Due to con
! = Due to sample quantity + = Due to inf

= Due to concentration of other analytes
+ = Due to internal standard response

MINNESOTA VALLEY TESTING LABORATORIES, INC. 1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2 North German St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

Page:

2 of 6

CERTIFICATE of ANALYSIS - CCR

Samantha Marshall Montana Dakota Utilities 400 N 4th St Bismarck ND 58501

Project Name: MDU Heskett Sample Description: 80R

Event and Year: January 2018

Report Date: 30 Jan 18 Lab Number: 18-W102 Work Order #: 82-0130 Account #: 002800

Date Sampled: 22 Jan 18 11:43 Date Received: 22 Jan 18 13:58 Sampled By: MVTL Field Services

Temp at Receipt: 6.1C ROI

	As Receiv Result	red	Method RL	Method Reference	Date Analyzed	Analyst
Metal Digestion				EPA 200.2	22 Jan 18	SVS
pH - Field	7.12	units	NA	SM 4500 H+ B	22 Jan 18 11:43	DJN
рН	* 7.3	units	0.1	SM4500 H+ B	22 Jan 18 17:00	SVS
Temperature - Field	6.29	Degrees C	NA	SM 2550B	22 Jan 18 11:43	DJN
Conductivity - Field	5698	umhos/cm	1	EPA 120.1	22 Jan 18 11:43	DJN
Fluoride	0.31	mg/l	0.10	SM4500-F-C	22 Jan 18 17:00	SVS
Sulfate	3300	mg/l	5.00	ASTM D516-07	25 Jan 18 16:06	RAG
Chloride	158	mg/l	1.0	SM4500-Cl-E	23 Jan 18 14:41	RAG
Total Dissolved Solids	5060	mg/l	10	I1750-85	24 Jan 18 9:14	SVS
Calcium - Total	291	mg/l	1.0	6010D	29 Jan 18 14:20	SZ
Boron - Total	< 0.5 @	mg/l	0.10	6010D	26 Jan 18 15:33	SZ

* Holding time exceeded

Approved by:

Clauditte K. Cantlo

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

The reporting limit was elevated for any analyte requiring a dilution as coded below:

@ = Due to sample matrix # = Due to constant # = Due to interpret # =

CERTIFICATION: ND # ND-00016

= Due to concentration of other analytes
+ = Due to internal standard response

MINNESOTA VALLEY TESTING LABORATORIES, INC. 1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2 North German St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6855 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

Page:

3 of 6

CERTIFICATE of ANALYSIS - CCR

Samantha Marshall Montana Dakota Utilities 400 N 4th St Bismarck ND 58501

Project Name: MDU Heskett Sample Description: 104

Event and Year: January 2018

Report Date: 30 Jan 18

Lab Number: 18-W103 Work Order #: 82-0130 Account #: 002800

Date Sampled: 22 Jan 18 10:45 Date Received: 22 Jan 18 13:58 Sampled By: MVTL Field Services

Temp at Receipt: 6.1C ROI

	As Receiv Result	ed	Method RL	Method Reference	Date Analyzed	Analyst
Metal Digestion				EPA 200.2	22 Jan 18	SVS
pH - Field	6.94	units	NA	SM 4500 H+ B	22 Jan 18 10:45	DJN
Hq	* 7.1	units	0.1	SM4500 H+ B	22 Jan 18 17:00	SVS
Temperature - Field	6.16	Degrees C	NA	SM 2550B	22 Jan 18 10:45	DJN
Conductivity - Field	14348	umhos/cm	1	EPA 120.1	22 Jan 18 10:45	DJN
Fluoride	0.56	mg/l	0.10	SM4500-F-C	22 Jan 18 17:00	SVS
Sulfate	11300	mg/l	5.00	ASTM D516-07	25 Jan 18 16:06	RAG
Chloride	102	mg/l	1.0	SM4500-Cl-E	23 Jan 18 14:41	RAG
Total Dissolved Solids	16200	mg/l	10	I1750-85	24 Jan 18 9:14	SVS
Calcium - Total	450	mg/l	1.0	6010D	29 Jan 18 14:20	SZ
Boron - Total	0.96	mg/l	0.10	6010D	26 Jan 18 15:33	SZ

* Holding time exceeded

Clauditte Approved by: K. Canteo

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

The reporting limit was elevated for any analyte requiring a dilution as coded below: @= Due to sample matrix #= Due to conduct the sample quantity += Due to into

= Due to concentration of other analytes
+ = Due to internal standard response

MINNESOTA VALLEY TESTING LABORATORIES, INC. 1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2 North German St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

CERTIFICATE of ANALYSIS - CCR

Samantha Marshall Montana Dakota Utilities 400 N 4th St Bismarck ND 58501

Project Name: MDU Heskett Sample Description: 105

Event and Year: January 2018

Page: 4 of 6

Report Date: 30 Jan 18 Lab Number: 18-W104 Work Order #: 82-0130 Account #: 002800

Date Sampled: 22 Jan 18 13:03 Date Received: 22 Jan 18 13:58 Sampled By: MVTL Field Services

Temp at Receipt: 6.1C ROI

	As Receiv Result	ved	Method RL	Method Reference	Date Analyzed	Analyst
Metal Digestion				EPA 200.2	22 Jan 18	SVS
pH - Field	6.76	units	NA	SM 4500 H+ B	22 Jan 18 13:03	DJN
рН	* 7.0	units	0.1	SM4500 H+ B	22 Jan 18 17:00	SVS
Temperature - Field	5.07	Degrees C	NA	SM 2550B	22 Jan 18 13:03	DJN
Conductivity - Field	7048	umhos/cm	1	EPA 120.1	22 Jan 18 13:03	DJN
Fluoride	0.28	mg/l	0.10	SM4500-F-C	22 Jan 18 17:00	SVS
Sulfate	4390	mg/l	5.00	ASTM D516-07	25 Jan 18 16:06	RAG
Chloride	339	mg/l	1.0	SM4500-Cl-E	23 Jan 18 14:41	RAG
Total Dissolved Solids	7160	mg/l	10	I1750-85	24 Jan 18 9:14	SVS
Calcium - Total	386	mg/l	1.0	6010D	29 Jan 18 14:20	SZ
Boron - Total	< 0.5 @	mg/l	0.10	6010D	26 Jan 18 15:33	SZ

* Holding time exceeded

Approved by:

Claudite K. Cante

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

The reporting limit was elevated for any analyte requiring a dilution as coded below:

@ = Due to sample matrix # = Due to conduct to sample quantity + = Due to information in the property of the property o

= Due to concentration of other analytes
+ = Due to internal standard response

MINNESOTA VALLEY TESTING LABORATORIES, INC. 1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2 North German St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

Page:

5 of 6

CERTIFICATE of ANALYSIS - CCR

Samantha Marshall Montana Dakota Utilities 400 N 4th St Bismarck ND 58501

Project Name: MDU Heskett Sample Description: Dup1

Event and Year: January 2018

Report Date: 30 Jan 18

Lab Number: 18-W105 Work Order #: 82-0130 Account #: 002800

Date Sampled: 22 Jan 18

Date Received: 22 Jan 18 13:58 Sampled By: MVTL Field Services

Temp at Receipt: 6.1C ROI

	As Receiv Result	ed	Method RL	Method Reference	Date Analyzed	Analyst
Metal Digestion				EPA 200.2	22 Jan 18	SVS
рН	* 7.3	units	0.1	SM4500 H+ B	22 Jan 18 17:00	SVS
Fluoride	0.32	mg/l	0.10	SM4500-F-C	22 Jan 18 17:00	SVS
Sulfate	3180	mg/l	5.00	ASTM D516-07	25 Jan 18 16:06	RAG
Chloride	159	mg/l	1.0	SM4500-Cl-E	23 Jan 18 14:41	RAG
Total Dissolved Solids	5100	mg/l	10	I1750-85	24 Jan 18 9:14	SVS
Calcium - Total	287	mg/l	1.0	6010D	29 Jan 18 14:20	SZ
Boron - Total	< 0.5 @	mg/l	0.10	6010D	26 Jan 18 15:33	SZ

* Holding time exceeded

Approved by:

Clauditte K. Canto

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

The reporting limit was elevated for any analyte requiring a dilution as coded below:

@ = Due to sample matrix # = Due to con
! = Due to sample quantity + = Due to int

= Due to concentration of other analytes
+ = Due to internal standard response

MINNESOTA VALLEY TESTING LABORATORIES, INC. 1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2 North German St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

Page:

6 of 6

CERTIFICATE of ANALYSIS - CCR

Samantha Marshall Montana Dakota Utilities 400 N 4th St Bismarck ND 58501

Project Name: MDU Heskett Sample Description: FB1

Event and Year: January 2018

Report Date: 30 Jan 18 Lab Number: 18-W106 Work Order #: 82-0130 Account #: 002800

Date Sampled: 22 Jan 18

Date Received: 22 Jan 18 13:58 Sampled By: MVTL Field Services

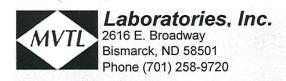
Temp at Receipt: 6.1C ROI

	As Recei Result	ved	Method RL	Method Reference	Date Analyzed	Analyst
Metal Digestion	V			EPA 200.2	22 Jan 18	SVS
Н	* 6.2	units	0.1	SM4500 H+ B	22 Jan 18 17:00	SVS
Fluoride	< 0.1	mg/l	0.10	SM4500-F-C	22 Jan 18 17:00	SVS
Sulfate	< 5	mg/l	5.00	ASTM D516-07	25 Jan 18 16:06	RAG
Chloride	< 1	mg/l	1.0	SM4500-C1-E	23 Jan 18 14:41	RAG
Total Dissolved Solids	< 10	mg/l	10	I1750-85	24 Jan 18 9:14	SVS
Calcium - Total	< 1	mg/l	1.0	6010D	29 Jan 18 14:20	SZ
Boron - Total	< 0.1	mg/l	0.10	6010D	26 Jan 18 15:33	SZ

* Holding time exceeded

Approved by:

Clauditte K. Canto


Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

The reporting limit was elevated for any analyte requiring a dilution as coded below:

@ = Due to sample matrix # = Due to con
! = Due to sample quantity + = Due to int

= Due to concentration of other analytes + = Due to internal standard response

Chain of Custody Record

Project Name:		Event:	Work Order Number:
	MDU Heskett	January 2018	82-0130
Report To: Attn: Address:	MDU Samantha Marshall 400 N. 4th St Bismarck, ND 58501	Carbon Copy: Attn: Address:	Name of Sampler(s): Davier Nies waas
phone:	701-222-7829		

	Samp	le Informatio	n		Bottle Type			Field Parameters		meters	Analysis	
Lab Number	Sample ID	D_{ate}	Time	Sample Type	1 liter	500mL Nitric	Submit Nitric (filtered)		Temp (°C)	Spec. Cond.	Ha	Analysis Required
W101	44R	22 Jun 18	0937	GW		х			6.48	9251	6.58	
WIOZ	80R	22-Jan 18	1143	GW	Х	х			6,29	5698	7.12	
Wl03	104	2254n18	1045	GW	Х	Х			6.16	14348	6.94	
WIOY	105	22 Jan 18	1303	GW	Х	x			5.07	7048	6.76	
V105	Dup1	22 Jan 18	-	GW	Х	х			_	_	_	MDU Appendix 3 List
W106	FB1	22 Jan 18	_	GW	Х	Х			_	_		WDO Appendix o List
		i i										

Comments:

Relinquished By:	Sample Condition:				
Name:	Date/Time	Location:	Temp (°C)		
1 Dan Ning	22 End 1358	Walk In #2	ROJ 6.1 TM562) TM588		

Received by:						
Name:	Date/Time					
10.1	22 Jan 18					
Muchiana	1358					

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2 North German St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

CASE NARRATIVE

MVTL Lab Reference No/SDG:

201882-0637

Client:

Montana Dakota Utilities

Location:

MDU Heskett

Project Identification:

CCR April 2018

MVTL Laboratory Identifications:

18-W453 through 18-W460

Page 1 of 2

MDU Sample Identification	MVTL Laboratory #
13	18-W453
Dup1	18-W454
102	18-W455
70	18-W456
101	18-W457
103	18-W458
44R	18-W459
FB1	18-W460

I. RECEIPT

- All samples were received at the laboratory on 4 Apr 18 at 0800.
- Samples were collected and hand delivered by MVTL Field Service personnel to the laboratory.
- Samples were received on ice and evidence of cooling had begun.
 - o Temperature of samples upon receipt was 1.6°C.
- All samples were properly preserved unless noted here and/or flagged on the individual analytical laboratory report.
- No other exceptions on sample receipt were encountered on this sample set unless noted here.

II. HOLDING TIMES

• With the exception of pH, all holding times were met for both preparation and analysis unless noted here.

III. METHODS

Approved methodology was followed for all sample analyses.

MINNESOTA VALLEY TESTING LABORATORIES, INC. 1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2 North German St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

CASE NARRATIVE

MVTL Lab Reference No/SDG:

201882-0637

Client:

Montana Dakota Utilities

Location:

MDU Heskett

Project Identification:

CCR April 2018

MVTL Laboratory Identifications:

18-W453 through 18-W460

Page 2 of 2

IV. **ANALYSIS**

All acceptance criteria was met for calibration, method blanks, laboratory control samples, laboratory fortified matrix/matrix duplicates unless noted here and/or flagged on the individual analytical laboratory report.

For some analytes, the reported results were elevated due to additional dilutions required to minimize the effects of sample matrix.

All laboratory data has been approved by MVTL Laboratories.

DATE: 26April

Claudette Carroll - MVTL Bismarck Laboratory Manager

MVTL

MINNESOTA VALLEY TESTING LABORATORIES, INC.

1126 N. Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 E. Broadway Ave. ~ Bismarck, ND 58502 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Highway ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

MEMBER ACIL

Page: 1 of 3

Quality Control Report

Lab IDs: 18-W453 to 18-W460

Project: MDU Heskett Active Ash

Work Order: 201882-0637

Analyte	LCS Spike Amt	LCS Rec %	LCS % Rec Limits	Matrix Spike Amt	Matrix Spike ID	Matrix Spike Orig Result	Matrix Spike Result	Matrix Spike Rec %	Matrix Spike % Rec Limits	MSD/ Dup Orig Result	MSD/ Dup Result	MSD Rec %	MSD/ Dup RPD	MSD/ Dup RPD Limit (<)	Known Rec (%)	Known % Rec Limits	Method Blank
Boron - Total mg/l	0.40 0.40 0.40	95 105 108	80-120 80-120 80-120	0.400 0.400 2.00 0.400	18-D999 18-D1035 18-W453 18-W460	< 0.1 < 0.1 0.66 < 0.1	0.41 0.39 2.38 0.38	102 98 86 95	75-125 75-125 75-125 75-125	0.41 0.39 2.38 0.38	0.42 0.40 2.42 0.38	105 100 88 95	2.4 2.5 1.7 0.0	20 20 20 20 20	-		< 0.1 < 0.1 < 0.1 < 0.1 < 0.1
Calcium - Total mg/l	20.0 20.0	108 112	80-120 80-120	500 500 500	18M633q 18W454q 18W455q	1000 402 445	1460 870 915	92 94 94	75-125 75-125 75-125	1460 870 915	1420 870 905	84 94 92	2.8 0.0 1.1	20 20 20	-	-	< 1 < 1 < 1 < 1
Chloride mg/l	30.0 30.0 30.0	101 101 101	80-120 80-120 80-120	30.0 30.0	18-W453 18-W460	77.3 < 1	106 28.8	96 96	80-120 80-120	106 28.8	105 29.1	92 97	0.9 1.0	20 20	1 . 1 . 1	-	< 1 < 1 < 1
Fluoride mg/l	0.50	100	90-110	0.500 0.500	18-M631 18-W456	2.55 0.30	3.08 0.82	106 104	80-120 80-120	3.08 0.82	3.06 0.82	102 104	0.7 0.0	20 20	-	-	< 0.1 < 0.1
pH units	-	-	-	-	-	-	-	-	-	7.3 7.2	7.4 7.2	-	1.4 0.0	20 20	-	-	-
Sulfate mg/l	100	102	80-120	100	18-W460	< 5	96.6	97	80-120	96.6	93.0	93	3.8	20	-	-	< 5
Total Dissolved Solids mg/l	-	-	-	-	-	-	-	-	-	835 < 10	818 < 10	-	2.1 0.0	20	-	-	< 10

^{*} Due to result < 10 mg/L, data reported based on acceptance criteria of Relative % Difference of $\pm 3 \text{ mg/L}$.

Approved by: ______ C. Gant P

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2 North German St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

Page: 1 of 8

CERTIFICATE of ANALYSIS - CCR

Samantha Marshall Montana Dakota Utilities 400 N 4th St Bismarck ND 58501

Project Name: MDU Heskett Active Ash

Sample Description: 13

Event and Year: Spring 2018

Report Date: 19 Apr 18 Lab Number: 18-W453 Work Order #: 82-0637 Account #: 002800

Date Sampled: 2 Apr 18 11:46 Date Received: 4 Apr 18 8:00 Sampled By: MVTL Field Services

Temp at Receipt: 1.6C

	As Recei Result	ved	Method RL	Method Reference	Date Analyzed	Analyst
Metal Digestion				EPA 200.2	4 Apr 18	SVS
pH - Field	6.96	units	NA	SM 4500 H+ B	2 Apr 18 11:46	DJN
Н	* 7.3	units	0.1	SM4500 H+ B	4 Apr 18 17:00	SVS
Temperature - Field	3.35	Degrees C	NA	SM 2550B	2 Apr 18 11:46	DJN
Conductivity - Field	10394	umhos/cm	1	EPA 120.1	2 Apr 18 11:46	DJN
Fluoride	0.88	mg/l	0.10	SM4500-F-C	4 Apr 18 17:00	SVS
Sulfate	6800	mg/l	5.00	ASTM D516-07	11 Apr 18 13:17	RAG
Chloride	77.3	mg/l	1.0	SM4500-C1-E	5 Apr 18 11:18	RAG
Total Dissolved Solids	9820	mg/l	10	I1750-85	4 Apr 18 10:44	SVS
Calcium - Total	392	mg/l	1.0	6010D	6 Apr 18 10:21	BT
Boron - Total	0.66	mg/l	0.10	6010D	5 Apr 18 11:23	SZ

* Holding time exceeded

Approved by:

Clauditte K. Canteo 25 Apr 18

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

= Due to concentration of other analytes

CERTIFICATION: ND # ND-00016

+ = Due to internal standard response

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2 North German St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

Page:

CERTIFICATE of ANALYSIS - CCR

Samantha Marshall Montana Dakota Utilities 400 N 4th St

Bismarck ND 58501

Project Name: MDU Heskett Active Ash

Sample Description: Dup1

Event and Year: Spring 2018

Report Date: 19 Apr 18 Lab Number: 18-W454 Work Order #: 82-0637 Account #: 002800

2 of 8

Date Sampled: 2 Apr 18 11:46 Date Received: 4 Apr 18 8:00 Sampled By: MVTL Field Services

Temp at Receipt: 1.6C

	As Rece Result	ived	Method RL	Method Reference	Date Analyzed	Analyst	
Metal Digestion				EPA 200.2	4 Apr 18	svs	
Н	* 7.3	units	0.1	SM4500 H+ B	4 Apr 18 17:00	SVS	
Fluoride	0.88	mg/l	0.10	SM4500-F-C	4 Apr 18 17:00	SVS	
Sulfate	6510	mg/l	5.00	ASTM D516-07	11 Apr 18 13:17	RAG	
Chloride	77.3	mg/l	1.0	SM4500-Cl-E	5 Apr 18 11:18	RAG	
Total Dissolved Solids	9980	mg/l	10	I1750-85	4 Apr 18 10:44	SVS	
Calcium - Total	402	mg/l	1.0	6010D	6 Apr 18 10:21	BT	
Boron - Total	0.66	mg/l	0.10	6010D	5 Apr 18 11:23	SZ	

* Holding time exceeded

Approved by:

Clauditte K. Canto

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

The reporting limit was elevated for any analyte requiring a dilution as coded below:

@ = Due to sample matrix # = Due to conduct to sample quantity + = Due to interpret to the sample quantity + =

= Due to concentration of other analytes
+ = Due to internal standard response

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2 North German St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

CERTIFICATE of ANALYSIS - CCR

Samantha Marshall Montana Dakota Utilities 400 N 4th St Bismarck ND 58501

Project Name: MDU Heskett Active Ash

Sample Description: 102

Event and Year: Spring 2018

3 of 8 Page:

Report Date: 19 Apr 18 Lab Number: 18-W455 Work Order #: 82-0637 Account #: 002800

Date Sampled: 2 Apr 18 13:22 Date Received: 4 Apr 18 8:00 Sampled By: MVTL Field Services

Temp at Receipt: 1.6C

As Rece: Result	ived	Method RL	Method Reference	Date Analyzed	Analyst
			EPA 200.2	4 Apr 18	SVS
6.83	units	NA	SM 4500 H+ B	2 Apr 18 13:22	DJN
* 7.2	units	0.1	SM4500 H+ B	4 Apr 18 17:00	SVS
4.49	Degrees C	NA	SM 2550B	2 Apr 18 13:22	DJN
9274	umhos/cm	1	EPA 120.1	2 Apr 18 13:22	DJN
0.15	mg/l	0.10	SM4500-F-C	4 Apr 18 17:00	SVS
5370		5.00	ASTM D516-07	11 Apr 18 13:17	RAG
9.8		1.0	SM4500-C1-E	5 Apr 18 11:18	RAG
8350		10	I1750-85	4 Apr 18 10:44	SVS
445		1.0	6010D	6 Apr 18 11:21	BT
1.32	mg/l	0.10	6010D	5 Apr 18 11:23	SZ
	6.83 * 7.2 4.49 9274 0.15 5370 9.8 8350 445	6.83 units * 7.2 units 4.49 Degrees C 9274 umhos/cm 0.15 mg/l 5370 mg/l 9.8 mg/l 8350 mg/l 445 mg/l	Result RL 6.83 units NA * 7.2 units 0.1 4.49 Degrees C NA 9274 umhos/cm 1 0.15 mg/l 0.10 5370 mg/l 5.00 9.8 mg/l 1.0 8350 mg/l 10 445 mg/l 1.0	Result REPA 200.2 6.83	Result RL Reference Analyzed EPA 200.2 4 Apr 18 6.83 units NA SM 4500 H+ B 2 Apr 18 13:22 * 7.2 units 0.1 SM4500 H+ B 4 Apr 18 17:00 4.49 Degrees C NA SM 2550B 2 Apr 18 13:22 9274 umhos/cm 1 EPA 120.1 2 Apr 18 13:22 0.15 mg/l 0.10 SM4500-F-C 4 Apr 18 17:00 5370 mg/l 5.00 ASTM D516-07 11 Apr 18 13:17 9.8 mg/l 1.0 SM4500-Cl-E 5 Apr 18 11:18 8350 mg/l 10 I1750-85 4 Apr 18 10:44 445 mg/l 1.0 6010D 6 Apr 18 11:21

* Holding time exceeded

Approved by:

Clauditte K. Canto

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

The reporting limit was elevated for any analyte requiring a dilution as coded below:

@ = Due to sample matrix # = Due to conduct to sample quantity + = Due to in

= Due to concentration of other analytes
+ = Due to internal standard response

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2 North German St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

Page:

4 of 8

CERTIFICATE of ANALYSIS - CCR

Samantha Marshall Montana Dakota Utilities 400 N 4th St Bismarck ND 58501

Project Name: MDU Heskett Active Ash

Sample Description: 70

Event and Year: Spring 2018

Report Date: 19 Apr 18 Lab Number: 18-W456 Work Order #: 82-0637 Account #: 002800

Date Sampled: 2 Apr 18 14:57 Date Received: 4 Apr 18 8:00 Sampled By: MVTL Field Services

Temp at Receipt: 1.6C

	As Recei Result	lved	Method RL	Method Reference	Date Analyzed	Analyst
Metal Digestion pH - Field pH Temperature - Field Conductivity - Field Fluoride Sulfate Chloride Total Dissolved Solids Calcium - Total Boron - Total	7.01 * 7.5 5.23 3834 0.30 1810 45.9 3120 343 0.43	units units Degrees C umhos/cm mg/l mg/l mg/l mg/l mg/l mg/l mg/l	NA 0.1 NA 1 0.10 5.00 1.0 1.0	EPA 200.2 SM 4500 H+ B SM4500 H+ B SM 2550B EPA 120.1 SM4500-F-C ASTM D516-07 SM4500-C1-E I1750-85 6010D 6010D	4 Apr 18 2 Apr 18 14:5' 4 Apr 18 17:00 2 Apr 18 14:5' 2 Apr 18 17:00 11 Apr 18 13:10' 5 Apr 18 11:10' 4 Apr 18 10:4' 6 Apr 18 11:20' 5 Apr 18 11:20'	O SVS O DJN O DJN O SVS O RAG

* Holding time exceeded

Approved by:

Clauditte K. Cantle

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

The reporting limit was elevated for any analyte requiring a dilution as coded below: @= Due to sample matrix #= Due to co

! = Due to sample quantity

= Due to concentration of other analytes + = Due to internal standard response

MINNESOTA VALLEY TESTING LABORATORIES, INC. 1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2 North German St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

CERTIFICATE of ANALYSIS - CCR

Samantha Marshall Montana Dakota Utilities 400 N 4th St Bismarck ND 58501

Project Name: MDU Heskett Active Ash

Sample Description: 101

Event and Year: Spring 2018

5 of 8 Page:

Report Date: 19 Apr 18 Lab Number: 18-W457 Work Order #: 82-0637 Account #: 002800

Date Sampled: 3 Apr 18 12:10 Date Received: 4 Apr 18 8:00 Sampled By: MVTL Field Services

Temp at Receipt: 1.6C

	As Recei Result	ved	Method RL	Method Reference	Date Analyzed	Analyst
Metal Digestion				EPA 200.2	4 Apr 18	SVS
pH - Field	6.73	units	NA	SM 4500 H+ B	3 Apr 18 12:10	DJN
pH	* 7.2	units	0.1	SM4500 H+ B	4 Apr 18 17:00	SVS
Temperature - Field	5.69	Degrees C	NA	SM 2550B	3 Apr 18 12:10	DJN
Conductivity - Field	4900	umhos/cm	1	EPA 120.1	3 Apr 18 12:10	DJN
Fluoride	< 0.1	mg/l	0.10	SM4500-F-C	4 Apr 18 17:00	SVS
Sulfate	2680	mg/l	5.00	ASTM D516-07	11 Apr 18 13:17	RAG
Chloride	19.3	mg/l	1.0	SM4500-C1-E	5 Apr 18 11:18	RAG
Total Dissolved Solids	4440	mg/l	10	I1750-85	4 Apr 18 10:44	SVS
Calcium - Total	386	mg/l	1.0	6010D	6 Apr 18 11:21	BT
Boron - Total	0.98	mg/l	0.10	6010D	5 Apr 18 11:23	SZ

* Holding time exceeded

Approved by:

Clauditte K. Canto

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

The reporting limit was elevated for any analyte requiring a dilution as coded below:

@ = Due to sample matrix # = Due to con
! = Due to sample quantity + = Due to int

CERTIFICATION: ND # ND-00016

= Due to concentration of other analytes
+ = Due to internal standard response

Page:

6 of 8

CERTIFICATE of ANALYSIS - CCR

Samantha Marshall Montana Dakota Utilities 400 N 4th St Bismarck ND 58501

Project Name: MDU Heskett Active Ash

Sample Description: 103

Event and Year: Spring 2018

Report Date: 19 Apr 18 Lab Number: 18-W458 Work Order #: 82-0637 Account #: 002800

Date Sampled: 3 Apr 18 13:21 Date Received: 4 Apr 18 8:00 Sampled By: MVTL Field Services

Temp at Receipt: 1.6C

	As Receiv	red	Method	Method	Date	
	Result		RL	Reference	Analyzed	Analyst
Metal Digestion				EPA 200.2	4 Apr 18	SVS
pH - Field	6.72	units	NA	SM 4500 H+ B	3 Apr 18 13:21	DJN
Hq	* 7.2	units	0.1	SM4500 H+ B	4 Apr 18 17:00	SVS
Temperature - Field	5.59	Degrees C	NA	SM 2550B	3 Apr 18 13:21	DJN
Conductivity - Field	5224	umhos/cm	1	EPA 120.1	3 Apr 18 13:21	DJN
Fluoride	0.13	mg/l	0.10	SM4500-F-C	4 Apr 18 17:00	SVS
Sulfate	2680	mg/l	5.00	ASTM D516-07	11 Apr 18 13:17	RAG
Chloride	146	mg/l	1.0	SM4500-Cl-E	5 Apr 18 11:18	RAG
Total Dissolved Solids	4740	mg/l	10	I1750-85	4 Apr 18 10:44	SVS
Calcium - Total	570	mg/l	1.0	6010D	6 Apr 18 11:21	BT
Boron - Total	< 0.5 @	mg/l	0.10	6010D	5 Apr 18 11:23	SZ

* Holding time exceeded

Approved by:

Clauditte K. Cantle

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

= Due to concentration of other analytes
+ = Due to internal standard response

CERTIFICATE of ANALYSIS - CCR

Samantha Marshall Montana Dakota Utilities 400 N 4th St Bismarck ND 58501

Project Name: MDU Heskett Active Ash

Sample Description: 44R

Event and Year: Spring 2018

Page: 7 of 8

Report Date: 19 Apr 18 Lab Number: 18-W459 Work Order #: 82-0637 Account #: 002800

Date Sampled: 3 Apr 18 16:21 Date Received: 4 Apr 18 8:00 Sampled By: MVTL Field Services

Temp at Receipt: 1.6C

	As Receiv Result	ed	Method RL	Method Reference	Date Analyzed	Analyst
Metal Digestion pH - Field pH Temperature - Field Conductivity - Field Fluoride Sulfate Chloride	6.60 * 7.1 6.54 9397 0.65 6010 217	units units Degrees C umhos/cm mg/l mg/l mg/l	NA 0.1 NA 1 0.10 5.00 1.0	EPA 200.2 SM 4500 H+ B SM4500 H+ B SM 2550B EPA 120.1 SM4500-F-C ASTM D516-07 SM4500-C1-E	4 Apr 18 3 Apr 18 16:21 4 Apr 18 17:00 3 Apr 18 16:21 3 Apr 18 17:00 11 Apr 18 13:17 5 Apr 18 11:18	SVS DJN SVS DJN DJN SVS RAG RAG
Total Dissolved Solids Calcium - Total Boron - Total	9660 440 < 0.5 @	mg/l mg/l mg/l	10 1.0 0.10	I1750-85 6010D 6010D	4 Apr 18 10:44 6 Apr 18 11:21 5 Apr 18 11:23	SVS BT SZ

* Holding time exceeded

Claudite K. Canto Approved by:

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

The reporting limit was elevated for any analyte requiring a dilution as coded below:

@ = Due to sample matrix # = Due to conduct to sample quantity + = Due to in

= Due to concentration of other analytes
+ = Due to internal standard response

CERTIFICATE of ANALYSIS - CCR

Samantha Marshall Montana Dakota Utilities 400 N 4th St Bismarck ND 58501

Project Name: MDU Heskett Active Ash

Sample Description: FB1

Event and Year: Spring 2018

8 of 8 Page:

Report Date: 19 Apr 18 Lab Number: 18-W460 Work Order #: 82-0637 Account #: 002800

Date Sampled: 3 Apr 18

Date Received: 4 Apr 18 8:00 Sampled By: MVTL Field Services

Temp at Receipt: 1.6C

	As Receiv Result	ed	Method RL	Method Reference	Date Analyzed	Analyst
Metal Digestion pH Fluoride Sulfate Chloride	* 6.4 < 0.1 < 5 < 1	units mg/l mg/l mg/l	0.1 0.10 5.00 1.0	EPA 200.2 SM4500 H+ B SM4500-F-C ASTM D516-07 SM4500-C1-E	4 Apr 18 4 Apr 18 17:00 4 Apr 18 17:00 11 Apr 18 13:17 5 Apr 18 14:10	SVS SVS SVS RAG RAG
Total Dissolved Solids Calcium - Total Boron - Total	< 10 < 1 < 0.1	mg/l mg/l mg/l	10 1.0 0.10	11750-85 6010D 6010D	4 Apr 18 10:44 6 Apr 18 11:21 5 Apr 18 12:23	SVS BT SZ

* Holding time exceeded

Approved by:

Clauditte K. Cantlo

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

The reporting limit was elevated for any analyte requiring a dilution as coded below:

@ = Due to sample matrix # = Due to co
! = Due to sample quantity + = Due to in

= Due to concentration of other analytes + = Due to internal standard response

Groundwater Assessment

Company:		MDU Heskett
Event:		Spring 2018
Sample ID:	13	
Sampling Personal:	Darren	Nicoraca

Phone: (701) 258-9720

Weather C	onditions:		Temp:	20	°F	Wind:	Ne	@ 15		Precip:	Sunr	y / Partly C	Cloudy / Clo	oudy)	
		Well Info	ormation				Sampling Information								
We	ell Locked?	Yes	No				Purgii	ng Method:	Blac	ider					
We	ll Labeled?	Yes>	No				Samplii	ng Method:	: Bladder			Co	ontrol Setting	Settings	
Casin	g Straight?	Yes	No				Dedicated Equip?:		(Yes)	No		Purge:	Car.	sec.	
	Seal Intact?	Yes	No	Not V	'isible		Duplicate	Sample?:	Yes	No		Recover:	5	sec.	
Repairs Ne	pairs Necessary:					Duplicate	Sample ID:	Dust	2-1		PSI:	-			
	Casing Diameter: 2"							- 111 1111 -	7						
Water Level Before Purge:			3	0.55	ft		F	Purge Date:	2 Apr	18	Time Purg	ing Began:	1016	am/pm	
			الله مي الله مي				Well P	urged Dry?	Yes	ĆN₀	Time F	urged Dry:	Control of the Contro	am/pm	
							Sa	mple Date:	2-Anr	18	Time of	Sampling:	1146	am/pm	
	Depth to Top of Pump:							2_	/ /	2	10 10 100		•		
Wat	Water Level After Sample: 32,08						Bottle 1L Raw 250mL Sulfuric								
Measurement Method: Electric Water Level Indicator							List:	500mL Niti	ric	500mL Nitr	ic (filtered)				
								2		2_					
				····		Measure		1 10/-4							
	ization	Temp	Spec.	mU	DO (ma/l)	ORP (mV)	Turbidity Water Pumping mL Description: (NTU) Level (ft) Rate Removed Clarity, Color, Odor, E								
SEQ#	ecutive) Time	(°C)	Cond. ±5%	pH ±0.1	(mg/L) ±10%	±20 mV	±10%	0.25 ft	ml/min	Removeu		Slightly Turbid,		I	
1	1021	521	21160	7.01	2.63	134.3	8.22	31,34	150	500	2. /			I	
2	1021	507	10998	26,91	1 -11	131.3	200	31.62	100	500	- 1			1	
3	1021	5.32	09/5	(91)	1144	178 4	2.30	31.66	100	508	Clen			1	
4	1031	5.29	10-1417	1- 1- 1-	1.35	102,5	4.13	31 91	100	7000	Clear			1	
5	104/	5.25	15 620	6.89	1.34	102.5	4,30	32,00	100	500	cl			1	
6	1051	501	10481	1.9	1,46	1021	8,22	32.02	100	C00	Clar	•		İ	
7	1056	4.44	10366	167	1,45	100,6	9.46	32.02	100	500	il				
8	1007	4.23	10341	6,94	2.30	9705	5.5	32.02	100	1500	a	_			
9	1/26	3.03	10380	6.95	2,34	97,12	6.03	32.04	100	1500	Ch			İ	
10	1131	4.14	10285	6,95	2,30	46.6	3.98	32,04	100	500	CL	The state of the s		l	
Stabilized:	Yes	No				-	T	otal Volum	e Removed:		mL				
Comments	3:														

Groundwater Assessment

Company:	MDU Hesk	cett	
Event:	2017		
Sample ID:	13		
Sampling Personal:	Darren	Nieswass	
Date: 2/	20018		

Phone: (701) 258-9720

Field Measurements

	Tield Medaurements											
· .	ization secutive)	Temp (°C)	Spec. Cond.	pН	DO (mg/L)	ORP (mV)	Turbidity (NTU)	Water Level (ft)	mL Removed	Discription: Clarity, Color, Odor, Ect.		
SEQ#	Time		±5%	±0.1	±10%	±20 mV	±10%	0.25 ft		clear, slightly turbid, turbid		
11	1136	3.99	10428	6,95	2.40	95.4	2081	32.04	500	ch		
12	1141	2.78	10438	6,97	2.45	95.5	2.72	32.04	500	ch		
13	1146	3.35	10394	6,96	2,46	95.0		32,04	C03	el -		
14								ţ		Secretary Control of the Control of		
15												
16												
17												
18												
19												
20												
21												
22												
23												
24												
25					:							
26												
27												
28												
29												
30												
0. 1		NI-			•	•	-4-13/-1		11000	1		

Stabilized: Yes No

Total Volume Removed: 9000 mL

Comments:

Groundwater Assessment

Company:	MDU Heskett
Event:	Spring 2018
Sample ID:	102
Sampling Personal:	Decen a Colon

2616 E. Broadway Ave, Bi	smarck, ND						·	Sampling F	ersonal:	Darien	0,0	Suco	Action to the second second second
Phone: (701) 258-9	9720						·		•		W		=
Weather Conditions:		Temp:	20°F		Wind:	Ne	@ 15		Precip	Sunn	y / Partly 0	Cloudy / Clou	dy /
	Well Info	rmation				- 		Sampling Information					
Well Locked?	Yes	(No)				Purg	ing Method:	Blac	lder				
Well Labeled?	(Yes	No				Sampl	ing Method:	Blac	lder] [Co	ntrol Settings	
Casing Straight?	(Yes)	No				Dedica	ted Equip?:	Yes No			Purge:	5	sec
Grout Seal Intact?	Yes	No	Not Visible	е		Duplicate	e Sample?:	Yes	(No)] [Recover:	55	sec
Repairs Necessary:						Duplicate	Sample ID:	<u> </u>			PSI:		
Casing	Diameter:		2"			,							
Water Level Bef	ore Purge:		18,55	ft		Purge Date		2/10/	18	Time Purging Began		1237	am/pm
		•				Well Purged Dry?		Yes	(Mo)	Time Purged Dry:			am/pn
						Sa	ample Date:	2AD1	1 K	Time of	Sampling:	1322	am/pm
Depth to Top	p of Pump:	2	7,05	ft									
Water Level After	er Sample:		20,51	ft		Bottle	1L Raw		250mL Su	lfuric			
Measurement Method:		Electric \	Water Level Indic	ator		List:	500mL Nitr	ric	500mL Nit	ric (filtered)			
				=ield	Measure	ments							

Stabil	lization	Temp	Spec.		DO	ORP	Turbidity	Water	Pumping	mL	Description:
(3 cons	secutive)	(°C)	Cond.	pН	(mg/L)	(mV)	(NTU)	Level (ft)	Rate	Removed	Clarity, Color, Odor, Ect.
SEQ#	Time		±5%	±0.1	±10%	±20 mV	±10%	0.25 ft	ml/min		Clear, Slightly Turbid, Turbid
1	1242	5.25	10023	6,91	1,20	-3.6	586	19,33	\$ 100	500	clea
2	1252	4.39	10041	6.90	0.95	-41b	172	19.67	100	1000	Clean
3	1307	4.78	9767	6.86	0,84	-2,2	1.33	19.87	100	1000	cli
4	1307	4.74	9640	6.86	0.91	-2,3	1.16	19,92	- 100	500	clean
5	1312	435	9535	6.85	0.70	-0,6	1,07	20,04	100	C00	Cl~
6	1317	3,97	9318	6.83	0.14	-0.8	1.04	20,09	100	500	
7	1322	4,49	9274	6.83	0.67	3.2	0.98	20.11	100	500	<u> </u>
8						*					
9											
10)									

Stabilized: Yes No

Comments:

Total Volume Removed: 4500 mL

Weather Conditions:

Field Datasheet

Groundwater Assessment

Wind:

Company:	MDU Heskett
Event:	Spring 2018
Sample ID:	70
Sampling Personal: Da	ven Viernas

Precip:

Total Volume Removed: 6000 mL

Sunny / Partly Cloudy / Cloudy

Phone: (701) 258-9720

(Yes)

Stabilized: Comments:

No

Temp:

		Well Info	ormation						Sa	mpling li	nformatio	on		
We	ell Locked?	Yes	Ne				Purgir	ng Method:	Blac	lder				
Wel	Il Labeled?	(Xes	No				Samplir	ng Method:	Blac	lder		Co	ntrol Settin	ıgs
Casin	g Straight?	Ves	No				Dedicat	ed Equip?:	Yes	No		Purge:	5	
Grout S	Seal Intact?	'ÆS	No Not Visible			Duplicate	Sample?:	Yes	No		Recover:	55		
Repairs Ne	ecessary:	-					Duplicate:	Sample ID:				PSI:	ro	
Casing Diameter:				2"										
Water Level Before Purge			2	2.00	ft		F	urge Date:	2A01	18	Time Purg	ing Began:	1350	∕ am
							Well P	urged Dry?	Yes	NO)	Time F	urged Dry:		am
							Sa	mple Date:	2A01	8	Time of	Sampling:	1457	⁷ am
	Depth to To	o of Pump:	3	2,71	ft				- P C					
Water Level After Sample: 25, 63 f				ft		Bottle 1L Raw 250mL Sulfuric								
N	/leasuremer	nt Method:		Nater Level	Indicator		List:	500mL Niti	ric	500mL Nitr	ic (filtered)			
					F :-1-1									
	I	_	T 0			Measure ORP		Water	Dumanina			D		1
	ization	Temp	Spec.	n.L.I	DO (ma/L)	(mV)	Turbidity (NTU)	Level (ft)	Pumping Rate	mL Removed		Description: , Color, Odo		
(3 cons	ecutive)	(°C)	Cond.	pH ±0.1	(mg/L) ±10%	±20 mV	±10%	0.25 ft	ml/min	Removed		Slightly Turbid,		
1	1407	1 11	11700	7.22	1,42	47.9	7.00	27.60	100	500	-/-			
2	1412	1 44	(1113	''' 	0,70	59.5	256	23.22	100	1000	CIE			
3	1422	6, 2	4/12	7.00	0,78	12.6	1,24	23.74	100	1007	(1)	a		
4	1432	6,26	3910	7.00	0177	6/33	0.98	24,07	100	1020	0/00	<u> </u>		
5	1442	0100	2908	7.80	0.81	8411	0,902	24.46	100	1000	()			
6	14407	5.52	2070	7,00	0.00	10-17	1.09	24.KI	100	500	CL			
7	1452	5.53	3051	7.01	0.90	15.7	12/2	24.78	100	500	d			
8	1457	5,23	3 734	7.01	1,00	100	1.10-	24.82		500	C.C.			
9	113/	7147	1331	1,0	7,00	(2/)	1773	1,00						
10			<u> </u>											1

Groundwater Assessment

Company:	N	MDU Heskett
Event:		Spring 2018
Sample ID:	, 101	
Sampling Personal:	Davien	Niesman

2616 E. Broadway Ave, Bismarck, ND

Phor	ne: (701) 258-9	9720											
Weather C	onditions:		Temp:	74	°F	Wind:	Ne	@ 9		Precip:	Sunny / Partly	Cloudy (C	loudy
		Well Info	ormation					,	Sa	mpling l	nformation		
We	Il Locked?	Yes	(No)				Purgii	ng Method:	Blad	der			
	I Labeled?	Yes	No				Sampli	ng Method:	Blad	der	С	ontrol Setti	ngs
	g Straight?	Yes	No				Dedicat	ted Equip?:	(Yes)	No	Purge	5	5
	eal Intact?	Yes	No	Not V	isible		Duplicate	Sample?:	Yes	No	Recover	55	
Repairs Ne		,					Duplicate	Sample ID:		and the second s	PSI	-	
1 topano i te		Diameter:		2"			<u>'</u>	•					
Wate	er Level Bef			36,91	ft		F	Purge Date:	3,4201	8	Time Purging Began	1055	am/
· · · ·	J. 2010: 50:	0,0 , 0,90.		~ ~ ~ ~ ~)			urged Dry?	Yes	(No)	Time Purged Dry		— am/
				······································				mple Date:	3.April	8	Time of Sampling	1218	am/
Г	Depth to To	n of Pump	4	6,97)	ft			•				,	
	er Level Aft		- LJ	n.13	ft		Bottle	1L Raw		250mL Sul	furic		
	/leasuremer		Electric \	Nater Level	Indicator		List:	500mL Nitr	ic	500mL Nit	ric (filtered)		
					***************************************		L	•					
						Measure							_
Stabili	ization	Temp	Spec.		DO	ORP	Turbidity	1	Pumping	mL	Description		
	ecutive)	(°C)	Cond.	pН	(mg/L)	(mV)	(NTU)	Level (ft)	Rate ml/min	Removed	Clarity, Color, Oc Clear, Slightly Turbi		-
SEQ#	Time		±5%	±0.1	±10%	±20 mV	±10%	0.25 ft		(m)			╡
1	1100	5.54	4963	6, 18	3.07	93.4	128	 	100	500	Slightly tubid	an	-
2	11/2	5.28	4951	6,73	1.62	76.	130	12011	· · · · · ·	· .	57		-
3	1130	5.69	4932	6,73	1,29	69.4	11.2	39,24	100	1500	clear		1
4	1140	5.48	4950	6,79	1,40	66,0	7.31	39,43	100	1000	-1-		-
5	1150	5.32	4959	6.79	1,36	65,2	5018	39,59	100	1000	(1)		-
7	1200	5,43	49.53	6,77	1,32	59.3	1.86 4.86	39.68	100	500			
8	1205	5.19	4956	173	1,28	59.	471	39,75	100	500			7

Total Volume Removed: 7500 mL

Stabilized: //Yes Comments:

9

10

1215

4900

No

Groundwater Assessment

Company:	MDU Heskett
Event:	Spring 2018
Sample ID:	103
Sampling Personal:	Darren Nieswags

2616 E. Broadway Ave, Bis	smarck, ND						<u>;</u>	Sampling Pe	ersonal:	Darte	n Ni	35Waa	5
Phone: (701) 258-9	720						_		6***			-	
Weather Conditions:		Temp:	T/G °F	_	Wind:	N	@ 7		Precip:	Sunny	/ Partly C	loudy / Clo	udy
•	Well Info	rmation	,				•	Sai	mpling lı	nformatio	n		
Well Locked?	Yes -	No				Purg	ing Method:	Blade	der				
Well Labeled?	Yes	No				Sampl	ing Method:	Blade	der	L	Co	ntrol Setting	s
Casing Straight?	Yes	No				Dedica	ted Equip?:	Yes	No		Purge:	5	sec
Grout Seal Intact?	Yes	No	Not Vis	ible		Duplicate	e Sample?:	Yes <	No		Recover:	<u> </u>	sec
Repairs Necessary:	-					Duplicate	Sample ID:	C	<u></u>		PSI:		
Casing	Diameter:		2"										
Water Level Befo	ore Purge:	3	2.49	ft		1	Purge Date:	3Apri	8	Time Purgir	ng Began:	1246	am/pn
						Well F	Purged Dry?	Ýes	No	Time Pu	rged Dry:	-	am/pn
						Sa	ample Date:	3Apr 18		Time of S	Sampling:	1321	am/pn
Depth to Top	of Pump:	40	0,85	ft				. 1					
Water Level After		34	+.53	ft		Bottle	1L Raw		250mL Sul	furic			
Measuremen	t Method:	Electric '	Water Level In	dicator		List:	500mL Nitri	ic	500mL Nitr	ric (filtered)			
				Field	Measure	ements							

Stabil	ization	Temp	Spec.		DO	ORP	Turbidity	Water	Pumping	mL	Description:
(3 cons	secutive)	(°C)	Cond.	рН	(mg/L)	(mV)	(NTU)	Level (ft)	Rate	Removed	Clarity, Color, Odor, Ect.
SEQ#	Time		±5%	±0.1	±10%	±20 mV	±10%	0.25 ft	ml/min		Clear, Slightly Turbid, Turbid
1	1251	5.70	5204	6,76	2.08	76.9	3.69	33.16	400	500	Clean
2	1306	5.43	5224	6,72	0,99	73.4	3,92	33,62	100	1500	clear
3	13/1	5 48	5220	6.72	1.00	73,5	3.01	33.71	100	500	Ch_
4	1316	5,49	5221	6,72	1.01	73,2	2,87	33,8/	100	500	d
5	1321	5.59	5224	6.72	0,94	72,9	2,81	33,93	700	500	ch
6											
7											
8											
9				-							
10											

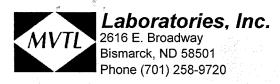
No Stabilized: Yes Comments

Total Volume Removed: 3500 mL

Groundwater Assessment

Company:		MDU Heskett	
Event:		Spring 2018	
Sample ID:	44R		
Sampling Personal:	Dacen	AlicSiNAAC	

2010 L. 010	auway 7 wc, Di	ontaron, mo							Sampling F	ersonai. j	14//10	4/10	sinacs	
Pho	ne: (701) 258-9	9720										70		
Weather C	onditions:		Temp:	21	°F	Wind:	NW	@ /2_		Precip:	Sunn	y / Partly C	Cloudy / Clo	oudy
		Well Info	ormation	1			,	•	Sa	mpling l	nformatio	<u>n </u>		
We	ell Locked?	Yes	No				Purgir	ng Method:	Blac	der				
We	Il Labeled?	Yes	No				Samplin	ng Method:	Blad	lder		Co	ntrol Setting	js
Casin	g Straight?	Yes	No				Dedicat	ed Equip?:	Yes	No		Purge:	5	sec.
Grout S	Seal Intact?	Xes	No	Not V	'isible		Duplicate	Sample?:	Yes	No		Recover:	55	sec.
Repairs Ne	ecessary:						Duplicate :	Sample ID:	<u>,</u>			PSI:		
	Casing	Diameter:		2"										
Wate	er Level Bef	fore Purge:	20	667	ft		P	ourge Date:	3Aprl	8	Time Purgi		1511	am/pm
							Well P	urged Dry?	Yes	No		urged Dry:		am/pm
							Sa	mple Date:	3AN/8	<i>y.</i> —	Time of	Sampling:	1621	am/pm
	Depth to To	p of Pump:	35	5,//	ft				p. 0					
Wat	er Level Aft	er Sample:	2	6.75	ft		Bottle	1L Raw		250mL Sul	furic			
J.	/leasuremer	nt Method:	Electric \	Water Level	Indicator		List:	500mL Nitr	ric	500mL Niti	ric (filtered)			1
			- 21,		Field	Measure	ments							
Stabil	ization	Temp	Spec.		DO	ORP	Turbidity	Water	Pumping	mL		Description:		
(3 cons	secutive)	(°C)	Cond.	рН	(mg/L)	(mV)	(NTU)	Level (ft)	Rate	Removed		Color, Odd		
SEQ#	Time		±5%	±0.1	±10%	±20 mV	±10%	0.25 ft	ml/min			lightly Turbid		
1	1516		9345	6.6	2.91	697	55.6	26.76	100	500		y two;	4	
2	6-54	-	93006	16.60	112	70.1	373	17/70	1 1 1 1 1 2 2 2 2	1000	1 c/- 1			


1	1516	6.60	9345	6.6	2,91	697	55%	24.76	100	500	sightly twick
2	153	6.57	9356	6,60	1,62	78.6	37,3	26,75	100	1500	57
3	1546	6.2.1	9377	6,59	1,71	695	17.1	26,75	100	1500	clear
4	1601	6,23	9395	4,60	1,33	70,7	8.85	26,77	100	1500.	Cler
5	1606	6.71	9398	6,60	1.5-6	19,4	5,23	26,75	100	,500	ch
6	17/11	6.87	9379	6.59	1,51	28.8	4,42	26,75	180	500	de
7	16/6	1.45	9389	Ext.O	1,48	6914	4.51	26,75	100	500	Cles
8	1621	654	93917	6,60	1,44	69,5+	4,65	26,77	180	500	d

Stabilized: Yes No

10

Total Volume Removed: 7000 mL

Comments: Well was frozen took a while to unthan

Chain of Custody Record

Project Nam	e:	Event:	Work Order Number:
	MDU Heskett	Spring 2018	82-0637
Report To: Attn: Address: phone: email:	MDU Samantha Marshall 400 N. 4th St Bismarck, ND 58501 701-222-7829	Carbon Copy: Attn: Address:	Name of Sampler(s): Darren Nieswaag

	S	ample Informatio	n			ŀ	Bot	tle 1	Гуре	er.	Fi	eld Para	ameters		Analysis
Lab Number	Sample ID	Date	Time	Sample Type	1 life.	/ ~	500ml Villing		Sulfuric		Temp (°C)	Spec. Cond.	Ha	Analys	is Required
W453	13	2,40-18	1146	GW	Х		1	х			3,35	10394	6.96		
W 454	Dup1	2 April8	1146	GW	Х	Х	Х	Х				_	_		3
W 455	102	2AN 18	1322	GW	Х	Х	Х	Х			4.49	9274	6.83		
in 456	70	2A018	1457	GW	Х	Х	Х	Х			5.23	3834			
W457	101	3 Apr 18	1210	GW	Х	Х	Х	Х			5.69	4900	6,73	MDU Lis	st AA & MDU
W 458	103	340118	1321	GW	 Х	Х	Х	Х			5.59	5224	6.72	Appe	ndix 3 List
459 ليما	44R	3A0118	1621	GW	Х	Х	Х	Х			7	9397	6,60		
w 460	FB1	3Apr 18)	GW	Х	Х	х	Х				- Contraction of the Contraction			

Comments:

Relinquished By:		Sar	mple Condition:
Name:	Date/Time	Location:	Temp (°C)
1 Dan N (m	3 Agr 18	Log In Walk In #2	1,60 (TM562 / TM588
2			

Rec	eived by:
Name:	Date/Time
1 Birchrann	500 4 Azel 0
	1747-18

MINNESOTA VALLEY TESTING LABORATORIES. INC.

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2 North German St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

CASE NARRATIVE - AMENDED 9 MAY 18 (Analysis Flag)

MVTL Lab Reference No/SDG:

201882-0663

Client:

Montana Dakota Utilities

Location:

MDU Heskett

Project Identification:

CCR April 2018

MVTL Laboratory Identifications:

18-W497 through 18-W504

Page 1 of 1

MDU Sample Identification	MVTL Laboratory #
33	18-W497
3-90	18-W498
Dup2	18-W499
2-90	18-W500
104	18-W501
80R	18-W502
105	18-W503
FB2	18-W504

I. RECEIPT

- All samples were received at the laboratory on 5 Apr 18 at 1505.
- Samples were collected and hand delivered by MVTL Field Service personnel to the laboratory.
- Samples were received on ice and evidence of cooling had begun.
 - o Temperature of samples upon receipt was 2.4°C.
- All samples were properly preserved unless noted here and/or flagged on the individual analytical laboratory report.
- No other exceptions on sample receipt were encountered on this sample set unless noted here.

II. **HOLDING TIMES**

With the exception of pH, all holding times were met for both preparation and analysis unless noted here.

METHODS III.

Approved methodology was followed for all sample analyses.

- All acceptance criteria was met for calibration, method blanks, laboratory control samples, laboratory fortified matrix/matrix duplicates unless noted here and/or flagged on the individual analytical laboratory report.
 - o For some analytes, the reported results were elevated due to additional dilutions required to minimize the effects of sample matrix.

All laboratory data has been approved by MVTL Laboratories.

SIGNED:

Claudette Carroll - MVTL Bismarck Laboratory Manager

MINNESOTA VALLEY TESTING LABORATORIES, INC.

1126 N. Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 E. Broadway Ave. ~ Bismarck, ND 58502 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Highway ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

MEMBER ACIL

Page: 1 of 1

Quality Control Report

Lab IDs: 18-W497 to 18-W504

Project: MDU Heskett Active Ash

Work Order: 201882-0663

Analyte	LCS Spike Amt	LCS Rec %	LCS % Rec Limits	Matrix Spike Amt	Matrix Spike ID	Matrix Spike Orig Result	Matrix Spike Result	Matrix Spike Rec %	Matrix Spike % Rec Limits	MSD/ Dup Orig Result	MSD/ Dup Result	MSD Rec %	MSD/ Dup RPD	MSD/ Dup RPD Limit (<)	Known Rec (%)	Known % Rec Limits	Method Blank
Boron - Total mg/l	0.40	102	80-120	2.00	18-W503	< 0.5	2.22	111	75-125	2.22	2.24	112	0.9	20	-	-	< 0.1 < 0.1
Calcium - Total mg/l	20.0 20.0	108 107	80-120 80-120	500 500	18W498q 18W502q	445 292	960 790	103 100	75-125 75-125	960 790	950 800	101 102	1.0 1.3	20 20	-	-	<1 <1 <1 <1 <1 <1 <1 <1
Chloride mg/l	30.0 30.0 30.0	98 99 99	80-120 80-120 80-120	30.0 1200	18-W499 18-W548	37.8 2880	67.4 4110	99 102	80-120 80-120	67.4 4110	67.9 4150	100 106	0.7 1.0	20 20	-	- - -	< 1 < 1 < 1
Fluoride mg/l	0.50	104	90-110	0.500 0.500	18-W498 18-W502	0.13 0.29	0.62 0.77	98 96	80-120 80-120	0.62 0.77	0.62 0.77	98 96	0.0	20 20	-	-	< 0.1 < 0.1
pH units	-	; = ; ; = ;	-	-	-	-	-	-	-	7.2 7.1	7.2 7.2	-	0.0 1.4	20 20	-	-	-
Sulfate mg/l	100 100 100	104 94 97	80-120 80-120 80-120	4000 500 4000	18-W498 18-W548 18-M875	2020 201 744	5970 652 5330	99 90 115	80-120 80-120 80-120	5970 652 5330	5780 656 5180	94 91 111	3.2 0.6 2.9	20 20 20	-	-	< 5 < 5 < 5
Total Dissolved Solids mg/l	-	(-)	-	-	-	-	-	-	-	< 10	< 10	.=	0.0	*	-	-	< 10

^{*} Due to result < 10 mg/L, data reported based on acceptance criteria of Relative % Difference of +/- 3 mg/L.

Approved by: Canto

CERTIFICATE of ANALYSIS - CCR

Samantha Marshall Montana Dakota Utilities 400 N 4th St Bismarck ND 58501

Project Name: MDU Heskett Active Ash

Sample Description: 33

Event and Year: Spring 2018

1 of 7 Page:

Report Date: 1 May 18 Lab Number: 18-W497 Work Order #: 82-0663 Account #: 002800

Date Sampled: 4 Apr 18 12:35 Date Received: 5 Apr 18 15:05 Sampled By: MVTL Field Services

Temp at Receipt: 2.4C

	As Recei Result	.ved	Method RL	Method Reference	Date Analyzed	Analyst	
Metal Digestion			(1	EPA 200.2	5 Apr 18	SVS	
pH - Field	6.60	units	NA	SM 4500 H+ B	4 Apr 18 12:35	DJN	
Н	* 6.8	units	0.1	SM4500 H+ B	6 Apr 18 17:00	SVS	
Temperature - Field	7.17	Degrees C	NA	SM 2550B	4 Apr 18 12:35	DJN	
Conductivity - Field	4834	umhos/cm	1	EPA 120.1	4 Apr 18 12:35	DJN	
Fluoride	0.26	mg/l	0.10	SM4500-F-C	6 Apr 18 17:00	SVS	
Sulfate	3140	mg/l	5.00	ASTM D516-07	27 Apr 18 8:43	RAG	
Chloride	12.8	mg/l	1.0	SM4500-Cl-E	10 Apr 18 14:43	RAG	
Total Dissolved Solids	5070	mg/l	10	I1750-85	9 Apr 18 12:00	SVS	
Calcium - Total	465	mg/1	1.0	6010D	10 Apr 18 10:57	SZ	
Boron - Total	0.32	mg/l	0.10	6010D	9 Apr 18 14:38	SZ	

* Holding time exceeded

Approved by:

Clauditte K. Canto

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

The reporting limit was elevated for any analyte requiring a dilution as coded below:

@ = Due to sample matrix # = Due to concentration of other analytes
! = Due to sample quantity + = Due to internal standard response

CERTIFICATE of ANALYSIS - CCR

Samantha Marshall Montana Dakota Utilities 400 N 4th St Bismarck ND 58501

Project Name: MDU Heskett Active Ash

Sample Description: 3-90

Event and Year: Spring 2018

2 of 7 Page:

Report Date: 1 May 18 Lab Number: 18-W498 Work Order #: 82-0663 Account #: 002800

Date Sampled: 4 Apr 18 13:50 Date Received: 5 Apr 18 15:05 Sampled By: MVTL Field Services

Temp at Receipt: 2.4C

	As Recei Result	ved	Method RL	Method Reference	Date Analyzed	Analyst
Metal Digestion			0	EPA 200.2	5 Apr 18	SVS
pH - Field	6.91	units	NA	SM 4500 H+ B	4 Apr 18 13:50	DJN
Hq	* 7.2	units	0.1	SM4500 H+ B	6 Apr 18 17:00	SVS
Temperature - Field	7.21	Degrees C	NA	SM 2550B	4 Apr 18 13:50	DJN
Conductivity - Field	4640	umhos/cm	1	EPA 120.1	4 Apr 18 13:50	DJN
Fluoride	0.13	mg/l	0.10	SM4500-F-C	6 Apr 18 17:00	SVS
Sulfate	2020	mg/l	5.00	ASTM D516-07	18 Apr 18 15:15	RAG
Chloride	37.8	mg/l	1.0	SM4500-C1-E	10 Apr 18 14:43	RAG
Total Dissolved Solids	4710	mg/l	10	I1750-85	9 Apr 18 12:00	SVS
Calcium - Total	445	mg/l	1.0	6010D	10 Apr 18 10:57	SZ
Boron - Total	0.13	mg/l	0.10	6010D	9 Apr 18 14:38	SZ

* Holding time exceeded

Approved by:

Clauditte K. Canto

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

The reporting limit was elevated for any analyte requiring a dilution as coded below:

@ = Due to sample matrix # = Due to conduct the sample quantity + = Due to interpret the sample quantity + = Due t

= Due to concentration of other analytes
+ = Due to internal standard response

CERTIFICATE of ANALYSIS - CCR

Samantha Marshall Montana Dakota Utilities 400 N 4th St Bismarck ND 58501

Project Name: MDU Heskett Active Ash

Sample Description: Dup2

Event and Year: Spring 2018

3 of 7 Page:

Report Date: 1 May 18 Lab Number: 18-W499 Work Order #: 82-0663 Account #: 002800

Date Sampled: 4 Apr 18

Date Received: 5 Apr 18 15:05 Sampled By: MVTL Field Services

Temp at Receipt: 2.4C

	As Receive Result	d	Method RL	Method Reference	Date Analyzed	Analyst	
Metal Digestion				EPA 200.2	5 Apr 18	SVS	
pH *	7.2	units	0.1	SM4500 H+ B	6 Apr 18 17:00	SVS	
Fluoride	0.13	mg/l	0.10	SM4500-F-C	6 Apr 18 17:00	SVS	
Sulfate	2130	mg/l	5.00	ASTM D516-07	18 Apr 18 15:15	RAG	
Chloride	37.8	mg/l	1.0	SM4500-Cl-E	10 Apr 18 14:43	RAG	
Total Dissolved Solids	4400	mg/l	10	I1750-85	9 Apr 18 12:00	SVS	
Calcium - Total	468	mg/l	1.0	6010D	10 Apr 18 10:57	SZ	
Boron - Total	0.13	mg/l	0.10	6010D	9 Apr 18 14:38	SZ	

* Holding time exceeded

Approved by:

Clauditte K. Canteo

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

The reporting limit was elevated for any analyte requiring a dilution as coded below:

@ = Due to sample matrix # = Due to con
! = Due to sample quantity + = Due to int

= Due to concentration of other analytes + = Due to internal standard response

Page:

4 of 7

CERTIFICATE of ANALYSIS - CCR

Samantha Marshall Montana Dakota Utilities 400 N 4th St Bismarck ND 58501

Project Name: MDU Heskett Active Ash

Sample Description: 2-90

Event and Year: Spring 2018

Report Date: 1 May 18 Lab Number: 18-W500

Work Order #: 82-0663 Account #: 002800

Date Sampled: 4 Apr 18 15:12 Date Received: 5 Apr 18 15:05 Sampled By: MVTL Field Services

Temp at Receipt: 2.4C

	As Receiv Result	ed	Method RL	Method Reference	Date Analyzed	Analyst
Metal Digestion				EPA 200.2	5 Apr 18	SVS
pH - Field	6.96	units	NA	SM 4500 H+ B	4 Apr 18 15	12 DJN
рН	* 7.3	units	0.1	SM4500 H+ B	6 Apr 18 17	00 SVS
Temperature - Field	6.76	Degrees C	NA	SM 2550B	4 Apr 18 15	12 DJN
Conductivity - Field	7110	umhos/cm	1	EPA 120.1	4 Apr 18 15	12 DJN
Fluoride	1.03	mg/l	0.10	SM4500-F-C	6 Apr 18 17	00 SVS
Sulfate	3990	mg/l	5.00	ASTM D516-07	18 Apr 18 15	15 RAG
Chloride	69.7	mg/l	1.0	SM4500-Cl-E	10 Apr 18 14	43 RAG
Total Dissolved Solids	7240	mg/l	10	I1750-85	9 Apr 18 12	00 SVS
Calcium - Total	462	mg/l	1.0	6010D	10 Apr 18 10	57 SZ
Boron - Total	< 0.5 @	mg/l	0.10	6010D	9 Apr 18 14	38 SZ

* Holding time exceeded

Approved by:

Clauditte K. Cantle Cc 4 May 18

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

CERTIFICATE of ANALYSIS - CCR

Samantha Marshall Montana Dakota Utilities 400 N 4th St Bismarck ND 58501

Project Name: MDU Heskett Active Ash

Sample Description: 104

Event and Year: Spring 2018

Page: 1 of 1

Report Date: 23 Apr 18 Lab Number: 18-W501 Work Order #: 82-0663 Account #: 002800

Date Sampled: 5 Apr 18 11:36 Date Received: 5 Apr 18 15:05 Sampled By: MVTL Field Services

Temp at Receipt: 2.4C

	As Received Result		Method Reference	Date Analyzed	Analyst	
Metal Digestion pH - Field pH Temperature - Field Conductivity - Field Fluoride Sulfate Chloride Total Dissolved Solids Calcium - Total Boron - Total	6.92 unit * 7.3 unit 6.60 Degr 14041 umho 0.54 mg/l 10700 mg/l	s 0.1 rees C NA rs/cm 1 0.10 5.00 1.0 1.0 1.0	EPA 200.2 SM 4500 H+ B SM4500 H+ B SM 2550B EPA 120.1 SM4500-F-C ASTM D516-07 SM4500-C1-E I1750-85 6010D 6010D	5 Apr 18 5 Apr 18 11:36 6 Apr 18 17:00 5 Apr 18 11:36 5 Apr 18 17:00 18 Apr 18 17:00 18 Apr 18 15:15 10 Apr 18 14:43 9 Apr 18 12:00 10 Apr 18 10:57 9 Apr 18 14:38	DJN DJN SVS RAG RAG SVS SZ	

* Holding time exceeded

Approved by:

Clauditte K. Cantlo

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

The reporting limit was elevated for any analyte requiring a dilution as coded below:

@ = Due to sample matrix # = Due to con
! = Due to sample quantity + = Due to in

= Due to concentration of other analytes
+ = Due to internal standard response

MINNESOTA VALLEY TESTING LABORATORIES, INC. 1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2 North German St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2 North German St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2 North German St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2 North German St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2 North German St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2 North German St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2 North German St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2 North German St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2 North German St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2 North German St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2 North German St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2 North German St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2 North German St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2 North German St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2 North German St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2 North German St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2 North German St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2 North German St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2 North German St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2 North German St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2 North German St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2 North German St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2 North German St. ~ New Ulm, MN 56073 ~ North German St. ~ New Ulm, MN 56073 ~ North German St. ~ New Ulm, MN 56073 ~ North German St. ~ New Ulm, MN 56073 ~ North German St. ~ New Ulm, MN 56073 ~ North German St. ~ New Ulm, MN 56073 ~ North German St. ~ New Ulm, MN 56073 ~ North German St. ~ New Ulm, MN 56073 ~ North G 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

Page: 5 of 7

Report Date: 1 May 18 Lab Number: 18-W502 Work Order #: 82-0663 Account #: 002800

Date Sampled: 5 Apr 18 12:31 Date Received: 5 Apr 18 15:05 Sampled By: MVTL Field Services

Temp at Receipt: 2.4C

CERTIFICATE of ANALYSIS - CCR

Samantha Marshall Montana Dakota Utilities 400 N 4th St Bismarck ND 58501

Project Name: MDU Heskett Active Ash

Sample Description: 80R

Event and Year: Spring 2018

As Received Method Method	Date Analyzed	Analyst	
Result RL Reference		Analyst	
Metal Digestion EPA 200.2 pH - Field 7.10 units NA SM 4500 H+ B pH * 7.4 units 0.1 SM4500 H+ B Temperature - Field 5.54 Degrees C NA SM 2550B Conductivity - Field 5743 umhos/cm 1 EPA 120.1 Fluoride 0.29 mg/l 0.10 SM4500-F-C Sulfate 3260 mg/l 5.00 ASTM D516-07 Chloride 157 mg/l 1.0 SM4500-C1-E Total Dissolved Solids 5730 mg/l 10 I1750-85 Calcium - Total 292 mg/l 1.0 6010D	5 Apr 18 5 Apr 18 12:31 6 Apr 18 17:00 5 Apr 18 12:31 5 Apr 18 12:31 6 Apr 18 17:00 19 Apr 18 10:30 18 Apr 18 9:12 9 Apr 18 12:00 10 Apr 18 11:57	SVS DJN SVS DJN DJN SVS RAG RAG SVS SZ	
Boron - Total < 0.5 @ mg/l 0.10 6010D	9 Apr 18 14:38	SZ	

* Holding time exceeded

Approved by:

Claudite K. Cantlo

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

The reporting limit was elevated for any analyte requiring a dilution as coded below:

@ = Due to sample matrix # = Due to concentration of other analytes
! = Due to sample quantity + = Due to internal standard response

publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

MINNESOTA VALLEY TESTING LABORATORIES, INC. 1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2 North German St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 200 CONTROL OF THE STATE OF THE ST 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

6 of 7 Page:

Report Date: 1 May 18 Lab Number: 18-W503 Work Order #: 82-0663 Account #: 002800

Date Sampled: 5 Apr 18 13:57 Date Received: 5 Apr 18 15:05 Sampled By: MVTL Field Services

Temp at Receipt: 2.4C

CERTIFICATE of ANALYSIS - CCR

Samantha Marshall Montana Dakota Utilities 400 N 4th St Bismarck ND 58501

Project Name: MDU Heskett Active Ash

Sample Description: 105

Event and Year: Spring 2018

	As Receiv Result	ed Method RL		Method Reference	Date Analyzed	Analyst	
Metal Digestion				EPA 200.2	5 Apr 18	SVS	
pH - Field	6.72	units	NA	SM 4500 H+ B	5 Apr 18 13:57	DJN	
Н	* 7.1	units	0.1	SM4500 H+ B	6 Apr 18 17:00	SVS	
Temperature - Field	6.27	Degrees C	NA	SM 2550B	5 Apr 18 13:57	DJN	
Conductivity - Field	7596	umhos/cm	1	EPA 120.1	5 Apr 18 13:57	DJN	
Fluoride	0.28	mg/l	0.10	SM4500-F-C	6 Apr 18 17:00	SVS	
Sulfate	4570	mg/l	5.00	ASTM D516-07	19 Apr 18 10:30	RAG	
Chloride	333	mg/l	1.0	SM4500-Cl-E	18 Apr 18 9:12	RAG	
Total Dissolved Solids	8110	mg/l	10	I1750-85	9 Apr 18 12:00	SVS	
Calcium - Total	405	mg/l	1.0	6010D	10 Apr 18 11:57	SZ	
Boron - Total	< 0.5 @	mg/l	0.10	6010D	9 Apr 18 14:38	SZ	

* Holding time exceeded

Approved by:

Claudite K. Cantep

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

The reporting limit was elevated for any analyte requiring a dilution as coded below:

@ = Due to sample matrix # = Due to concentration of other analytes
! = Due to sample quantity + = Due to internal standard response

MINNESOTA VALLEY TESTING LABORATORIES, INC. 1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2 North German St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2 North German St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2 North German St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2 North German St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2 North German St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2 North German St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2 North German St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2 North German St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2 North German St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2 North German St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2 North German St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2 North German St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2 North German St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2 North German St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2 North German St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2 North German St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2 North German St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2 North German St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2 North German St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2 North German St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2 North German St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2 North German St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2 North German St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2 North German St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2 North German St. ~ New Ulm, MN 56073 ~ North German St. ~ New Ulm, MN 56073 ~ North German St. ~ New Ulm, MN 56073 ~ North German St. ~ New Ulm, MN 56073 ~ North German St. 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

Page:

7 of 7

CERTIFICATE of ANALYSIS - CCR

Samantha Marshall Montana Dakota Utilities 400 N 4th St Bismarck ND 58501

Project Name: MDU Heskett Active Ash

Sample Description: FB2

Event and Year: Spring 2018

Report Date: 1 May 18 Lab Number: 18-W504 Work Order #: 82-0663 Account #: 002800

Date Sampled: 5 Apr 18

Date Received: 5 Apr 18 15:05 Sampled By: MVTL Field Services

PO #: 169918

Temp at Receipt: 2.4C

	As Receiv Result	ved	Method RL	Method Reference	Date Analyzed	Analyst
Metal Digestion				EPA 200.2	5 Apr 18	SVS
рН	* 6.0	units	0.1	SM4500 H+ B	6 Apr 18 17:00	SVS
Fluoride	< 0.1	mg/1	0.10	SM4500-F-C	6 Apr 18 17:00	SVS
Sulfate	< 5	mg/l	5.00	ASTM D516-07	19 Apr 18 10:30	RAG
Chloride	< 1	mg/1	1.0	SM4500-C1-E	18 Apr 18 9:12	RAG
Total Dissolved Solids	< 10	mg/l	10	I1750-85	9 Apr 18 12:00	SVS
Calcium - Total	< 1	mg/l	1.0	6010D	10 Apr 18 11:57	SZ
Boron - Total	< 0.1	mg/1	0.10	6010D	9 Apr 18 14:38	SZ

* Holding time exceeded

Approved by:

Clauditte K. Canteo

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

The reporting limit was elevated for any analyte requiring a dilution as coded below:

@ = Due to sample matrix # = Due to conduct to sample quantity + = Due to interpret to the sample quantity + =

= Due to concentration of other analytes
+ = Due to internal standard response

Groundwater Assessment

Company:	MDU Heskett								
Event:	Spring 2018								
Sample ID:	33								
Sampling Personal:	Massen Wieswace								

2	616 E. Broadway Ave, Bis	smarck, ND							Sampling F	Personal:	and	en WI	P1:0-6	e
	Phone: (701) 258-9	720						,	700000000000000000000000000000000000000					
۱۸/	eather Conditions:		Tomp:	77	°F	Wind:		@ 17		Drooin	. 6	Dorthy C	loudy / Cla	d.
**			Temp:		<u> </u>	vviria.	2	@ 7		Precip	. Suiii	ny√l Partly C	loudy / Cit	uuy
		Well Info	ormation						Sa	ampling I	nformation	on		
	Well Locked?	Yes	CHO				Purgi	ng Method:	Blac	dder				
	Well Labeled?	Yes	No				Sampli	ng Method:	Blac	dder		Со	ntrol Setting	gs
	Casing Straight?	XES	No				Dedicated Equip?:		Yes	No		Purge:	5	sec
	Grout Seal Intact?	Yes	No	Not V	/isible		Duplicate Sample?:		Yes	≤No)		Recover:	55	sec
Re	epairs Necessary:			Duplicate	Sample ID:	3,m=0.0			PSI:					
	Casing	Diameter:		2"							-			
	Water Level Bef	ore Purge:	<u></u>	11.60	ft		Purge Date:		4ADr.	18	Time Purg	ing Began:	1115	∕am̄/pm
					ı		Well P	urged Dry?	′ Yes	(NO)	Time P	urged Dry:		am/pm
							Sa	mple Date:	4April	8	Time of	Sampling:	1235	am/pm
	Depth to Top	of Pump:	4	14.48	ft				, "					
	Water Level Afte	er Sample:	4	1,73	ft		Bottle	1L Raw		250mL Su	lfuric			
Measurement Method: Electric Water Level Indicator					List:	List: 500mL Nitric 500mL Nitric (filtered)								
					Field	Measure	ments							
	Stabilization	Temp	Spec.		DO	ORP	Turbidity	Water	Pumping	mL	1	Description:		

Stabil	ization	Temp	Spec.		DO	ORP	Turbidity	Water	Pumping	mL	Description:
(3 cons	ecutive)	(°C)	Cond.	pН	(mg/L)	(mV)	(NTU)	Level (ft)	Rate	Removed	Clarity, Color, Odor, Ect.
SEQ#	Time		±5%	±0.1	±10%	±10% ±20 mV ±1		0.25 ft	ml/min		Clear, Slightly Turbid, Turbid
1	1120	ح ده کړ	4999	7.02	11.73	21.9	41.6	41,81	100	500	Stightly tubid
2	1135	7,00	5046	6.67	2,46	28,0	75,6	41,72	100	1500	.57
3	1150	7,09	4876	6,34	3,01	ES. [41.5	41.72	100	1500.	57
4	1205	7/10	4840	for 61	2,17	648.0	9.78	41,72	100	1500.	Cke
5	1215	7.33	4831	6159	2,01	48.4	4,39	41.74	100	1000	clea-
6	1220	7,41	4838	6159	2.00	48.3	2,61	41,72	100	500	0/5-
7	1245	7,25	4839	6.59	2,03	4813	1.60	41,75	100	500	clean
8	1230	7.11	4844	6,59	2:07	4815	1,68	41.73	100	500	Cler
9	1235	7.17		6,60	2.09	4818	1,73	41,73	120	500	Class
10		•	.,,		,				1		

Total Volume Removed: <u>ダクク</u> mL

Stabilized: (Ves No Total Volume Removed. <u>Nov</u> Comments: Had to pull pump Check ball on the pump was stuck,

Stabilized: / Yes

Comments:

No

Field Datasheet

Groundwater Assessment

Company:	MDU Heskett	
Event:	Spring 2018	
Sample ID:	3-90	
Sampling Personal:	Darren Alieswaag	

2616 E. Broadway Ave, Bismarck, ND Phone: (701) 258-9720

	, ,							•						
Weather C	onditions:		Temp:	28	°F	Wind:	5W	@ 7		Precip:	// Sunr	ny/ Partly C	Cloudy / Clo	oudy
		Well Info						Sampling Information						
We	ell Locked?	Yes	No				Purgir	ng Method:	Blad	der				
	Il Labeled?	Yes	No				Samplii	ng Method:	Blad	der	Control Settings			gs
		Straight? Yes No					Dedicat	ed Equip?:	(Yes)	No		Purge:	5	
	Seal Intact?	Yes	No Not Visible				Duplicate	Sample?:	Yes	No		Recover:	<u>\$5~</u>	
Repairs Necessary:							Duplicate:	Sample ID:	Dup-	2		PSI:		
	Casing	Diameter:		2"					. 4					
Wate	er Level Bef	ore Purge:	19,38	ft		F	urge Date:	4April	7		ing Began:	1305	am	
				•			Well P	urged Dry?	Ýes	No>		urged Dry:		am
							Sa	mple Date:	4.2pr 18		Time of	Sampling:	1350	am
	Depth to To	p of Pump:	2	0.15	ft				,					
Wate	er Level Aft	er Sample:		19,45	ft		Bottle	1L Raw		250mL Sul	furic			
N	/leasuremer	nt Method:	Electric \	Nater Level	Indicator		List:	500mL Nitr	ic	500mL Nitr	ric (filtered)			
					Field	Measure	ments							
Stabili	ization	Temp	Spec.		DO	ORP	Turbidity	Water	Pumping	mL		Description:		
(3 cons	ecutive)	(°C)	Cond.	pН	(mg/L)	(mV)	(NTU)	Level (ft)	Rate	Removed		, Color, Ode		
SEQ#	Time		±5%	±0.1	±10%	±20 mV	±10%	0.25 ft	ml/min	-	Clear,	Slightly Turbid	, Turbid	
1	1310	7.17	4637	691	2,36	H.7	3.571	19,75	100	500	Clen			
2	1320	7,06	4634	6.90	2,26	27.4	2,13	19,45	100	1000	Clean			
3	1330	7,14	4636	6.90	2,40	35.0	1,05	19,45	100	1000	de			
4	1535	7.18	4641	6.91	2.51	37,3	0.99	19,45		500	cle			
5	1340	7,11	4642	6,91	2,67		0.83	19,45	100	500	d			
6	1345	7.01	4640	6,91	2.69	70,3	0.84	19,45	100	500	a			ı
7	1350	7.21	4640	6.91	2.68	40.9	0,179	19,45	100	500	C .			ı
8														

Total Volume Removed: 4500 mL

Groundwater Assessment

Company:	MDU Heskett
Event:	Spring 2018
Sample ID:	2-90
Compline Dersonal:	Dalle Alter

2616 E. Broadway Ave, Bismarck, ND

Pnon	ie: (701) 258-9	3720												
Weather C	onditions:		Temp:	32	°F	Wind:	W	@ 4		Precip:	Sunn	y/ Partly C	Cloudy / Clo	udy
		Well Info	rmation					İ	Sa					
We	Well Locked? Yes No						Purgi	ng Method:	Blac	lder				
Wel	/ell Labeled? Yes No					Sampli	ng Method:	Blac	lder		Со	Control Settings		
Casino	g Straight?	Yes	No				Dedicat	ted Equip?:	(Yes	No		Purge:	5	sec.
Grout S	eal Intact?	Yes	No (Not V	<u>/isible</u>		Duplicate	Sample?:	Yes	No		Recover:	55	sec.
Repairs Ne	ecessary:						Duplicate	Sample ID:				PSI:	25	
Casing Diameter: 2"										_				
Water Level Before Purge: 21,42 f				∕ ft		F	Purge Date:	4Apr	r 18	Time Purgi	ng Began:	1442	_ am/pm	
							Well P	urged Dry?	Yes	ΨO	Time P	urged Dry:	£	am/pm
							Sample Date: 4 Apr / S Time of Sample					Sampling:	1512	am/pm
	Depth to To	p of Pump:			ft				17 /	0				
Wate	er Level Aft	er Sample:	2	1.7)	ft		Bottle	1L Raw		250mL Sul	furic			
N	1easuremer	nt Method:	Electric \	Nater Level	Indicator		List: 500mL Nitric 500mL Nitric (filtered)							
					Field	Measure	ments							
Stabili	zation	Temp	Spec.		DO	ORP	Turbidity	Water	Pumping	mL		Description:		
	ecutive)	(°C)	Cond.	рН	(mg/L)	(mV)	(NTU)	Level (ft)	Rate	Removed		Color, Odo	1	
SEQ#	Time		±5%	±0.1	±10%	±20 mV	±10%	0.25 ft	ml/min		Clear, S	Slightly Turbid,	Turbid	
									,					

Stabil	lization	Temp	Spec.		DO	ORP	Turbidity	Water	Pumping	mL	Description:
(3 cons	secutive)	(°C)	Cond.	pН	(mg/L)	(mV)	(NTU)	Level (ft)	Rate	Removed	Clarity, Color, Odor, Ect.
SEQ#	Time		±5%	±0.1	±10%	±20 mV	±10%	0.25 ft	ml/min		Clear, Slightly Turbid, Turbid
1	1447	17.15	7175		5,41	55,9	1.41	21.71	100	500	clear
2	1457	6,77	7115	6,96,	4,48	56.5	1,06	21,68	100	1000	Ck_
3	1502	6,073	7110	6,96	4,20	56.9	0,59	21.68	100	500	ch_
4	1507	6.81	7112	6.95	4.01	56,9	0,53	21.68	100	500	ch_
5	1512	6,76	7110	6,96	4,01	568	0.55	21,68	100	500	a.
6							7.7				
7								****			
8											
9											
10	1/5										
O4 - I- 111 I-	1/1/	N 1-	···				·			フヘムカ	•

Stabilized: (Yes) No

Total Volume Removed: 3000 mL

Comments:

Weather Conditions:

Comments:

Field Datasheet

Groundwater Assessment

Wind:

Company:	MDU Heskett
Event:	Spring 2018
Sample ID:	104
Sampling Personal:	DANCER ACTEGORAGE

Precip:

Sunny / Partly Cloudy / Cloudy

Phone: (701) 258-9720

Temp:

		vveii into	rmation			_		Sampling information						
W	ell Locked?	Yes	(NO)				Purgi	ng Method:	Blac	lder				
We	ll Labeled?	Yes	No				Sampli	ng Method:	Blac	lder		Co	ontrol Settir	าgs
Casin	ng Straight?	Yes	No				Dedica	ted Equip?:	(Yes	No		Purge:	5	
	Seal Intact?	(Tes	No	Not V	'isible		Duplicate	Sample?:	Yes	No		Recover:	5	
Repairs No	ecessary:	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Duplicate	Sample ID:		<u> </u>		PSI:		
	Casing	Diameter:		2"]					•			
Wat	er Level Be	fore Purge:		13.66	ft		Purge Date: 5 Apr 18 Time Purging Began: 105						1051	<u>an</u>
								urged Dry?	Yes	SW D	Time F	ourged Dry:		an
					······································	1		ample Date:	5ABC11		Time of	f Sampling:	1136	an
	Depth to To	p of Pump:	***************************************		ft				7-7-1				717	
	ter Level Aft)	3.95	ft		Bottle	1L Raw		250mL Sul	furic		***************************************	
	Measureme	<u>'</u>	Electric \	Nater Level	Indicator		List:	500mL Niti	ric	500mL Niti	ric (filtered)			
L	Micadaronicite Michiga. Electric Water Level Indicator													
					Field	Measure	ements							
Stabi	lization	Temp	Spec.		DO	ORP	Turbidity	i .	Pumping	mL	l .	Description:		
(3 cons	secutive)	(°C)	Cond.	рН	(mg/L)	(mV)	(NTU)	Level (ft)	Rate	Removed		/, Color, Odo		1
SEQ#	Time		±5%	±0.1	±10%	±20 mV	±10%	0.25 ft	ml/min		Clear,	Slightly Turbid	, Turbid	_
1	1056	7,08	14066	6,99	5.49	64,5	5.18	13.84	100	500	Ch			
2	1111	6,26	14071	1,92	1.65	63,4	0,85	13.86	100	1500	de			
3	1116	6,71	4057	8,92	1.30	63,2	0,59	13.88	100	100	clr			
4	1126	6117	14063	6,93	174	62.8	0.65	13,91	100	1000	da	-		_
5	1131	6,61	14021	6,92	1,18	62,8	0.58	13,92	100	500	ch			
6	1136	6,60	14041	6.92	1,50	62,1	0.55	13.95	100	500	d			_
7	, , , , , ,					•		77.						
8														_
9										1				_
10						<u> </u>	<u> </u>							_
Stabilized	: X Yes	No					-	Total Volum	e Removed:	4500	mL			

Stabilized:

Comments:

No

Field Datasheet

Groundwater Assessment

Company:	MDU Heskett
Event:	Spring 2018
Sample ID:	80R
Sampling Personal:	Darren Niesman

sec.

Phone: (701) 258-9720

							_						Jan San San San San San San San San San S	
Weather C	onditions:		Temp:	27	°F	Wind:	N	@ 7/0		Precip:	Sunr	ry / Partly C	loudy Cl	oudy
		Well Info	ormation				Sampling Information							
We	ell Locked?	Yes	(No)				Purgi	ng Method:	Blac					
We	ll Labeled?	Yes	No					ng Method:		der		Co	ntrol Settin	as
Casin	g Straight?	Yes	No					ted Equip?:	Yes			Purge:	5	<u> </u>
Grout S	Seal Intact?	Yes	No	Not V	'isible			Sample?:	Yes	(No)		Recover:	5	
Repairs Ne	ecessary:							Sample ID:				PSI:	16	
	Casing	Diameter:		2"					1				!2	
Wate	er Level Bet	fore Purge:		13,59	ft		F	Purge Date:	5A01	18	Time Purgi	ing Began:	1206	a
								urged Dry?	Yes	(No)	Time P	urged Dry:		a
							Sa	mple Date:	SANI	8	Time of	Sampling:	1231	a
	Depth to To	p of Pump:		14.30) ft				7/100					
Wate	er Level Aft	er Sample:		13.86	ft		Bottle	1L Raw		250mL Sul	furic			
N	/leasureme	nt Method:	Electric \	Nater Level	Indicator		List:	500mL Nitr	ric	500mL Nitr	ic (filtered)	****		***************************************
					Ti-14	84								
Stabili	zation	Temp	Spec.		DO	Measure ORP		Matau	D	<u> </u>				
	ecutive)	(°C)	Cond.	pН	(mg/L)	(mV)	Turbidity (NTU)	Water Level (ft)	Pumping Rate	mL Democrad		Description:		
SEQ#	Time	()	±5%	±0.1	±10%	±20 mV	±10%	0.25 ft	ml/min	Removed		Color, Odo		
1	1211	476	51728	7.11	2.91	59.8	1.42	1275	100	500			Tarbia	
2	1221	5.96	5734	7.10	0186	58,3	0,89	13,19	100	1800	- C/201			
3	1226	5.49	5747	7,10	0.82	517,9	0,91	13 0 U	100	500				
4	[23]	5 =4	5743	7,10	0.89	57,8	0.94	13 86	100	500				
5		7,5					1	1-10-2	/					
6														
7														
8														
9											4.77			
10														

Total Volume Removed: 2500 mL

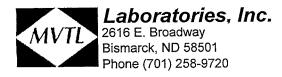
Groundwater Assessment

Company:	MDU Heskett
Event:	Spring 2018
Sample ID:	105
Sampling Personal:	Parren Nieswaan

2616 E. Broadway Ave, Bismarck, ND									Sampling Personal: // // // // // // // // // // // // //						
Phone: (701) 258-97	20						-			Y					
Weather Conditions:		Temp:	2.7°F		Wind:	N	@ 15		Precip:	Sunn	y / Partly C	loudy / Clou	ıdy		
V	Nell Info	rmation						Sa	mpling l	nformatio	on				
Well Locked?	Xes	No				Purg	ing Method:	Blad	der						
Well Labeled?	(Yes	No				Sampl	ing Method:	Blad	der		Co	ntrol Settings	3		
Casing Straight?	Yes	No				Dedica	ated Equip?:	(Yes	No		Purge:	5	sec.		
Grout Seal Intact?	Yes	No	Not Visible			Duplicate	e Sample?:	Yes	(No)		Recover:	55	sec.		
Repairs Necessary:		~				Duplicate	Sample ID:	***			PSI:				
	Diameter:		2"												
Water Level Befo	re Purge:	11,	56	ft			Purge Date:	5 April		Time Purg		1302	am/pm		
						Well F	Purged Dry?	Yes	. 06	Time P	urged Dry:		am/pm		
			_			S	ample Date:	5 Ax (8		Time of	Sampling:	1357	am/pm		
Depth to Top	of Pump:	² 2	11.24	ft				/							
Water Level Afte		1	1.65	ft		Bottle	1L Raw		250mL Sul	furic					
Measurement	Method:	Electric \	Water Level Indicate	or		List:	500mL Nitr	ic	500mL Niti	ric (filtered)					
			Fie	eld	Measure	ements									

Stabil	Stabilization		Spec.		DO	ORP	Turbidity	Water	Pumping	mL	Description:
1	secutive)	Temp (°C)	Cond.	рН	(mg/L)	(mV)	(NTU)	Level (ft)	Rate	Removed	Clarity, Color, Odor, Ect.
SEQ#	Time		±5%	±0.1	±10%	±20 mV	±10%	0.25 ft	ml/min		Clear, Slightly Turbid, Turbid
1	1307	6,11	465	6,74	1,25	58.8	1,25	11.61	100	500	de
2	1317	5,92	£1779		1.06	57,5	1,52	11,64	100	1000	d
3	1322	5.78	67.78 (0.3)	6,77	1.19	57,5	0.83	11.65	100	500	d
4	1232	5,88	m253	6.74	1.39	57,2	1,32	11.65	100	1000	ch_
5	1342	613	# 7503	6,74	0.917	56,8	1070	11.65	100	1000	ch
6	1347	6.42	7512	6,73	0:178	56,8	1,73	11.65	100	500	d
7	1352	6.49	75-40	6,73	0.83	56,7	1065	11.65	100	500	de
8	13507	6,24	7596	6.72	0480	5617	1.59	11,65	100	500	d
9		7	13-0			· ·					
10		,									

Stabilized: Yes No
Comments: ** IN 5 APR 18 (4)


Total Volume Removed: 5500 mL

MVTL Calibration Worksheet

Site: MDU Hes	kett	Technician:	Wallen Willwans						
Instrument (Circle One):	#1 650 MDS 08F100203	#2 650 MDS 04H14736	#3 556 MPS 12E102056						
pH Buffer 7 Buffer 10 Conductivity Buffer 10000 ORP	Pre Site Calibration: 0749 Temp °C Pre Cal Post Cal 19,32 7,00 7,00 19,20 9961 10,02	mv Range +/- Post Cal Range mv 50 6.95-7.05	pH Temp °C Reading Buffer 7 18, 35 6,99 Conductivity Buffer 5000 18,32 5024						
231 mV @ 25C __	19,60 8,41 8,58	±10 mV Barometric Pressure (mm Hg) mg/L 711,5							
pH Buffer 7 Buffer 10 Conductivity Buffer 10000	Temp °C Pre Cal Post Cal 7,00 18,53 996 10,00	Post Cal Range mv 50 6.95-7.05	Time: 1723 pH Temp °C Reading Buffer 7 15,89 7,01 Conductivity Buffer 5000 18,33 5025						
ORP 231 mV @ 25C DO	7,29 226.6 231,1 17,18 7,37 9,10	±10 mV Barometric Pressure (mm Hg) mg/L i7-20,8							

MVTL Calibration Worksheet

Site: MDU Hes	skett	Technician: Varren Willwaag									
Instrument (Circle One):	#1 650 MDS 08F100203	#2 650 MDS 04H14736	#3 556 MPS 12E102056								
pH Buffer 7 Buffer 10 Conductivity Buffer 10000	Pre Site Calibration: 0800 Temp °C Pre Cal Post Cal [8.35] 6,99	### Post Cal Range mv	Post Site Check Time: 7 9 pH Temp °C Reading Buffer 7 9,29 7.01 Conductivity Buffer 5000 18.44 5008								
ORP 231 mV @ 25C DO	6.37 230.0 231.4 17.57 8.90 9.03	±10 mV Barometric Pressure (mm Hg) mg/L 7 / 8									
pH Buffer 7 Buffer 10 Conductivity Buffer 10000 ORP	Temp °C Pre Cal Post Cal 19.45 7.03 7,00 19.43 9.98 10.00	Post Cal Range mv So 6.95-7.05	Time: 1454 pH Temp °C Reading Buffer 7 8.86 7.00 Conductivity Buffer 5000 17.77 5014								
231 mV @ 25C	6.60 229.4 231,4 18.83 8.54 8.76	±10 mV Barometric Pressure (mm Hg) mg/L 7/5,7									

Chain of Custody Record

Project Nam	e:	Event:	Work Order Number: 82–0663
MDU Heskett		Spring 2018	02-0663
Report To: Attn: Address: phone: email:	MDU Samantha Marshall 400 N. 4th St Bismarck, ND 58501 701-222-7829	Carbon Copy: Attn: Address:	Name of Sampler(s): Daven Nieswaag

	Sam	ple Information					Bott	le Typ	е	F	ield Para	meters	Analysis
Lab Number	Sample ID	D_{ate}	Time	Sample Type		for mer	Sooml Nitric	250 mL Sulfuric		Temp (°C.)	Spec. Cond.	E	Analysis Required
W497	33	440-18	1235	GW	Х					17.10	7 4834	6.60	
W4a8	3-90	4.4018	1350	GW	Х	(x	(X	Х		7.2	14640	6.91	
w499	Dup2	4Apr 18	_	GW	X	(x	(x	Х					
W500	2-90	7	1512	GW	х	(x	X	Х		6.76	7110	6.96	
WSU	104	5 Apr 18	1136	GW	Х	(x	(X	Х		6060	14041	6,92	MDU List AA & MDU
WSUZ	80R		1231	GW	Х	(X	(X	Х		5.54	5743	17,10	Appendix 3 List
WSO3	105		1357	GW	Х	(x	(X	Х		6,20	7596	6.72	
WSOY	FB2	SAPE 18		GW	X	()	(X	Х					
									\Box				

Comments:

Relinquished By:	Relinquished By:						
Name:	Date/Time	Location:	Temp (°C)				
1 Dann Len	5Apr 18	Log In Walk In #2	2.4 1 2.4 1 TM562 TM588				
2							

Receiv	/ed by:
Name:	Date/Time
111	1505
Suxum	SAVIS

MINNESOTA VALLEY TESTING LABORATORIES, INC.

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2 North German St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

CASE NARRATIVE

MVTL Lab Reference No/SDG:

201882-2048

Client:

Montana Dakota Utilities

Location:

MDU Heskett

Project Identification:

CCR August 2018

MVTL Laboratory Identifications:

18-W2547

Page 1 of 1

MDU Sample Identification	MVTL Laboratory #
2-90	18-W2547

I. RECEIPT

- All samples were received at the laboratory on 13 Aug 18 at 0955.
- Samples were collected and hand delivered by MVTL Field Service personnel to the laboratory.
- Samples were received on ice and evidence of cooling had begun.
 - o Temperature of samples upon receipt was 5.8°C.
- All samples were properly preserved unless noted here and/or flagged on the individual analytical laboratory report.
- No other exceptions on sample receipt were encountered on this sample set unless noted here.

II. HOLDING TIMES

• With the exception of pH, all holding times were met for both preparation and analysis unless noted here.

III. METHODS

Approved methodology was followed for all sample analyses.

IV. ANALYSIS

 All acceptance criteria was met for calibration, method blanks, laboratory control samples, laboratory fortified matrix/matrix duplicates unless noted here and/or flagged on the individual analytical laboratory report.

MINNESOTA VALLEY TESTING LABORATORIES, INC.

MVTL

1126 N. Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 E. Broadway Ave. ~ Bismarck, ND 58502 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Highway ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

MEMBER ACIL

Page: 1 of 1

Quality Control Report

Lab ID: 18-W2547	Project:				Work Order: 201882-2048												
Analyte	LCS Spike Amt	LCS Rec %	LCS % Rec Limits	Matrix Spike Amt	Matrix Spike ID	Matrix Spike Orig Result	Matrix Spike Result	Matrix Spike Rec %	Matrix Spike % Rec Limits	MSD/ Dup Orig Result	MSD/ Dup Result	MSD Rec %	MSD/ Dup RPD	MSD/ Dup RPD Limit (<)	Known Rec (%)	Known % Rec Limits	Method Blank
Fluoride mg/l	0.50	102	90-110	0.500 0.500	18-W2527 18-W2547	0.20 1.03	0.71 1.46	102 86	80-120 80-120	0.71 1.46	0.70 1.46	100 86	1.4 0.0	20 20	-		< 0.1 < 0.1

Clantop 15ty 18 Approved by:

Page: 1 of 1

CERTIFICATE of ANALYSIS - CCR

Samantha Marshall Montana Dakota Utilities 5181 Southgate Dr Billings MT 59102

Sample Description: 2-90 Sample Site: MDU Heskett Event and Year: August 2018 Report Date: 15 Aug 18 Lab Number: 18-W2547 Work Order #: 82-2048 Account #: 002800

Date Sampled: 13 Aug 18 9:12 Date Received: 13 Aug 18 9:55 Sampled By: MVTL Field Services

Temp at Receipt: 5.8C ROI

	As Recei Result	As Received Result		Method Reference	Date Analyzed	Analyst	
pH - Field Temperature - Field Conductivity - Field Fluoride	6.89 12.1 7281 1.03	units Degrees C umhos/cm mg/l	NA NA 1 0.10	SM 4500 H+ B SM 2550B EPA 120.1 SM4500-F-C	13 Aug 1 13 Aug 1 13 Aug 1 13 Aug 1	8 9:12 8 9:12	DJN DJN

Approved by:

Clauditte K. Canto

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

The reporting limit was elevated for any analyte requiring a dilution as coded below:

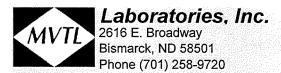
@ = Due to sample matrix # = Due to conduct to sample quantity + = Due to interpolate the conduct to the conduct t

= Due to concentration of other analytes + = Due to internal standard response

Groundwater Assessment

Company:	MDU Heskett	
Event:	August 2018	
Sample ID:	2-90	
Sampling Personal:	Darley Niegras	

ZOTO L. Dioddiay 7110, Di	orrian orr, 110						Camping i	VIVI							
Phone: (701) 258-9	3720											·-			
Weather Conditions:		Temp:	°F		Wind:	Ciaht@	Precip: Sunny / Partly Cloudy / Cloudy								
	Well Info	rmation				<i>J</i> · · · /	S	ampling	Info rmati o	ón					
Well Locked?	Yes	4 10				Purging Metho	d: Bla	dder							
Well Labeled?	Yes	No				Sampling Metho	d: Bla	dder		Co	ntrol Setting	js			
Casing Straight?	Yes	No				Dedicated Equip	?: Yes	> No		Purge:	5	sec			
Grout Seal Intact?	Yes	No	Not Vis	ible		Duplicate Sample?	?: Yes	(NO)		Recover:	55	sec			
Repairs Necessary:						Duplicate Sample I	D:			PSI:					
Casing	Diameter:		2"						•						
Water Level Bef	ore Purge:	21	2,19	ft		Purge Dat	e: 13 Aug	is	Time Purging Began: OF 4Z am			(am/pr			
						Well Purged Dr		(No	1	Purged Dry:		am/pr			
						Sample Dat	ie: 13 Ang	18	Time o	f Sampling:	<u>9912</u>	am/pr			
Depth to Top	p of Pump:	27	2,35	ft				-							
Water Level After	er Sample:	22.3	5700	ft		Bottle 1L Raw									
Measuremer	nt Method:	Electric V	Vater Level In	dicator		List:									


Field Measurements

Stabil	lization	Temp	Spec.		DO	ORP	Turbidity	Water	Pumping	mL	Description:
(3 consecutive)		(°C)	Cond.	pН	(mg/L)	(mV)	(NTU)	Level (ft)	Rate	Removed	Clarity, Color, Odor, Ect.
SEQ#	Time		±5%	±0.1	±10%	±20 mV	±10%	0.25 ft TO	ml/min مر		Clear, Slightly Turbid, Turbid
1	01417	-10,15	7219	6,85	7,77	26.7	1,44	2235	100	500	clear
2	0857	12,31	-20 /1	6,87	4.25	4,3	1.54	22.35	700	1000	clear
3	0902	12,18	72.04	6,88	4,78	0.8	0,907	22,35	100	500	Cler
4	0907	12,03	7255	6.88	4.96	-5.8	0,94	22.35	100	500	ch
5	0912	12.12	7281	6.89	4,56	-8,9	0,93'	22,35	100	500	cl—
6						•			-		
7											
8											
9											
10											

Stabilized: Yes Comments: No Total Volume Removed: 3,000 mL

MVTL Calibration Worksheet

Site: MDU Hes	kett			Technician: Darren Nieswaag						
Instrument (Circle One):	#1 650 MDS 08F100203			#2 650 MDS 04H14736				#3 556 MPS 12E102056		
Date: 13 Aug	/// Temp °C	<u>Time: 07</u>		ration Post Cal Range	IN JUND	mv Range +/- 50	1	Time: 095		
pH Buffer 7 Buffer 10	21.94	Pre Cal 6.94 10.04	Post Cal 7,00 10,00	6.95-7.05 \\ 9.95-10.05	69-41, -220.6	0 +/- 50		pH Buffer 7	Temp °C 21.80	Reading 7.0/
Conductivity Buffer 10000	22,17	10012	10001	±10%	Buffer 5000	Check 500 9		Conductivity Buffer 5000	21,13	4983
ORP 231 mV @ 25C DO	9,00	236,7	231,4 236,734 one	±10 mV Barometi	ric Pressure (r					
Date:	21,70	7, 0 4	[8,28]	mg/L	713.6	2		Time:		
pH Buffer 7 Buffer 10	Temp °C	Pre Cal	Post Cal	Post Cal Range 6.95-7.05 9.95-10.05	mv	mv Range +/- 50 0 +/- 50 -180 +/- 50		pH Buffer 7	Temp °C	Reading
Conductivity Buffer 10000 ORP				±10%	Buffer 5000	Check		Conductivity Buffer 5000		
231 mV @ 25C				±10 mV	rio Propouro (r	mm Ha)				
50				mg/L	ric Pressure (n	ни ⊓у <i>)</i>				

Chain of Custody Record

Project Nam	e:	Event:	Work Order Number:
	MDU Heskett	Aug 2018	82-20-8
Report To: Attn: Address: phone: email:	MDU Samantha Marshall 400 N. 4th St Bismarck, ND 58501 701-222-7829	Carbon Copy: Attn: Address:	Name of Sampler(s): Darren Nieswang

	Sample		Bottle Type			eld Parar	neters	Analysis			
Lab Number	Sample ID	Date	Time	Sample Type		500mL Nitric 500mL Nitric	250 mL Sulfuric	Temp (°C)	Spec. Cond.	/ Ha	Analysis Required
W2547	2-90	13 Aug 18	0912	GW	X	1 1 1		12.12	7281	6.89	Fluoride

Comments:

Relinquished By:	Sample Condition:				
Name:	Date/Time,	Location:	Ć ∦ Temp (°C)		
1 Com Way	13Aug 18 0955	Walk In #2	OA 12c (TM562)/TM588		
20					

Received by:					
Name:	Date/Time				
N Buchman	13 Aug 18				
p pour lana	0459				

MINNESOTA VALLEY TESTING LABORATORIES, INC.

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2 North German St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mytl.com

CASE NARRATIVE - AMENDED 29 JAN 19 (REPORTING)

MVTL Lab Reference No/SDG:

201882-2588

Client:

Montana Dakota Utilities

Location:

MDU Heskett

Project Identification:

CCR October 2018

MVTL Laboratory Identifications:

18-W3236 through 18-W3243

Page 1 of 2

MDU Sample Identification	MVTL Laboratory #
13	18-W3236
Dup1	18-W3237
102	18-W3238
70	18-W3239
101	18-W3240
103	18-W3241
44R	18-W3242
FB1	18-W3243

I. RECEIPT

- All samples were received at the laboratory on 2 Oct 18 at 1406.
- Samples were collected and hand delivered by MVTL Field Service personnel to the laboratory.
- Samples were received on ice and evidence of cooling had begun.
 - o Temperature of samples upon receipt was 4.0°C.
- All samples were properly preserved unless noted here and/or flagged on the individual analytical laboratory report.
- No other exceptions on sample receipt were encountered on this sample set unless noted here.

II. HOLDING TIMES

 With the exception of pH, all holding times were met for both preparation and analysis unless noted here.

III. METHODS

Approved methodology was followed for all sample analyses.

IV. ANALYSIS

- All acceptance criteria were met for calibration, method blanks, laboratory control samples, laboratory fortified matrix/matrix duplicates unless noted here and/or flagged on the individual analytical laboratory report.
 - o For some analytes, the reported results were elevated due to instrument performance at the lower limit of quantitation (LLOQ).
 - o For some analytes, the reported results were elevated due to additional dilutions required to minimize the effects of sample matrix.

MINNESOTA VALLEY TESTING LABORATORIES, INC.

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2 North German St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2100 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

CASE NARRATIVE - AMENDED 29 JAN 19 (REPORTING)

MVTL Lab Reference No/SDG:

201882-2588

Client:

Montana Dakota Utilities

Location:

MDU Heskett

Project Identification:

CCR October 2018

MVTL Laboratory Identifications:

18-W3236 through 18-W3243

Page 2 of 2

٧. REPORTING

Per email dated 21 Jan 19 from Terri Olson with Barr, the reports were amended to report only Appendix III parameters on one report and only Appendix IV parameters on a separate report.

All laboratory data has been approved by MVTL Laboratories.

SIGNED:

_ DATE: 29 Jan 19

Claudette Carroll - MVTL Bismarck Laboratory Manager

MINNESOTA VALLEY TESTING LABORATORIES, INC.

MVTL

1126 N. Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 E. Broadway Ave. ~ Bismarck, ND 58502 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Highway ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

MEMBER ACIL

Page: 1 of 1

Quality Control Report - Amended 29 Jan 19

Lab IDs: 18-W3236 to 18-W3243 Project: MDII Heskett Work Order: 201882-2588

Lab IDS: 18-W 3230 to 18-W	3243	Pro	oject: MI	JU Heske	επ		work Or	der: 201	882-2588	3							
Analyte	LCS Spike Amt	LCS Rec %	LCS % Rec Limits	Matrix Spike Amt	Matrix Spike ID	Matrix Spike Orig Result	Matrix Spike Result	Matrix Spike Rec %	Matrix Spike % Rec Limits	MSD/ Dup Orig Result	MSD/ Dup Result	MSD Rec %	MSD/ Dup RPD	MSD/ Dup RPD Limit (<)	Known Rec (%)	Known % Rec Limits	Method Blank
Boron - Total mg/l	0.40 0.40 0.40 0.40	108 112 108 108	80-120 80-120 80-120 80-120	2.00 8.00 2.00 2.00	18-D3537 18-M2561 18-W3236 18-W3264	1.48 < 2 0.66 0.96	3.62 8.96 2.62 2.82	107 112 98 93	75-125 75-125 75-125 75-125	3.62 8.96 2.62 2.82	3.68 8.94 2.58 2.93	110 112 96 98	1.6 0.2 1.5 3.8	20 20 20 20 20	-	-	< 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1
Calcium - Total mg/l	20.0 20.0	112 114	80-120 80-120	100 500	18W3220q 18W3240q	91.9 386	185 935	93 110	75-125 75-125	185 935	187 940	95 111	1.1 0.5	20 20	-		<1 <1 <1 <1
Chloride mg/l	30.0 30.0 30.0 30.0	100 103 101 100	80-120 80-120 80-120 80-120	30.0 30.0	18-W3202 18-W3238	17.0 6.4	47.0 35.3	100 96	80-120 80-120	47.0 35.3	48.0 38.2	103 106	2.1 7.9	20 20	-		<1 <1 <1 <1
Fluoride mg/l	0.50	104	90-110	0.500 0.500	18-W3236 18-W3239	0.94 0.34	1.40 0.84	92 100	80-120 80-120	1.40 0.84	1.40 0.84	92 100	0.0	20 20	-	-	< 0.1 < 0.1
pH units	-	-	-	-	- 4 E	-	-	-	=	7.4 7.2	7.4 7.2	-	0.0 0.0	20 20	-		-
Sulfate mg/l	100 100	112 103	80-120 80-120	10000 100	18-W3238 18-W3243	5740 < 5	17500 103	118 103	80-120 80-120	17500 103	17500 97.3	118 97	0.0 5.7	20 20	-	-	< 5 < 5
Total Dissolved Solids mg/l	-	-	-	-	-) -	-	-	-	< 10	< 10	-	0.0	20	-	-	< 10

Approved by:	C. Cantel	
	79 Jan 19	

Claudette Carroll

From:

Terri A. Olson <TOlson@barr.com>

Sent:

Monday, January 21, 2019 12:15 PM

To:

Claudette Carroll

Cc:

'Marshall, Samantha'; Stephanie A. Theriault

Subject:

Re: Reports revisions

Follow Up Flag:

Follow up

Flag Status:

Flagged

Hi Claudette,

We haven't emailed in a while, hope you're having a good new year.

For the two Heskett CCR reports (201882-2588 and 201882-2619), we will need the Appendix III and Appendix IV CCR analytes split into two reports. The field parameters (pH, temperature, conductivity) can be reported in only the Appendix III report or you can include in both.

- Appendix III see 201882-0637 for example
 - o Chloride
 - o TDS
 - o Fluoride
 - о рН
 - o Sulfate
 - o Boron
 - o Calcium
- Appendix IV
 - o Antimony
 - o Arsenic
 - o Barium
 - o Beryllium
 - o Cadmium
 - o Chromium
 - o Cobalt
 - o Lead
 - o Lithium
 - o Molybdenum
 - o Selenium
 - o Thallium
 - o Mercury
 - o Fluoride is in both lists so OK to have just in Appendix III since we wouldn't report Appendix IV only

We have discussed the report split with Sam at MDU and she was OK with it. I have copied her on this email. We need ASAP as our report is due at the end of this month.

Let me know if you have any questions.

Thank-you,

Terri A. Olson

Senior Data Quality Specialist Minneapolis, MN office: 952.842.3578 TOlson@barr.com www.barr.com

resourceful. naturally.

This e-mail message (including attachments, forwards, and replies) is correspondence transmitted between Barr Engineering Co. and its clients and related parties in the course of business, and is intended solely for use by the addressees. This transmission contains information which may be confidential and proprietary. If you are not the addressee, note that any disclosure, copying, distribution, or use of the contents of this message (or any attachments, replies, or forwards) is prohibited. If you have received this transmission in error, please destroy it and notify us at 952-832-2600.

If you no longer wish to receive marketing e-mails from Barr, respond to <u>communications@barr.com</u> and we will be happy to honor your request.

Amended 29 Jan 19 (App III/App IV) - CCR

Samantha Davies Montana Dakota Utilities 5181 Southgate Dr Billings MT 59102

Project Name: MDU Heskett

Sample Description: 13

Event and Year: Fall 2018

1 of 8 Page:

Report Date: 19 Oct 18 Lab Number: 18-W3236 Work Order #: 82-2588 Account #: 002800

Date Sampled: 1 Oct 18 9:05 Date Received: 2 Oct 18 14:06 Sampled By: MVTL Field Services

PO #: 169846 OP

Temp at Receipt: 4.0C ROI

	As Receiv Result	ed	Method RL	Method Reference	Date Analyzed	Analyst
pH - Field pH Temperature - Field Conductivity - Field Fluoride Sulfate Chloride Total Dissolved Solids Calcium - Total Boron - Total	6.93 * 7.3 8.90 9887 0.94 7300 76.1 10400 420 0.66	units units Degrees C umhos/cm mg/l mg/l mg/l mg/l mg/l mg/l mg/l	NA 0.1 NA 1 0.10 5.00 1.0 10 1.0 0.10	SM 4500 H+ B SM4500 H+ B SM 2550B EPA 120.1 SM4500-F-C ASTM D516-07 SM4500-C1-E 11750-85 6010D 6010D	1 Oct 18 9:05 3 Oct 18 17:00 1 Oct 18 9:05 1 Oct 18 9:05 3 Oct 18 17:00 4 Oct 18 15:36 3 Oct 18 9:13 5 Oct 18 8:20 3 Oct 18 15:42 8 Oct 18 11:49	JSM SVS JSM JSM SVS EV EMS SVS BMB SZ

* Holding time exceeded

Approved by:

Claudite K. Canteo

CC 29 Jan 19

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

The reporting limit was elevated for any analyte requiring a dilution as coded below:

@ = Due to sample matrix # = Due to concentration of other analytes
! = Due to sample quantity + = Due to internal standard response

2 of 8

Amended 29 Jan 19 (App III/App IV) - CCR

Samantha Davies Montana Dakota Utilities 5181 Southgate Dr Billings MT 59102

Project Name: MDU Heskett

Sample Description: Dup1

Event and Year: Fall 2018

Page:

Report Date: 19 Oct 18 Lab Number: 18-W3237 Work Order #: 82-2588 Account #: 002800

Date Sampled: 1 Oct 18

Date Received: 2 Oct 18 14:06 Sampled By: MVTL Field Services

PO #: 169846 OP

Temp at Receipt: 4.0C ROI

As Received Result		Method Reference	Date Analyzed	Analyst
units mg/l mg/l mg/l mg/l mg/l	0.1 0.10 5.00 1.0 10	SM4500 H+ B SM4500-F-C ASTM D516-07 SM4500-C1-E I1750-85 6010D	3 Oct 18 17:00 3 Oct 18 17:00 4 Oct 18 15:36 3 Oct 18 9:46 5 Oct 18 8:20 3 Oct 18 15:42	SVS SVS EV EMS SVS BMB SZ
	mg/l	mg/l 10 mg/l 1.0	mg/l 10 I1750-85 mg/l 1.0 6010D	mg/l 1.0 SM1300 Cl 2 5 Oct 18 8:20 mg/l 1.0 6010D 3 Oct 18 15:42 cl 2 5 Oct 18 8:20 mg/l 1.0 6010D 3 Oct 18 11:49

* Holding time exceeded

Approved by:

Clauditte K. Canto 29 Jan 19

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

The reporting limit was elevated for any analyte requiring a dilution as coded below:

@ = Due to sample matrix # = Due to conduct to sample quantity # = Due to interport to the conduct

= Due to concentration of other analytes + = Due to internal standard response

Page:

3 of 8

Amended 29 Jan 19 (App III/App IV) - CCR

Samantha Davies Montana Dakota Utilities 5181 Southqate Dr Billings MT 59102

Project Name: MDU Heskett

Sample Description: 102

Event and Year: Fall 2018

Report Date: 19 Oct 18 Lab Number: 18-W3238

Work Order #: 82-2588 Account #: 002800

Date Sampled: 2 Oct 18 9:30 Date Received: 2 Oct 18 14:06 Sampled By: MVTL Field Services

PO #: 169846 OP

Temp at Receipt: 4.0C ROI

	As Recei Result	ved	Method RL	Method Reference	Date Analyzed	Analyst
pH - Field	6.77	units	NA 0.1	SM 4500 H+ B SM4500 H+ B	2 Oct 18 9:30 3 Oct 18 17:00	JSM SVS
pH Temperature - Field	* 7.3 9.02	units Degrees C	NA	SM 2550B EPA 120.1	2 Oct 18 9:30 2 Oct 18 9:30	JSM JSM
Conductivity - Field Fluoride	9098 0.16	umhos/cm mg/l	0.10	SM4500-F-C	3 Oct 18 17:00	svs
Sulfate Chloride	5740 6.4	mg/l mg/l	5.00 1.0	ASTM D516-07 SM4500-Cl-E	4 Oct 18 15:36 3 Oct 18 9:46	EMS
Total Dissolved Solids	8780 472	mg/l mg/l	10 1.0	I1750-85 6010D	5 Oct 18 8:20 3 Oct 18 15:42	SVS BMB
Calcium - Total Boron - Total	1.51	mg/l	0.10	6010D	8 Oct 18 11:49	SZ

* Holding time exceeded

Approved by:

Clauditte K. Canto

60 29 Jan 19

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

The reporting limit was elevated for any analyte requiring a dilution as coded below:

@ = Due to sample matrix # = Due to conduct to sample quantity + = Due to in

= Due to concentration of other analytes + = Due to internal standard response

Page:

4 of 8

Amended 29 Jan 19 (App III/App IV) - CCR

Samantha Davies Montana Dakota Utilities 5181 Southgate Dr Billings MT 59102

Project Name: MDU Heskett

Sample Description: 70

Event and Year: Fall 2018

Report Date: 19 Oct 18 Lab Number: 18-W3239 Work Order #: 82-2588

Account #: 002800

Date Sampled: 2 Oct 18 11:05
Date Received: 2 Oct 18 14:06 Sampled By: MVTL Field Services

PO #: 169846 OP

Temp at Receipt: 4.0C ROI

	As Received Result	Method RL	Method Reference	Date Analyzed	Analyst
pH - Field pH Temperature - Field Conductivity - Field Fluoride Sulfate Chloride Total Dissolved Solids Calcium - Total Boron - Total	6.91 units * 7.5 units 9.79 Degrees C 3704 umhos/cm 0.34 mg/l 1940 mg/l 49.6 mg/l 3100 mg/l 341 mg/l 0.46 mg/l	NA 0.1 NA 1 0.10 5.00 1.0 1.0	SM 4500 H+ B SM4500 H+ B SM 2550B EPA 120.1 SM4500-F-C ASTM D516-07 SM4500-C1-E I1750-85 6010D 6010D	2 Oct 18 11:05 3 Oct 18 17:00 2 Oct 18 11:05 2 Oct 18 11:05 3 Oct 18 17:00 4 Oct 18 15:36 3 Oct 18 9:46 5 Oct 18 8:20 3 Oct 18 16:42 8 Oct 18 11:49	EV EMS SVS BMB

* Holding time exceeded

Approved by:

Claudite K. Canto

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

The reporting limit was elevated for any analyte requiring a dilution as coded below:

@ = Due to sample matrix ! = Due to sample quantity

= Due to concentration of other analytes + = Due to internal standard response

Amended 29 Jan 19 (App III/App IV) - CCR

Samantha Davies Montana Dakota Utilities 5181 Southgate Dr Billings MT 59102

Project Name: MDU Heskett

Sample Description: 101

Event and Year: Fall 2018

5 of 8 Page:

Report Date: 19 Oct 18 Lab Number: 18-W3240 Work Order #: 82-2588 Account #: 002800

Date Sampled: 2 Oct 18 13:02 Date Received: 2 Oct 18 14:06 Sampled By: MVTL Field Services

PO #: 169846 OP

Temp at Receipt: 4.0C ROI

	As Recei Result	ved	Method RL	Method Reference	Date Analyzed	Analyst
pH - Field pH Temperature - Field Conductivity - Field Fluoride Sulfate Chloride Total Dissolved Solids Calcium - Total Boron - Total	6.62 * 7.2 11.9 4695 0.10 3180 18.4 4720 386 1.08	units units Degrees C umhos/cm mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/	NA 0.1 NA 1 0.10 5.00 1.0 1.0 0.10	SM 4500 H+ B SM4500 H+ B SM 2550B EPA 120.1 SM4500-F-C ASTM D516-07 SM4500-C1-E I1750-85 6010D 6010D	2 Oct 18 13:02 3 Oct 18 17:00 2 Oct 18 13:02 2 Oct 18 13:02 3 Oct 18 17:00 4 Oct 18 15:36 3 Oct 18 9:46 5 Oct 18 8:20 3 Oct 18 16:42 8 Oct 18 11:49	EV EMS SVS BMB

* Holding time exceeded

Approved by:

Clauditte K. Cantle

10 29 Jan19

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

The reporting limit was elevated for any analyte requiring a dilution as coded below:

© = Due to sample matrix # = Due to co
! = Due to sample quantity + = Due to in

= Due to concentration of other analytes + = Due to internal standard response

Page:

6 of 8

Amended 29 Jan 19 (App III/App IV) - CCR

Samantha Davies Montana Dakota Utilities 5181 Southqate Dr Billings MT 59102

Project Name: MDU Heskett

Sample Description: 103

Event and Year: Fall 2018

Report Date: 19 Oct 18 Lab Number: 18-W3241 Work Order #: 82-2588 Account #: 002800

Date Sampled: 1 Oct 18 13:20 Date Received: 2 Oct 18 14:06 Sampled By: MVTL Field Services

PO #: 169846 OP

Temp at Receipt: 4.0C ROI

	As Recei Result	ved	Method RL	Method Reference	Date Analyzed	Analyst
pH - Field pH Temperature - Field Conductivity - Field Fluoride Sulfate Chloride Total Dissolved Solids Calcium - Total	6.67 * 7.2 9.17 4960 0.30 3180 109 4780 580	units units Degrees C umhos/cm mg/l mg/l mg/l mg/l mg/l	NA 0.1 NA 1 0.10 5.00 1.0	SM 4500 H+ B SM4500 H+ B SM 2550B EPA 120.1 SM4500-F-C ASTM D516-07 SM4500-C1-E I1750-85 6010D	1 Oct 18 13:20 3 Oct 18 17:00 1 Oct 18 13:20 1 Oct 18 13:20 3 Oct 18 17:00 4 Oct 18 15:36 3 Oct 18 9:46 5 Oct 18 8:20 3 Oct 18 16:42	SVS JSM JSM SVS EV EMS SVS BMB
Boron - Total	0.13	mg/l	0.10	6010D	8 Oct 18 11:49	SZ

* Holding time exceeded

Approved by:

Clauditte K. Canto

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

The reporting limit was elevated for any analyte requiring a dilution as coded below:

@ = Due to sample matrix # = Due to complete the control of the contr

= Due to concentration of other analytes + = Due to internal standard response

Page:

7 of 8

Amended 29 Jan 19 (App III/App IV) - CCR

Samantha Davies Montana Dakota Utilities 5181 Southgate Dr Billings MT 59102

Project Name: MDU Heskett

Sample Description: 44R

Event and Year: Fall 2018

Report Date: 19 Oct 18 Lab Number: 18-W3242 Work Order #: 82-2588 Account #: 002800

Date Sampled: 1 Oct 18 14:35 Date Received: 2 Oct 18 14:06 Sampled By: MVTL Field Services

PO #: 169846 OP

Temp at Receipt: 4.0C ROI

	As Receiv Result	ed	Method RL	Method Reference	Date Analyzed	Analyst
pH - Field pH Temperature - Field Conductivity - Field Fluoride Sulfate Chloride Total Dissolved Solids Calcium - Total Boron - Total	6.52 * 7.2 9.21 8937 0.67 6320 227 10400 456 < 0.5 @	units units Degrees C umhos/cm mg/l mg/l mg/l mg/l mg/l mg/l mg/l	NA 0.1 NA 1 0.10 5.00 1.0 1.0	SM 4500 H+ B SM4500 H+ B SM 2550B EPA 120.1 SM4500-F-C ASTM D516-07 SM4500-C1-E I1750-85 6010D 6010D	1 Oct 18 14:35 3 Oct 18 17:00 1 Oct 18 14:35 1 Oct 18 14:35 3 Oct 18 17:00 10 Oct 18 12:18 3 Oct 18 9:46 5 Oct 18 8:20 3 Oct 18 16:42 8 Oct 18 11:49	SVS JSM JSM SVS EV EMS SVS BMB

* Holding time exceeded

Approved by:

Claudite K. Canto

29 Jan 19

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

The reporting limit was elevated for any analyte requiring a dilution as coded below:

@ = Due to sample matrix # = Due to con
! = Due to sample quantity + = Due to int

= Due to concentration of other analytes + = Due to internal standard response

8 of 8

Amended 29 Jan 19 (App III/App IV) - CCR

Samantha Davies Montana Dakota Utilities 5181 Southgate Dr Billings MT 59102

Project Name: MDU Heskett

Sample Description: FB1

Event and Year: Fall 2018

Page:

Report Date: 19 Oct 18 Lab Number: 18-W3243 Work Order #: 82-2588 Account #: 002800

Date Sampled: 2 Oct 18

Date Received: 2 Oct 18 14:06 Sampled By: MVTL Field Services

PO #: 169846 OP

Temp at Receipt: 4.0C ROI

	As Recei Result	ved	Method RL	Method Reference	Date Analyzed	Analyst
Н	* 6.1	units	0.1	SM4500 H+ B	3 Oct 18 17:00	SVS
Fluoride	< 0.1	mg/l	0.10	SM4500-F-C	3 Oct 18 17:00	SVS
Sulfate	< 5	mg/l	5.00	ASTM D516-07	10 Oct 18 12:18	EV
Chloride	< 1	mg/l	1.0	SM4500-C1-E	3 Oct 18 9:46	EMS
Total Dissolved Solids	< 10	mg/l	10	I1750-85	5 Oct 18 8:20	SVS
Calcium - Total	< 1	mg/1	1.0	6010D	3 Oct 18 16:42	BMB
Boron - Total	< 0.1	mg/l	0.10	6010D	8 Oct 18 12:49	SZ

* Holding time exceeded

Approved by:

Clauditte 29 Jan19 K. Canto

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

The reporting limit was elevated for any analyte requiring a dilution as coded below:

@ = Due to sample matrix # = Due to con
! = Due to sample quantity + = Due to int

= Due to concentration of other analytes + = Due to internal standard response

Amended 29 Jan 19 (App III/App IV) - CCR

Samantha Davies Montana Dakota Utilities 5181 Southgate Dr Billings MT 59102

Project Name: MDU Heskett

Sample Description: 13

Event and Year: Fall 2018

1 of 8 Page:

Report Date: 19 Oct 18 Lab Number: 18-W3236 Work Order #: 82-2588 Account #: 002800

Date Sampled: 1 Oct 18 9:05 Date Received: 2 Oct 18 14:06 Sampled By: MVTL Field Services

PO #: 169846 OP

Temp at Receipt: 4.0C ROI

	As Recei Result	ved	Method RL	Method Reference	Date Analyzed	Analyst
pH - Field pH Temperature - Field Conductivity - Field Fluoride Sulfate Chloride Total Dissolved Solids Calcium - Total Boron - Total	6.93 * 7.3 8.90 9887 0.94 7300 76.1 10400 420 0.66	units units Degrees C umhos/cm mg/l mg/l mg/l mg/l mg/l mg/l	NA 0.1 NA 1 0.10 5.00 1.0 10	SM 4500 H+ B SM4500 H+ B SM 2550B EPA 120.1 SM4500-F-C ASTM D516-07 SM4500-C1-E 11750-85 6010D 6010D	1 Oct 18 9:05 3 Oct 18 17:00 1 Oct 18 9:05 1 Oct 18 9:05 3 Oct 18 17:00 4 Oct 18 15:36 3 Oct 18 9:13 5 Oct 18 8:20 3 Oct 18 15:42 8 Oct 18 11:49	JSM JSM SVS EV EMS SVS BMB

* Holding time exceeded

CL

Approved by:

Claudite K. Canto

29 Jan 19

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

The reporting limit was elevated for any analyte requiring a dilution as coded below:

@ = Due to sample matrix # = Due to concentration of other analytes
! = Due to sample quantity + = Due to internal standard response

Amended 29 Jan 19 (App III/App IV) - CCR

Samantha Davies Montana Dakota Utilities 5181 Southqate Dr Billings MT 59102

Project Name: MDU Heskett

Sample Description: Dup1

Event and Year: Fall 2018

Page: 2 of 8

Report Date: 19 Oct 18 Lab Number: 18-W3237 Work Order #: 82-2588 Account #: 002800

Date Sampled: 1 Oct 18

Date Received: 2 Oct 18 14:06 Sampled By: MVTL Field Services

PO #: 169846 OP

Temp at Receipt: 4.0C ROI

	As Received Result				Date Analyzed	Analyst	
pH Fluoride Sulfate Chloride Total Dissolved Solids Calcium - Total Boron - Total	* 7.4 0.95 7060 75.5 10500 442 0.64	units mg/l mg/l mg/l mg/l mg/l mg/l	0.1 0.10 5.00 1.0 10	SM4500 H+ B SM4500-F-C ASTM D516-07 SM4500-C1-E I1750-85 6010D 6010D	3 Oct 18 17:00 3 Oct 18 17:00 4 Oct 18 15:36 3 Oct 18 9:46 5 Oct 18 8:20 3 Oct 18 15:42 8 Oct 18 11:49	SVS SVS EV EMS SVS BMB SZ	

* Holding time exceeded

Approved by:

Clauditte K. Cantlo

CC 29 JAN 19

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

The reporting limit was elevated for any analyte requiring a dilution as coded below:

@ = Due to sample matrix # = Due to conduct to sample quantity + = Due to interport to the conduct

= Due to concentration of other analytes + = Due to internal standard response

3 of 8 Page:

Report Date: 19 Oct 18 Lab Number: 18-W3238 Work Order #: 82-2588 Account #: 002800

Date Sampled: 2 Oct 18 9:30 Date Received: 2 Oct 18 14:06 Sampled By: MVTL Field Services

PO #: 169846 OP

Temp at Receipt: 4.0C ROI

Amended 29 Jan 19 (App III/App IV) - CCR

Samantha Davies Montana Dakota Utilities 5181 Southgate Dr Billings MT 59102

Project Name: MDU Heskett

Sample Description: 102

Event and Year: Fall 2018

	As Recei	lved	Method RL	Method Reference	Date Analyzed	Analyst
pH - Field pH Temperature - Field Conductivity - Field Fluoride Sulfate Chloride Total Dissolved Solids Calcium - Total Boron - Total	6.77 * 7.3 9.02 9098 0.16 5740 6.4 8780 472 1.51	units units Degrees C umhos/cm mg/l mg/l mg/l mg/l mg/l mg/l mg/l	NA 0.1 NA 1 0.10 5.00 1.0 1.0	SM 4500 H+ B SM4500 H+ B SM 2550B EPA 120.1 SM4500-F-C ASTM D516-07 SM4500-C1-E I1750-85 6010D 6010D	2 Oct 18 9:30 3 Oct 18 17:00 2 Oct 18 9:30 2 Oct 18 9:30 3 Oct 18 17:00 4 Oct 18 15:36 3 Oct 18 9:46 5 Oct 18 8:20 3 Oct 18 15:42 8 Oct 18 11:49	JSM JSM SVS EV EMS SVS BMB

* Holding time exceeded

Approved by:

Clauditte K. Canto

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

= Due to concentration of other analytes + = Due to internal standard response

Amended 29 Jan 19 (App III/App IV) - CCR

Samantha Davies Montana Dakota Utilities 5181 Southgate Dr Billings MT 59102

Project Name: MDU Heskett

Sample Description: 70

Event and Year: Fall 2018

Page: 4 of 8

Report Date: 19 Oct 18 Lab Number: 18-W3239 Work Order #: 82-2588 Account #: 002800

Date Sampled: 2 Oct 18 11:05 Date Received: 2 Oct 18 14:06 Sampled By: MVTL Field Services

PO #: 169846 OP

Temp at Receipt: 4.0C ROI

	As Recei Result	ved	Method RL	Method Reference	Date Analyzed	Analyst
pH - Field	6.91	units	NA	SM 4500 H+ B	2 Oct 18 11:05	JSM
pH	* 7.5	units	0.1	SM4500 H+ B	3 Oct 18 17:00	SVS
Temperature - Field	9.79	Degrees C	NA	SM 2550B	2 Oct 18 11:05	JSM
Conductivity - Field	3704	umhos/cm	1	EPA 120.1	2 Oct 18 11:05	JSM
Fluoride	0.34	mg/l	0.10	SM4500-F-C	3 Oct 18 17:00	SVS
Sulfate	1940	mg/1	5.00	ASTM D516-07	4 Oct 18 15:36	EV
	49.6	mg/l	1.0	SM4500-C1-E	3 Oct 18 9:46	EMS
Chloride	3100	mg/l	10	11750-85	5 Oct 18 8:20	SVS
Total Dissolved Solids	15.000.000	mg/l	1.0	6010D	3 Oct 18 16:42	BMB
Calcium - Total Boron - Total	341 0.46	mg/l	0.10	6010D	8 Oct 18 11:49	

* Holding time exceeded

Approved by:

Claudite K. Canto

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

The reporting limit was elevated for any analyte requiring a dilution as coded below:

@ = Due to sample matrix # = Due to concentration of other analytes
! = Due to sample quantity + = Due to internal standard response

5 of 8

Amended 29 Jan 19 (App III/App IV) - CCR

Samantha Davies Montana Dakota Utilities 5181 Southgate Dr Billings MT 59102

Project Name: MDU Heskett

Sample Description: 101

Event and Year: Fall 2018

Page:

Report Date: 19 Oct 18 Lab Number: 18-W3240 Work Order #: 82-2588 Account #: 002800

Date Sampled: 2 Oct 18 13:02 Date Received: 2 Oct 18 14:06 Sampled By: MVTL Field Services

PO #: 169846 OP

Temp at Receipt: 4.0C ROI

	As Recei Result	ved	Method RL	Method Reference	Date Analyzed	Analyst
pH - Field	6.62	units	NA	SM 4500 H+ B	2 Oct 18 13:02	JSM
ри 11014	* 7.2	units	0.1	SM4500 H+ B	3 Oct 18 17:00	SVS
Temperature - Field	11.9	Degrees C	NA	SM 2550B	2 Oct 18 13:02	JSM
Conductivity - Field	4695	umhos/cm	1	EPA 120.1	2 Oct 18 13:02	JSM
Fluoride	0.10	mg/l	0.10	SM4500-F-C	3 Oct 18 17:00	SVS
Sulfate	3180	mg/l	5.00	ASTM D516-07	4 Oct 18 15:36	EV
	18.4	mg/l	1.0	SM4500-C1-E	3 Oct 18 9:46	EMS
Chloride	4720	mg/l	10	T1750-85	5 Oct 18 8:20	SVS
Total Dissolved Solids		<u> </u>	1.0	6010D	3 Oct 18 16:42	BMB
Calcium - Total Boron - Total	386 1.08	mg/l mg/l	0.10	6010D	8 Oct 18 11:49	

* Holding time exceeded

Approved by:

Clauditte K. Cantlo 29 Jan 19

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

The reporting limit was elevated for any analyte requiring a dilution as coded below:

@ = Due to sample matrix # = Due to compare the control of the contro

= Due to concentration of other analytes
+ = Due to internal standard response

Amended 29 Jan 19 (App III/App IV) - CCR

Samantha Davies Montana Dakota Utilities 5181 Southgate Dr Billings MT 59102

Project Name: MDU Heskett

Sample Description: 103

Event and Year: Fall 2018

Page: 6 of 8

Report Date: 19 Oct 18 Lab Number: 18-W3241 Work Order #: 82-2588 Account #: 002800

Date Sampled: 1 Oct 18 13:20 Date Received: 2 Oct 18 14:06 Sampled By: MVTL Field Services

PO #: 169846 OP

Temp at Receipt: 4.0C ROI

	As Received Result			Method Reference	Date Analyzed	Analyst
pH - Field	6.67	units	NA	SM 4500 H+ B	1 Oct 18 13:20	JSM
Н	* 7.2	units	0.1	SM4500 H+ B	3 Oct 18 17:00	SVS
Temperature - Field	9.17	Degrees C	NA	SM 2550B	1 Oct 18 13:20	JSM
Conductivity - Field	4960	umhos/cm	1	EPA 120.1	1 Oct 18 13:20	JSM
Fluoride	0.30	mq/1	0.10	SM4500-F-C	3 Oct 18 17:00	SVS
Sulfate	3180	mg/l	5.00	ASTM D516-07	4 Oct 18 15:36	EV
Chloride	109	mg/l	1.0	SM4500-C1-E	3 Oct 18 9:46	EMS
Total Dissolved Solids	4780	mg/1	10	I1750-85	5 Oct 18 8:20	SVS
Calcium - Total	580	mg/1	1.0	6010D	3 Oct 18 16:42	BMB
Boron - Total	0.13	mg/1	0.10	6010D	8 Oct 18 11:49	SZ

* Holding time exceeded

Clauditte K. Cantlo

CC 29 Jan 19

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

Approved by:

The reporting limit was elevated for any analyte requiring a dilution as coded below:

@ = Due to sample matrix # = Due to concentration of other analytes
! = Due to sample quantity + = Due to internal standard response

Page: 7 of 8

Amended 29 Jan 19 (App III/App IV) - CCR

Samantha Davies Montana Dakota Utilities 5181 Southgate Dr Billings MT 59102

Project Name: MDU Heskett

Sample Description: 44R

Event and Year: Fall 2018

Report Date: 19 Oct 18 Lab Number: 18-W3242 Work Order #: 82-2588 Account #: 002800

Date Sampled: 1 Oct 18 14:35 Date Received: 2 Oct 18 14:06 Sampled By: MVTL Field Services

PO #: 169846 OP

Temp at Receipt: 4.0C ROI

	As Receive Result	ed	Method RL	Method Reference	Date Analyzed	Analyst
pH - Field	6.52	units	NA	SM 4500 H+ B	1 Oct 18 14:35	JSM
Н	* 7.2	units	0.1	SM4500 H+ B	3 Oct 18 17:00	SVS
Temperature - Field	9.21	Degrees C	NA	SM 2550B	1 Oct 18 14:35	JSM
Conductivity - Field	8937	umhos/cm	1	EPA 120.1	1 Oct 18 14:35	JSM
Fluoride	0.67	mg/l	0.10	SM4500-F-C	3 Oct 18 17:00	SVS
Sulfate	6320	mg/1	5.00	ASTM D516-07	10 Oct 18 12:18	EV
Chloride	227	mg/l	1.0	SM4500-C1-E	3 Oct 18 9:46	EMS
Total Dissolved Solids	10400	mg/1	10	I1750-85	5 Oct 18 8:20	SVS
10001	456	mg/l	1.0	6010D	3 Oct 18 16:42	BMB
Calcium - Total Boron - Total	< 0.5 @	mg/l	0.10	6010D	8 Oct 18 11:49	

* Holding time exceeded

Approved by:

Clauditte K. Cantlo

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

The reporting limit was elevated for any analyte requiring a dilution as coded below: @= Due to sample matrix #= Due to code #= Due to sample quantity #= Due to integrate #=

= Due to concentration of other analytes + = Due to internal standard response

Page:

8 of 8

Amended 29 Jan 19 (App III/App IV) - CCR

Samantha Davies Montana Dakota Utilities 5181 Southqate Dr Billings MT 59102

Project Name: MDU Heskett

Sample Description: FB1

Event and Year: Fall 2018

Report Date: 19 Oct 18 Lab Number: 18-W3243 Work Order #: 82-2588 Account #: 002800

Date Sampled: 2 Oct 18

Date Received: 2 Oct 18 14:06 Sampled By: MVTL Field Services

PO #: 169846 OP

Temp at Receipt: 4.0C ROI

	As Recei Result	ved	Method RL	Method Reference	Date Analyzed	Analyst
рН	* 6.1	units	0.1	SM4500 H+ B	3 Oct 18 17:00	SVS
Fluoride	< 0.1	mg/l	0.10	SM4500-F-C	3 Oct 18 17:00	SVS
Sulfate	< 5	mg/l	5.00	ASTM D516-07	10 Oct 18 12:18	EV
Chloride	< 1	mg/l	1.0	SM4500-Cl-E	3 Oct 18 9:46	EMS
Total Dissolved Solids	< 10	mg/l	10	I1750-85	5 Oct 18 8:20	SVS
Calcium - Total	< 1	mg/1	1.0	6010D	3 Oct 18 16:42	BMB
Boron - Total	< 0.1	mg/1	0.10	6010D	8 Oct 18 12:49	SZ

* Holding time exceeded

Approved by:

Claudette K. Cantlo

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

MVTL Calibration Worksheet

Site: MDU Heskett Technician: ~ Instrument #1 650 MDS 08F100203 #2 650 MDS 04H14736 #3 556 MPS 12E102056 (Circle One): Pre Site Calibration Post Site Check Date: 1 Oct 18 0810 1500 Time: Time: mv Range +/рΗ Temp °C Post Cal Range Pre Cal Post Cal 50 pН Temp °C mv Reading 17.16 7.00 25.4 7.16 18.26 7.02 Buffer 7 6.95-7.05 0 +/- 50 Buffer 7 9.97 17,39 -199,4 Buffer 10 10,00 9.95-10.05 -180 +/- 50 16.88 4,00 4,00 Buffer 4 4.95-5.05 180 +/- 50 Conductivity Check Conductivity 17,40 1413 Buffer 5000 4987 4972 18.13 Buffer 1413 ±10% Buffer 5000 ORP 236.0 243,8 231 mV @ 25C ±10 mV DO Barometric Pressure (mm Hg) 12,50 10,74 100,6% 66,32 mg/L 20ut 18 Time: 0900 1330 Date: Time: mv Range +/рΗ Temp °C Pre Cal Post Cal Post Cal Range рΗ Temp °C Reading mv 50 13,99 -23.6 7.01 7,00 18,52 7.03 Buffer 7 6.95-7.05 0 +/- 50 Buffer 7 9.96 13.69 10,00 -195.4 Buffer 10 9.95-10.05 -180 +/- 50 12.86 3.99 4,00 Buffer 4 4.95-5.05 180 +/- 50 Conductivity Conductivity Check Buffer 5000 49 79 4963 14.40 1421 1413 18.78 Buffer 1413 ±10% Buffer 5000 ORP 17.64 250,7 244,0 231 mV @ 25C ±10 mV DO Barometric Pressure (mm Hg) 1603 1601 100.0% 760,22 mg/L

Groundwater Assessment

Company:	MDU Heskett	
Event:	Fall 2018	
Sample ID:	13 .	
Sampling Personal:	Jen Alen	

									oampinig i	0.00.101.				
Phone: (701) 258-97	720										,			.,
Weather Conditions:		Temp:	40 °F		Wind:	S	@	5-	<u>ت</u>	Precip	: Sunr	ny / Partly (Cloudy / C	loudy
\	Well Info	rmation							Sa	mpling l	nformatio	on		
Well Locked?	Yes	160				Purgi	ing N	lethod:	Blad	der				
Well Labeled?	₹es	No				Sampli	ing M	lethod:	Blad	der		Co	ontrol Setti	ngs
Casing Straight?	Ves ≥	No				Dedica	ted E	quip?:	Yes	ØØ		Purge:	5	sec
Grout Seal Intact?	Yes	No	Not Visible)		Duplicate	San	nple?:	Yes	No		Recover:	55	sec
Repairs Necessary:						Duplicate	Sam	ple ID:	Dupl			PSI:	30	
Casing I	Diameter:		2"						<u> </u>		·			
Water Level Befo	re Purge:		30,74	ft		F	- Purge	Date:	1 Oct 18		Time Purg	ing Began:	0815	@m/pn
						Well F	urge	d Dry?	Yes	(N)	Time F	urged Dry:	6	am/pn
						Sa	ample	Date:	10c+18		Time of	Sampling:	୯୨୦୨	@m/pn
Depth to Top	of Pump:	*		ft										
Water Level After	r Sample:	32	,76	ft		Bottle	1L	Raw	500mL	. Nitric	500mL Niti	ric (filtered)	250mL	Sulfuric
Measurement	: Method:	Electric V	Vater Level Indica	tor		List:								
			F	ield	Measure	ments								

Stabi	lization	Temp	Spec.		DO	ORP	Turbidity	Water	Pumping	mL	Description:
(3 con	secutive)	(°C)	Cond.	pН	(mg/L)	(mV)	(NTU)	Level (ft)	Rate	Removed	Clarity, Color, Odor, Ect.
SEQ#	Time		±5%	±0.1	±10%	±20 mV	±10%	0.25 ft	ml/min		Clear, Slightly Turbid, Turbid
1	0820	8,99	9926	6.88	2.61	241.4	4.99	30,81	100.0	560,0	Cles
2	OB 50	8.96	9868	6,93	2.26	250.2	4.87	31.98	100.0	3000,0	Clean
3	0855	9.01	9860	6.93	2,32	258,3	4,52	32,16	100.0	500.0	Cler
4	0900	8.98	9867	6,93	2,38	263,0	4,63	32,27	100.0	500,0	Clear
5	905	8.90	9887	6,93	2.39	265,1	4,37	32,33	100.0	500.0	Cla
6											
7											
8											
9											
10				¥							

Yes Stabilized: No

Total Volume Removed: 450000 mL

Comments:

5000,0

Groundwater Assessment

Company:	MDU Heskett	
Event:	Fall 2018	
Sample ID:	102,	
Sampling Personal:	learn stern -	

2616 E. Broadway Ave, Bism	-								Sampling F	ersonal:	- le	my plan) recommend	
Phone: (701) 258-972	20							_				i i		
Weather Conditions:		Temp:	50 °F		Wind:	S	@	5-10	<u> </u>	Precip	: Sunr	ny / Partly C	loudy / &	loudy,
V	Vell Info	rmation							Sa	ampling	Informatio		· · · · · · · · · · · · · · · · · · ·	
Well Locked?	Yes	₩ 0>				Purg	ing M	ethod:		der				
Well Labeled?	Yes	No				Samp	ling M	ethod:	Blac	der	1	Co	ntrol Settii	ngs
Casing Straight?	Yes	No				Dedica	ated E	quip?:	Yes	No		Purge:	5	sec
Grout Seal Intact?	Yes	No	Not Visible			Duplicat	e San	iple?:	Yes	(No)		Recover:	55	sec
Repairs Necessary:						Duplicate	Sam	ple ID:	٠			PSI:	20	
Casing D	iameter:		2"											
Water Level Befor	e Purge:	18	.EO	ft			Purge	Date:	2 oct 18	2	Time Purg	ing Began:	0850	(am/pm
,						Well F	ourge	d Dry?	Yes	(No)	Time P	urged Dry:		am/pm
		"				S	ample	Date:	20ct	le	Time of	Sampling:	0930	am⁄pm
Depth to Top o		-		ft										
Water Level After	Sample:	w	20.0B	ft		Bottle	1L	Raw	500ml	Nitric N	500mL Nitr	ic (filtered)	250mL	Sulfuric
Measurement I	Method:	Electric V	Vater Level Indicat	or		List:			***************************************					······
			Fi	eld l	Measure	ments								

04-1-1	*	Taman	C		·····	- COO				r	
	ization	Temp (°C)	Spec.		DO	ORP	Turbidity	Water	Pumping	mL	Description:
	(3 consecutive)		Cond.	pН	(mg/L)	(mV)	(NTU)	Level (ft)	Rate	Removed	Clarity, Color, Odor, Ect.
SEQ#			±5%	±0.1	±10%	±20 mV	±10%	0.25 ft	ml/min		Clear, Slightly Turbid, Turbid
1	0855	9,13	9456	6.86	2, 34	10.6	2.56	18,92	1200	500,0	Cles
2	0915	8 70	9403	6.81	1.61	-11.2	1.31	14.64	100,0	2000,0	ch
3	0920	8.84	9079	6, 78	1.47	-26.2	1.34	19,80	100,0	500.0	Ckn
4	0925	8,75	9125	6.78	1.48	-26.8	1,40	19.85	100.0	50.0	Clear
5	0930	9.02	9098	6.77	1.41	-27.6	1.46	19,96	100,0	500.0	Che
6											
7											74-7-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1
8											
9											
10	フ										

Stabilized: Yes No

Total Volume Removed: ೭ೣಁೲ೩೦ mL

Groundwater Assessment

MDU Heskett
Fall 2018
. 70 ₁
Long Honger

Phone: (701) 258-9720														
Weather Conditions:		Temp:	50 °F		Wind:	2	@ 505	-10	Precip	: Suni	ny (Partly C	loudy / Clo	udy	
	Well Info	rmation					Sampling Information							
Well Locked?	Yes	MO				Purgi	ng Method:	Blac	dder					
Well Labeled?	X'es7	No				Sampli	ng Method:	Blag	dder] ,	Co	ntrol Setting	js	
Casing Straight?	¥€\$	No				Dedica	ted Equip?:	<u> </u>	(NO)	16°	Purge:	5	sec.	
Grout Seal Intact?	Yęs)	No	Not Visi	ble		Duplicate	Sample?:	Yes	(No		Recover:	22	sec.	
Repairs Necessary:						Duplicate	Sample ID:]	PSI:	20		
Casing	Diameter:		2"											
Water Level Bef	ore Purge:		22,07	ft		F	Purge Date:	20ct	18	Time Purg	ing Began:	1025	am/pm	
						Well P	urged Dry?	Yes	(No)	Time F	urged Dry:	·	am/pm	
						Sa	ample Date:	20ct	1B	Time of	Sampling:	1105	(am)/pm	
Depth to Top	of Pump:			ft										
Water Level Afte	er Sample:	3	LH1,55	ft		Bottle	1L Raw	500m	L Nitric	500mL Nit	ric (filtered)	250mL S	Sulfuric	
Measuremen	nt Method:	Electric	Water Level Inc	licator		List:								
				Field	Measure	ements								

Stabil	lization	Temp	Spec.		DO	ORP	Turbidity	Water	Pumping	mL	Description:
(3 cons	secutive)	(°C)	Cond.	рН	(mg/L)	(mV)	(NTU)	Level (ft)	Rate	Removed	Clarity, Color, Odor, Ect.
SEQ#	Time		±5%	±0.1	±10%	±20 mV	±10%	0.25 ft	ml/min		Clear, Slightly Turbid, Turbid
1	1030	9.49	3824	692	2.01	30,8	1,48	22.64	100.0	500,0	Clear
2	1050	9.41	3609	6.90	1.80	75.6	0.77	23,30	100.0	2000,0	cles
3	1055	9,67	3774	6.93	1,89	82,0	0.48	23,74	100.0	500,0	Clean
4	1100	9.84	3717	6.92	1.87	89,0	0.43	23,85	100,0	500,0	Clean
5	1105	9,79	3704	6,91	1,91	90.0	0.44	23.97	100.0	500,0	Clea
6											
7											
8											
9											
10						,					

Stabilized: No Total Volume Removed: <u>州,000;</u>ひ mL

Groundwater Assessment

Company:	MDU Heskett	
Event:	Fall 2018	
Sample ID:	101	
Sampling Personal:	Jan Hon-	

Phone: (701) 258-9720

						-						
Weather Conditions:		Temp:	5 <i>\$</i> °F	Wind:	S	@ 6-1	0	Precip	o: Suni	ny /@artly C	loudy / Cl	oudy
,	Well Info	rmation			Sampling Information							
Well Locked?	Yes	NO			Purgi	ing Method:	Blad	der				
Well Labeled?	XGs	No		1	Sampli	ing Method:	Blad	der		Co	ntrol Settin	gs
Casing Straight?	∕Yes	No			Dedica	ted Equip?:	Yes	No	7	Purge:	5	se
Grout Seal Intact?	-Xes	No	Not Visible		Duplicate	Sample?:	Yes	(No	-	Recover:	55	se
Repairs Necessary:	,				Duplicate	Sample ID:		_]	PSI:	30	
Casing	Diameter:		2"									
Water Level Befo	ore Purge:	3	7.35 f	t	F	Purge Date:	20et18	3	Time Purg	ing Began:	1137	(am/pr
					Well F	urged Dry?	Yes	(ND)	Time F	urged Dry:		am/pi
					Sa	ample Date:	20ct	18	Time of	Sampling:	1302	am/æ
Depth to Top	of Pump:	W-courses	f	t								
Water Level After Sampl			HO, BC f	t	Bottle	1L Raw	500mL	Nitric	500mL Nit	ric (filtered)	250mL	Sulfuric
Measurement Method:		Electric V	Water Level Indicator		List:							
			Fiold	- Moodur	omanta							

Field Measurements

Stabil	lization	Temp	Spec.		DO	ORP	Turbidity	Water	Pumping	mL	Description:
(3 cons	secutive)	(°C)	Cond.	pН	(mg/L)	(mV)	(NTU)	Level (ft)	Rate	Removed	Clarity, Color, Odor, Ect.
SEQ#			±5%	±0.1	±10%	±20 mV	±10%	0.25 ft	ml/min		Clear, Slightly Turbid, Turbid
1	1142	11.36	4719	6.72	4,41	90.9	69,9	38,20	100,0	500.0	cles
2	1202	10.97	4689	6,68	2,51	22,7	27.2	39.18	100,0	2000.O	Clear
3	1222	10,90	4683	6,64	2.15	37.8	9.37	39,55	100,0	2000,0	clear
4	1242	11.45	4688	6,64	2,23	38,2	5,79	39,84	100.0	2000.0	Clea
5	1252	11,97	4685	6,62	1,90	30,8	4.98	40.12	100.0	1000:0	clear
6	1257	11.50	4702	6:62	1.97	27.2	4.86	40.28	100:00	50010	Cles
7	1302	11.87	4695	6,62	1.94	24.9	4.77	40.32	100,0	500,0	cles
8				in marking	1	-					
9							<u> </u>				
10											

Stabilized: (Yes) No

Total Volume Removed: BS00.0 mL

Groundwater Assessment

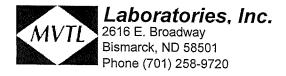
Company:	MDU Heskett
Event:	Fall 2018
Sample ID:	103 ,
Sampling Personal:	10 m 5 d n

,									Sampling F	ereonal.	lo -	- 11		
Phone: (701) 258-9	720							-	oampling i	ersonar.		200		
Weather Conditions:		Temp:	45 °F		Wind:		@	@ 5	-10	Precip	: Suni	ıv / Rarriv (loudy / Clo	udv
,	Well Info	rmation								·	Informatio		7.0 day 7.010	uuy
Well Locked?	Yes	(No)				Pura	ina M	lethod:		lder		711		
Well Labeled?	beled? Yes No			Purging Method: Sampling Method:				lder	1	Cc	ntrol Setting	19		
Casing Straight?	Xes (No				Dedica			(Yes)	No	1	Purge:		sec
Grout Seal Intact?			Not Visible			Duplicate			Yes	(No)	-	Recover:	55	sec
Repairs Necessary:						Duplicate	Sam	ple ID:			1	PSI:		
Casing	Diameter:		2"											
Water Level Befo	ore Purge:	32.64 ft			F	ourge	Date:	1 Oct	18	Time Purg	ing Began:	1240	am/pn	
						Well F	urge	d Dry?	Yes	NO	Time P	urged Dry:		am/pn
						Sa	ample	Date:	1 Oct	18	Time of	Sampling:	1320	am/pīī
Depth to Top	of Pump:	_		ft					······································		·			
Water Level Afte	r Sample:	39	5,02	ft		Bottle	1L	Raw	500mL	Nitric	500ml Nitr	ic (filtered)	250mL S	ulfuric
Measuremen	t Method:	Electric V		tor		List:					00011121110	10 (1110104)	ZOOTTE C	anano
		-	F	ield	Measure	ments								

Stabil	lization	Temp	Spec.		DO	ORP	Turbidity	Water	Pumping	mL	Description:
(3 cons	secutive)	(°C)	Cond.	pН	(mg/L)	(mV)	(NTU)	Level (ft)	Rate	Removed	Clarity, Color, Odor, Ect.
SEQ#	Time		±5%	±0.1	±10%	±20 mV	±10%	0.25 ft	ml/min		Clear, Slightly Turbid, Turbid
1	1245	9,29	4980	6,73	1,56	303,0	0.78	33.46	100.0	500.0	Clea
2	1305	9,26	5012	6.69	1.78	305,6	1,26	34,41	100,0	2000,0	Cha
3	1310	9,20	5010	6,70	1.91	300.6	1,30	34,59	fav.O	500.0	ck
4	1315	9,20	5001	6.68	1.86	297.7	1,27	34.63	100,0	500,0	Cles
5	1320	9,17	4960	6.67	1,81	291,5	1,23	34.68	100,0	500.0	Cler
6							7143	2 1100	700,0	3-0-0	
7											
8											
9											
10											

Total Volume Removed: 4,000,0 mL

Groundwater Assessment


Company:	MDU Heskett	
Event:	Fall 2018	
Sample ID:	44R.	
Sampling Personal:	land of the	

2010 E. Bioadway Ave, Bi	smarck, ND							Sampling	Personal:	مدياً	- A.s.		
Phone: (701) 258-9	9720										77 54	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Weather Conditions:		Temp:	45	°F	Wind:	5	@ @5	-10	Precip	: Suni	ny / Partly G	Houdyd Cla	oudy \
	Well Info	ormation						S	ampling	Informatio	on		
Well Locked?	Yes	N±0>				Purg	ing Method	1	dder				
Well Labeled?	A'es	CES No				Sampl	ling Method	: Bla	dder		Co	ntrol Setting]S
Casing Straight?	<u> (Des</u>	No				Dedica	ated Equip?	Yes	No		Purge:	5	sec.
Grout Seal Intact?	Yes	No	Not V	isible		Duplicate	e Sample?:	Yes	(No>		Recover:	5<	sec.
Repairs Necessary:						Duplicate	Sample ID	:	_		PSI:	30	
Casing	Diameter:		2"							!			
Water Level Bef	ore Purge:	2=	7,25	ft			Purge Date	: 10ct	18	Time Purg	ing Began:	1345	am/pm
						Well F	Purged Dry?	Yes	No	Time F	urged Dry:	<u> </u>	am/pm
M						S	ample Date	: 10ct	-18	Time of	Sampling:	1435	am/pm
Depth to Top	o of Pump:	_		ft								7	
Water Level After Sample:					Bottle	Bottle 1L Raw		L Nitric	500mL Niti	ric (filtered)	250mL S	Sulfuric	
Measuremer	nt Method:	Electric V	Vater Level	Indicator		List:					· · · · · · · · · · · · · · · · · · ·		
				Fiold	Measure	monto							
04-1-11	Tomp	Snoo I		Field		ments	1 100						

Stabil	ization	Temp	Spec.		DO	ORP	Turbidity	Water	Pumping	mL	Description:	
(3 cons	secutive)	(°C)	Cond.	pН	(mg/L)	(mV)	(NTU)	Level (ft)		Removed	*	
SEQ#	Time		±5%	±0.1	±10%	±20 mV	±10%	0.25 ft	ml/min		Clear, Slightly Turbid, Turbid	
1	1350	9,41	8952	6,58	2.69	314,3	5.42	27.41	/00.0	500,0	Clean	
2	1420	9.25	8940	6,54	1.12	308,3	3,10	27.34	100,0	3000.0	Char	
3	1425	9,21	8934	6,52	1.05	312,4	3,23	27,34	100.0	500.0	Clear	
4	1430	9,21	8936	6,53	1.09	313,5	3,31	27.34	100:0	500.0	Cles	
5	1435	9,21	8937	6,52	1.02	314,5	3.25	27.36	100,0	50,0	Cles	
6								<u> </u>				
7												
8												
9												
10												

Stabilized: Yes No

Total Volume Removed: 5, ぬいの mL

Chain of Custody Record

Project Name: MDU Heskett		Event:	Work Order Number:	
		Fall 2018		82- <i>Z S88</i>
Report To: Attn: Address: phone: email:	MDU Samantha Marshall 5181 Southgate Dr. Billings, MT 59102 406-896-4227	Carbon Copy: Attn: Address:	Name of Sampler(s):	

	Samp	le Information	on				В	ott	le Ty	/pe	Fi	eld Para	ameters	Analysis
Lab Number	Sample ID	Date	Time	Sample Type	/	1 liter	500mL Nit.:	500mL Nitr.	250 mL Sulfuric		Temp (°C)	Spec. Cond.	Ha	Analysis Required
W3236	13	10ctB	0905	GW		Х			х		8.90	9887	6.93	
W3237	Dup1	1 Oct 18	NA	GW		Х	Х	х	х	\top	NA	NA	NA	
W3238	102	20c+18	0800	GW		Х	Х	х	Х		9,02	9098	6,77	
W3239	70	20c+ 18	105	GW		Х	Х	х	Х		9,79	3704	6.91	
W3240	101	20ct 18	1302	GW		Х	Х	x	х		11.87	4695	6.62	MDU List AA & MDU
W3241	103	10ct 18	1320	GW		Х	х				9,17	4960	6.67	Appendix 3 List
W3 242	44R	10cf 18	1435	GW		х	_	_	х		9,21	8937		MOU Appendix 4 List
W3243	FB1	20ct 18	NA	GW		Х			Х			NA	NA	minus-Rad (hum
										\top				

Relinquished By:	Sample Condition:					
Name: /	Date/Time	Location:	Temp (°C)			
10 V-Mi	20c+18 1406	Coglin Walk In #2	4.0 Pol 7M562/TM588			
2						

Received by: Name: Date/Time 2 oct 18 1406			
Name:	Date/Time		
116	20ct 18		
1 Pachmann	1406		

MINNESOTA VALLEY TESTING LABORATORIES. INC.

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2 North German St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mytl.com

CASE NARRATIVE – AMENDED 29 JAN 19 (REPORTING)

MVTL Lab Reference No/SDG:

201882-2619

Client:

Montana Dakota Utilities

Location:

MDU Heskett

Project Identification:

CCR Oct 2018

MVTL Laboratory Identifications:

18-W3261 through 18-W3267

Page 1 of 2

MDU Sample Identification	MVTL Laboratory #
33	18-W3261
3-90	No sample
Dup2	18-W3262
2-90	18-W3263
104	18-W3264
80R	18-W3265
105	18-W3266
FB2	18-W3267

I. RECEIPT

- All samples were received at the laboratory on 4 Oct 18 at 1307.
- Samples were collected and hand delivered by MVTL Field Service personnel to the laboratory.
- Samples were received on ice and evidence of cooling had begun.
 - o Temperature of samples upon receipt was 3.1°C.
- All samples were properly preserved unless noted here and/or flagged on the individual analytical laboratory report.
- No other exceptions on sample receipt were encountered on this sample set unless noted here.

II. HOLDING TIMES

• With the exception of pH, all holding times were met for both preparation and analysis unless noted here.

III. METHODS

Approved methodology was followed for all sample analyses.

IV. ANALYSIS

- All acceptance criteria was met for calibration, method blanks, laboratory control samples, laboratory fortified matrix/matrix duplicates unless noted here and/or flagged on the individual analytical laboratory report.
 - o For some analytes, the reported results were elevated due to additional dilutions required to minimize the effects of sample matrix.

CASE NARRATIVE - AMENDED 29 JAN 19 (REPORTING)

MVTI	Lab	Dofo	K0000	No	SDG.
IVIV I I	ıan	Kete	rence	INO/	A 1 1 (2.

201882-2619

Client:

Montana Dakota Utilities

Location:

MDU Heskett

Project Identification:

CCR Oct 2018

MVTL Laboratory Identifications:

18-W3261 through 18-W3267

Page 2 of 2

For some analytes, the reported results were elevated due to instrument performance at the lower limit of quantitation (LLOQ).

REPORTING V.

Per email dated 21 Jan 19 from Terri Olson with Barr, the reports were amended to report only Appendix III parameters on one report and only Appendix IV parameters on a separate report.

All laboratory data has been approved by MVTL Laboratories.

Pandette Canto SIGNED:

__ DATE: 29Jan 19

Claudette Carroll - MVTL Bismarck Laboratory Manager

Claudette Carroll

From:

Terri A. Olson <TOlson@barr.com>

Sent:

Monday, January 21, 2019 12:15 PM

To:

Claudette Carroll

Cc:

'Marshall, Samantha'; Stephanie A. Theriault

Subject:

Re: Reports revisions

Follow Up Flag: Flag Status:

Follow up Flagged

Hi Claudette,

We haven't emailed in a while, hope you're having a good new year.

For the two Heskett CCR reports (201882-2588 and 201882-2619), we will need the Appendix III and Appendix IV CCR analytes split into two reports. The field parameters (pH, temperature, conductivity) can be reported in only the Appendix III report or you can include in both.

- Appendix III see 201882-0637 for example
 - o Chloride
 - o TDS
 - > Fluoride
 - o pH
 - o Sulfate
 - o Boron
 - o Calcium
- Appendix IV
 - o Antimony
 - o Arsenic
 - o Barium
 - o Beryllium
 - o Cadmium
 - o Chromium
 - o Cobalt
 - o Lead
 - o Lithium
 - o Molybdenum
 - o Selenium
 - o Thallium
 - o Mercury
 - o Fluoride is in both lists so OK to have just in Appendix III since we wouldn't report Appendix IV only

We have discussed the report split with Sam at MDU and she was OK with it. I have copied her on this email. We need ASAP as our report is due at the end of this month.

Let me know if you have any questions.

Thank-you,

Terri A. Olson

Senior Data Quality Specialist Minneapolis, MN office: 952.842,3578 TOlson@barr.com www.barr.com

resourceful. naturally.

This e-mail message (including attachments, forwards, and replies) is correspondence transmitted between Barr Engineering Co. and its clients and related parties in the course of business, and is intended solely for use by the addressees. This transmission contains information which may be confidential and proprietary. If you are not the addressee, note that any disclosure, copying, distribution, or use of the contents of this message (or any attachments, replies, or forwards) is prohibited. If you have received this transmission in error, please destroy it and notify us at 952-832-2600.

If you no longer wish to receive marketing e-mails from Barr, respond to <u>communications@barr.com</u> and we will be happy to honor your request.

MVTL

MINNESOTA VALLEY TESTING LABORATORIES, INC.

1126 N. Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 E. Broadway Ave. ~ Bismarck, ND 58502 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Highway ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mytl.com

MEMBER ACIL

Page: 1 of 1

Quality Control Report - Amended 29 Jan 19

Lab IDs: 18-W3261 to 18-W3267 Project: MDI Heskett

Work Order: 201882-2619

Lab 1Ds. 18- W 3201 to 18- V	V 3201	PI	oject: MI	JU Heske	311 <u> </u>	_	Work Or	der: 201	882-2619	9							
Analyte	LCS Spike Amt	LCS Rec %	LCS % Rec Limits	Matrix Spike Amt	Matrix Spike ID	Matrix Spike Orig Result	Matrix Spike Result	Matrix Spike Rec %	Matrix Spike % Rec Limits	MSD/ Dup Orig Result	MSD/ Dup Result	MSD Rec %	MSD/ Dup RPD	MSD/ Dup RPD Limit (<)	Known Rec (%)	Known % Rec Limits	Method Blank
Boron - Total mg/l	0.40 0.40	108 108	80-120 80-120	2.00	18-W3264	0.96	2.82	93	75-125	2.82	2.93	98	3.8	20	-		< 0.1 < 0.1 < 0.1
Calcium - Total mg/l	20.0	102	80-120	500	18W3252q	240	705	93	75-125	705	715	95	1.4	20	-		< 1 < 1
Chloride mg/l	30.0 30.0	100 100	80-120 80-120	30.0	18-W3275	9.4	40.5	104	80-120	40.5	43.3	113	6.7	20	-	-	< 1 < 1
Fluoride mg/l	0.50 0.50	98 100	90-110 90-110	1973,000,000	18-W3274 18-W3261	< 0.1 0.19	0.58 0.65	116 92	80-120 80-120	0.58 0.65	0.58 0.65	116 92	0.0	20 20	-	-	< 0.1 < 0.1
pH units	-		-	- - -	-	- - -	-	-	- - -	8.2 7.8 7.0	8.2 7.9 7.1	-	0.0 1.3 1.4	20 20 20	-	-	-
Sulfate mg/l	100 100	94 101	80-120 80-120	500 100	18-W3252 18-W3267	735 < 5	1250 97.4	103 97	80-120 80-120	1250 97.4	1210 101	95 101	3.3 3.6	20 20	-	-	< 5 < 5
Total Dissolved Solids mg/l	-	-	-	-	H	-	-	-	-	< 10	< 10	-	0.0	*	-	-	< 10

^{*} Data reported based on acceptance criteria of Absolute Difference of \pm 3 mg/L.

Approved by: C. Canto

1 of 7 Page:

Amended 29 Jan 19 (App III/App IV) - CCR

Samantha Marshall Montana Dakota Utilities 5181 Southgate Dr Billings MT 59102

Project Name: MDU Heskett

Sample Description: 33

Event and Year: Fall 2018

Report Date: 30 Oct 18 Lab Number: 18-W3261 Work Order #: 82-2619 Account #: 002800

Date Sampled: 3 Oct 18 11:55 Date Received: 4 Oct 18 13:07 Sampled By: MVTL Field Services

PO #: 169846 OP

Temp at Receipt: 3.1C ROI

	As Receive Result	ed	Method RL	Method Reference	Date Analyzed	Analyst
pH - Field pH Temperature - Field Conductivity - Field Fluoride Sulfate Chloride Total Dissolved Solids Calcium - Total	6.48 * 6.9 9.02 5136 0.19 3740 11.7 5290 438	units units Degrees C umhos/cm mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/	NA 0.1 NA 1 0.10 5.00 1.0 1.0	SM 4500 H+ B SM4500 H+ B SM 2550B EPA 120.1 SM4500-F-C ASTM D516-07 SM4500-C1-E I1750-85 6010D 6010D	3 Oct 18 11:55 4 Oct 18 17:00 3 Oct 18 11:55 3 Oct 18 11:55 4 Oct 18 17:00 10 Oct 18 12:43 17 Oct 18 14:07 5 Oct 18 8:20 12 Oct 18 15:28 8 Oct 18 12:43	JSM SVS JSM JSM SVS EV EV SVS BMB SZ

* Holding time exceeded

Approved by:

Clauditte K. Cantlo

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

The reporting limit was elevated for any analyte requiring a dilution as coded below:

@ = Due to sample matrix # = Due to constant # = Due to in

= Due to concentration of other analytes + = Due to internal standard response

Page:

Amended 29 Jan 19 (App III/App IV) - CCR

Samantha Marshall Montana Dakota Utilities 5181 Southgate Dr Billings MT 59102

Project Name: MDU Heskett

Sample Description: Dup2

Event and Year: Fall 2018

2 of 7

Report Date: 30 Oct 18 Lab Number: 18-W3262 Work Order #: 82-2619 Account #: 002800

Date Sampled: 3 Oct 18

Date Received: 4 Oct 18 13:07 Sampled By: MVTL Field Services

PO #: 169846 OP

Temp at Receipt: 3.1C ROI

	As Receiv Result	red	Method RL	Method Reference	Date Analyzed	Analyst
Н	* 7.0	units	0.1	SM4500 H+ B	4 Oct 18 17:00) SVS
Fluoride	0.25	mg/l	0.10	SM4500-F-C	4 Oct 18 17:00) SVS
Sulfate	4460	mg/l	5.00	ASTM D516-07	10 Oct 18 12:43	B EV
Chloride	374	mg/l	1.0	SM4500-C1-E	17 Oct 18 14:0'	7 EV
Total Dissolved Solids	7280	mg/1	10	I1750-85	5 Oct 18 8:20) SVS
	355	mg/1	1.0	6010D	12 Oct 18 15:2	BMB
Calcium - Total Boron - Total	< 0.5 @	mg/l	0.10	6010D	8 Oct 18 12:4	9 SZ

* Holding time exceeded

Approved by:

Claudite K. Canto

29 Jan 19

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

The reporting limit was elevated for any analyte requiring a dilution as coded below:

@ = Due to sample matrix # = Due to co
! = Due to sample quantity + = Due to in

= Due to concentration of other analytes + = Due to internal standard response

MINNESOTA VALLEY TESTING LABORATORIES, INC. 1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2 North German St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

Amended 29 Jan 19 (App III/App IV) - CCR

Samantha Marshall Montana Dakota Utilities 5181 Southgate Dr Billings MT 59102

Project Name: MDU Heskett

Sample Description: 2-90

Event and Year: Fall 2018

3 of 7 Page:

Report Date: 30 Oct 18 Lab Number: 18-W3263 Work Order #: 82-2619 Account #: 002800

Date Sampled: 3 Oct 18 13:12 Date Received: 4 Oct 18 13:07 Sampled By: MVTL Field Services

PO #: 169846 OP

Temp at Receipt: 3.1C ROI

	As Receiv Result	ed	Method RL	Method Reference	Date Analyzed	Analyst
pH - Field pH Temperature - Field Conductivity - Field Fluoride Sulfate Chloride Total Dissolved Solids Calcium - Total Boron - Total	6.87 * 7.3 7.59 7292 1.00 5030 70.3 7970 452 < 0.5 @	units units Degrees C umhos/cm mg/1 mg/1 mg/1 mg/1 mg/1 mg/1	NA 0.1 NA 1 0.10 5.00 1.0 1.0 0.10	SM 4500 H+ B SM4500 H+ B SM 2550B EPA 120.1 SM4500-F-C ASTM D516-07 SM4500-C1-E I1750-85 6010D 6010D	3 Oct 18 13: 4 Oct 18 17: 3 Oct 18 13: 4 Oct 18 13: 4 Oct 18 17: 10 Oct 18 12: 17 Oct 18 14: 5 Oct 18 8: 12 Oct 18 15: 8 Oct 18 12:	00 SVS 12 JSM 12 JSM 00 SVS 43 EV 07 EV 20 SVS 28 BMB

* Holding time exceeded

Approved by:

Clauditte K. Cantlo

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

The reporting limit was elevated for any analyte requiring a dilution as coded below:

@ = Due to sample matrix # = Due to co
! = Due to sample quantity + = Due to in

= Due to concentration of other analytes + = Due to internal standard response

MINNESOTA VALLEY TESTING LABORATORIES, INC. 1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2 North German St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

4 of 7 Page:

Amended 29 Jan 19 (App III/App IV) - CCR

Samantha Marshall Montana Dakota Utilities 5181 Southgate Dr Billings MT 59102

Project Name: MDU Heskett

Sample Description: 104

Event and Year: Fall 2018

Report Date: 30 Oct 18 Lab Number: 18-W3264 Work Order #: 82-2619 Account #: 002800

Date Sampled: 4 Oct 18 10:35 Date Received: 4 Oct 18 13:07 Sampled By: MVTL Field Services

PO #: 169846 OP

Temp at Receipt: 3.1C

	As Receiv Result	<i>r</i> ed	Method RL	Method Reference	Date Analyzed		Analyst
pH - Field pH Temperature - Field Conductivity - Field Fluoride Sulfate Chloride Total Dissolved Solids Calcium - Total Boron - Total	6.85 * 7.2 8.44 13818 0.51 11000 99.0 18000 422 0.96	units units Degrees C umhos/cm mg/1 mg/1 mg/1 mg/1 mg/1 mg/1	NA 0.1 NA 1 0.10 5.00 1.0 1.0	SM 4500 H+ B SM4500 H+ B SM 2550B EPA 120.1 SM4500-F-C ASTM D516-07 SM4500-C1-E I1750-85 6010D 6010D	4 Oct 18 4 Oct 18 4 Oct 18 4 Oct 18 4 Oct 18 10 Oct 18 17 Oct 18 5 Oct 18 8 Oct 18	17:00 10:35 10:35 17:00 12:43 14:07 8 8:20 8 15:28	JSM SVS JSM JSM SVS EV EV SVS BMB SZ

* Holding time exceeded

Approved by:

Clauditte K. Cantlo

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

The reporting limit was elevated for any analyte requiring a dilution as coded below:

@ = Due to sample matrix # = Due to co
! = Due to sample quantity + = Due to in

CERTIFICATION: ND # ND-00016

= Due to concentration of other analytes + = Due to internal standard response

MINNESOTA VALLEY TESTING LABORATORIES, INC. 1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2 North German St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

Page: 5 of 7

Amended 29 Jan 19 (App III/App IV) - CCR

Samantha Marshall Montana Dakota Utilities 5181 Southgate Dr Billings MT 59102

Project Name: MDU Heskett

Sample Description: 80R

Event and Year: Fall 2018

Report Date: 30 Oct 18 Lab Number: 18-W3265 Work Order #: 82-2619 Account #: 002800

Date Sampled: 4 Oct 18 9:10 Date Received: 4 Oct 18 13:07 Sampled By: MVTL Field Services

PO #: 169846 OP

Temp at Receipt: 3.1C

	As Receiv Result	ed	Method RL	Method Reference	Date Analyzed	Analyst
pH - Field	6.98	units	NA	SM 4500 H+ B	4 Oct 18 9:10	JSM
На	* 7.4	units	0.1	SM4500 H+ B	4 Oct 18 17:00	SVS
Temperature - Field	8.27	Degrees C	NA	SM 2550B	4 Oct 18 9:10	JSM
Conductivity - Field	5610	umhos/cm	1	EPA 120.1	4 Oct 18 9:10	JSM
Fluoride	0.28	mg/l	0.10	SM4500-F-C	4 Oct 18 17:00	SVS
Sulfate	3590	mg/l	5.00	ASTM D516-07	10 Oct 18 14:28	EV
Chloride	165	mg/l	1.0	SM4500-C1-E	17 Oct 18 14:07	EV
Total Dissolved Solids	5660	mg/1	10	I1750-85	5 Oct 18 8:20	SVS
Calcium - Total	252	mg/1	1.0	6010D	12 Oct 18 15:28	BMB
Boron - Total	< 0.5 @	mg/1	0.10	6010D	8 Oct 18 12:49	SZ

* Holding time exceeded

Claudite K. Canto Approved by:

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

The reporting limit was elevated for any analyte requiring a dilution as coded below:

@ = Due to sample matrix # = Due to co
! = Due to sample quantity + = Due to in

= Due to concentration of other analytes + = Due to internal standard response

MINNESOTA VALLEY TESTING LABORATORIES, INC. 1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2 North German St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

Page: 6 of 7

Amended 29 Jan 19 (App III/App IV) - CCR

Samantha Marshall Montana Dakota Utilities 5181 Southgate Dr Billings MT 59102

Project Name: MDU Heskett

Sample Description: 105

Event and Year: Fall 2018

Report Date: 30 Oct 18 Lab Number: 18-W3266 Work Order #: 82-2619

Account #: 002800

Date Sampled: 3 Oct 18 14:40 Date Received: 4 Oct 18 13:07 Sampled By: MVTL Field Services

PO #: 169846 OP

Temp at Receipt: 3.1C

	As Receiv Result	ed	Method RL	Method Reference	Date Analyzed	Analyst
pH - Field pH Temperature - Field Conductivity - Field Fluoride Sulfate Chloride Total Dissolved Solids Calcium - Total Boron - Total	6.66 * 7.1 8.51 6662 0.25 4340 384 7320 350 < 0.5 @	units units Degrees C umhos/cm mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/	NA 0.1 NA 1 0.10 5.00 1.0 1.0	SM 4500 H+ B SM4500 H+ B SM 2550B EPA 120.1 SM4500-F-C ASTM D516-07 SM4500-C1-E I1750-85 6010D 6010D	3 Oct 18 14 4 Oct 18 14 3 Oct 18 14 3 Oct 18 14 4 Oct 18 14 10 Oct 18 14 17 Oct 18 14 5 Oct 18 14 8 Oct 18 14	2:00 SVS 2:40 JSM 2:40 JSM 2:00 SVS 2:28 EV 2:07 EV 3:20 SVS 3:28 BMB

* Holding time exceeded

Approved by:

Clauditte K. Cantlo 29 Jan 19

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

The reporting limit was elevated for any analyte requiring a dilution as coded below:

@ = Due to sample matrix # = Due to compare the control of the contro

= Due to concentration of other analytes + = Due to internal standard response

MINNESOTA VALLEY TESTING LABORATORIES, INC. 1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2 North German St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

Page:

7 of 7

Amended 29 Jan 19 (App III/App IV) - CCR

Samantha Marshall Montana Dakota Utilities 5181 Southgate Dr Billings MT 59102

Project Name: MDU Heskett

Sample Description: FB2

Event and Year: Fall 2018

Report Date: 30 Oct 18 Lab Number: 18-W3267 Work Order #: 82-2619 Account #: 002800

Date Sampled: 4 Oct 18

Date Received: 4 Oct 18 13:07 Sampled By: MVTL Field Services

PO #: 169846 OP

Temp at Receipt: 3.1C

	As Recei Result	ved	Method RL	Method Reference	Date Analyzed	Analyst
рН	* 6.3	units	0.1	SM4500 H+ B	4 Oct 18 17:00	SVS
Fluoride	< 0.1	mg/l	0.10	SM4500-F-C	4 Oct 18 17:00	SVS
Sulfate	< 5	mg/l	5.00	ASTM D516-07	10 Oct 18 14:28	EV
Chloride	< 1	mg/1	1.0	SM4500-Cl-E	17 Oct 18 14:07	EV
Total Dissolved Solids	< 10	mg/1	10	I1750-85	5 Oct 18 8:20	SVS
	< 1	mg/l	1.0	6010D	12 Oct 18 15:28	BMB
Calcium - Total Boron - Total	< 0.1	mg/l	0.10	6010D	8 Oct 18 12:49	SZ

* Holding time exceeded

Approved by:

Claudite K. Canto

29 Jan 19

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

The reporting limit was elevated for any analyte requiring a dilution as coded below:

@ = Due to sample matrix # = Due to concentration of other analytes
! = Due to sample quantity + = Due to internal standard response

MINNESOTA VALLEY TESTING LABORATORIES, INC.

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2 North German St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

October 26, 2018

Montana Dakota Utilities Attn: Samantha Marshall 400 N. 4th St. Bismarck, ND 58501

RE: Groundwater Sampling Event - MDU Heskett Ash Site

Dear Ms. Marshall:

From October 1-4, 2018, MVTL Laboratories' Field Services division collected groundwater samples at the MDU Heskett site near Mandan, ND for the Heskett CCR and NDDH analysis.

All wells were located and were found to be in generally good condition. All wells were purged and sampled using a dedicated bladder pump and BARR's SOP for low flow purging and sampling. Well 3-90 had an insufficient volume of water so no sample could be collected. Samples collected were, placed on ice and transported back to the MVTL laboratory in Bismarck, ND for analysis. The field data report for the sampling event accompanies this letter.

Thank you for your trust and support of our services. If you have any questions, please call me at (800) 279-6885.

Sincerely,

Jeremy Meyer

MVTL Field Services

MDU Heskett

GROUNDWATER SAMPLING

Attn: Samantha Marshall

WO# 82-2588

82-2588 400 N. 4th St 82-2619 Bismarck, ND 58501

82-2618 701-222-7829

WELL ID	PURGE DATE	START PURGE TIME	SAMPLE DATE	TIME OF SAMPLE	WATER LEVEL START	WATER LEVEL END	VOLUME REMOVED (mL)	SAMPLE METHOD	TEMP (°C)	EC	pН	Turbidity NTU	SAMPLE APPEARANCE OR COMMENT
2-90	3-Oct-18	12:32	3-Oct-18	13:12	22.18	Below Pump	4000.0	Bladder	7.59	7292	6.87	0.56	clear
3-90	NA	NA	3-Oct-18	12:20	Below Pump	. NA	NA	Bladder	NA	NA	NA	NA	Insufficient volume
13	1-Oct-18	8:15	1-Oct-18	9:05	30.74	32.76	5000.0	Bladder	8.90	9887	6.93	4.37	clear
33	3-Oct-18	10:45	3-Oct-18	11:55	42.37	43.38	7000.0	Bladder	9.02	5136	6.48	3.02	clear
70	2-Oct-18	10:25	2-Oct-18	11:05	22.07	24.58	4000.0	Bladder	9.79	3704	6.91	0.44	clear
80R	4-Oct-18	8:30	4-Oct-18	9:10	14.76	15.02	4000.0	Bladder	8.27	5610	6.98	0.81	clear
44R	1-Oct-18	13:45	1-Oct-18	14:35	27.25	27.37	5000.0	Bladder	9.21	8937	6.52	3.25	clear
101	2-Oct-18	11:37	2-Oct-18	13:02	37.35	40.86	8500.0	Bladder	11.87	4695	6.62	4.77	clear
102	2-Oct-18	8:50	2-Oct-18	9:30	18.80	20.08	4000.0	Bladder	9.02	9098	6.77	1.46	clear
103	1-Oct-18	12:40	1-Oct-18	13:20	32.64	35.02	4000.0	Bladder	9.17	4960	6.67	1.23	clear
104	4-Oct-18	9:55	4-Oct-18	10:35	14.34	14.63	4000.00	Bladder	8.44	13818	6.85	1.04	clear
105	4-Oct-18	13:40	4-Oct-18	14:40	13.10	13.38	6000.0	Bladder	8.51	6662	6.66	2.91	clear
1-90	4-Oct-18	11:10	4-Oct-18	11:50	12.01	12.15	4000.0	Bladder	9.71	9592	6.74	0.98	clear

NR = Not Recorded on Field Sheet NA = Not Applicable

MVTL Calibration Worksheet

Site: MDU He	skett					Technician:	-Jen-	7 Phy		····
Instrument (Circle One):	#16	50 MDS 08E4	90203	#2 65	50 MDS 04H14	4736	_	#3 55	66 MPS 12E10	2056
		Pr	e Site Calibr	ation				Po	ost Site Chec	k
Date: 3 Oct	16	Time: [O	20					Time: /S	(O)	
pH Buffer 7 Buffer 10 Buffer 4 Conductivity Buffer 1413 ORP 231 mV @ 25C	Temp °C 14.34 15.57 15.71 16.07 11.78	Pre Cal 6.97 i0.05 4.06 1386 244.0	Post Cal 7,00 10.00 4:00 1413 244.0	Post Cal Range 6.95-7.05 9.95-10.05 4.95-5.05 ±10%	mv -72.0 -200,8 (52.1 Buffer 5000	mv Range +/- 50 0 +/- 50 -180 +/- 50 180 +/- 50 Check		pH Buffer 7 Conductivity Buffer 5000	Temp °C 19,16	Reading 7,03
DO										
DO	10.67	98.7%	10,97	mg/L	ric Pressure (m 750, 0					
Date: 400	F1B	Time: O	325					Time: 12	0O	
pH Buffer 7 Buffer 10 Buffer 4 Conductivity	Temp °C 13.53 13.56 13.73	Pre Cal 6,96 10.03 4,06	Post Cal 7,00 10,00 4,00	Post Cal Range 6.95-7.05 9.95-10.05 4.95-5.05	-21,2 -199,4 151,6	mv Range +/- 50 0 +/- 50 -180 +/- 50 180 +/- 50 Check		pH Buffer 7 Conductivity	Temp °C	Reading
Buffer 1413	14.01	1412	1413	±10%	Buffer 5000	4967		Buffer 5000		
ORP 231 mV @ 25C DO	18.93	247.1	244.0	±10 mV Barometr	ric Pressure (m					
	7.55	101.2%	12.12	mg/L	769,1					
							ı L	-		

Groundwater Assessment

MDU Heskett	
Fall 2018	
33	_
Jermy Hay-	
	Fall 2018

2616 E. Broadway Ave, Bismarck, ND

Phone: (701) 258-97	20) '			
Weather Conditions:		Temp:	45°F		Wind:	N	@ (0 ~	15	Precip	: Sunı	ny / Partly C	loudy Cl	oudy	
V	Vell Info	rmation	•					Sampling Information						
Well Locked?	Yes	(NO)				Purgi	ng Method:	Blac	der					
Well Labeled?	Well Labeled? Yes No					Sampli	ng Method:	Blac	der		Co	ntrol Settin	gs	
Casing Straight?	Yes>	No				Dedica	ted Equip?:	Yes	No		Purge:	5	sec.	
Grout Seal Intact?	Yes	No	Not Visibl	è		Duplicate	Sample?:	Yes	41 0		Recover:	SS	sec.	
Repairs Necessary:						Duplicate	Sample ID:		•		PSI:	<i>30</i>		
Casing [Diameter:		2"											
Water Level Before	re Purge:	1-{	2.37	ft		F	Purge Date:	3 oct	16	Time Purg	ing Began:	1045	am∕pm	
						Well P	urged Dry?		Ø2		urged Dry:	حـــــــــــــــــــــــــــــــــــــ	am/pm	
		······································				Sa	ample Date:	3 Oct	10	Time of	Sampling:	1155	@m/pm	
Depth to Top	of Pump:	<u> </u>		ft										
Water Level After	Sample:	٤	(3.38	ft		Bottle	1L Raw	500ml	_ Nitric	500mL Niti	ric (filtered)	250mL	Sulfuric	
Measurement	Method:	Electric V	Vater Level Indic	ator		List:	<u></u>							
			1	Eiold	Mossura	monto						-		

Field Measurements

Stabil	ization	Temp	Spec.		DO	ORP	Turbidity	Water	Pumping	mL	Description:
(3 cons	secutive)	(°C)	Cond.	рН	(mg/L)	(mV)	(NTU)	Level (ft)	Rate	Removed	Clarity, Color, Odor, Ect.
SEQ#	Time		±5%	±0.1	±10%	±20 mV	±10%	0.25 ft	ml/min		Clear, Slightly Turbid, Turbid
1	1050	8.62	5395	6.54	3,50	0.9	725	43,06	100.0	らめん	Clea
2	1120	8,70	590	6.51	2,58	16.5	7.05	43,10	100.0	3000.0	Clea
3	1140	8,80	5136	6,51	2.17	15.8	3,07	43.34	(00.0	2000,0	Clean
4	1145	B.72	5131	6,48	1.05	20.3	3,09	43.25	100.0	SWID	Cle
5	iiso	8,99	5122	6,48	1.09	20.2	3.15	43,20	100.0	500,0	Cles
6	1155	9,02	5136	6.48	1.14	18,4	3.02	43,29	100.0	SOUR	clar
7							,				
8											
9											
10											

Stabilized: Yes No

Total Volume Removed: 7,000,0 mL

Groundwater Assessment

°F

Company:	MDU Heskett
Event:	Fall 2018
Sample ID:	3~90 ,
Sampling Personal:	Jereny Men-

Phone: (701) 258-9720

Weather Conditions:

Weather Co	onditions:		Temp: °F Wind:					@		Precip:	Suni	ny / Partly (Cloudy / Clo	oudy
		Well Info	ormation						Sa	ampling I	nformatio	on		
We	II Locked?	Yes	(on				Purgi	ng Method:	Blac	lder				
Well	l Labeled?	Yes	No No				Sampli	ng Method:	Blac	lder		Co	ontrol Setting	gs
Casing	g Straight?	(ES)	No				Dedicat	ted Equip?:	Yes	No		Purge:	<	Se
Grout Se	eal Intact?	Yes	No	¥ot ∨	isible		Duplicate	Sample?:	Yes	No		Recover:	55	Se
Repairs Ne	cessary:						Duplicate	Sample ID:				PSI:	20	
	Casing	Diameter:		2"	-	•					•	···		
Wate	r Level Bef	ore Purge:	Waterle	rel below	sthe ft		F	Purge Date:			Time Purg	ing Began:		am/p
			foot :	of the pun	mp		Well P	urged Dry?	Yes	No	Time F	urged Dry:		am/p
					-		Sa	mple Date:	3 004	-18	Time of	Sampling:	1220	am/g
D	Depth to Top of Pump: つんし											··········		
Wate	Water Level After Sample:						Bottle	4L Raw	500ml	-Nitric	500mL Nit	ic (filtered)	250mL-9	Sulfuric-
M	Measurement Method: Electric Water Level Indica						List:					•		
					her. 1 f	-	•							
0/ 1:11		Tomp	Snoo			Measure		18/2423	D	I				
Stabilization Temp Spec. DO (3 consecutive) (°C) Cond. pH (mg/L)				(mg/L)	ORP (mV)	Turbidity (NTU)	Water Level (ft)	Pumping Rate	mL Removed	1	Description:			
SEQ#	Time	(0)	±5%	±0.1	±10%	±20 mV	±10%	0.25 ft	ml/min	Removed		, Color, Odo Slightly Turbid,		
1								3.23 (ong, ra.b.a,	10.0.0	-
2														
3	:													
4														
5														
6				<i>j-</i>								1,000		
7														
8								ļ						
9														
10					7.711	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				<u> </u>	<u>.</u>			
Stabilized:	Yes	No	-				Т	otal Volume	e Removed:		mL			
Comments:	: 1		11 1 L	·	ient vol	I same	-مارد	ره لم	relies	1 ~	یا ل			
7.	red pure	ring we	il bot	insolle	Ac.	- 1/40	ENGE POR	70 (· L	TOTAL L	Z) 102			
	No	Sample	collected						e Removed:					

Groundwater Assessment

Company:	MDU Heskett	
Event:	Fall 2018	
Sample ID:	2-90	
Sampling Personal:	Jern Man	

Phone: (701) 258-9720

` ,													
Weather Conditions:		Temp:	45°F		Wind:	N	<u>@ 16-1</u>	5	Precip	o: Sun r	ıy / Partly C	loudy / 👀	udy
	Well Info	rmation						Sa	ımpling	Informatio	n		
Well Locked?	Yes	NO				Purgii	ng Method:	Blac	lder				
Well Labeled?	Yes?	No				Sampli	ng Method:	Blac	lder		Co	ntrol Setting	s
Casing Straight?	Yes	No				Dedicat	ed Equip?:	/Yes>	No		Purge:	5	sec.
Grout Seal Intact?	Yes	No	Not Visi	ple		Duplicate	Sample?:	Yes			Recover:	53	sec.
Repairs Necessary:						Duplicate	Sample ID:	ـــــ			PSI:	10	
Casing	Diameter:		2"										
Water Level Befo	ore Purge:	2	Z.18	ft		F	urge Date:	30ct	16	Time Purg	ing Began:	5851	am/pm
						Well P	urged Dry?		No	Time F	urged Dry:		am/pm
						Sa	mple Date:	3 out	16	Time of	Sampling:	1312	am/pm
Depth to Top	of Pump:	22	.41	ft									
Water Level Afte	r Sample:	Below	. Pomj	ft		Bottle	1L Raw	500ml	_ Nitric	500mL Nit	ric (filtered)	250mL S	Sulfuric
Measuremen	t Method:	Electric V	Nater Level Inc	licator		List:							

Field Measurements

	1 Total Moderation												
Stabil	lization	Temp	Spec.		DO	ORP	Turbidity	Water	Pumping	mL	Description:		
(3 cons	secutive)	(°C)	Cond.	рН	(mg/L)	(mV)	(NTU)	Level (ft)	Rate	Removed	Clarity, Color, Odor, Ect.		
SEQ#	Time		±5%	±0.1	±10%	±20 mV	±10%	0.25 ft	ml/min		Clear, Slightly Turbid, Turbid		
1	1237	7.84	7315	6.93	6.24	143,3	3.14	BelowPung	100.0	Sico	Clea		
2	1242	7.81		6,90	5.65	152,4	4.57	Below Punp	احتاري	500.0	Cles		
3	1247	7.83	7302	6, 88	5.47	160.0	2,24	BP'	100.0	500,0	Clea		
4	1252	7.55	7295	6,88	4.49	167.2	1.47	೧೯	100.0	500,0	Clea		
5	1257	7.72		6.87	4,34	175.2	0,78	BP	100.0	500.0	Clear		
6	1302	7.62	7291	6.87	3,99	182.5	0,60	GP	100.0	50.0	Clem		
7	1307	7,72	7296	6.87	4.40	188.6	0,56	BP	100.0	500,0	Client		
8	1312	7.59	7292	6.87	4.04	194,9	0,56	BP	100.0	Soo, O	Clear		
9													
10													

Stabilized: Yes, No

Total Volume Removed: 4000,0 mL BP=Below Pung

Groundwater Assessment

Company:	MDU Heskett
Event:	Fall 2018
Sample ID:	104.
Sampling Personal:	Seven Man

Phone: (701) 258-9720

Phone: (701) 258-9	9720												
Weather Conditions:		Temp:	3 <i>0</i> °F		Wind:	5	@ 5-10	<u></u>	Precip	: Sunr	y /Partly C	loudy / Clo	udy
	Well Info	ormation						Sa	mpling	Informatio	on		
Well Locked?	Yes	(No)				Purgi	ng Method:	Blac	lder				
Well Labeled?	X68	No				Sampli	ng Method:	Blac	lder		Co	ntrol Setting	s
Casing Straight?	∕ ∀e ∍	No				Dedicat	ed Equip?:	(Yes)	No		Purge:	5	sec
Grout Seal Intact?	Xes	No	Not Visibl	е		Duplicate	Sample?:	Yes	(No	<u>.</u>	Recover:	55	sec
Repairs Necessary:						Duplicate	Sample ID:]	PSI:	20	
Casing	Diameter:		2"										
Water Level Bef	fore Purge:		14,34	ft		F	urge Date:	4 Oct	18	Time Purg	ing Began:	0955	@m/pm
						Well P	urged Dry?	Yes	M		urged Dry:		am/pn
						Sa	mple Date:	40et	-18	Time of	Sampling:	1035	@m/pn
Depth to To	p of Pump:	•		ft									
Water Level Aft	er Sample:		14.63	ft		Bottle	1L Raw	500ml	_ Nitric	500mL Niti	ric (filtered)	250mL S	Sulfuric
Measuremer	nt Method:	Electric V	Nater Level Indic	ator		List:							
		2000		Field	Mossura	monts							

Field Measurements

Stabil	lization	Temp	Spec.		DO	ORP	Turbidity	Water	Pumping	mL	Description:
(3 cons	secutive)	(°C)	Cond.	pН	(mg/L)	(mV)	(NTU)	Level (ft)	Rate	Removed	Clarity, Color, Odor, Ect.
SEQ#	Time		±5%	±0.1	±10%	±20 mV	±10%	0.25 ft	ml/min		Clear, Slightly Turbid, Turbid
1	1000	8,73	13861	6.93	3.18	274.8	1.67	14,58	100.0	500	Cle
2	1020	8.72	13771	6,86	1.66	278.7	0.92	14.66	100,0	2000.0	Clear
3	1025	8,47	13827	6.87	1.75	277.9	1.14	14.65	100.0	500.0	Clea
4	1030	8,82	13778	6.86	1.69	278.9	1.08	14,72	10000	500.0	(lear
5	1035	8.44	13818	6.85	1.67	279,8	1.04	14,67	100.0	500,0	Clean
6			•								
7											
8											
9											
10											

Stabilized: (Yes) No

Total Volume Removed: 4,000.0 mL

Groundwater Assessment

Company:	MDU Heskett	
Event:	Fall 2018	
Sample ID:	OR	
Sampling Personal:	Jen Ma	

Phone: (701) 258-9	720						_				<i>i . y </i>		
Weather Conditions:		Temp:	25°F		Wind:	S	@ 5-10	>	Precip	: Sunr	ıy / Partly, C	Cloudy / Clo	oudy
,	Well Info	ormation						Sa	mpling	Informatio	on		
Well Locked?	Yes	(No)				Purgi	ng Method:	Blad	der				
Well Labeled?	X9s	No				Sampli	ng Method:	Blad	der		Co	ntrol Setting	gs
Casing Straight?	Yes	No				Dedica	ted Equip?:	Yes	No		Purge:	S	sec
Grout Seal Intact?	Yes	No	Not Visibl	е		Duplicate	Sample?:	Yes	(No		Recover:	55	sec
Repairs Necessary:						Duplicate	Sample ID:				PSI:	20	
Casing	Diameter:		2"							<u>-</u>	·		
Water Level Befo	ore Purge:	j	4.76	ft		F	Purge Date:	4 Oct 18	5	Time Purg	ing Began:	0B30	am∤pm
						Well P	urged Dry?		No	Time F	urged Dry:		am/pm
						Sa	mple Date:	4 Oct 1	0	Time of	Sampling:	0910	am/pn
Depth to Top	of Pump:			ft									
Water Level Afte	er Sample:		5,02	ft		Bottle	1L Raw	500mL	Nitric	500mL Nit	ic (filtered)	250mL \$	Sulfuric
Measuremen	t Method:	Electric V	V ater Level Indic	ator		List:							
				Fiold	Moseura	monte		-					

Stabil	lization	Temp	Spec.		DO	ORP	Turbidity	Water	Pumping	mL	Description:
į.	secutive)	(°C)	Cond.	pН	(mg/L)	(mV)	(NTU)	Level (ft)	Rate	Removed	Clarity, Color, Odor, Ect.
SEQ#	Time		±5%	±0.1	±10%	±20 mV	±10%	0.25 ft	ml/min		Clear, Slightly Turbid, Turbid
1	0835	7.42	2231	6.92	4,39	226,9	-3,16	15,04	6000	500.0	Clear
2	0855	7.87	5610	6.98	2,29	222.3	9,78	15,00	102.0	2060,0	Clear
3	0900	8.26	5608	6,99	2.13	221,8	0.78	15,00	100,0	500,0	Clean
4	0905	7.72	5618	6,99	2,26	223,4	0.67	15,03	100.0	500.0	Clean
5	0910	8.27	5610	6.98	2,29	224,6	0.81	15.02	(00,0	50.0	Clear
6											
7											
8											
9											
10											

Stabilized: No Total Volume Removed: 4,000 の mL

Groundwater Assessment

Company:	MDU Heskett	
Event:	Fall 2018	
Sample ID:	105	
Sampling Personal:	Jern illy	

Dhana: (701) 359 0730

Phone: (701) 258-9	720												
Weather Conditions:		Temp:	45°F		Wind:	\sim	@ 15-2	20	Precip	: Sunr	ıy / Partiy C	Cloudy Clo	udy
	Well Info	rmation						Sa	mpling l	Informatio	on		
Well Locked?	Yes	(No)				Purgi	ng Method:	Blad	der				
Well Labeled?	Xes	No				Sampli	ng Method:	Blad	der		Co	ntrol Setting	ıs
Casing Straight?	(Yes	No				Dedicat	ted Equip?:	Yes	No		Purge:	5	sec.
Grout Seal Intact?	(Yes	No	Not Visil	ole		Duplicate	Sample?:	Yes	No		Recover:	<i>5</i> S	sec.
Repairs Necessary:						Duplicate	Sample ID:	Rep	2		PSI:	2 <i>0</i>	
Casing	Diameter:		2"										
Water Level Bef	ore Purge:		13.10	ft		F	Purge Date:	3 oct 19	E	Time Purg	ing Began:	1340	am/@m
						Well P	urged Dry?	Yes	NO	Time F	urged Dry:		am/pm
						Sa	mple Date:	3 Oct 18	5	Time of	Sampling:	1440	am/pm)
Depth to Top	o of Pump:			ft									
Water Level After	er Sample:	13	<u> 136 </u>	ft		Bottle	1L Raw	500mL	Nitric	500mL Niti	ric (filtered)	250mL S	Julfuric
Measuremer	nt Method:	Electric W	later Level Ind	icator		List:							

Field Measurements

Stabili	ization	Temp	Spec.		DO	ORP	Turbidity	Water	Pumping	mL	Description:
(3 cons	ecutive)	(°C)	Cond.	pН	(mg/L)	(mV)	(NTU)	Level (ft)	Rate	Removed	Clarity, Color, Odor, Ect.
SEQ#	Time	,	±5%	±0.1	±10%	±20 mV	±10%	0.25 ft	ml/min		Clear, Slightly Turbid, Turbid
1	1245	8,32	5773	6,76	2.28	238.3	2,29	13,4%	100.0	500.0	Clear
2	1405	8,13	5482	6,75	7,59	212.3	2.56	13.37	1000	2000,0	Clean
3	(410	7,98	5789	6,71	1.88	213,9	1.98	13.48	100,0	SOULO	Cles
4	1415	8.20	5116	6.69	160	212.7	2,43	13.42	100,0	500,0	Clean
5	1420	7,58	6204	6.69	1,55	212,3	2,56	13.44	100,0	500,0	cles
6	1425	હ.ં3	6395	6.68	1,52	212.0	3,01	13,52	100.0	500.0	Clea
7	14 30	6.36	6483	6167	1,38	211,3	2,82	13,48	100,0	500,0	Clear
8	1435	8,61	6633	6.68	1.30	210,0	3,00	13.45	100,0	500,0	Clea
9	14480	%,≲ા	6662	6:66	1.34	210,1	2.91	13,47	100.0	500,0	Clear
10											

Stabilized: Yes No

Total Volume Removed: 6,000,0 mL

Chain of Custody Record

Project Name:		Event:	Work Order Number:	20	
	MDU Heskett	Fall 2018		82-2619	•
Report To: Attn: Address: phone: email:	MDU Samantha Marshall 5181 Southgate Dr. Billings, MT 59102 406-896-4227	Carbon Copy: Attn: Address:	Name of Sampler(s):		

	Sample Information					Bot	tle Type	Fi	eld Parameters	s Analysis
Lab Number	Sample ID	Date	$T_{im_{\Theta}}$	Sample Type	1 liter	500mL Nitric 500ml L	250 mL Sulfuric	^Т етр (°C)	Spec. Cond.	Analysis Required
W3261	33	30cf18	1155	GW	X			9.02	5136 6.48	
·	3-90	30ct 18	iZ20	GW	* ×	XX	x -	insuffi	1	
W3262	Dup2	30418	NA	GW	X	хх	x	NA	NA NA	
W3263	2-90	3 Oct 18	1312	GW	X	хх	х	7.59	7292 6,87	
W3264	104	40ct 18	1035	GW	X	хх	х	8,44	13818 6.85	MDU List AA & MDU
W3265	80R	40ct 18	910	GW	X	хх	х	8.27	5610 6.98	
W3264	105	30ct 193	1440	GW	X	хх	X	8,51	6662 6.66	Appendix 3 List MDU App 4 List Minus Pad chem
W3267	FB2	\$00+1B	NA	GW	Х	ХХ	X	NA	NA NA	(VI INDS PORT LINEAR
·										

Comments: #4-40d18

Relinquished By:	Sample Condition:		
Name: /	Date/Time	Location:	Temp (°C)
101-11	1307	Log In- Walk In #2	3.1 RET 40610 FM5627TM588
2			

Rece	ived by:
1 Name:	Date/Time
tana (SI)	4042018
The AC	/307

Appendix B

Alternative Source Demonstration Reports

Alternative Source Demonstration: October 2017 Event

R.M. Heskett Station

Prepared for Montana-Dakota Utilities Co.

April 2018

Alternative Source Demonstration: October 2017 Event

R.M. Heskett Station

Prepared for Montana-Dakota Utilities Co.

April 2018

Alternative Source Demonstration: October 2017 Event

April 2018

Contents

1.0	Introduction	1
2.0	October 2017 SSIs	
3.0	Alternative Source Demonstration	
3.1	pH at MW-80R	
	.1.1 Instrument Accuracy	
3.2	Chloride at MW-105	
	.2.1 Comparison with Ash Data	
	3.2.1.1 Chloride Concentrations	
	3.2.1.2 Major Ion Comparisons	
	.2.2 Comparison to Upgradient Water Quality	
	.2.3 Comparisons with Historical Data	
3.3	Sulfate and TDS at MW-104	
	.3.1 Comparisons with Historical Data	
	.3.2 Geologic and Hydrogeologic Variability	
4.0	Conclusions	
5.0	References	ŏ

List of Tables

Table 1	October 2017 SSIs
Table 2	Select Parameter Concentrations: Ash SPLP, MW-104, and MW-105
Table 3	Select Parameter Concentrations: Historical Well 60 and MW-104
	List of Figures
Figure 1	Site Layout and CCR Monitoring Network
Figure 2	Interwell Prediction Limit Comparison for pH at MW-80R
Figure 3	Piper Plots
Figure 4	Stiff Plots
Figure 5	Sulfate Concentrations
Figure 6	TDS Concentrations

List of Appendices, Attachments, or Exhibits

Appendix A	YSI Sensor Specifications
Appendix B	SPLP Laboratory Data
Appendix C	Aerial Photograph (1988)
Appendix D	1989 Special Use Disposal Site Permit Application
Appendix E	2014-2016 Boring Logs

Certifications

I hereby certify that I, or my agent, have examined this written demonstration and attest that this Coal Combustion Residuals Facility Alternative Source Demonstration (ASD) is accurate and has been prepared in accordance with good engineering practice, including consideration of applicable industry standards and the requirements of 40 CFR §257.94. I further certify that this report was prepared by me or under my direct supervision and that I am a duly Licensed Professional Engineer under the laws of the state of North Dakota.

levision	Date	Summary of Revisions
0	April 13, 2018	Initial Alternative Source Demonstration

THOMAS I. RAIDUE TO THOMAS I. RAIDUE TO THOMAS I. RAIDUE TO THE TO THE TOTAL TO THE TOTAL

Thomas J. Radue, P.E.

Barr Engineering Co.

ND Registration Number PE – 3632

1.0 Introduction

Montana-Dakota Utilities Co. (MDU) owns and operates R.M. Heskett Station (Site), a coal-fired generating station and a gas fired turbine located in Mandan, North Dakota (Figure 1). One CCR (coal combustion residual) unit, as defined by 40 CFR 257.53, is located on the property. Wastes contained in the CCR unit primarily consist of coal combustion by-products, asbestos wastes generated from construction activity associated with MDU-owned facilities, and ash derived from burning of tire-derived fuel (TDF) at the facility.

The CCR Rule (US EPA, 2015) §257.94(e)(2) allows for an alternative source demonstration (ASD) in the event of an identified statistically significant increase (SSI) in a downgradient monitoring well over background levels:

The owner or operator may demonstrate that a source other than the CCR unit caused the statistically significant increase over background levels for a constituent or that the statistically significant increase resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. The owner or operator must complete the written demonstration within 90 days of detecting a statistically significant increase over background levels to include obtaining a certification from a qualified professional engineer verifying the accuracy of the information in the report.

The purpose of this work is to evaluate the data collected as part of the October 2017 monitoring event, along with historical data, to demonstrate if the identified SSIs are the results of a source other than the CCR unit or due to an error in sampling, analysis, or statistical evaluation, natural variation in groundwater quality.

2.0 October 2017 SSIs

Sampling for the first detection monitoring event was conducted on October 4 and 5, 2017. Four potential SSIs over background were identified: pH at MW-80R, chloride at MW-105, and sulfate and total dissolved solids (TDS) at MW-104 (additional details provided in Table 1). These potential SSIs were verified by additional samples collected on January 22, 2018.

Several characteristics of the CCR unit site geology, groundwater monitoring well locations, and historic groundwater quality data prompted consideration of potential alternative sources for the SSIs, including:

- Elevated water quality parameters in pre-landfill groundwater monitoring data;
- Proximity to nearby roadway surface water runoff ditches; and
- Site-specific geologic conditions.

Several methods of evaluation were subsequently undertaken in an effort to review potential alternative sources for the SSIs. These include the following evaluations:

- Charge balance error calculation;
- Evaluation of statistical methods;
- Comparison with leaching tests of ash materials;
- Comparison with historical (pre-landfill) groundwater data; and
- Analysis of potential spatial trends.

Successful alternative source demonstration is discussed in Section 3.0.

3.0 Alternative Source Demonstration

Methods used to evaluate potential alternative sources for all SSIs (pH at MW-80R, chloride at MW-105; and sulfate and TDS at MW-104) over background were successful for the October 2017 detection monitoring event as discussed in the following sections.

3.1 pH at MW-80R

Quality and accuracy of field sampling and analysis procedures were reviewed as a potential alternative source of elevated pH in groundwater at MW-80R.

3.1.1 Instrument Accuracy

Initially pH was identified as an SSI in MW-80R (7.10 standard units or SU) due to an exceedance of the upper control limit by the cumulative sum. Upon further review of the pH data, it was determined that the values recorded in the field were reported beyond the level of accuracy of the instrument. Accuracy of the field pH meter, as provided by the manufacturer (YSI; Appendix A), is ± 0.2 SU. However, pH was reported in the field down to the hundredth (0.01), over an order of magnitude lower than the level of accuracy achievable by the instrument. If the pH values collected at the Site were rounded to the nearest tenth (0.1), more consistent with the instrument's accuracy, no SSIs were observed (Figure 2). Therefore, based on an error in reporting, a successful demonstration of an alternative source exists for this SSI. It is recommended that pH values are reported to the nearest tenth, consistent with the instrument's level of accuracy, for future monitoring events.

3.2 Chloride at MW-105

Comparisons of CCR ash Synthetic Precipitation Leaching Procedure (SPLP method; EPA Method 1312) results as well as historical (pre-landfill) data were conducted to evaluate potential alternative sources of elevated chloride in groundwater at MW-105.

3.2.1 Comparison with Ash Data

Ash samples collected in 2011 (Appendix B) from various locations across the Site were analyzed using the SPLP method to assess ash as a potential source of water quality changes in downgradient wells. The SPLP method consists of mixing the ash with mildly acidic water in the laboratory to simulate the effect of atmospheric water (i.e., precipitation) infiltrating through the CCR unit and generating leachate.

The hypothesis that we tested is that if the leachate (represented by the SPLP results) was affecting downgradient groundwater quality near MW-105, then both the groundwater and SPLP results should appear to be geochemically similar. If the comparison of the two types of water samples indicate that they are geochemically dissimilar, this indicates that a source "other than the CCR unit" is responsible for the SSI and the alternative source demonstration is successful. The SPLP results along with the October 2017 chloride concentrations for MW-105 are shown on Table 2.

3.2.1.1 Chloride Concentrations

The October 2017 chloride concentration in MW-105 was measured at 346 milligrams per liter (mg/L), which is several times higher than the SPLP results, which ranged from 2 mg/L to 66 mg/L. At the same time, the other major cation and anion concentrations, such as sodium, calcium, potassium, sulfate, and TDS, are lower at MW-105 than in the SPLP results. If there were a release from the CCR unit, the relative concentrations of the major ions in MW-105 should be similar to the proportions of these same ions observed in the SPLP results from the CCR unit. Due to differences in residence times and source waters, actual concentrations differ between groundwater and experimental leachates, but these concentrations should be present in similar proportions if leaching of the ash is a major source of chloride to MW-105. The dissimilar proportion of major ions in MW-105 to the SPLP results support the conclusion that the SSI from MW-105 is due to a "source other than the CCR unit."

3.2.1.2 Major Ion Comparisons

In order to test the hypothesis that the water quality at MW-105 is different from that expected from the CCR unit, Piper and Stiff diagrams were used to visually compare the SPLP results and the measured groundwater quality at the Site (Figures 3 and 4, respectively). Piper diagrams are plots of major ion chemistry of water samples (calcium, magnesium, potassium, sodium, chloride, sulfate, and alkalinity) that are used to differentiate between water types and to identify potential mixing of water types. Stiff diagrams represent major ion water chemistry as geometric shapes whose vertices are proportional to the geochemical composition of the water. Both of these methods allow a means to identify or "fingerprint" each water sample by their common characteristics to assess which types of water are similar or dissimilar to potential CCR sources or non-source water types (Hensel and Hirsch, 2002).

In the Piper diagram (Figure 3), the downgradient water quality (and of particular interest, at MW-105) is characterized as a Ca/Mg-SO₄ type water, whereas the ash SPLP results are Na-SO₄ type water. The major difference observed between the downgradient water quality (MW-105) and the SPLP results is the dominant cation concentration (calcium and magnesium vs. sodium). Because MW-105 is clustered with the upgradient wells rather than near the SPLP results, it indicates that the water chemistry at MW-105 is more similar to upgradient groundwater than a potential release from the CCR unit.

The Stiff diagrams (Figure 4) also support the hypothesis that the SSI at MW-105 is a "source other than the CCR unit" because of the difference in water chemistry between the SPLP results and MW-105. For example, a major ion in MW-105 is chloride which is generally minor in the SPLP leachate. This finding is consistent with the conclusion of Section 3.2.1.1 above. In addition, the SPLP results are relatively higher in potassium and sulfate, while MW-105 is generally lower with respect to these ions. Due to the high sulfate concentration at each location, relative to the other ions, a modified scale was used for sulfate (10% scale) on Figure 4 for ease of comparison.

While there is some variation among the SPLP sample results that appears related to the type of ash, the variants (e.g., bottom ash) that mostly resemble the major ions from MW-105 are proportionately lower than in MW-105 indicating that the bottom ash variant would be unlikely to cause a significant change in water quality at MW-105. This is because the source ash must be a higher concentration than those found

in downgradient groundwater in order for there to be evidence of a release. These additional lines of evidence also support the conclusion that the SSI from MW-105 is due to a "source other than the CCR unit."

3.2.2 Comparison to Upgradient Water Quality

The results shown on Figures 3 and 4 indicate that the result at MW-105 appears most similar to the results from the upgradient wells. Samples from these upgradient wells are generally lower in sulfate and potassium while being higher in chloride than the SPLP results suggest are present in the CCR unit.

Therefore, these results suggest that the SSI at MW-105 is due to a "source other than the CCR unit" and may be the result of upgradient conditions.

3.2.3 Comparisons with Historical Data

Groundwater samples collected in 1986 (prior to construction of the CCR unit; an aerial photograph from March 30, 1988 shows the area of the CCR unit, which appears to be undisturbed (Appendix C)) were included in the 1989 Special Use Disposal Site Permit Application (Permit Application, MDU, 1989; Appendix D). Chloride concentrations in these groundwater samples were measured as high as 558 mg/L (Well 44, 11/21/1986), indicating that high chloride concentrations at the Site pre-date construction of the CCR unit. The historical (pre-landfill) chloride concentrations are also reported in the Permit Application included in Appendix D.

Due to the similarly high concentrations of chloride in groundwater prior to the construction of the CCR unit and the lack of similarity with the ash SPLP data, the SSI for chloride at MW-105 is due to a source other than the CCR unit.

3.3 Sulfate and TDS at MW-104

Review of regional geologic information and comparisons to historical (pre-landfill) field and laboratory data were conducted to evaluate a potential alternate source of elevated sulfate and TDS at MW-104.

As previously noted, TDS is a measurement of all parameters dissolved in a water sample. In samples where a particular ion comprises a significant weight percentage of dissolved solids, the concentration of that ion and TDS are often correlated. Data for MW-104 supports this correlation, where sulfate accounts for a large proportion of TDS, and thus the SSIs for these two parameters are likely related.

3.3.1 Comparisons with Historical Data

The groundwater quality data from MW-104 was compared to data collected from historical wells sampled in 1986, prior to construction of the CCR unit (Appendix D).

Analyses of groundwater samples collected prior to construction of the CCR unit included in the Permit Application notes that high TDS was observed at the Site (Appendix D). Maximum TDS and sulfate concentrations reported in 1986 were 14,917mg/L and 11,632 mg/L, respectively, in Well 60 (approximately 700 feet southwest of MW-104), with similar concentrations observed two years later

(Table 3). Sulfate and TDS concentrations reported in October 2017 were 10,200 mg/L and 15,400 mg/L, respectively, in MW-104 which are similar to historic concentrations at Well 60. Figure 5 and 6 show the range of sulfate and TDS concentrations, respectively, across the Site, including recent and historical monitoring well data.

3.3.2 Geologic and Hydrogeologic Variability

The Tertiary (Paleocene) Cannonball Formation underlies the Site and a large portion of eastern Morton County. Based on lithologies and bivalve assemblages, the depositional environment of the Cannonball Formation is a barrier island complex that included lagoonal, beach, and offshore environments (Lindholm, 1983). Lithologic and geophysical logs for the Site indicate that the uppermost 100 feet of the subsurface materials lie within the Cannonball Formation (MDU, 1989).

The dominant lithology observed at the Site is unconsolidated silt in a clay matrix with interspersed fine to medium-grained sand (10% to 30%). Thin sand lenses with limited extent have also been observed. Small gypsum crystals are documented discontinuously throughout the upper 30 feet of the surface materials, which have been presumed to be the result of diagenetic processes which occur above the water table during alternating wetting and drying cycles (Groenewold et al, 1983).

Gypsum is a hydrated calcium sulfate mineral that can be a source of high sulfate concentrations in groundwater. Dissolution of gypsum will occur until equilibrium concentrations are attained in the groundwater or until all the minerals are consumed. The Permit Application noted that "small gypsum crystals occur throughout the upper 30 feet of the site. These gypsum crystals are presumed to be the result of diagenetic processes which occur above the water table during alternate wetting and drying cycles" (MDU, 1989; Appendix D).

The boring log for MW-104 (Appendix E) notes gypsum present throughout the upper layer of the screened interval. Boring logs for other CCR wells and pre-landfill wells note gypsum occurrences across the Site (Appendix D (Exhibit 5-E) and Appendix E). The water level and screened interval in MW-104 are within the gypsum-bearing unit. In some other wells with lower sulfate and TDS concentrations, the water levels and/or screened units are below the documented gypsum occurrences.

Based on presence of gypsum in native subsurface deposits, we conclude that a "source other than the CCR unit" is the cause of elevated TDS and sulfate at MW-104, therefore, a successful demonstration of an alternative source exists for SSIs of sulfate and TDS at MW-104.

4.0 Conclusions

Four SSIs were identified from the October 2017 detection monitoring event. This report demonstrates that a "source other than the CCR unit" caused the SSIs, that the SSIs resulted from analytical error, or natural variation in groundwater quality, as allowed by §257.94(e)(2). The results of this alternative source demonstration are summarized in the table below.

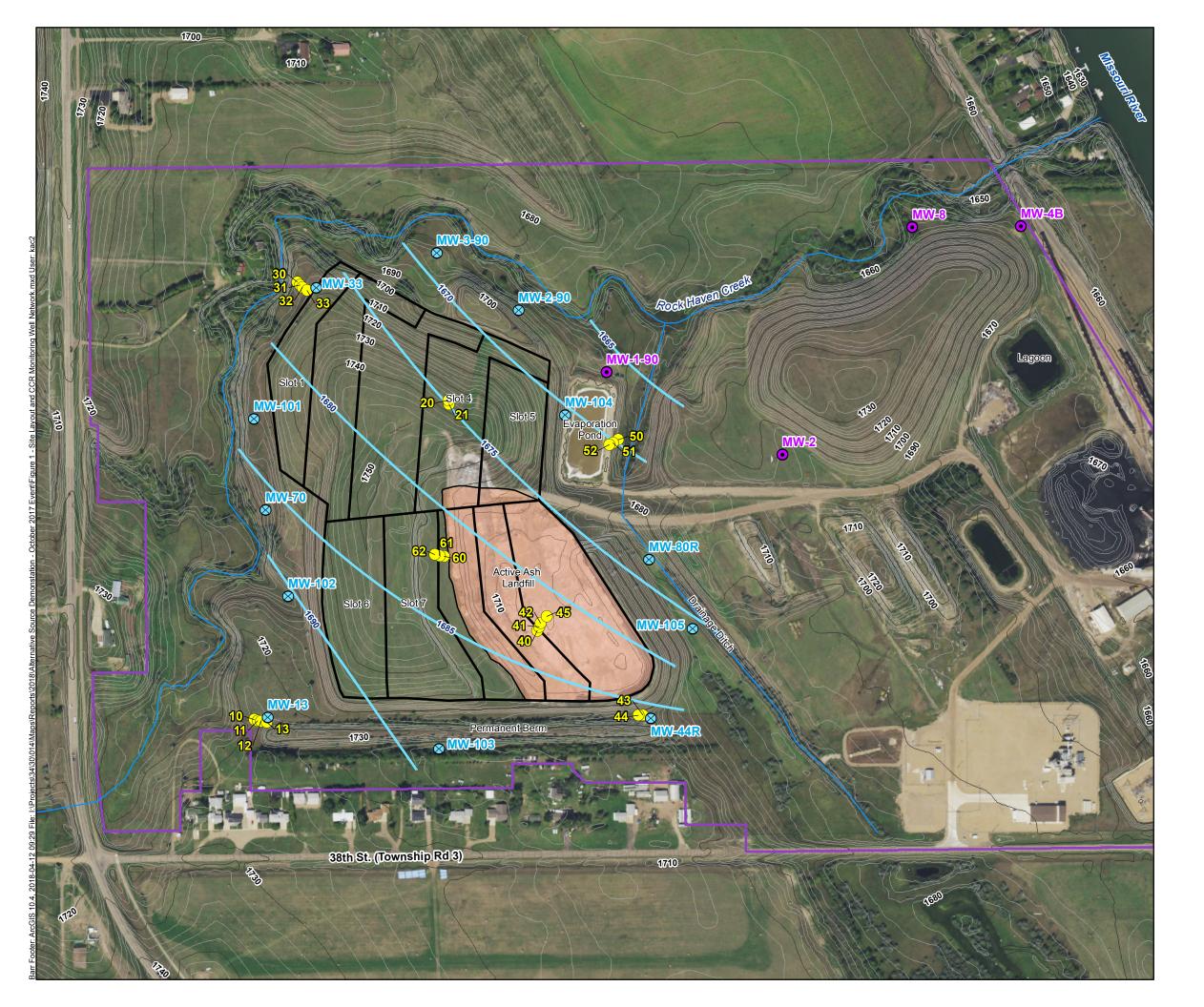
Summary of SSIs and Alternative Sources

Well	Parameter	Report Section	Evidence for Alternative Source
MW-80R	рН	3.1	Analytical error (instrument accuracy)
MW-105	Chloride	3.2	Source other than CCR unit (water quality not consistent with samples from CCR unit, spatial trend inconsistent with hydraulic gradient), natural variability (pre-landfill values higher than current groundwater concentrations)
MW-104	Sulfate	3.3	Natural variability (pre-landfill values and geologic background)
MW-104	Total Dissolved Solids	3.3	Natural variability (pre-landfill values and geologic background)

On the basis of the alternative source demonstration presented herein and per the requirements of CCR Rule §257.94(e)(2), detection monitoring will continue for the CCR unit. Further, this alternative source demonstration will be included with the next annual groundwater monitoring and corrective action report required by CCR Rule §257.90(e).

5.0 References

Groenewold, G.H., Koob, G.J., McCarthy, B.W., and Peterson, W.M., 1983, Geologic and Geochemical Controls on the Chemical Evolution of Subsurface Water in Undisturbed and Surface-Mined Landscapes on Western North Dakota, North Dakota Geological Survey Report of Investigation 79, 151 p.


Hensel, D.R. and R. M. Hirsch, 2002. Statistical Methods in Water Resources Techniques of Water Resources Investigations, Book 4, chapter A3. U.S. Geological Survey. 522 pages.

Lindholm, R., 1983. Bivalve Associations of Cannonball Formation (Paleocene, Danian) of North Dakota. AAPG Bulletin, Volume 67, Issue 8, P1347. Meeting abstract available at: http://archives.datapages.com/data/bulletns/1982-83/data/pg/0067/0008/1300/1347a.htm

Montana-Dakota Utilities Co. (MDU), 1989, R.M. Heskett Station Special Use Disposal Site Permit Application. Submitted to North Dakota State Department of Health, March 1, 1989.

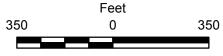
US EPA, 2015, Hazardous and Solid Waste Management Systems; Management of Coal Combustion Residuals From Electric Utility, CFR Parts 257 and 261, Federal Register, Vol. 80, No. 74, April 17, 2015.

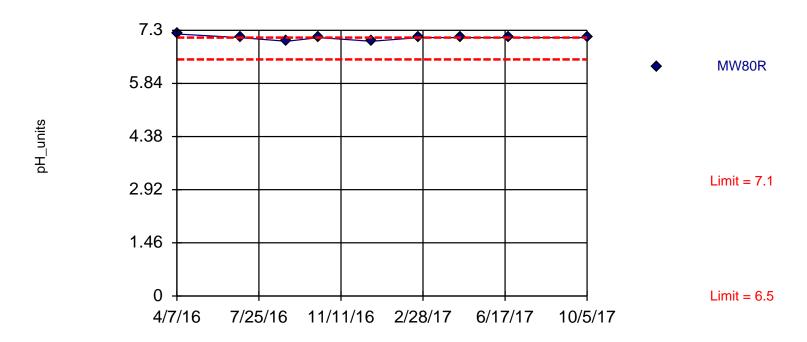
Figures

- Monitoring Well Location
- Monitoring Well Location Water Level Only
- Pre-Landfill Wells (Approximate)
- June 2017 Groundwater Contours (dashed were inferred)
- Existing Slot Boundaries
 - Streams
- Property Line
- --- 10ft Contours
 - 2ft Contours
- Active Portion of Landfill

Image Source: 2017 Statewide Imagery (ND GIS Hub)

CAD Data Source: Slot Linework.dwg




Figure 1

SITE LAYOUT AND CCR
MONITORING WELL NETWORK
R. M. Heskett Station
Alternative Source Demonstration:
October 2017 Event
Montana Dakota Utilities
Mandan, North Dakota

Within Limits

Prediction Limit

Interwell Non-parametric

Non-parametric test used in lieu of interwell control chart because the Shapiro Francia normality test showed the data to be non-normal at the 0.05 alpha level. Limits are highest and lowest of 68 background values. Annual perconstituent alpha = 0.008286. Individual comparison alpha = 0.0008301 (1 of 2). Most recent point compared to limit. Assumes 4 future values.

Constituent: pH, Field Analysis Run 4/6/2018 12:38 PM

Heskett Station Client: Barr Engineering Company Data: pH

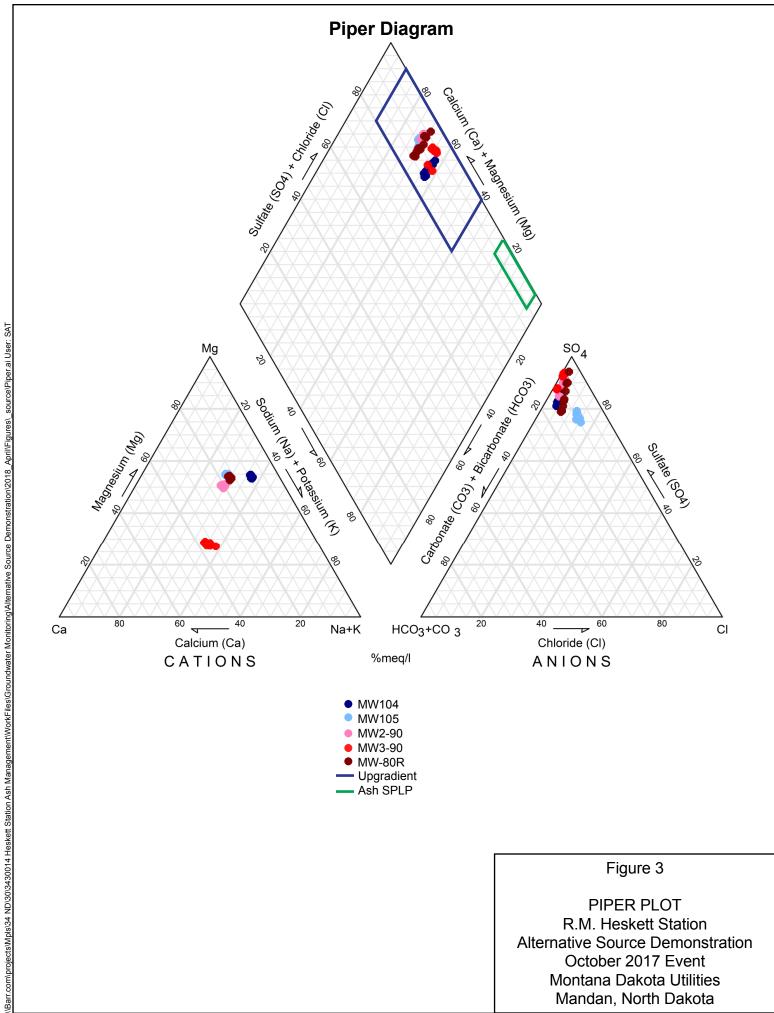
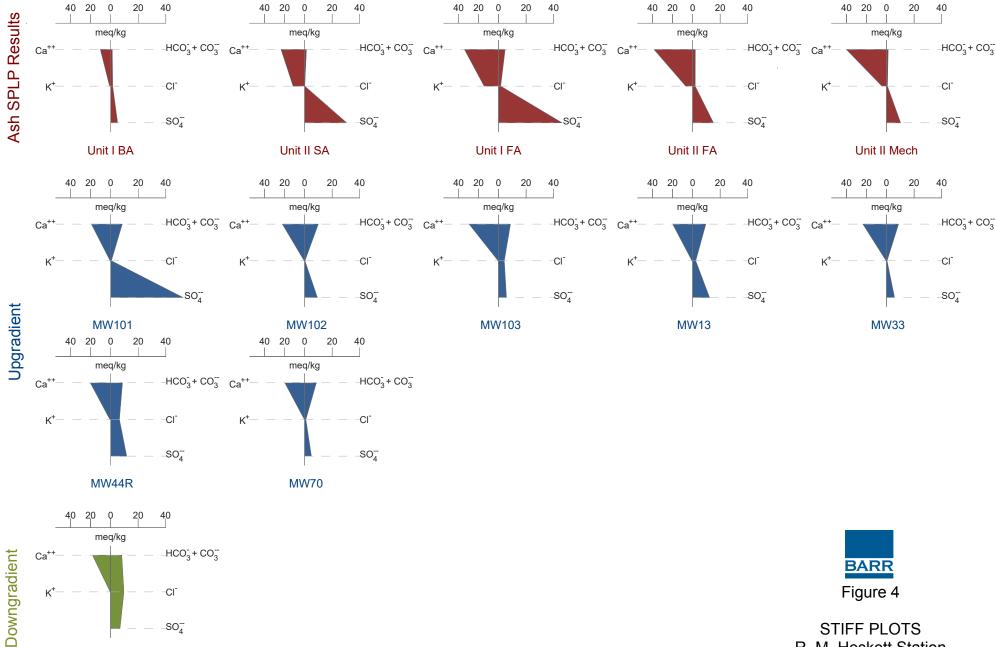
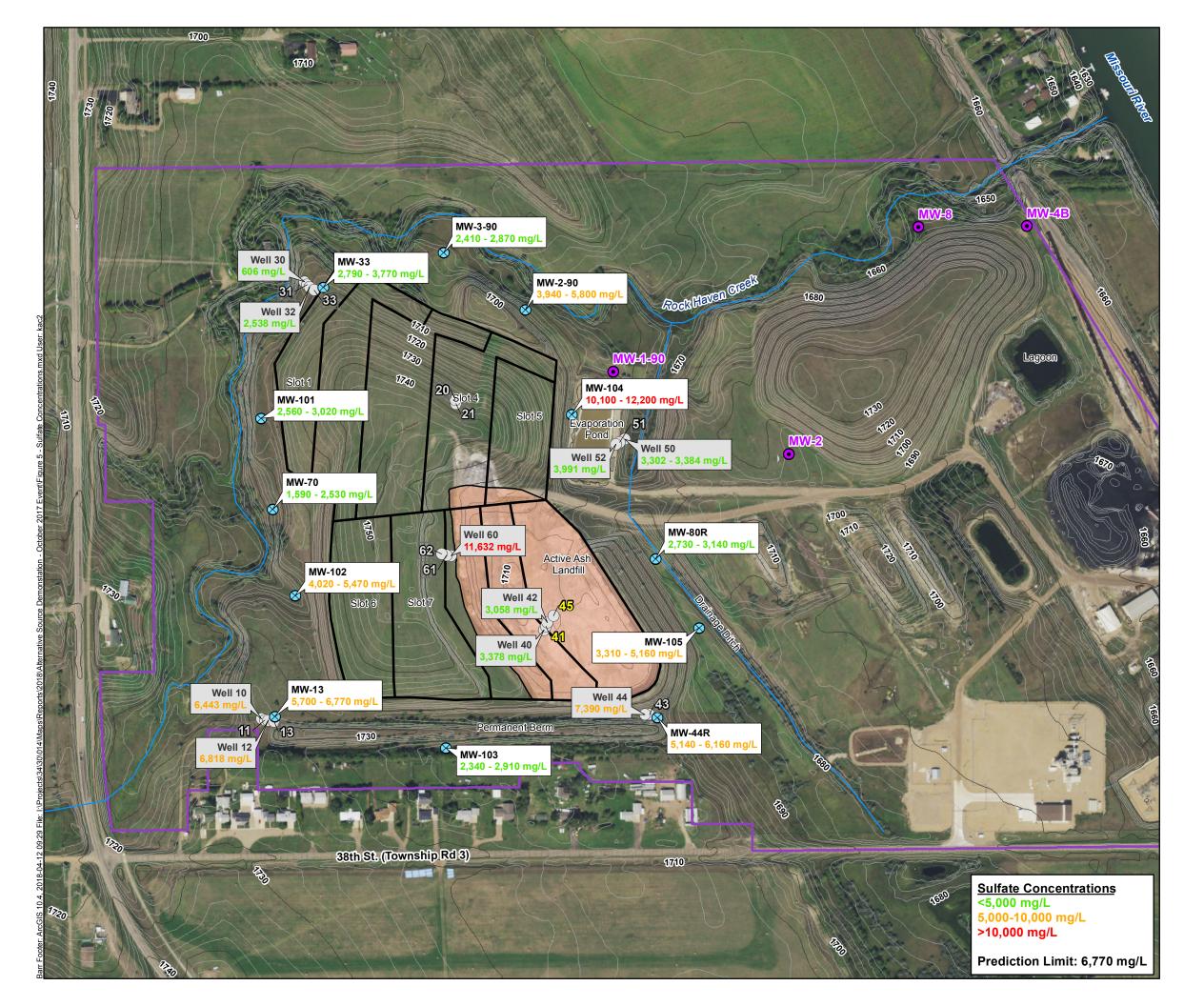



Figure 3


PIPER PLOT R.M. Heskett Station Alternative Source Demonstration October 2017 Event Montana Dakota Utilities Mandan, North Dakota

Notes: Stiff plots show concentrations of selected cations and anions in milliequivalents per kilogram of water. Sulfate concentrations are plotted as 10% of actual values for scaling.

MW105

STIFF PLOTS
R. M. Heskett Station
Alternative Source Demonstration
October 2017 Event
Montana Dakota Utilities
Mandan, North Dakota

- Monitoring Well Location
- Monitoring Well Location Water Level
- Pre-Landfill Wells (Approximate)
- Existing Slot Boundaries
- Streams
- Property Line
- --- 10ft Contours
 - 2ft Contours
- Active Portion of Landfill

Image Source: 2017 Statewide Imagery (ND GIS Hub)

CAD Data Source: Slot Linework.dwg Pre-Landfill well concentrations are from 9/11/1986, 11/21/1986 (MDU, 1989), and CCR Rule monitoring well concentrations are from 2016 and 2017.

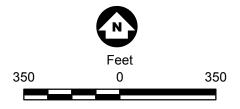
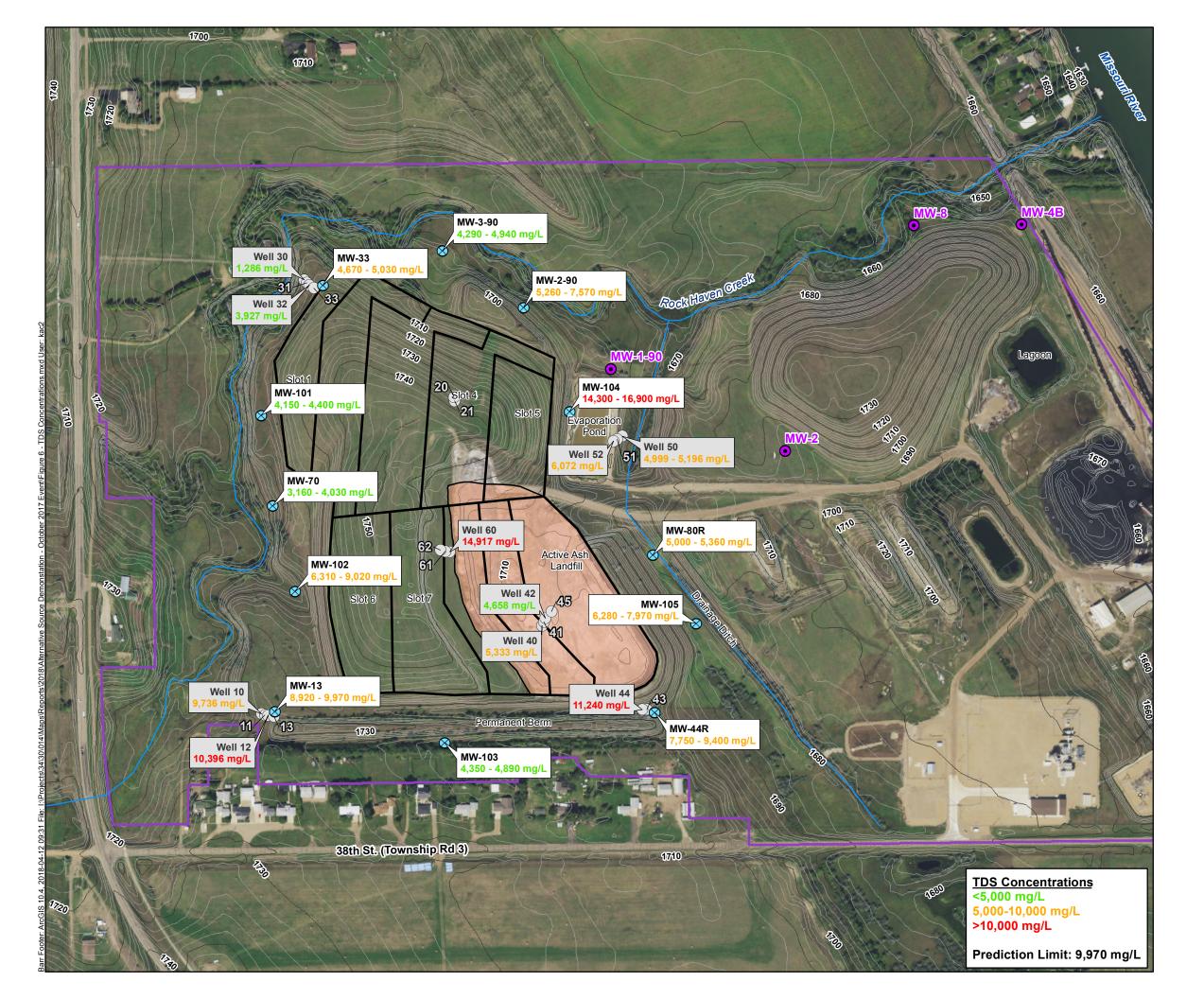



Figure 5

SULFATE CONCENTRATIONS
R. M. Heskett Station
Alternative Source Demonstration:
October 2017 Event
Montana Dakota Utilities
Mandan, North Dakota

- Monitoring Well Location
- Monitoring Well Location Water Level Only
- Pre-Landfill Wells (Approximate)
- Existing Slot Boundaries
- Streams
- Property Line
- --- 10ft Contours
 - 2ft Contours
- Active Portion of Landfill

Image Source: 2017 Statewide Imagery (ND GIS Hub)

CAD Data Source: Slot Linework.dwg Pre-Landfill well concentrations are from 9/11/1986, 11/21/1986 (MDU, 1989), and CCR Rule monitoring well concentrations are from 2016 and 2017.

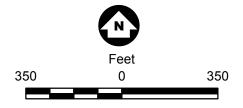


Figure 6

TDS CONCENTRATIONS
R. M. Heskett Station
Alternative Source Demonstration:
October 2017 Event
Montana Dakota Utilities
Mandan, North Dakota

Tables

Table 1 October 2017 SSIs R.M. Heskett Station Montana-Dakota Utilities Co.

		Concentration						
Well	Parameter (unit)	Prediction Limit ¹	Detection Monitoring (10/5/17) ²	Verification Resample (1/22/18)				
MW-80R	pH (SU)	7.07	7.1	7.12				
MW-105	Chloride (mg/L)	271	346	339				
MW-104	Sulfate (mg/L)	6,770	10,200	11,300				
MW-104	Total Dissolved Solids (TDS; mg/L)	9,970	15,400	16,200				

¹ SSIs determined by prediction limits (parametric for pH; non-parametric for chloride, sulfate, and TDS).

² TDS sample at MW-104 taken November 6, 2017.

Table 2 Select Parameter Concentrations: Ash SPLP, MW-104, and MW-105 R.M. Heskett Station Montana-Dakota Utilities Co.

Location	Date	Parameter (mg/L) ¹						
Location	Date	В	Ca	Cl	F	рН	SO ₄	TDS
Unit 1 Bottom Ash SPLP	7/22/2011	<0.5	210	50.5	0.1	12.2	2,440	4,860
Unit 2 Sand Ash SPLP	7/22/2011	5.96	481	2	0.1	11.1	14,900	22,500
Unit 1 Fly Ash SPLP	7/22/2011	2	700	54	5.6	12.9	22,600	42,200
Unit II Fly Ash SPLP	7/22/2011	<1	785	66	3.6	12.8	7,400	16,000
Unit II Mechanicals SPLP	7/22/2011	<1	818	20.8	0.6	12.7	4,960	11,400
Fly Ash Unit 1&2 SPLP	11/30/2011	0.51	710	50.6	3.35	12.8	8,380	17,900
MW-104 (Fall 2017)	10/5/2017 ²	0.81	430	99.6	0.5	6.82	10,200	15,400
MW-105 (Fall 2017)	10/5/2017 ²	<0.5	367	346	0.24	6.6	3,310	6,650

¹ pH is in standard units (SU) ² TDS from samples collected 11/6/2017

Table 3
Select Parameter Concentrations: Historical Well 60 and MW-104
R.M. Heskett Station
Montana-Dakota Utilities Co.

Location	Date	В	Ca	Cl	F	рН	SO4	TDS
Well 60	11/21/1986	n.m.	417	208	0.5	6.83	11,632	14,917
weii oo	12/20/1988	1.8	415	273	0.64	7	10,780	17,634
MW-104	10/5/2017	1	430	100	0.5	6.82	10,200	15,400

Units are mg/L or pH standard units.

n.m.: Not measured

Appendices

Appendix A YSI Sensor Specifications

The YSI 600XL and 600XLM

YSI 600XL and 600XLM Sondes

Measure multiple parameters simultaneously

The YSI 600XL and YSI 600XLM compact sondes measure eleven parameters simultaneously:

Temperature TDS
Conductivity pH
Specific Conductance ORP

Salinity Depth or Level

Resistivity Rapid Pulse[™] DO (% and mg/L)

Connect with Data Collection Platforms

Either sonde can easily connect to the YSI 6200 DAS (Data Acquisition System), YSI EcoNet[™] or your own data collection platform, via SDI-12 for remote and real-time data acquisition applications.

Economical Logging System

The YSI 600XLM is an economical logging system for long-term, *in situ* monitoring and profiling. It will log all parameters at programmable intervals and store 150,000 readings. At one-hour intervals, the instrument will log data for about 75 days utilizing its own power source. The 600XL can also be utilized in the same manner with user-supplied external power.

- Either sonde fits down 2-inch wells
- Horizontal measurements in very shallow waters
- Stirring-independent Rapid Pulse® dissolved oxygen sensor
- Field-replaceable sensors
- Easily connects to data collection platforms
- Available with detachable cables to measure depth up to 200 feet
- Compatible with YSI 650 Multiparameter Display System
- Use with the YSI 5083 flow cell for groundwater applications

Economical, multiparameter sampling or logging in a compact sonde

Sensor performance verified*

The 6820 **VZ** and 6920 **VZ** sondes use sensor technology that was verified through the US EPA's Environmental Technology Verification Program (ETV). For information on which sensors were performance-verified, turn this sheet over and look for the ETV logo.

To order, or for more info, contact YSI Environmental.

+1 937 767 7241 800 897 4151 (US) www.ysi.com

YSI Environmental +1 937 767 7241 Fax +1 937 767 9353 environmental@ysi.com

Endeco/YSI +1 508 748 0366 Fax +1 508 748 2543 systems@ysi.com

SonTek/YSI +1 858 546 8327 Fax +1 858 546 8150 inquiry@sontek.com

YSI Gulf Coast +1 225 753 2650 Fax +1 225 753 8669 environmental@ysi.com

YSI Hydrodata (UK) +44 1462 673 581 Fax +44 1462 673 582 europe@ysi.com

YSI Middle East (Bahrain) +973 1753 6222 Fax +973 1753 6333 halsalem@ysi.com

YSI (Hong Kong) Limited +852 2891 8154 Fax +852 2834 0034 hongkong@ysi.com

YSI (China) Limited +86 10 5203 9675 Fax +86 10 5203 9679 beijing@ysi-china.com

YSI Nanotech (Japan) +81 44 222 0009 Fax +81 44 221 1102 nanotech@ysi.com

Yellow Springs, Ohio Facility

ROX and Rapid Pulse are trademarks and EcoWatch, Pure Data for a Healthy Planet and Who's Minding the Planet? are registered trademarks of YSI Incorporated.

©2007 YSI Incorporated Printed in USA 0107 E55-01

"Sensors with listed with the ETV logo were submitted to the ETV program on the Y18 GebUSD. Information on the performance characteristics of YSI water quality sensors can be found at wew, epagewiet, or call YSI at 800.897.4151 for the ETV erification report. Use of the ETV arms or logo does not imply approval or report. The of the ETV arms or logo does not imply approval or implied warranties or guarantees as to product performance.

YSI incorporated Who's Minding the Planet?°

YSI 600XL & 600XLM Sensor Specifications

	Range	Resolution	Accuracy
Dissolved Oxygen % Saturation ET 6562 Rapid Pulse™ Sensor*	0 to 500%	0.1%	0 to 200%: ±2% of reading or 2% air saturation, whichever is greater; 200 to 500%: ±6% of reading
Dissolved Oxygen mg/L ETV 6562 Rapid Pulse™ Sensor*	0 to 50 mg/L	0.01 mg/L	0 to 20 mg/L: \pm 0.2 mg/L or 2% of reading, whichever is greater; 20 to 50 mg/L: \pm 6% of reading
Conductivity* 6560 Sensor* ETV	0 to 100 mS/cm	0.001 to 0.1 mS/cm (range dependent)	±0.5% of reading + 0.001 mS/cm
Salinity	0 to 70 ppt	0.01 ppt	±1% of reading or 0.1 ppt, whichever is greater
Temperature 6560 Sensor*	-5 to +50°C	0.01°C	±0.15°C
pH 6561 Sensor* ET	0 to 14 units	0.01 unit	±0.2 unit
ORP	-999 to +999 mV	0.1 mV	±20 mV
Depth & Level Medium Shallow Vented Level	0 to 200 ft, 61 m 0 to 30 ft, 9.1 m 0 to 30 ft, 9.1 m	0.001 ft, 0.001 m 0.001 ft, 0.001 m 0.001 ft, 0.001 m	±0.4 ft, ±0.12 m ±0.06 ft, ±0.02 m ±0.01 ft, 0.003 m

[•] Report outputs of specific conductance (conductivity corrected to 25° C), resistivity, and total dissolved solids are also provided. These values are automatically calculated from conductivity according to algorithms found in Standard Methods for the Examination of Water and Wastewater (ed 1989).

YSI 600XL & 600XLM Sonde Specifications						
Medium	Fresh, sea or polluted water					
Temperature Operating Storage	-5 to +50°C -10 to +60°C					
Communications	RS-232, SDI-12					
Software	EcoWatch*					
Dimensions Diameter 600XL 600XLM Length Weight	1.65 in, 4.19 cm 1.65 in, 4.9 cm 16 in, 40.6 cm 21.3 in, 54.1 cm 1.3 lbs, 0.59 kg 1.5 lbs, 0.69 kg					
Power External Internal (600XLM only)	12 V DC 4 AA-size alkaline batteries					

YSI model 5083 flow cell and 600XL. This is an ideal combination for groundwater applications.

Appendix B SPLP Laboratory Data

EXHIBIT 2-A

WASTE LEACHATE EXTRACTION ANALYSES

PHONE (507) 354-8517 Report To: P.O. BOX 249, CENTER & GERMAN STREETS, NEW ULM, MINNESOTA 56073-0249

Montana Dakota Utilities 400 North 4th Street

Date: November 11, 1986

Bismarck, ND 58501

Work Order # CS-2251

Attn: John Verwey

Date Received: 9-25-86

	Sample Identification: Coarse Ash	Hop	pper. Precipi unit #1 (Bottom Ash	teti	on Hopper Comp. Unit ₹I ¥ly Ask
	Analyses		Coarse Hopper	Prec	cipitation ser Comp.
	Total Alkalinity as CaCOJmg/l		414		1.472
	Bicarbonate as CaCO3mg/l		161		150
	Calciummg/l		77.5		95.0
	Carbonate as CaCO3mg/l		253		1,323
)	Chloridemg/l		19.0		23.0
	Fluoridemg/l		O = 11		0.22
	Hardness as CaCO3mg/l		194		238
	Ironmg/l		0.2		0.2
	Manganesemg/l	<	0.01		0.01
	Magnesiummg/l		0.1		0.1
	Nitratemg/l	<	1.0	<	1.0
	pH		11.5		12.6
	Potassiummg/l		15.0		100
	Sodiummg/l		380		2,200
	Specific Conductance micromhos/cm		2,544		15,001
	Sulfatemg/l		900		6.550
	Total Dissolved Solidsmg/l		1,357		10,389
	Boronmg/l		0.91		1. 1 /8
_,			las #	=1.4	

EP TOX Extraction

and Authorization

As a Mutual Protection to Clients, the Public and Ourselves, All Reports, ite Submitted as the Confidential Property of Clients. For Publication of Statements, Conclusions of Extracts From or Registing Our Reports is Reserved Pending Our Writen

PHONE (507) 354-8517

P.O. BOX 249, CENTER & GERMAN STREETS, NEW ULM, MINNESOTA 56073-0249

Report To: Montana Dakota Utilities

400 North 4th Street Bismarck, ND 58501

Attn: John Verwey

Date: November 11, 1986

Work Order # CS-2251

Date Received: 9-25-86

Sample Identification: Coarse Ash Hopper, Precipitation Hopper Comp.

	Bo Hom A	45h / 7/4 Ash
Analyses	Coarse Ash Hopper	Precipitation Hopper Comp.
page ages same same same same same		
Arsenicmg/l	< 0.002	0.070
Bariummg/l	< 0.5	< 0.5
Cadmiummg/l	< 0.01	0.02
Chromiummg/l	< 0.05	< 0.05
Lead:::::.mg/l	< 0.10	0.40
Mercurymg/l	< 0.002	< 0.002
Seleniummg/l	< 0.003	0.003
Silvermg/l	< 0.05 /	< 0.05
Molybdenummg/l	< 0.50	< 0.50

EP-TOX Extraction
no acid added

EY Glone Katcherky

PHONE (507) 354-8517 Report To: P.O. BOX 249, CENTER & GERMAN STREETS, NEW ULM, MINNESOTA 56073-0249

Montana Dakota Utilities 400 North 4th Street

Date: November 11, 1986

Bismarck, ND 58501

Work Order # CS-2251

Attn: John Verwey

Date Received: 9-25-86

Sample Identification: Bed Ash, Ba	ag h	House Un'	+ #2 Hom Ash	•		Unit #2 - Fly Ash
Anal vses	Be	ed Ash			ouse	
Total Alkalinity as CaCO3mg/l		173		E	78	
Bicarbonate as CaCO3mg/l		69.0		8	o.5	
Calciummg/l		570		1	05	
Carbonate as CaCO3mg/l		103.5		5	17.5	
Chloridemg/l		5.0		2	0.1	
Fluoridemg/l	K,	0.10		0	27	
Hardness as CaCO3mg/l		1,429		2	6 3	
Ironmg/l		0.2		, O	. 1	
Manganesemg/l	<	0,01		< 0	.01	
Magnesiummg/l		1.4		O	1	
Nitratemg/l	<	1 . O		< 1	. ,O	
pH		10.7		1	1.9	
Potassiummg/l		40,0		1	00	
Sodiummg/l		1,200	ė	2	,350	
Specific Conductance micromhos/cm		7,066		1	0,870	
Sulfatemg/l		4,300		· 6	, 160	
Total Dissolved Solidsmg/l		5,774		8	.324	
Boronmg/l		1.20	14	<u>1</u>	. 7A	
TOX Extraction BY		plome	Xal	De	cky	-n

As a Mutual Protection to Clients, the Public and Ourseives. All Reports are Cummitted as the Confidential Property of Clients and Authorization. For Publication of Statements. Conclusions or Extracts, From or Regardly, Our Reports is Reserved Pending Our Written Approval.

PHONE (507) 354-8517

P.O. BOX 249, CENTER & GERMAN STREETS, NEW ULM, MINNESOTA 56073-0249

Report To: Montana Dakota Utilities

400 North 4th Street Bismarck, ND 58501

Attn: John Verwey

Date: November 11, 1986

Work Order # CS-2251

Date Received: 9-25-86

Sample Identification: Bed Ash. Bag House

Bottom Ash Analyses Bed Ash Bag House ----Arsenic.....mq/l....... 0.155 0.045 < 0.5 < 0.5 Cadmium.....mg/l........ 0.02 0.03 Chromium.....mg/l........ < 0.05 < 0.05 Lead........mg/l......... 0.35 0.25 Mercury......mg/l........ < 0.002 < 0.002 Selenium....mg/l..... < 0.003 0.004 Silver.....mg/l..... < 0.05 < 0.05 Molybdenum...mg/l...... < 0.50 < 0.50

FP TOR Extraction

erome Katolecky

PHONE (507) 354-8517

P.O. BOX 249, CENTER & GERMAN STREETS, NEW ULM, MINNESOTA 56073-0249

Report To:

Montana Dakato Utilities Co. Attn: Gene Brown P.O. Box 40 Mandan, ND 58554

Date: November 18, 1987

Work Order # 12-2237

Date Received: 9-29-87

Sample Identification: EPA Toxicity

Unit #2 Gotton all

Analysis 4638

Arsenic ... mg/L ... 0.004

Barium ... mg/L ... < 0.1

Cadmium ... mg/L ... < 0.05

Chromium ... mg/L ... < 0.14

Lead ... mg/L ... < 0.100

Mercury ... mg/L ... < 0.003

Selenium ... mg/L ... < 0.003

Silver ... mg/L ... < 0.04

AFULL SEE

BY David At. Diamond

MVTL guarantees the accuracy of the analysis done on the sample submitted for testing. It is not possible for MVTL to guarantee that a test result obtained on a particular sample will be the same on any other sample unless all conditions affecting the sample are the same, including sampling by MVTL. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

ENERGY LABORATORIES, INC.

P.O. BOX 30916 • 1107 SOUTH BROADWAY • BILLINGS, MT 59107-0916 • PHONE (406) 252-6325

LABORATORY REPORT

Mineral Specialities

Address: P.O. Box 1563

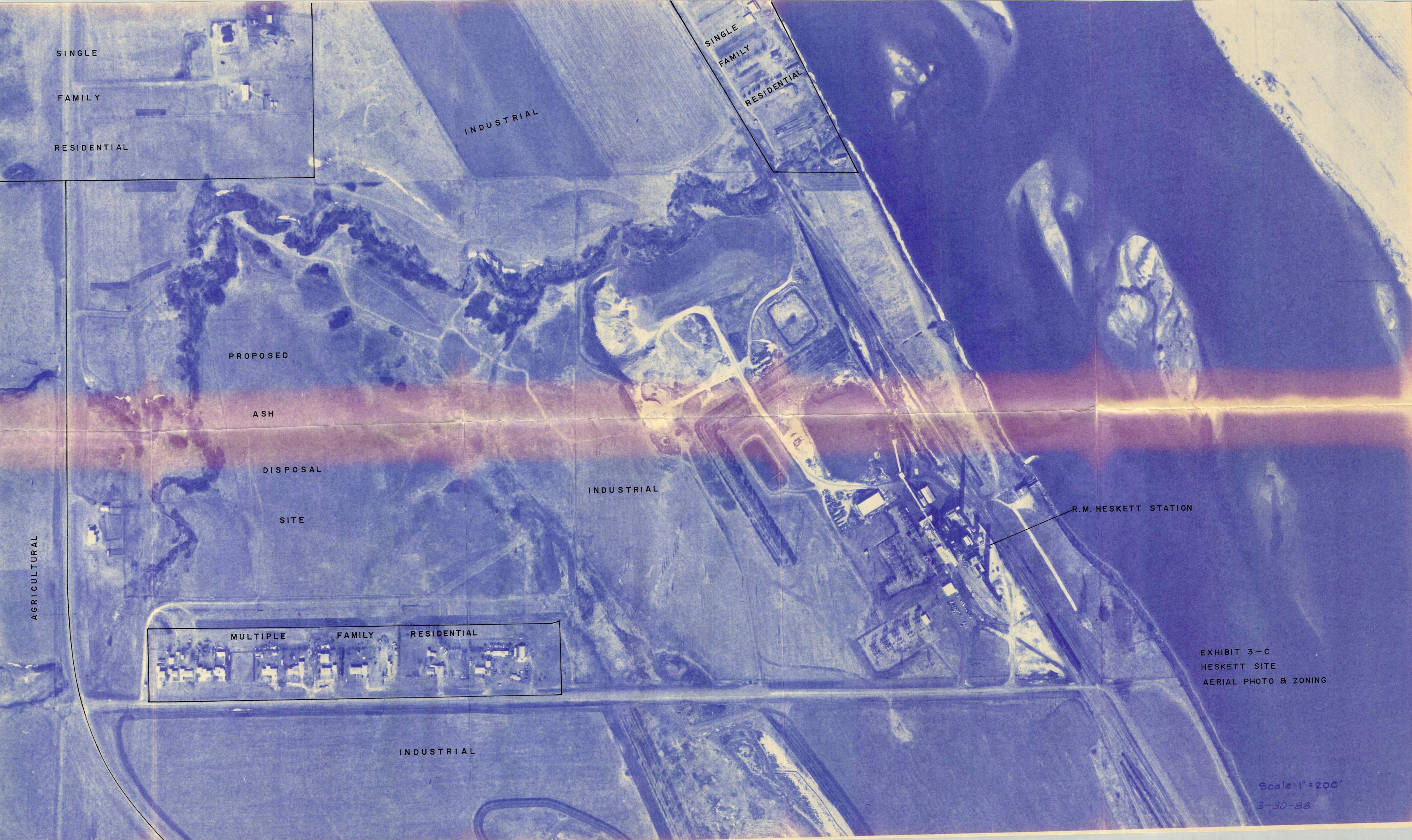
Billings, Montana 59103 ATTN: Jerry Vollmer

(1)

Lab No.: 87-7859

Date: 7/24/87 pjf

EP TOXICITY ANALYSIS - Fly Ash . thit 2


Heskett Plant, North Dakota Submitted 6/26/87

Extraction and analysis performed according to SW-846, Test Methods for Evaluating Solid Waste.

CONSTITUENT	mg/1	in extract
Arsenic		<0.5
Barium	• • • •	<10
Cadmium		<0.1
Chromium		<0.5
Lead		<0.5
Mercury		
Selenium		0.2
Silver		<0.5

Post-it® Fax Note 7671	Date 4 3 # of pages
To alan welfe	From Andrea
Co./Dept.	Co.
Phone #	Phone #
Fax #	Fax #

Appendix C Aerial Photograph (1988)

Appendix D 1989 Special Use Disposal Site Permit Application

R. M. HESKETT STATION

SPECIAL USE DISPOSAL SITE
PERMIT APPLICATION

Montana-Dakota Utilities Co. 400 North 4th Street Bismarck, ND 58501

March 1, 1989

TABLE OF CONTENTS

			Pa	age	<u> </u>
1.0	INTR	ODUCTION	1	-	1
2.0	WAST	E INFORMATION			
	2.1	Sources of Waste	2	-	1
	2.2	Amounts of Waste Produced	2	-	1
	2.3	Description of Waste	2	-	3
3.0	PROP	OSED SPECIAL USE DISPOSAL SITE			
	3.1	Site Location	3	-	1
	3.2	Land Use and Zoning	3	-	1
4.0	AREA	DESCRIPTION			
	4.1	Geographical Setting	4	-	1
	4.2	Regional Geology	4	-	1
	4.3	Regional Groundwater	4	-	2
	4.4	Climate	4	_	3
	4.5	Regional Soils	4	-	3
	4.6	Vegetation	4	-	4
5.0	SITE	SPECIFIC CHARACTERISTICS			
	5.1	Site Investigation Methods			
		5.1.1 Site Selection Criteria	5	-	1
		5.1.2 Subsurface Borings	5	-	2
		5.1.3 Monitoring Well Construction	5	-	3
		5.1.4 Groundwater Monitoring	5	-	4
	5.2	Site Investigation Results			
		5.2.1 Geology	5	***	4
		5.2.2 Geohydrology	5	-	7
		5.2.3 Hydrogeochemistry	5	-	12
		5 2 4 Chemical Attenuation of Leachate in Soil	5	_	15

		Page
6.0	FACILITY CONSTRUCTION, OPERATION AND CLOSURE	
	6.1 Site Preparation and Construction	
	6.1.1 Access and Preconstruction	6 - 1
	6.1.2 Facility Construction	6 - 2
	6.1.3 Excavated Materials	6 - 5
	6.2 Operation and Management	
	6.2.1 Waste Placement	6 - 6
	6.2.2 Surface Water Management	6 - 7
	6.2.3 Contingencies and Potential Impacts	6 - 9
	6.3 Closure and Reclamation	
	6.3.1 Closure Methods	6 - 11
	6.3.2 Reclamation	6 - 13
	6.3.3 Post-Closure Surface Care	6 - 14
7.0	GROUNDWATER MONITORING	
	7.1 Operational Monitoring	7 - 1
	7.2 Post-Closure Monitoring	7 - 2
	7.3 Quality Assurance and Data Management	7 - 5
8.0	PERMITTING	8 - 1
9.0	SUMMARY	9 - 1
10.0	REFERENCES	10 - 1

LIST OF TABLES

		Page
Table 2-1	Annual Ash Generation	2 - 2
Table 5-1	Hydraulic Conductivities and Cation Exchange Capacities	5 - 9
Table 5-2	Single Well Response Tests	5 - 11
Table 7-1	Background Groundwater Quality Analysis Parameters	7 - 3
Table 7-2	Operational Groundwater Quality Analysis Parameters	7 - 4

LIST OF EXHIBITS

		<u>Page</u>
Exhibit 2-A	Waste Leachate Extraction Analyses	2 - 5
Exhibit 3-A	Study Review Area and Final Sites	3 - 3
Exhibit 3-B	Site Plat/Well Sitings	3 - 4
Exhibit 3-C	Aerial Photo and Zoning	3 - 5
Exhibit 4-A	Regional Geologic Formations	4 - 6
Exhibit 5-A	Topography and Borehole/Cross-Section Locations	5 - 19
Exhibit 5-B	Geohydrologic Cross-Section (A-H)	5 - 20
Exhibit 5-C	Well Completion Reports	5 - 21
Exhibit 5-D	Geophysical Logs	5 - 22
Exhibit 5-E	Lithologic Logs	5 - 23
Exhibit 5-F	Site Soils Classification Map	5 - 24
Exhibit 5-G	Water Level Data	5 - 25
Exhibit 5-H	Water Table Elevation Contour Map	5 - 26
Exhibit 5-I	Site Hydrographs	5 - 27
Exhibit 5-J	Groundwater Chemical Analysis	5 - 28
Exhibit 5-K	Hydraulic Conductivities, Cation Exchange	
	Capacities, and Particle Size Analyses	5 - 29
Exhibit 6-A	Existing Conditions and Area Maps	6 - 16
Exhibit 6-B	Phase I Development	6 - 16
Exhibit 6-C	Phase I Closure - Phase II Development	6 - 17
Exhibit 6-D	Final Closure	6 - 17

1.0 INTRODUCTION

This application describes hydrogeologic, constructional, and operational details relevant to the procurement of a Solid Waste Disposal Permit from the State of North Dakota. The characterization data and design specifications contained within this application are based upon results obtained from a 1986 investigation which focused upon selecting a waste disposal site that would be suitable for long-term disposal of coal combustion ash generated at the R.M. Heskett Station. The specific objective was to locate a site that would require minimal engineering design and allow the use of in-situ materials for leachate containment and chemical attenuation. Several localities were considered with one site being selected for a highly detailed geohydrologic evaluation. The proposed ash disposal site is located approximately one-quarter mile west of Heskett Station and 2 miles north of Mandan, ND.

A total of 27 monitoring wells were installed in and around the site. The monitoring of well water levels over a two year period has indicated the presence of a static water table (generally 30-40 feet below the ground surface) which flows in a north-northeasterly direction. Potentiometric levels indicated a substantial downward component of groundwater flow over the entire proposed disposal site.

During the operational phase of ash disposal primary objectives will include the minimization of fugitive dust production and preservation of the area landscape by continual reclamation of ash-filled "trenches". Frequent coverage of the trenches with low permeability earthen materials, in conjunction with in-pit water collection devices and an evaporative liquids treatment system, is expected to reduce highly mineralized leachate generation and its degradation potential to the poor-quality groundwater resource beneath

the facility. The suitability of the disposal setting is further assured by the placement of waste above the historic water table and the construction of a surface water drainage system adjacent to the site. Contingencies have also been identified which would hinder unanticipated increases in water table elevation.

2.0 WASTE INFORMATION

2.1 Sources of Waste

Montana-Dakota Utilities Co. currently operates two lignite-fired electrical generation units at its R. M. Heskett Station. Unit #1, operational since 1954, utilizes a spreader stoker-type steam generator in the production of up to 20,000 Kw/hr of electrical energy. Unit #2 became functional in 1963 with a boiler similar in design to Unit #1. In early 1987, Unit #2 was converted to an atmospheric fluidized bed combustor capable of supporting a turbine capacity of 73,000 Kw/hr. Units #1 and #2 have an anticipated remaining operational life of 20 years and 30 years, respectively. Both units produce fly ash and bottom ash as the mineral residue of lignite combustion.

2.2 Amounts of Waste Produced

Annual ash generation rates from Heskett Station are estimated in Table 2.1. The proposed disposal facility is designed to accommodate the combustion wastes that will be generated throughout the remaining operational life of Unit #1 (175,000 tons or 1.5×10^5 cy) and Unit #2 (1,569,000 tons or 1.4×10^6 cy).

TABLE 2-1

Annual Ash Generation from Units 1 and 2 at R. M. Heskett Station

	FLY ASH		BOT	TOM ASH	SAND 1		
	Tons	Cubic Yards	Tons	Cubic Yards	Tons	Cubic Yards	
Unit 1	4035	4000	4737	3500			
Unit 2	25877	25500	10569	7800	15854	11800	
Total	29912	29500	15306	11300	15854	11800	
Percent (by weig	49 ght)		25		26	,	
Estimated total weight of ash (with sand) 61,070 tons Estimated total volume of ash (with sand) 52,600 cubic yards							

¹ Sand is only used within the fluidized bed of Unit #2.

2.3 Description of Waste

All lignite combustion waste produced at Heskett Station will be deposited within the disposal facility in a nonsegregated manner. The combined ash-types differ in color from a light brown to gray-black. Waste texture can vary from a fine, flour-like powder to a distinctly granular consistency. The fluidized bed combustor for Unit #2 utilizes significant amounts of inert sand as a bed matrix. During combustion this sand becomes coated and interspersed with bottom ash slag. Bed sand will be disposed of with the fly ash/bottom ash mixture. The fluidized bed material is visually obvious in the ash mixture due to its uniform granular appearance.

An analysis was performed on the leachate of representative samples of each type of ash waste intended for disposal at the proposed facility. Fly ash and bottom ash samples were collected from Unit #1 ash hoppers during normal operations. Unit #2 fly ash and bottom ash samples were obtained during a "test burn" of Beulah lignite in a scale model fluidized bed steam generation system.

Leachate was extracted from each ash sample using EPA Extraction

Procedure Method 1310 (EP Toxicity Test) without pH adjustments (no acetic acid additions). Exhibit 2-A present results of the analytical analysis for both fly ash and bottom ash types. (Because Unit #2 fly ash and bottom ash were collected from a test burn, an EP Toxicity Test was later performed to characterize operational ash samples - these results also appear in Exhibit 2-A.)

The pH of all ash leachates appeared quite alkaline in nature. Fly ashes from Units #1 and #2 contained more alkali than their respective bottom

ashes. Leachate pH was considered an important factor in judging site suitability in that it controls the release of trace elements which are locked in the lattice structures of various mineral phases of lignite combustion residue (Groenewold et al., 1980). Sulfate and sodium concentrations were also higher in the fly ashes when compared to those of the bottom ashes.

Leachate from all ash samples, except Unit #1 bottom ash, contained detectable levels of arsenic, cadmium and lead. Selenium was detected only in the fly ash of both units. Fluoride, iron, magnesium, chloride and boron occurred in both the fly and bottom ash leachate at very low concentrations. Nitrates and other analyzed trace elements were near or below laboratory detection limits.

EXHIBIT 2-A

WASTE LEACHATE EXTRACTION ANALYSES

PHONE (507) 354-8517 Report To: P.O. BOX 249, CENTER & GERMAN STREETS, NEW ULM, MINNESOTA 56073-0249

Montana Dakota Utilities 400 North 4th Street

Date: November 11, 1986

Bismarck, ND 58501

Work Order # CS-2251

Attn: John Verwey

Date Received: 9-25-86

	Sample Identification: Coarse Ash	Hop	oper. Precip: unit *1 (Bottom Ash	,	on Hopper Comp. Unit *I Fly Ash
	Analyses		Coarse 1 Hopper		cipitation per Comp.
	Total Alkalinity as CaCOJmg/l		414		1.472
	Bicarbonate as CaCO3mg/l		161		150
	Calciummg/l		77.5		95.0
	Carbonate as CaCO3mg/l		253		1,323
)	Chloridemg/l		19.0		23.0
	Fluoridemg/l		0 . 11		0.22
	Hardness as CaCO3mg/l		194		238
	Ironmg/l		0.2		0.2
	Manganesemg/l	<	0.01		0.01
	Magnesiummg/l		0.1		0.1
	Nitratemg/l	<	1.0	<	1.0
	pHanskersansansansansansans		11.5		12.6
	Potassiummg/l		15.0		100
	Sodiummg/l		380		2,200
	Specific Conductance micromhos/cm		2,544		15,001
	Sulfatemg/l		900		6,550
	Total Dissolved Solidsmg/l		1,357		10,389
	Boronmg/1		0.91		1. n e
	TOX Extraction		la source to	Tot	o Du

EP TOX Extraction

and Authorization

As a Mutual Protection to Clients, the Public and Ourselves, All Reports are Submitted as the Confidential Property of Clients, and Auth For Publication of Statements, Conclusions of Extracts From or Regioning Our Reports is Reserved Pending Our Written Approva

PHONE (507) 354-8517

P.O. BOX 249, CENTER & GERMAN STREETS, NEW ULM, MINNESOTA 56073-0249

Report To: Montana Dakota Utilities

400 North 4th Street Bismarck, ND 58501

Attn: John Verwey

Date: November 11, 1986

Work Order # CS-2251

Date Received: 9-25-86

Sample Identification: Coarse Ash Hopper, Precipitation Hopper Comp.

	Bottom Ash 7/4 A					
Analyses	Coarse Ash Hopper	Precipitation Hopper Comp.				
page ages sales from the sales from						
Arsenicmg/l	< 0.002	0.070				
Bariummg/l	< 0.5	< 0.5				
Cadmiummg/l	< 0.01	0.02				
Chromiummg/l	< 0.05	< 0.05				
Lead::::::mg/l	< 0.10	0.40				
Mercurymg/l	< 0.002	< 0.002				
Seleniummg/l	< 0.003	0.003				
Silvermg/l	< 0.05 /	< 0.05				
Molybdenummg/l	< 0.50	< 0.50				

EP-TOX Extraction
no acid added

EY Glone Katcherky

PHONE (507) 354-8517 Report To: P.O. BOX 249, CENTER & GERMAN STREETS, NEW ULM, MINNESOTA 56073-0249

Montana Dakota Utilities 400 North 4th Street

Date: November 11, 1986

Bismarck, ND 58501

Work Order # CS-2251

Attn: John Verwey

Date Received: 9-25-86

Sample Identification: Bed Ash, Ba	ag h	House Un'	tom Ast	-		Unit #2 Fly Ash
Anal vses	Be	ed Ash			House	
Total Alkalinity as CaCO3mg/l		173			598	
Bicarbonate as CaCO3mg/l		69.0			8°.5	
Calciummg/l		570			105	
Carbonate as CaCO3mg/l		103.5			517.5	
Chloridemg/l		5.0			21.0	
Fluoridemg/l	K,	0.10			0.27	
Hardness as CaCO3mg/l		1,429			263	
Ironmg/l		0.2			0.1	
Manganesemg/l	<	0,01		<	0.01	
Magnesiummg/l		1.4			O.1	
Nitratemg/l	<	1 . O		<	1.0	
pH		10.7			11.9	
Potassiummg/l		40.0			100	
Sodiummg/l		1,200			2,350	
Specific Conductance micromhos/cm		7,066			10,870	
Sulfatemg/l		4,300			6,160	
Total Dissolved Solidsmg/l		5,774			8,324	
Boronmg/l		1.20	1	,	1.7A	
TOX Extraction BY		plome	2 XA	D	kecky	7) 20- -

As a Mutual Protection to Clients, the Public and Ourseives. All Reports are Cummitted as the Confidential Property of Clients and Authorization. For Publication of Statements. Conclusions or Extracts, From or Regardly, Our Reports is Reserved Pending Our Written Approval.

PHONE (507) 354-8517

P.O. BOX 249, CENTER & GERMAN STREETS, NEW ULM, MINNESOTA 56073-0249

Report To: Montana Dakota Utilities

400 North 4th Street Bismarck, ND 58501

Attn: John Verwey

Date: November 11, 1986

Work Order # CS-2251

Date Received: 9-25-86

Sample Identification: Bed Ash. Bag House

Bottom Ash Analyses Bed Ash Bag House ----Arsenic.....mq/l....... 0.155 0.045 < 0.5 < 0.5 Cadmium.....mg/l........ 0.02 0.03 Chromium.....mg/l........ < 0.05 < 0.05 Lead........mg/l......... 0.35 0.25 Mercury......mg/l........ < 0.002 < 0.002 Selenium....mg/l..... < 0.003 0.004 Silver.....mg/l..... < 0.05 < 0.05 Molybdenum...mg/l...... < 0.50 < 0.50

FP TOR Extraction

erome Katolecky

PHONE (507) 354-8517

P.O. BOX 249, CENTER & GERMAN STREETS, NEW ULM, MINNESOTA 56073-0249

Report To:

Montana Dakato Utilities Co. Attn: Gene Brown P.O. Box 40 Mandan, ND 58554

Date: November 18, 1987

Work Order # 12-2237

Date Received: 9-29-87

Sample Identification: EPA Toxicity

Unit #2 Gotton all

Analysis 4638

Arsenic ... mg/L ... 0.004

Barium ... mg/L ... < 0.1

Cadmium ... mg/L ... < 0.05

Chromium ... mg/L ... < 0.14

Lead ... mg/L ... < 0.100

Mercury ... mg/L ... < 0.003

Selenium ... mg/L ... < 0.003

Silver ... mg/L ... < 0.04

AFULL SEE

BY David At. Diamond

MVTL guarantees the accuracy of the analysis done on the sample submitted for testing. It is not possible for MVTL to guarantee that a test result obtained on a particular sample will be the same on any other sample unless all conditions affecting the sample are the same, including sampling by MVTL. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

ENERGY LABORATORIES, INC.

P.O. BOX 30916 • 1107 SOUTH BROADWAY • BILLINGS, MT 59107-0916 • PHONE (406) 252-6325

LABORATORY REPORT

Mineral Specialities

Address: P.O. Box 1563

Billings, Montana 59103 ATTN: Jerry Vollmer

(1)

Lab No.: 87-7859

Date: 7/24/87 pjf

EP TOXICITY ANALYSIS - Fly Ash . thit 2

Heskett Plant, North Dakota Submitted 6/26/87

Extraction and analysis performed according to SW-846, Test Methods for Evaluating Solid Waste.

CONSTITUENT	mg/1	in extract
Arsenic	 • • •	<0.5
Barium	 • • •	<10
Cadmium	 • • •	<0.1
Chromium	 • • •	<0.5
Lead	 • • •	<0.5
Mercury		
Selenium	 • • •	0.2
Silver	 • • •	<0.5

Post-it® Fax Note 7671	Date 4 3 # of pages
To alan welfe	From Andrea
Co./Dept.	Co.
Phone #	Phone #
Fax #	Fax #

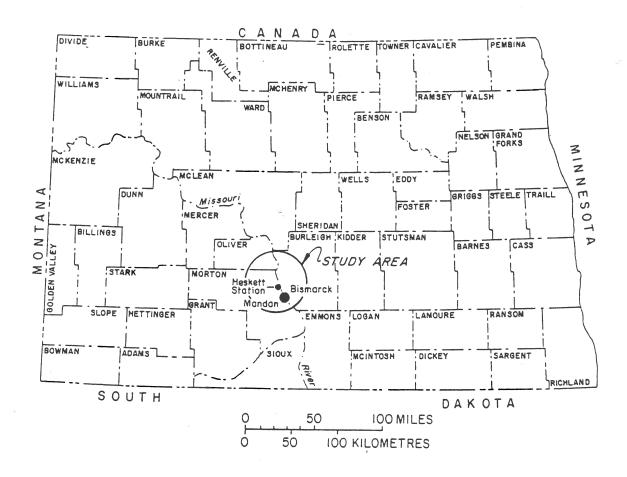
3.0 PROPOSED SPECIAL USE DISPOSAL SITE

3.1 Site Location

The R. M. Heskett Station is located in Morton County approximately two miles north of Mandan, ND. Disposal facility siting began by reviewing existing published geologic and hydrologic data to preliminarily identify potential sites within a 20 mile radius of Heskett Station. Five candidate sites were chosen and field evaluated. Two sites were determined as meriting further characterization and were comparatively examined in detail (Exhibit 3-A). Hydrologic, lithologic, aesthetic, economic, land use, and safety considerations indicated that the Heskett Site would prove best suited for the proposed disposal facility.

The Heskett Site is located east of Highway No. 1806 and approximately one-half mile west of Heskett Station. The site covers 47 acres of the SW1/4 of Section 10, Range 81 West, Township 139 North and is bound on the west and north by Rock Haven Creek, east by Heskett Station and the existing ash storage pile, and on the south by 43rd Street Northeast. Industrial property belonging to the Amoco Oil Refinery lies directly to the south of 43rd Street Northeast. Scattered residential housing lies adjacent to the north, west, and south of Heskett Site.

3.2 Land Use and Zoning


Heskett Site is currently owned by Montana-Dakota Utilities Co. and holds an industrial zoning designation. A plat of the site appears in Exhibit 3-B along with monitoring well location/elevation information. An examination

of Exhibits 3-B and 3-C indicates area land use to be primarily of an industrial and agricultural nature. The site itself is native grassland previously used for grazing livestock. Flat farmlands extend to the north while hilly pasture predominates to the west of Highway No. 1806. Level cropland and wildlife sanctuary exists on Amoco Refinery property south of 43rd Street Northeast.

Several family dwellings exist to the south and west of the Heskett Site. Other dwellings are scattered singly and in groups throughout the surrounding area. Because of the close proximity of some residences to the proposed facility, certain features will be incorporated into the design which will preserve the landscape by presenting line-of-site obstructions from the south and, if needed, west and north.

EXHIBIT 3-A

STUDY REVIEW AREA AND FINAL SITES

T. 140 N	36	31	32	33 5	34
T. 139 N	1	SIT (Sec	E 6 ondary Site) 5	4	3 3
	12	7	8 H (F	9 ESKETT SIT Primary Site)	E IO
	13	18	17	16	R.M.HESKETT STATION 15
	24	19	20	21	22
	25	30	29	28	27 IANDAN
T. 139 N.	36	31	32	33	34
T. 138 N.	I	6	5	4	3
	R.82 W.	R.81 W.	0		2 Mi. 2 3 Km.

EXHIBIT 3-B

SITE PLAT/WELL SITINGS

EXHIBIT 3-C

AERIAL PHOTO AND ZONING

4.0 AREA DESCRIPTION

4.1 Geographical Setting

The disposal area is located entirely within the Missouri Plateau of the Great Plains Physiographic Province. Characterized by plains and gently sloping hills, the landscape is interrupted by isolated tablelands and river valleys entrenched 200 to 400 feet (Ackerman, 1980). Surface altitudes generally increase towards the west.

The Heskett site is a relatively flat area bounded on the west and north by an ephemeral stream (Rock Haven Creek) which supports a small shrub/woodlands community. Rock Haven Creek drains a small hilly area of approximately 2.4 square miles to the west of the site. Discharge is made directly into the Missouri River. No surface water flow gauging has ever been done at Rock Haven Creek. The North Dakota State Water Commission estimated annual flow of at least 50 acre-feet for every 80 years out of 100. One hundred acre feet of flow can be expected for 50 years out of 100.

4.2 Regional Geology

The Tertiary Cannonball Formation underlies the entire Heskett site and lies stratigraphically under several other regional formations (Exhibit 4-A). The Cannonball Formation crops out over a large portion of eastern Morton County. The bluffs along the Missouri River north of Mandan near Heskett Station are resultant from these outcrops.

The Cannonball Formation is characterized by deposits of sand, silt and clay. The beds within this formation are generally unconsolidated and tend to weather rapidly. Some of the sand units are partially cemented and are resistant to erosion. The resistant units often form benches along eroded

drainages (Carlson, 1983). Cvancara (1976) points out another characteristic of the Cannonball Formation; lack of persistent lithostratigraphic units or beds. The units are often truncated because most bedding within this formation is lenticular.

The Cretaceous and Tertiary rocks in this portion of North Dakota generally dip toward the center of the Williston Basin. Reported dips of the Cannonball Formation in the Bismarck-Mandan area are generally less than 1° and trend toward the northwest. Local irregularities in dip direction and magnitude are common in the Cannonball Formation. These minor variations are caused by small synclines and anticlines which are superimposed on the larger structure of the basin (Kume and Hansen, 1965). These small anomalies may often be responsible for local irregularities in groundwater flow direction and magnitude.

4.3 Regional Groundwater

The Cannonball Formation interfingers with its continental equivalent, the Ludlow Formation. The two formations are contemporary with deposition of the Cannonball occurring in a marine environment and deposition of the Ludlow occurring in a fresh water environment.

Aquifers within these formations are generally found in fine grained sandstones. Such units range from 5 to 129 feet thick and contain from 5 to 40 percent silt and clay. Lateral extensiveness is typically lacking. Core samples from these aquifers possess hydraulic conductivities ranging 2.9 X 10^{-3} cm sec⁻¹ to 1.5 X 10^{-5} cm sec⁻¹ (Ackerman, 1980). General groundwater movement is to the east or northeast with major discharge areas occurring in the valleys of the Missouri River, Heart River, and Big Muddy Creek.

Ackerman (1980) further states that the Cannonball and Ludlow Formation aquifers maybe in hydraulic connection with adjacent glacial drift aquifers. Area groundwater is generally of a sodium bicarbonate or sodium bicarbonatesulfate type. Such waters are usually of poor quality for domestic usage because of high sulfate concentrations and excessive levels of total dissolved solids.

4.4 Climate

The climate of the Heskett site is semiarid with widely ranging seasonal temperatures. Summer temperatures may exceed 100°F (38°C) while winter temperatures may drop below -40°F (-40°C). The mean average annual temperature at Mandan, ND is 41.4°F (5.2°C) with average annual precipitation being 16.8 inches (42.6 cm). Approximately 60 percent of the annual precipitation (10 inches) occurs as rain during a four month period beginning in April and extending through July (U.S. Department of Commerce, 1973).

There are on the average about 125 frost-free days in this region of North Dakota. The mean depth of frost penetration is 4.5 feet (1.4 m). Extremely cold winters may occasionally allow frost to penetrate up to a depth of 7.0 feet (2.1 m) (Jensen, 1984).

The prevailing wind in the Bismarck-Mandan area is from the west-northwest with a mean velocity of 10 mph (16.1 km/hr). Winds are generally stronger in the spring and early summer as opposed to the fall and winter (Jensen, 1984).

4.5 Regional Soils

Regional near-surface materials are soils which have developed from climatic and biotic interactions with poorly consolidated sand, silt, and clay

of the Upper Cretaceous and Tertiary Formations. Glacial till appears preserved on some upland surfaces and lowland alluviums (Carlson, 1983).

Area hills have moderately steep slopes and typically have well entrenched dendritic drainageways. Patterson, et al. (1968) stated that the Bainville and Morton soil series dominate the smoothly rounded hills west of the proposed site. These soils appear on slopes of 2 to 30 percent and are well to excessively drained. Both soils, being derived from weathered medium-textured beds of the Tertiary period, tend to be loamy with high water holding capacities and somewhat limited permeabilities. Morton soils comprise 35 to 50 percent of the immediate area and are often used for cropland. Bainville soils cover 40 to 55 percent of area acreage and, being susceptible to water erosion hazards, are commonly used for pasturage.

Adjacent to the Heskett site lies the floodplain of the Missouri River. Alluvial Havre soils overlay medium-textured sediments and dominate 60 to 85 percent of the nearly level floodplain. Havre soils, with their moderate permeability and high water-holding capacities, are extensively utilized for croplands and pasturage. Well-drained Banks and Lohmiller soils each comprise 5 to 15 percent of the slightly elevated ridges and flats associated with the Missouri River floodplain (Patterson, et al., 1968).

4.6 Vegetation

The principle natural vegetative community in the study area is the mixed-grass prairie dominated by short grasses. Edwards and Ableiter (1936) stated that the smooth heavy soils of the uplands support substantial growths of western wheatgrass (Agropyron smithii) and needlegrass (Stipa comata). Little bluestem (Andropogon scoparius) commonly grows on exposed knobs and

steep slopes. Sedges, weeds, and cattails are typical of the poorly drained areas.

Natural forests are confined to bottomlands and along large streams and drainageways. Steep-sided gullies, especially those with northern exposures, contain ash (Fraxinus lanceolata), elm (Ulmus americana), aspen (Populus tremuloides), and oak (Quercus macrocarpa). The Missouri River floodplain contains significant natural stands of cottonwood trees (Populus deltoides). Also present are occasional occurrences of thicket-type woody vegetative communities dominated by buffaloberry (Shepherdia argentea). Such thickets are common in or near "woody draws" and bottomlands but seldom cover large surface expanses.

EXHIBIT 4-A

REGIONAL GEOLOGIC FORMATIONS

Regional Geologic Formations

ERA	SYSTEM	F0 OF	RMATION R GROUP	THICKNESS (FEET)	LITHOLOGY	
	QUATERNARY	ALLUVIUM		0-30	SILT, SAND AND GRAVEL	
	GOAT ERNARY	COL	EHARBOR	0 - 300	TILL, GRAVEL AND SAND	
210	NO P	GOLDEN VALLEY	0-60	SILT, CLAY AND SANDSTONE		
OZON TERTIARY	GROUP	SENTINEL BUTTE	0-700	SILT, CLAY, SAND AND LIGNITE		
Z.	TERTIARY	Z TERTIARY	UNION	BULLION	0-500	SILT, CLAY, SAND AND LIGNITE
	S	SLOPE	0-60	SILT, CLAY, SAND AND LIGNITE		
	FORT)RT	CANNONBALL	0-300	SILT, CLAY AND SAND	
_ 1				LUDLOW	0-200	SILT, CLAY, SAND AND LIGNITE

5.0 SITE SPECIFIC CHARACTERISTICS

5.1 Site Investigation Methods

5.1.1 Site Selection Criteria

A primary concern involved the location and development of a site which would have near-surface (upper 30 feet) in-situ materials possessing characteristics similar to those of clay liner material. Relatively level near-surface sediments characterized by high clay and silt content were considered desirable. Because such materials typically transmit groundwater at slow rates, the migration of leachate into usable subsurface water supplies would be severely hindered. Another consideration was the chemical attenuation capabilities of the subsurface geologic materials. Clay and silt have been reported to generally have higher chemical attenuation capabilities than do other sediments, thereby making their presence desirable for many waste disposal settings. (Drever, 1982).

Selection of potential site areas larger than 1 square mile were based solely upon existing available data. A database was constructed which included published information from county geologic and groundwater investigative reports, soil survey reports, and water well drilling reports submitted to the North Dakota State Water Commission (NDSWC) by private contractors. Topographic maps and county zoning maps were also reviewed.

Five candidate sites were selected based upon geologic, geomorphic, and hydrologic data evaluations. Limited surficial investigations (including soil borings) were then conducted at each of the five sites. The position of the water table was very important in defining an acceptable site. Only those

sites with water tables more than 25 feet below a relatively level ground surface were considered.

Selection of two final sites were based on lithology, transport distance, road limitations, topography, and apparent depth to groundwater. Boreholes were drilled at each of the sites (maximum drilled depth was 120 feet) and lithologic/hydrologic/geophysical information recorded. Review of this information indicated that the final candidate sites had very similar geologic and hydrologic characteristics. Economics of site development, local zoning conditions, land use, transportation safety, facility access, and operational monitoring factors strongly suggested that the Heskett site was the most suitable disposal facility location.

5.1.2 Subsurface Borings

Boreholes were drilled by either a Portadrill 524 or a Denver-Gardner Heavy Duty 1000. All borings were air drilled (without the addition of drilling fluids) to reduce contaminations to groundwater. Drilling conditions for each bore hole are presented in Exhibit 5-C. Samples were collected at 5-foot intervals or at occurrences of lithologic change.

A total of 27 observation wells were installed at the Heskett site with twelve of the boreholes developed into water table monitoring wells and 15 developed as piezometers. The location of the various observation wells are shown in Exhibit 5-A. Additional information on area hydrogeochemistry was obtained from 9 wells (identified in this report as monitoring wells WS1, WS1A, WS1B, WS2, WS3, WS3A, WS4, WS4A, and WS4B) that were installed during a previous groundwater investigation which was conducted around the ash waste pile immediately east of the proposed facility (Armstrong and Schmid, 1986).

The observation wells were installed in nests of 2 to 4 single wells screened at differing elevations. Nine separate piezometer nests were installed over the Heskett study area. The deepest well in each nest was geophysically and lithologically logged (Exhibits 5-D and 5-E, respectively). A typical nest contained one water table monitoring well and two piezometers screened at different elevations.

5.1.3 Monitoring Well Construction

Monitoring wells were constructed of two-inch schedule 40 PVC pipe with screened lengths of either 4 or 20 feet. The 20-foot screened sections were installed to monitor the elevation of the water table and for water quality sampling. The 4-foot screened sections were primarily installed to monitor hydraulic head. A factory slotted size of 1 X .020 inches was used for all well screens.

A filter sand pack was placed around the screened portion of each well after the pipe was lowered into the bore hole. Washed quartz sand was packed with the use of packing poles to a height of two feet above the top of the screened interval. Before sampling was conducted each well was developed twice by backwash and mechanical surge methods.

After the sand pack was complete, sealing grout was slurried down the annulus between the bore hole and the PVC pipe. The grout seal was continued to the land surface where a two-foot diameter grout pad was constructed around each monitoring well. The monitoring wells were capped with threaded male PVC cap adapters and assigned unique well numbers.

The water level measuring reference point for the wells was the top of the PVC well pipe. Well locations and elevations can be seen on Exhibits 3-B and 5-A. Well construction data are presented in Exhibit 5-C.

5.1.4 Groundwater Monitoring

Water levels were monitored periodically during and after the course of the formal characterization study. Water level information, as determined with an electric-contact gauge tape, appears in Exhibit 5-G.

Each well was purged prior to sampling by removing at least 3 well volumes of standing water or until dry, which ever occurred first. The wells were purged with either a stainless steel and teflon mechanical two-inch submersible pump or a 1.25 inch hand bailer. All well groundwater samples were collected with a hand bailer in accordance with the Environmental Protection Agency's publication 600/4-82-029, "Handbook for Sampling and Sample Preservation of Water and Waste Water" (US EPA, 1982). Immediately after the samples were collected field pH, specific conductance and temperature were measured and recorded.

Samples were collected and preserved for major ion analysis and for trace element determinations. Other samples were collected from select wells for oil, grease, and phenol analyses. Site characterization study samples (collected in 1986) were transported to the University of North Dakota's Mining and Mineral Resources Research Institute's Fuels Analysis Laboratory for chemical analysis. Additional follow-up sampling and chemical analysis was performed in 1988 by Minnesota Valley Testing Labs of Bismarck, ND.

5.2 Site Investigation Results

5.2.1 Geology

Lithologic and geophysical logs of the wells drilled at this site indicated that at least the upper most 100 feet of subsurface material lies

within the Cannonball Formation. Consequently, the proposed Heskett waste disposal facility would be constructed completely within the Cannonball Formation. The Ludlow Formation may appear subsurface of the Heskett site study area below an elevation of 1605 feet above mean sea level (MSL). However, only the deepest bore holes penetrated to this elevation and geophysical logs from these wells do not provide any indication of contact between the two formations.

An existing topographic reference map (with well locations and cross-section locations) is provided in Exhibit 5-A. A series of eight geohydrologic cross-sections of the proposed Heskett disposal site are provided in Exhibit 5-B. Each cross-section includes topography (exaggerated 10 times), dominant lithologies, observation well locations, potentiometric levels and water table position as of October, 1986.

The Heskett Site consists of unconsolidated silt and clay with lesser amounts of very fine to medium-grained sand (lithologic log, Exhibit 5-E). The sand is generally found interspersed in a matrix of silt and clay; however, it sometimes occurs as distinct lenses which range in depth from 0.5 inches to 1 foot. The thin sand lenses are not horizontally persistent. Small gypsum crystals occur throughout the upper 30 feet of the site. These gypsum crystals are presumed to be the result of diagenetic processes which occur above the water table during alternate wetting and drying cycles (Groenewold et al., 1983).

The dominant lithology of the site is silt which commonly occurs in a clay-rich matrix. Above an elevation of 1695 feet MSL the clayey-silt is generally brownish-tan in color with grain coatings and mottling of iron-oxides. Below this elevation the color changes to steel-gray with the iron

compounds existing in the reduced state. The reduced/oxidized boundary is well defined over the site by the color change described above and corresponds with the elevation of the water table.

The uppermost indurated unit encounter beneath the proposed disposal area is a siltstone bed occurring between the elevations of 1625 feet and 1635 feet MSL. This is the most laterally continuous and persistent unit found at the Heskett site.

A thin veneer of till is present in small patches throughout the Heskett study area. This till, along with all glacial material in North Dakota, has been grouped within the Coleharbor Formation (Bluemle, 1971). The till of the Heskett study area is less than 2 feet thick and is of a pebble-loam nature. Other evidence of glaciation includes the presence of several large boulders, less than 3 feet in diameter, which were derived from the Canadian Shield.

The glacial sediments indicate that glacial ice covered the study area during the Pleistocene Epoch. Horizontal sheet fracturing may have developed within the surficial bedrock formations, including the Cannonball Formation, as this glacial ice ablated. The fracturing of these sediments might promote secondary porosity and be responsible for the relatively large groundwater flow volumes encountered within the silts and clays beneath the Heskett site study area.

The soils across the proposed Heskett ash disposal area (Exhibit 5-F) are generally well developed. Edwards and Ableiter (1936) classified upland soils of the site as Hall series silt-loam. The soil is very silty with abundant clay and minor amounts of fine-grained sand. Internal drainage is generally good and surface drainage is sufficient. Most site soils are

approximately 1 foot thick with the upper 6 to 8 inches appearing very dark due to abundant organic matter. The soil becomes lighter in color 8 inches below the soil surface. All soils at the Heskett site are calcareous and freely effervesces with dilute hydrochloric acid.

5.2.2 Geohydrology

Exhibit 5-H illustrates the water table elevation contour of the Heskett site as of October 16, 1986. Because periodic well measurements over two years indicated relatively static potentiometric levels, the described elevation of the water table is considered representative. Water levels of all of the Heskett Site wells are given in Exhibit 5-G. Hydrographs of select piezometer nests appear in Exhibit 5-I.

The shallow groundwater beneath the proposed facility is flowing generally towards the northeast. Local variations do exist and can be attributed to the heterogeneous nature of the lithologies of the Cannonball Formation along with the undulating surface topography of the site. Surface topography appears to exert the most profound effect on groundwater flow with water table elevation mimicking the surface topography. As the groundwater approaches Rock Haven Creek it begins to take a more easterly path following the down-cut gradient of this creek into the Missouri River.

The groundwater flow beneath the base of a small draw, which extends to the north and slightly west from the south-central border of Section 10 to its intersection with the Rock Haven Creek, is nearly directly north. This groundater flow is strongly influenced by the surficial topography which also dips toward the north. Industrial surface water holding ponds located on Amoco

refinery property south of the proposed site occasionally provides surface discharge into this draw. Running and ponded water resultant from these discharges as well as area ground surface runoff are frequently evident on MDU property just north of 43rd Street Northeast.

Morton County often experiences a drop in the elevation of the water table during the winter months due to a lack of recharge (Groenewold, et at., 1979 and 1983). Hydrographs (Exhibit 5-I) developed from two years of accumulated site potentiometric data indicate little apparent seasonal effect. An overall potentiometric level drop can be noted during the drought year of 1988. The data also indicated that the groundwater is flowing strongly downward. Thus, it can be expected that water will not be entering the proposed disposal pit from beneath the site.

Six subsurface lithologic intervals were sampled from in and near the proposed ash disposal site and laboratory tested to determine certain physical/chemical properties. Table 5-1 summarizes the results of cation exchange capacity and hydraulic conductivity testing for these samples (See Exhibit 5-K for greater detail). Data obtained from such lab permeability testing should be considered representative only of the point of sampling. Samples are often modified, in terms of hydraulic conductivity, during well drilling and sample collection. Minor subsurface fracturing might not be preserved in the laboratory. However, these data are useful in estimating flow rates through interstices in the subsurface geologic media and in situations where in-situ sediments will be modified by compaction to reduce secondary permeability.

Single-well response tests performed on select Heskett site wells (wells 11, 20, 31, 41 and 43) show greater in-situ permeabilities than the falling-head lab permeabilities of wells screened in the same sediments.

TABLE 5-1
Hydraulic Conductivities and Cation Exchange Capacities

Well Number	60	WS2	WS2
Sample Depth (ft)	20-40	29-30	61-62
Type of Sample	Bag	Core	Core
Permeability K @ 20°C (cm/sec) K @ 20°C (ft/min)	2.0 X 10 ⁻⁷	2.7 X 10-9	3.6 X 10 ⁻⁸
	4.0 X 10 ⁻⁷	5.4 X 10-9	7.1 X 10 ⁻⁸
Cation Exchange Cap. (meq/100 grams)		92.2	12.0
Well Number Sample Depth (ft) Type of Sample	WS1	WS1	WS1
	20-21	25-26	30-31
	Core	Core	Core
Permeability K@20°C (cm/sec) K@20°C (ft/min)	2.6 X 10 ⁻⁸	1.5 X 10 ⁻⁸	1.7 X 10 ⁻⁸
	5.2 X 10 ⁻⁸	2.9 X 10 ⁻⁸	3.4 X 10 ⁻⁸
Cation Exchange Cap. (meq/100 grams)	71.8	12.3	74.2

WS - Refers to wells installed and sampled during a previous groundwater investigation around the coal ash waste pile at Heskett Station. This study was conducted by Water Supply, Incorporated.

These slug tests provide estimates of permeability over the screened 4-foot interval. Results, which appear in Table 5-2, show that wells 11 and 31 have the lowest permeabilities of the wells tested with values on the order of $K = 10^{-5}$ cm sec⁻¹. Higher conductivities were encountered in wells 20, 41 and 43 with values approximating $K = 10^{-4}$ cm sec⁻¹.

TABLE 5-2
Single Well Response Tests

Well	Permeability	Screen Depth (MSL)
11	$3.78 \times 10^{-5} \text{ cm sec}^{-1}$	1642.81 - 1646.81
20	$6.57 \times 10^{-4} \text{ cm sec}^{-1}$	1627.48 - 1631.48
31	$2.84 \times 10^{-5} \text{ cm sec}^{-1}$	1635.58 - 1639.58
41	$4.12 \times 10^{-4} \text{ cm sec}^{-1}$	1626.77 - 1630.77
43	$5.07 \times 10^{-4} \text{ cm sec}^{-1}$	1650.14 - 1654.14

Reference: Freeze, R. A., and Cherry, J. A., 1979., Groundwater: Chapter 8.5, pgs. 339-342, Prentice-Hall Inc., Englewood Cliffs, NJ.

5.2.3 Hydrogeochemistry

Results of the site groundwater characterizations are shown in Exhibit 5-J. Analysis of samples collected in 1986 from wells 10-70 were conducted by the Mining and Mineral Resources Research Institute's Fuels Analysis Laboratory at the University of North Dakota. Supplemental sampling was conducted in 1988 by Minnesota Valley Testing Labs of Bismarck, ND. All samples were analyzed in accordance with EPA publication 600/4-79-020, "Methods for Chemical Analysis of Water and Wastes" (U.S. EPA, 1979).

The quality of the shallow (less than 120 feet below the land surface) groundwater at the proposed Heskett disposal site was found to be quite poor. Similar groundwater quality has been reported in other shallow wells within the Cannonball Formation (Ackerman, 1977 and 1980). Large quantities of salts and soluble mineral phases were deposited along with the sediments of the Cannonball. These materials dissociate as undersaturated interstitial groundwater flows through the formation. The ultimate quality of the water depends on the solubility of the geologic media and saturation condition of the groundwater which flows through it. Soluble constituents of the shallow groundwater at the Heskett site, as is characteristic of other Cannonball Formation wells, are high or very high relative to water in other aquifers in the area. Without pretreatment such groundwater is generally considered to be unfit for consumption by humans and livestock. Most of the local domestic wells tap either the underlying Hell Creek or the Fox Hills aquifers which possess waters with qualities far superior to that of the Cannonball.

An examination of the 1986 data appearing in Exhibit 5-J shows that the specific conductance and pH of wells sampled at the Heskett site are within the range of what has been reported as characteristic of the Cannonball Formation. Well 70 is located upgradient from known industrial influences and

can be considered representative of background groundwater quality at the site. Chemical analyses indicate that water within wells 60 and 70 have the highest specific conductance of all monitored wells.

Total dissolved solids (TDS) concentrations show the shallow ground-water at the Heskett site to be highly mineralized, ranging from 1,286 mg/L in well 30 to 14,917 mg/L in well 60. Wells screened within the Cannonball Formation commonly have TDS concentrations ranging from 1,000 to 3,000 mg/L (Ackerman, 1980).

Wells finished within the Cannonball Formation typically have sodium concentrations ranging from 500 mg/L to 1000 mg/L (Ackerman, 1977 and 1980). Sodium levels of wells 10, 12, 55 and 70 were well above these levels. Sulfate concentrations were highest in wells 44, 55, 60 and 70 with observed maximum occurring in well 60 (11,632 mg/L). Sodium, TDS and sulfate concentrations indicated that extremely saline pockets of groundwater exist at the southwestern (near wells 70, 10-13, and 60-62) and east-central (near wells 55 and 56) borders of the Heskett study area.

Both magnesium and calcium concentrations were relatively high and variable over the Heskett site study area. Well 44 contained the highest levels of these two constituents with 648 mg/L of calcium and 1,322 mg/L of magnesium. Heskett site water would be considered quite hard with actual values (expressed as CaCO₃) ranging from 222 mg/L in well 30 to 7,040 ______ mg/L in well 60.

Chloride, potassium, iron, and fluoride concentrations were generally within the expected range of concentrations for wells finished within the Cannonball Formation. However, potassium was slightly elevated in wells 44 and 60 where it reached concentrations of 51 mg/L and 41 mg/L, respectively.

Nitrate concentrations were found to be erratic over the Heskett site. Wells 55 and 60 contain the highest nitrate levels with 154 mg/L and 170 mg/L, respectively. The drinking water standard (provided in Exhibit 5-J for reference purposes) for nitrate (NO_3 -) is currently set at 45 mg/L. The elevated nitrate concentrations in wells 50, 52, 55 and 60 would tend to indicate contamination from biological sources. Domestic sewage drainfields are known to exist near the center of the south border of the proposed disposal site in the vicinity of wells 43 and 44. It is believed that these sources contribute at least a portion of the observed elevated nitrate concentrations.

Selenium is a common naturally-occurring element in sediments, especially in shale and clay (Freeze and Cherry, 1979). Wells 55 and 60 had the highest concentrations with 0.368 mg/L and 0.195 mg/L, respectively. The levels observed in these two wells are above levels common to groundwater systems which contain shale and dissolved selenium. Indeed, these levels approach 100 times the concentration observed in groundwater taken elsewhere from the Cannonball Formation (Ackerman, 1977).

Molybdenum was detected at reduced concentrations in wells 10, 32, 54 and 70. Water Supply Incorporated (WS), in their previous groundwater investigation concerning the currently operational Heskett ash pile, noted concentrations of molybdenum in well WS4 similar to those observed in this study in wells 10, 54 and 70. Well WS4 was at the time noted for increasing molybdenum levels with the greatest concentration reaching 0.11 mg/L on September 11, 1985 (Armstrong and Schmid, 1986). Further groundwater monitoring has shown that after this finding molybdenum levels then dropped below analytical detection limits. Minimum detection levels have only occasionally been exceeded in the ensuing years. With this study's addition

of background monitoring wells upgradient from the current ash pile it can be determined that concentrations of molybdenum in well WS4 were within the background range of groundwater at the Heskett site. The elevated molybdenum concentrations as noted by W.S. are therefore not believed caused by the migration of leachate from the existing ash pile.

The 1988 groundwater data characterized only the uppermost zone of saturation near the proposed site. Its review indicated that the same general relationship between water quality and heavy metal parameters still exists after two years. A general diminishing of nitrate concentrations can be noted. Boron, an untested analyte in 1986, appeared in concentrations ranging from 1.0 ppm to 2.8 ppm (wells 45 and 70, respectively). Molybdenum was not detected. Wells 60 and 70 continued to exhibit extremely poor overall quality.

5.2.4 Chemical Attenuation of Leachate in Soil

A major concern in developing a waste disposal landfill is the potential generation and migration of toxic leachate. If highly mineralized subsurface leachate moves beyond the disposal site degradation of valuable groundwater supplies might occur. The leachate from the fly ash and bottom ash samples were generally comparable, in terms of overall quality, to the chemical composition of naturally-occurring groundwater at the Heskett site. An examination of Exhibits 2-A and 5-J shows that several of the major ions actually occurred at lower concentrations in the leachate than in the groundwater. Unit 1 bottom ash leachate appeared to be of much better quality than any groundwater sampled. Fly ash samples produced more highly mineralized (higher TDS) leachate than did bottom ash samples.

The overall quality of the existing groundwater at the proposed Heskett ash disposal site is brackish to saline with an average TDS concentration of 8,000 mg/L. The ash leachate produced using the modified EP toxicity test had an average TDS concentration of 6,500 mg/L. Consequently it may be expected that Heskett ash leachate will not significantly affect the TDS content of contaminated underlying groundwater even if soil buffer and attenuation mechanisms would be discounted.

The heavy metal analytes of primary concern in the leachate appear to be arsenic, cadmium, and lead. Sorptive, precipitation and co-precipitation processes are the major attenuation mechanisms that effect the concentration of these dissolved elements. Hassett and Groenewold (1986) studied trace element attenuation capabilities of coal-bearing Tertiary overburden deposits of central and western North Dakota. They found that the pH of a given leachate and the alkaline buffering capacity of the geologic media were the most critical variables in trace element attenuation. Western fly ash leachates are typically very alkaline with pH values approaching 13. In order to buffer such a solution either protons (H⁺) must be added or hydroxyls (OH-) must be removed. Oxides tend to loose protons in strongly alkaline solutions. This H^+ source, along with other acid producing reactions such as pyrite oxidation and organic decomposition, are the main alkaline buffering reactions. The protons that are liberated during these reactions will tend to neutralize the hydroxyl ions, thereby lowering the pH of the solution. The pH of the leachate will be buffered until it reaches equilibrium with the groundwater. In central and western North Dakota this equilibrium is generally attained at a pH value of between 7 and 9 (Groenewold et al., 1983; Koob and Groenewold, 1984).

Direct precipitation of cadmium and lead occur at pH values above 6.5. The solubility product of lead carbonate (PbCO₃) at 18°C is 3.3 X 10⁻¹⁴. In groundwater systems which contain abundant carbonate lead will be precipitated as lead carbonate, thereby maintaining dissolved lead at low concentrations (Beaver, 1986 and 1987). The same type of reaction maintains cadmium at very low concentrations. Hassett and Groenewold (1986) found that cadmium was removed in excess of 99 percent during laboratory experiments with reduced and oxidized silts. Beaver (1986) confirmed the attenuation capabilities of similar geologic media during a coal ash field monitoring program near Center, North Dakota. He noted that several ions, including arsenic, cadmium and lead, were highly mobile under alkaline conditions within the ash itself. However, the alkaline leachate was buffered as soon as it came into contact with the surrounding clay and silt deposits. As the pH became lower the concentrations of cadmium and lead were greatly reduced (Beaver, 1986).

Arsenic attenuation is also controlled by solution pH. Laboratory experiments performed by Hassett and Groenewold (1986) have shown that arsenic, as As^{5+} , is significantly attenuated by the Tertiary sediments of western North Dakota. Arsenic appears to be most strongly attenuated in the pH range of 7-9. The mobility of selenium is similar to that of arsenic and the same attenuation processes control its concentration in groundwater systems. Sorptive processes appear responsible for arsenic attenuation in geologic media but the mechanisms of attenuation have not yet been well defined (Hassett and Groenewold, 1986). It does appear that cation and anion adsorption on clay particles and hydroxide coatings are important mechanisms in attenuating arsenic and other trace elements.

Hassett and Groenewold (1986) have shown that the clay, silt and sand sediments of central and western North Dakota have a strong capacity to buffer

highly alkaline leachates and attenuate trace elements such as arsenic and selenium. The ash pile at Heskett station has been subjected to continuous leaching for the past 30 years. When the quality of the shallow groundwater in the vicinity of the ash pile (data currently on file with the Health Department) was compared to the proposed disposal site it was apparent that upgradient groundwater quality was similar to or of poorer quality than the water near the ash pile. Consequently, groundwater sampling data around the existing ash pile may support the Hassett and Groenewold conclusions if buffered and attenuated leachate from the ash pile is infiltrating underlying groundwater.

EXHIBIT 5-A

TOPOGRAPHY AND BOREHOLE/CROSS-SECTION LOCATIONS

EXHIBIT 5-B

GEOHYDROLOGIC CROSS-SECTIONS

(PLATES A THROUGH H)

EXHIBIT 5-C

WELL COMPLETION REPORTS

Project: MDU Ash Disposal Program

Construction Data:

Location: 139-81-10CCD

Elevation: Ground; 1722.06 ft. Casing top; 1725.01 ft.

Well Bottom; 1604.01 ft.

Completion: Date drilled; 8-12-86

Driller; Mohl Drilling, Beulah, ND Method of drilling; Air rotary, dry; some air-mist

Boring: Diameter; 5 5/8 in. Depth drilled; 120 ft.

Encountered water (below surface); 65 ft.

Geophysical log recorded

Casing: Diameter; 2 in. Material; Sch. 40 PVC

Depths (from ground); +2.90-115.30 ft.

Screen: Diameter; 2 in. Slot size; 20

Material; Factory slotted PVC

Depths (from ground); 115.30-119.30 ft. Elevation of interval; 1604.01-1608.01 ft.

Sand Pack: Type of sand; Washed sand

Depths (from ground); 114-120 ft.

Grout Seal: Depths (from ground); 0-114 ft.

Date sealed; 8-13-86

Additional Data:

Static Water Level: Date; 8-21-86

Depth; 51.97 ft. below top of casing

Elevation; 1673.04 ft.

Chemistry: Date; 8-21-86

pH; 7.75 Sp. cond; 11050 micromhos/cm

Temp; 8.9 oC

Project: MDU Ash Disposal Program

Construction Data:

Location:

139-81-10CCD

Elevation: Ground; 1722.10 ft. Casing top; 1725.01 ft.

Well Bottom; 1642.81 ft.

Completion: Date drilled; 8-12-86

Driller; Mohl Drilling, Beulah, ND Method of drilling; Air rotary, dry;

some air-mist

Boring:

Depth drilled; 80 ft. Diameter; 5 5/8 in.

Encountered water (below surface); 65 ft.

Casing:

Diameter; 2 in. Material; Sch. 40 PVC

Depths (from ground); +2.90-78.20 ft.

Screen:

Diameter; 2 in. Slot size; Material; Factory slotted PVC Slot size; 20

Depths (from ground); 78.20-82.20 Elevation of interval; 1642.81-1646.81 ft.

Sand Pack:

Type of sand; Washed sand

Depths (from ground); 77-79 ft.

Grout Seal:

Depths (from ground); 0-77 ft.

Date sealed; 8-13-86

Additional Data:

Static Water Level: Date; 8-21-86

Depth; 43.83 ft. below top of casing

Elevation; 1681.18 ft.

Chemistry:

Date; 8-21-86

pH; 7.75

Sp. cond; 9840 micromhos/cm

Temp; 8.6 oC

Project: MDU Ash Disposal Program

Construction Data:

Location: 139-81-10CCD

Elevation: Ground; 1721.88 ft. Casing top; 1724.90 ft.

Well Bottom; 1643.51 ft.

Completion: Date drilled; 8-12-86

Driller; Mohl Drilling, Beulah, ND Method of drilling; Air rotary, dry; some air-mist

Boring: Diameter; 5 5/8 in. Depth drilled; 80 ft.

Encountered water (below surface); 65 ft.

Casing: Diameter; 2 in. Material; Sch. 40 PVC

Depths (from ground); +3.02-58.37 ft.

Screen: Diameter; 2 in. Slot size; 20

Material; Factory slotted PVC

Depths (from ground); 58.37-78.37 ft. Elevation of interval; 1643.51-1663.51 ft.

Sand Pack: Type of sand; Washed sand

Depths (from ground); 57-79 ft.

Grout Seal: Depths (from ground); 0-57 ft.

Date sealed; 8-13-86

Additional Data:

Static Water Level: Date: 8-21-86

Depth; 43.60 ft. below top of casing

Elevation; 1681.30 ft.

Chemistry: Date; 8-21-86

pH; 7.60 Sp. cond; 11440 micromhos/cm

Temp; 8.5 oC

Project: MDU Ash Disposal Program

Construction Data:

Location: 139-81-10CCD

Elevation: Ground; 1721.88 ft. Casing top; 1724.90 ft.

Well Bottom; 1681.88 ft.

Completion: Date drilled; 11-13-86

Driller; Mohl Drilling, Beulah, ND Method of drilling; Air rotary, dry

Boring: Diameter; 5 5/8 in. Depth drilled; 40 ft.

Encountered water (below surface); ? ft.

Casing: Diameter; 2 in. Material; Sch. 40 PVC

Depths (from ground); +3.02-20.37 ft.

Screen: Diameter; 2 in. Slot size; 20

Material; Factory slotted PVC Depths (from ground); 20.37-40.37 ft.

Elevation of interval; 1681.51-1701.51 ft.

Sand Pack: Type of sand; Washed sand

Depths (from ground); 19-41

Grout Seal: Depths (from ground); 0-19 ft.

Date sealed; 1-27-87

Additional Data:

Static Water Level: Date; 12-15-86

Depth; 30.09 ft. below top of casing

Elevation; 1694.81 ft.

Chemistry: Date: NA

pH; NA

Sp. cond; NA

Temp; NA

Project: MDU Ash Disposal Program

Construction Data:

Location: 139-81-10CAC

Elevation: Ground; 1707.04 ft. Casing top; 1709.48 ft.

Well Bottom; 1627.48 ft.

Completion: Date drilled; 8-12-86

Driller; Mohl Drilling, Beulah, ND Method of drilling; Air rotary, dry

Diameter; 5 5/8 in. Depth drilled; 80 ft. Boring:

Encountered water (below surface); 45 ft.

Geophysical log recorded

Material; Sch. 40 PVC Diameter; 2 in. Casing:

Depths (from ground); +2.44-75.56 ft.

Diameter; 2 in. Slot size; Material; Factory slotted PVC Slot size; 20 Screen:

Depths (from ground); 75.56-79.56 Elevation of interval; 1627.48-1631.48 ft.

Type of sand; Washed sand Sand Pack:

Depths (from ground); 74-80 ft.

Depths (from ground); 0-74 ft. Grout Seal:

Date sealed; 8-13-86

Additional Data:

Date; 8-21-86 Static Water Level:

Depth; 37.96 ft. below top of casing

Elevation; 1671.52 ft.

Chemistry: Date; 8-21-86

Sp. cond; 4970 micromhos/cm pH; 7.98

Temp; 8.7 oC

Project: MDU Ash Disposal Program

Construction Data:

Location: 139-81-10CAC

Elevation: Ground; 1707.22 ft. Casing top; 1709.40 ft.

Well Bottom; 1661.90 ft.

Completion: Date drilled; 8-12-86

Driller; Mohl Drilling, Beulah, ND Method of drilling; Air rotary, dry;

Boring: Diameter; 5 5/8 in. Depth drilled; 50 ft.

Encountered water (below surface); 45 ft.

Casing: Diameter; 2 in. Material; Sch. 40 PVC

Depths (from ground); +2.66-21.32 ft.

Diameter; 2 in. Slot size; Material; Factory slotted PVC Screen: Slot size; 20

Depths (from ground); 21.32-45.32 Elevation of interval; 1661.90-1685.90 ft.

Sand Pack: Type of sand; Washed sand

Depths (from ground); 20-46

Grout Seal: Depths (from ground); 0-20 ft.

Date sealed; 8-13-86

Additional Data:

Static Water Level: Date; 8-21-86

Depth; 29.33 ft. below top of casing

Elevation; 1680.07 ft.

Chemistry: Date; 8-21-86

pH; 6.95 Sp. cond; 13920 micromhos/cm

Temp; 8.5 oC

Project: MDU Ash Disposal Program

Construction Data:

Location: 139-81-10CBA

Elevation: Ground; 1715.55 ft. Casing top; 1717.64 ft.

Well Bottom; 1595.64 ft.

Completion: Date drilled; 8-12-86

Driller; Mohl Drilling, Beulah, ND Method of drilling; Air rotary, dry; some air-mist

Boring: Diameter; 5 5/8 in. Depth drilled; 120 ft.

Encountered water (below surface); 60 ft.

Geophysical log recorded

Casing: Diameter; 2 in. Material; Sch. 40 PVC

Depths (from ground); +2.90-115.91 ft.

Screen: Diameter; 2 in. Slot size; 20

Material; Factory slotted PVC

Depths (from ground); 115.91-119.91 ft. Elevation of interval; 1595.64-1599.64 ft.

Sand Pack: Type of sand; Washed sand

Depths (from ground); 114-120 ft.

Grout Seal: Depths (from ground); 0-114 ft.

Date sealed; 8-13-86

Additional Data:

Static Water Level: Date; 8-21-86

Depth; 49.41 ft. below top of casing

Elevation; 1668.23 ft.

Chemistry: Date; 8-21-86

pH; 7.95 Sp. cond; 1993 micromhos/cm

Temp; 8.6 oC

Project: MDU Ash Disposal Program

Construction Data:

Location: 139-81-10CBA

Elevation: Ground; 1715.24 ft. Casing top; 1717.58 ft.

Well Bottom; 1635.58 ft.

Completion: Date drilled; 8-12-86

Driller; Mohl Drilling, Beulah, ND Method of drilling; Air rotary, dry; some air-mist

Boring: Diameter; 5 5/8 in. Depth drilled; 80 ft.

Encountered water (below surface); 60 ft.

Casing: Diameter; 2 in. Material; Sch. 40 PVC

Depths (from ground); +2.34-75.66 ft.

Screen: Diameter; 2 in. Slot size; 20

Material; Factory slotted PVC

Depths (from ground); 75.66-79.66 ft. Elevation of interval; 1635.58-1639.58 ft.

Sand Pack: Type of sand; Washed sand

Depths (from ground); 74-80 ft.

Grout Seal: Depths (from ground); 0-74 ft.

Date sealed; 8-13-86

Additional Data:

Static Water Level: Date; 8-21-86

Depth; 43.54 ft. below top of casing

Elevation; 1674.04 ft.

Chemistry: Date; 8-21-86

pH; 7.96 Sp. cond; 1993 micromhos/cm

Temp; 7.8 oC

Project: MDU Ash Disposal Program

Construction Data:

Location: 139-81-10CBA

Elevation: Ground; 1715.34 ft. Casing top; 1717.79 ft.

Well Bottom; 1641.69 ft.

Completion: Date drilled; 8-12-86

Driller; Mohl Drilling, Beulah, ND Method of drilling; Air rotary, dry; some air-mist

Boring: Diameter; 5 5/8 in. Depth drilled; 80 ft.

Encountered water (below surface); 60 ft.

Casing: Diameter; 2 in. Material; Sch. 40 PVC

Depths (from ground); +2.45-53.65 ft.

Diameter; 2 in. Slot size; Material; Factory slotted PVC Screen: Slot size; 20

Depths (from ground); 53.65-73.65 ft. Elevation of interval; 1641.69-1661.69 ft.

Sand Pack: Type of sand; Washed sand

Depths (from ground); 52-75

Grout Seal: Depths (from ground); 0-52 ft.

Date sealed; 8-13-86

Additional Data:

Static Water Level: Date; 8-21-86

Depth; 42.03 ft. below top of casing

Elevation; 1675.76 ft.

Chemistry: Date; 8-21-86

pH; 7.22 Sp. cond; 3000 micromhos/cm

Temp; 8.0 oC

Project: MDU Ash Disposal Program

Construction Data:

Location: 139-81-10CBA

Elevation: Ground; 1715.34 ft. Casing top; 1717.79 ft.

Well Bottom; 1672.79 ft.

Completion: Date drilled; 11-13-86

Driller; Mohl Drilling, Beulah, ND Method of drilling; Air rotary, dry

Boring: Diameter; 5 5/8 in. Depth drilled; 45 ft.

Encountered water (below surface); ? ft.

Casing: Diameter; 2 in. Material; Sch. 40 PVC

Depths (from ground); +2.45-25.65 ft.

Screen: Diameter; 2 in. Slot size; 20

Material; Factory slotted PVC

Depths (from ground); 25.65-45.65 ft. Elevation of interval; 1669:69-1689.69 ft.

Sand Pack: Type of sand; Washed sand

Depths (from ground); 24-45 ft.

Grout Seal: Depths (from ground); 0-24 ft.

Date sealed; 1-27-87

Additional Data:

Static Water Level: Date; 12-15-86

Depth; 40.68 ft. below top of casing

Elevation; 1677.11 ft.

Chemistry: Date; NA

pH; NA

Sp. cond; NA

Temp; NA

Project: MDU Ash Disposal Program

Construction Data:

Location: 139-81-10CDB

Elevation: Ground; 1708.02 ft. Casing top; 1710.15 ft.

Well Bottom; 1592.25 ft.

Completion: Date drilled; 8-13-86

Driller; Mohl Drilling, Beulah, ND
Method of drilling; Air rotary, dry;
some air-mist

Boring: Diameter; 5 5/8 in. Depth drilled; 120 ft.

Encountered water (below surface); 50 ft.

Geophysical log recorded

Casing: Diameter; 2 in. Material; Sch. 40 PVC

Depths (from ground); +2.13-111.77 ft.

Screen: Diameter; 2 in. Slot size; 20

Material; Factory slotted PVC

Depths (from ground); 111.77-115.77 ft. Elevation of interval; 1592.25-1596.25 ft.

Sand Pack: Type of sand; Washed sand

Depths (from ground); 110-117 ft.

Grout Seal: Depths (from ground); 0-117 ft.

Date sealed; 8-13-86

Additional Data:

Static Water Level: Date; 8-21-86

Depth; 63.72 ft. below top of casing

Elevation; 1646.43 ft.

Chemistry: Date; 8-21-86

pH; 7.58 Sp. cond; 6260 micromhos/cm

Temp; 8.2 oC

Project: MDU Ash Disposal Program

Construction Data:

Location: 139-81-10CDB

Elevation: Ground; 1708.03 ft. Casing top; 1710.07 ft.

Well Bottom; 1626.77 ft.

Completion: Date drilled; 8-13-86

Driller; Mohl Drilling, Beulah, ND Method of drilling; Air rotary, dry; some air-mist

Boring: Diameter; 5 5/8 in. Depth drilled; 82 ft.

Encountered water (below surface); 50 ft.

Casing: Diameter; 2 in. Material; Sch. 40 PVC

Depths (from ground); +2.04-77.26 ft.

Screen: Diameter; 2 in. Slot size; 20

Material; Factory slotted PVC

Depths (from ground); 77.26-81.26 ft. Elevation of interval; 1626.77-1630.77 ft.

Sand Pack: Type of sand; Washed sand

Depths (from ground); 76-82 ft.

Grout Seal: Depths (from ground); 0-76 ft.

Date sealed; 8-13-86

Additional Data:

Static Water Level: Date; 8-21-86

Depth; 36.58 ft. below top of casing

Elevation; 1673.49 ft.

Chemistry: Date; 8-21-86

pH; 7.57 Sp. cond; 5480 micromhos/cm

Temp; 8.4 oC

Project: MDU Ash Disposal Program

Construction Data:

Location: 139-81-10CDB

Elevation: Ground; 1708.12 ft. Casing top; 1710.31 ft.

Well Bottom; 1652.61 ft.

Date drilled; 8-13-86 Completion:

> Driller; Mohl Drilling, Beulah, ND Method of drilling; Air rotary, dry;

some air-mist

Boring: Diameter; 5 5/8 in. Depth drilled; 60 ft.

Encountered water (below surface); 50 ft.

Casing: Diameter; 2 in. Material; Sch. 40 PVC

Depths (from ground); +2.19-35.51 ft.

Screen: Slot size; 20

Diameter; 2 in. Slot size; Material; Factory slotted PVC

Depths (from ground); 35.51-55.51 ft. Elevation of interval; 1652.61-1672.61 ft.

Sand Pack: Type of sand; Washed sand

> Depths (from ground); 34-56 ft.

Grout Seal: Depths (from ground); 0-34 ft.

Date sealed; 8-13-86

Additional Data:

Static Water Level: Date; 8-21-86

Depth; 32.88 ft. below top of casing

Elevation; 1677.43 ft.

Chemistry: Date; 8-21-86

> pH; 7.22 Sp. cond; 5060 micromhos/cm

Temp; 8.6 oC

Project: MDU Ash Disposal Program

Construction Data:

Location: 139-81-10CDD

Elevation: Ground; 1708.92 ft. Casing top; 1711.03 ft.

Well Bottom; 1650.14 ft.

Completion: Date drilled; 9-18-86

Driller; Mohl Drilling, Beulah, ND Method of drilling; Air rotary, dry

Boring: Diameter; 5 5/8 in. Depth drilled; 60 ft.

Encountered water (below surface); 25 ft.

Casing: Diameter; 2 in. Material; Sch. 40 PVC

Depths (from ground); +2.11-54.78 ft.

Screen: Diameter; 2 in. Slot size; 20

Material; Factory slotted PVC

Depths (from ground); 54.78-58.78 ft. Elevation of interval; 1650.14-1654.14 ft.

Sand Pack: Type of sand; Washed sand

Depths (from ground); 53-59 ft.

Grout Seal: Depths (from ground); 0-53 ft.

Date sealed; 9-18-86

Additional Data:

19. 等性等性は、19.1. 引い出ては無く 19.1. 等種の 18.0. ないない 後間を見ない 20.1.

Static Water Level: Date; 10-4-86

Depth; 25.85 ft. below top of casing

Elevation; 1685.18 ft.

Chemistry: Date; 10-4-86

pH; 6.70 Sp. cond; 6950 micromhos/cm

Temp; 8.5 oC

Project: MDU Ash Disposal Program

Construction Data:

Location: 139-81-10CDD

Elevation: Ground; 1709.09 ft. Casing top; 1711.40 ft.

Well Bottom; 1685.88 ft.

Completion: Date drilled; 9-18-86

Driller; Mohl Drilling, Beulah, ND Method of drilling; Air rotary, dry

Boring: Diameter; 5 5/8 in. Depth drilled; 25 ft.

Encountered water (below surface); 25 ft.

Casing: Diameter; 2 in. Material; Sch. 40 PVC

Depths (from ground); +2.31-3.21 ft.

Screen: Diameter; 2 in. Slot size; 20

Material; Factory slotted PVC Depths (from ground); 3.21-23.54 ft. Elevation of interval; 1685.88-1705.88 ft.

Sand Pack: Type of sand; Washed sand

Depths (from ground); 2.5-24.0 ft.

Grout Seal: Depths (from ground); 0-2.5 ft.

Date sealed; 9-18-86

Additional Data:

Static Water Level: Date; 10-4-86

Depth; 21.92 ft. below top of casing

Elevation; 1689.48 ft.

Chemistry: Date; 10-4-86

pH; 6.72 Sp. cond; 10270 micromhos/cm

Temp; 9.1 oC

Project: MDU Ash Disposal Program

Construction Data:

Location: 139-81-10CDB

Elevation: Ground; 1708.12 ft. Casing top; 1710.31 ft.

Well Bottom; 1668.12 ft.

Completion: Date drilled; 11-13-86

Driller; Mohl Drilling, Beulah, ND Method of drilling; Air rotary, dry;

Boring: Diameter; 5 5/8 in. Depth drilled; 40 ft.

Encountered water (below surface); ? ft.

Casing: Diameter; 2 in. Material; Sch. 40 PVC

Depths (from ground); +2.19-20.51 ft.

Screen: Diameter; 2 in. Slot size; 20

Material; Factory slotted PVC

Depths (from ground); 20.51-40.51 ft. Elevation of interval; 1667.61-1687.61 ft.

Sand Pack: Type of sand; Washed sand

Depths (from ground); 19-41 ft.

Grout Seal: Depths (from ground); 0-19 ft.

Date sealed; 1-27-86

Additional Data:

Static Water Level: Date; 12-15-86

Depth; 28,71 ft. below top of casing

Elevation; 1681.60 ft.

Chemistry: Date; NA

alla MA

pH; NA Sp. cond; NA

Temp; NA

Project: MDU Ash Disposal Program

Construction Data:

Location: 139-81-10CAD

Elevation: Ground; 1674.58 ft. Casing top; 1677.01 ft.

Well Bottom; 1647.51 ft.

Date drilled; 8-13-86 Completion:

Driller; Mohl Drilling, Beulah, ND Method of drilling; Air rotary, dry; some air-mist

Boring: Diameter; 5 5/8 in. Depth drilled; 30 ft.

Encountered water (below surface); 17 ft.

Geophysical log recorded

Diameter; 2 in. Casing: Material; Sch. 40 PVC

Depths (from ground); +2.43-7.07 ft.

Screen: Diameter; 2 in. Slot size; 20

Material; Factory slotted PVC

Depths (from ground); 7.07-27.07 ft. Elevation of interval; 1647.51-1667.51 ft.

Sand Pack: Type of sand; Washed sand

> Depths (from ground); 6-29 ft.

Grout Seal: Depths (from ground); 0-6

Date sealed; 8-13-86

Additional Data:

Static Water Level: Date; 8-21-86

Depth; 5.45 ft. below top of casing

Elevation; 1671.56 ft.

Chemistry: Date; 8-21-86

pH; 7.56 Sp. cond; 6480 micromhos/cm

Temp; 10.8 oC

Project: MDU Ash Disposal Program

Construction Data:

Location: 139-81-10CAD

Elevation: Ground; 1674.47 ft. Casing top; 1676.70 ft.

Well Bottom; 1637.33 ft.

Completion: Date drilled; 9-18-86

Driller; Mohl Drilling, Beulah, ND Method of drilling; Air rotary, dry; some air-mist

Boring: Diameter; 5 5/8 in. Depth drilled; 40 ft.

Encountered water (below surface); 18 ft.

Casing: Diameter; 2 in. Material; Sch. 40 PVC

Depths (from ground); +2.23-32.14 ft.

Screen: Diameter; 2 in. Slot size; 20

Material; Factory slotted PVC

Depths (from ground); 32.14-37.14 ft. Elevation of interval; 1637.33-1642.33 ft.

Sand Pack: Type of sand; Washed sand

Depths (from ground); 31-38 ft.

Grout Seal: Depths (from ground); 0-31 ft.

Date sealed; 9-18-86

Additional Data:

Static Water Level: Date; 10-4-86

Depth; 5.77 ft. below top of casing

Elevation; 1670.93 ft.

Chemistry: Date; 10-4-86

pH; 7.46 Sp. cond; 3700 micromhos/cm

Temp; 8.2 oC

Project: MDU Ash Disposal Program

Construction Data:

Location: 139-81-10CAD

Elevation: Ground; 1674.45 ft. Casing top; 1676.71 ft.

Well Bottom; 1658.01 ft.

Completion: Date drilled; 9-18-86

Driller; Mohl Drilling, Beulah, ND Method of drilling; Air rotary, dry;

some air-mist

Boring: Diameter; 5 5/8 in. Depth drilled; 20 ft.

Encountered water (below surface); 18 ft.

Casing: Diameter; 2 in. Material; Sch. 40 PVC

Depths (from ground); +2.26-6.44 ft.

Screen: Diameter; 2 in. Slot size; 20

Material; Factory slotted PVC

Depths (from ground); 6.44-16.44 ft. Elevation of interval; 1658.01-1668.01 ft.

Sand Pack: Type of sand; Washed sand

Depths (from ground); 5-18 ft.

Grout Seal: Depths (from ground); 0-5 ft.

Date sealed; 9-18-86

Additional Data:

Static Water Level: Date; 10-4-86

Depth; 4.13 ft. below top of casing

Elevation; 1672.58 ft.

Chemistry: Date; 10-4-86

pH; 7.29 Sp. cond; 6300 micromhos/cm

Temp; 9.4 oC

Project: MDU Ash Disposal Program

Construction Data:

Location: 139-81-10DCC

Elevation: Ground; 1685.71 ft. Casing top; 1688.17 ft.

Well Bottom; 1665.70 ft.

Completion: Date drilled; 9-18-86

Driller; Mohl Drilling, Beulah, ND Method of drilling; Air rotary, dry

Boring: Diameter; 5 5/8 in. Depth drilled; 21 ft.

Encountered water (below surface); 15 ft.

Casing: Diameter; 2 in. Material; Sch. 40 PVC

Depths (from ground); +2.46-5.01 ft.

Screen: Diameter; 2 in. Slot size; 20

Material; Factory slotted PVC

Depths (from ground); 5.01-20.01 ft. Elevation of interval; 1665.70-1680.70 ft.

Sand Pack: Type of sand; Washed sand

Depths (from ground); 4-21 ft.

Grout Seal: Depths (from ground); 0-4 ft.

Date sealed; 9-18-86

Additional Data:

Static Water Level: Date; 10-4-86

Depth; 6.30 ft. below top of casing

Elevation; 1681.87 ft.

Chemistry: Date; 10-4-86

pH; NA Sp. cond; NA micromhos/cm

Project: MDU Ash Disposal Program

Construction Data:

Location: 139-81-10DCC

Elevation: Ground; 1685.71 ft. Casing top; 1688.10 ft.

Well Bottom; 1633.11 ft.

Completion: Date drilled; 9-18-86

Driller; Mohl Drilling, Beulah, ND Method of drilling; Air rotary, dry

Boring: Diameter; 5 5/8 in. Depth drilled; 60 ft.

Encountered water (below surface); 15 ft.

Casing: Diameter; 2 in. Material; Sch. 40 PVC

Depths (from ground); +2.39-47.60 ft.

Diameter; 2 in. Slot size; 20 Material; Factory slotted PVC Screen:

Depths (from ground); 47.60-52.60 ft. Elevation of interval; 1633.11-1638.11 ft.

Sand Pack: Type of sand; Washed sand

Depths (from ground); 46-54

Grout Seal: Depths (from ground); 0-46 ft.

Date sealed: 9-18-86

Additional Data:

Date; 10-4-86 Static Water Level:

Depth; 15.16 ft. below top of casing

Elevation; 1672.94 ft.

Chemistry: Date; 10-4-86

pH; 9.55 Sp. cond; 1100 micromhos/cm

Temp; 9.8 oC

Project: MDU Ash Disposal Program

Construction Data:

Location: 139-81-10DCA

Elevation: Ground; 1693.86 ft. Casing top; 1696.10 ft.

Well Bottom; 1636.95 ft.

Completion: Date drilled; 9-18-86

Driller; Mohl Drilling, Beulah, ND Method of drilling; Air rotary, dry

Depth drilled; 60 ft. Boring: Diameter; 5 5/8 in.

Encountered water (below surface); 45 ft.

Casing: Diameter; 2 in. Material; Sch. 40 PVC

Depths (from ground); +2.24-31.91 ft.

Diameter; 2 in. Slot size; Material; Factory slotted PVC Slot size; Screen:

Depths (from ground); 31.91-56.91 ft. Elevation of interval; 1636.95-1661.95 ft.

Sand Pack: Type of sand; Washed sand

Depths (from ground); 30-58

Grout Seal: Depths (from ground); 0-30 ft.

Date sealed; 9-18-86

Additional Data:

Date; 10-4-86 Static Water Level:

Depth; 29.46 ft. below top of casing

Elevation; 1666.64 ft.

Chemistry: Date; 10-4-86

pH; 6.81 Sp. cond; 10840 micromhos/cm

Temp; 8.5 oC

Project: MDU Ash Disposal Program

Construction Data:

Location: 139-80-10DCA

Elevation: Ground; 1693.86 ft. Casing top; 1696.42 ft.

Well Bottom; 1597.99 ft.

Completion: Date drilled; 9-18-86

Driller; Mohl Drilling, Beulah, ND Method of drilling; Air rotary, dry

Boring: Diameter; 5 5/8 in. Depth drilled; 100 ft.

Encountered water (below surface); 45 ft.

Casing: Diameter; 2 in. Material; Sch. 40 PVC

Depths (from ground); +2.56-91.87 ft.

Screen: Slot size;

Diameter; 2 in. Slot size; Material; Factory slotted PVC Depths (from ground); 91.87-96.87 ft.

Elevation of interval; 1597.99-1601.99 ft.

Sand Pack: Type of sand; Washed sand

> Depths (from ground); 90-98 ft.

Grout Seal: Depths (from ground); 0-90 ft.

Date sealed; 9-18-86

Additional Data:

Date; 10-4-86 Static Water Level:

Depth; 42.03 ft. below top of casing

Elevation; 1654.39 ft.

Chemistry: Date; 10-4-86

pH; 8.44 Sp. cond; 4160 micromhos/cm

Temp; 8.3 oC

Project: MDU Ash Disposal Program

Construction Data:

Location: 139-18-10CDB

Elevation: Ground; 1714.23 ft. Casing top; 1716.42 ft.

Well Bottom; 1662.02 ft.

Completion: Date drilled; 8-13-86

Driller; Mohl Drilling, Beulah, ND Method of drilling; Air rotary, dry; some air-mist

Boring: Diameter; 5 5/8 in. Depth drilled; 60 ft.

Encountered water (below surface); 45 ft.

Geophysical log recorded

Casing: Diameter; 2 in. Material; Sch. 40 PVC

Depths (from ground); +2.19-22.21 ft.

Diameter; 2 in. Slot size; Material; Factory slotted PVC Screen: Slot size; 20

Depths (from ground); 22.21-52.21 Elevation of interval; 1662.02-1692.02 ft.

Sand Pack: Type of sand; Washed sand

> Depths (from ground); 21-54 ft.

Grout Seal: Depths (from ground); 0-21 ft.

Date sealed; 8-13-86

Additional Data:

Static Water Level: Date; 8-21-86

Depth; 31.01 ft. below top of casing

Elevation; 1685.41 ft.

Chemistry: Date; 8-21-86

pH; 6.94 Sp. cond; 15760 micromhos/cm

Temp; 8.5 oC

Project: MDU Ash Disposal Program

Construction Data:

Location: 139-81-10CDA

Elevation: Ground; 1714.23 ft. Casing top; 1716.53 ft.

Well Bottom; 1670.89 ft.

Completion: Date drilled; 9-18-86

Driller; Mohl Drilling, Beulah, ND Method of drilling; Air rotary, dry

Boring: Diameter; 5 5/8 in. Depth drilled; 46 ft.

Encountered water (below surface); 37 ft.

Diameter; 2 in. Material; Sch. 40 PVC Casing:

Depths (from ground); +2.30-13.34 ft.

Diameter; 2 in. Slot size; Material; Factory slotted PVC Screen: Slot size; 20

Depths (from ground); 13.34-43.34 Elevation of interval; 1670.89-1700.89 ft.

Sand Pack: Type of sand; Washed sand

Depths (from ground); 12-45 ft.

Depths (from ground); 0-12 ft. Grout Seal:

Date sealed; 9-18-86

Additional Data:

Static Water Level: Date; 10-4-86

Depth; 32.58 ft. below top of casing

Elevation; 1683.95 ft.

Chemistry: Date; 10-4-86

pH; 6.83 Sp. cond; 12750 micromhos/cm

Temp; 8.4 oC

Project: MDU Ash Disposal Program

Construction Data:

Location: 139-81-10CDB

Elevation: Ground; 1714.32 ft. Casing top; 1716.67 ft.

Well Bottom; 1681.40 ft.

Completion: Date drilled; 9-18-86

> Driller; Mohl Drilling, Beulah, ND Method of drilling; Air rotary, dry

Diameter; 5 5/8 in. Boring: Depth drilled; 35 ft.

Encountered water (below surface); 35 ft.

Casing: Diameter; 2 in. Material; Sch. 40 PVC

Depths (from ground); +2.35-12.92 ft.

Screen: Slot size;

Diameter; 2 in. Slot size; Material; Factory slotted PVC

Depths (from ground); 12.92-32.91 ft. Elevation of interval; 1681.40-1701.40 ft.

Sand Pack: Type of sand; Washed sand

> Depths (from ground); 11-34 ft.

Grout Seal: Depths (from ground); 0-11 ft.

Date sealed; 9-18-86

Additional Data:

Static Water Level: Date; 10-4-86

Depth; 32.74 ft. below top of casing

Elevation; 1683.93 ft.

Chemistry: Date; 10-4-86

pH; 6.71 Sp. cond; 13170 micromhos/cm

Temp; 9.3 oC

Project: MDU Ash Disposal Program

Construction Data:

Location: 139-81-16ABA

Elevation: Ground; 1733.18 ft. Casing top; 1735.67 ft.

Well Bottom; 1634.57 ft.

Completion: Date drilled; 8-13-86

Driller; Mohl Drilling, Beulah, ND Method of drilling; Air rotary, dry;

some air-mist

Diameter; 5 5/8 in. Boring: Depth drilled; 102 ft.

Encountered water (below surface); 45 ft.

Geophysical log recorded

Casing: Diameter; 2 in. Material; Sch. 40 PVC

Depths (from ground); +2.49-94.61 ft.

Diameter; 2 in. Slot size; Material; Factory slotted PVC Screen: Slot size; 20

Depths (from ground); 94.61-98.61 Elevation of interval; 1634.57-1638.57 ft.

Sand Pack: Type of sand; Washed sand

Depths (from ground); 93-99

Depths (from ground); 0-93 ft. Grout Seal:

Date sealed; 8-13-86

Additional Data:

Static Water Level: Date; 8-21-86

Depth; 54.20 ft. below top of casing

Elevation; 1681.47 ft.

Chemistry: Date; 8-21-86

pH; 7.85 Sp. cond; 13000 micromhos/cm

Temp; 10.1 oC

Well Number: (WS1)

Project: MDU Ash Disposal Program

Construction Data:

Location: 139-81-DBB

Elevation: Ground; 1679.61 ft. Casing top; 1681.71 ft.

Well Bottom; 1606.73 ft.

Repaired casing top (1-13-86); 1683.67 ft.

Completion: Date drilled; 9-22-81

Driller; Water Supply, Inc.

Method of drilling; NA

Boring: Diameter; NA in. Depth drilled; 73 ft.

Encountered water (below surface); NA ft.

Casing: Diameter; 2 in. Material; Sch. 40 PVC

Depths (from ground); +2.7-40, 45-73 ft. (as of 1-13-87); +4.7-40, 45-73 ft.

Screen: Diameter; 2 in. Slot size; 20

Material; Factory slotted PVC

Depths (from ground); 40-45 ft. Elevation of interval; 1634.61-1639.61 ft.

Sand Pack: Type of sand; Washed sand

Depths (from ground); 37-47 ft.

Depths (from ground); 0-37 ft. Grout Seal:

Date sealed; NA

Additional Data:

Static Water Level: Date; 8-21-86

Depth; 24.61 ft. below top of casing

Elevation; 1657.10 ft.

Chemistry: Date; 8-21-86 pH; 7.47

Sp. cond; 1899 micromhos/cm

Temp 7.0 oC

Well Number: (WS1A)

Project: MDU Ash Disposal Program

Construction Data:

Location: 139-81-DBB

Elevation: Ground; 1679.10 ft. Casing top; 1682.23 ft.

Well Bottom; 1657.10 ft.

Completion: Date drilled; 8-5-85

Driller; Water Supply, Inc. Method of drilling; NA

Diameter; NA in. Depth drilled; 23 ft. Boring:

Encountered water (below surface); NA ft.

Material; Sch. 40 PVC Diameter; 2 in. Casing:

Depths (from ground); +3.2-17 ft.

Slot size; Screen:

Diameter; 2 in. Slot size; Material; Factory slotted PVC Depths (from ground); 17-22 ft.

Elevation of interval; 1657.10-1662.10 ft.

Sand Pack: Type of sand; Washed sand

Depths (from ground); 15-23 ft.

Grout Seal: Depths (from ground); 0-15 ft.

Date sealed; NA

Additional Data:

Static Water Level: Date; 8-21-86

Depth; DRY ft. below top of casing

Elevation; ft.

Chemistry: Date: 8-21-86

micromhos/cm pH; NA Sp. cond; NA

Well Number: (WS1B)

Project: MDU Ash Disposal Program

Construction Data:

Location: 139-81-10DBB

Elevation: Ground; 1678.80 ft. Casing top; 1682.07 ft.

Well Bottom; 1648.80 ft.

Completion: Date drilled; 8-6-85

Driller; Water Supply, Inc.

Method of drilling; NA

Boring: Diameter; NA in. Depth drilled; 30 ft.

Encountered water (below surface); NA ft.

Casing: Diameter; 2 in. Material; Sch. 40 PVC

Depths (from ground); +3.3-25 ft.

Screen: Diameter; 2 in. Slot size; 20

Material; Factory slotted PVC

Depths (from ground); 25-30 ft.

Elevation of interval; 1648.80-1653.80 ft.

Sand Pack: Type of sand; Washed sand

Depths (from ground); 23-30 ft.

Grout Seal: Depths (from ground); 0-22 ft.

Date sealed; NA

Additional Data:

Static Water Level: Date; 8-21-86

Depth; 24.48 ft. below top of casing

Elevation; 1657.59 ft.

Chemistry: Date; 8-21-86

pH; 7.07 Sp. cond; 3940 micromhos/cm

Temp; 8.5 oC

Well Number: (WS2)

Project: MDU Ash Disposal Program

Construction Data:

Location: 139-81-10DCC

Elevation: Ground; 1696.00 ft. Casing top; 1698.64 ft.

Well Bottom; 1607.00 ft.

Completion: Date drilled; 9-23-81

Driller; Water Supply, Inc.

Method of drilling; NA

Boring: Diameter; NA in. Depth drilled; 90 ft.

Encountered water (below surface); NA ft.

Casing: Diameter; 2 in. Material; Sch. 40 PVC

Depths (from ground); +3-56, 61-89 ft.

Screen: Diameter; 2 in. Slot size; 20

Material; Factory slotted PVC Depths (from ground); 56-61 ft.

Elevation of interval; 1635.00-1640.00 ft.

Sand Pack: Type of sand; Washed sand

Depths (from ground); 53-62 ft.

Grout Seal: Depths (from ground); 0-52 ft.

Date sealed; NA

Additional Data:

Static Water Level: Date; 10-4-86

Depth; 33.86 ft. below top of casing

Elevation; 1664.78 ft.

Chemistry: Date; 8-21-86

pH; 7.04 Sp. cond; 3760 micromhos/cm

Temp; 8.6 oC

Well Number: (WS3)

Project: MDU Ash Disposal Program

Construction Data:

Location: 139-81-10DBA

Elevation: Ground; 1658.00 ft. Casing top; 1661.00 ft.

Well Bottom; 1608.00 ft.

Completion: Date drilled; 9-21-81

Driller; Water Supply, Inc.

Method of drilling; NA

Boring: Diameter; NA in. Depth drilled; 50 ft.

Encountered water (below surface); NA ft.

Casing: Diameter; 2 in. Material; Sch. 40 PVC

Depths (from ground); +3-25, 30-50 ft.

Screen: Diameter; 2 in. Slot size; 20

> Material; Factory slotted PVC Depths (from ground); 25-30 ft.

Elevation of interval; 1628.00-1633.00 ft.

Sand Pack: Type of sand; Washed sand

Depths (from ground); 24-32 ft.

Grout Seal: Depths (from ground); 0-23 ft.

Date sealed; NA

Additional Data:

Static Water Level: Date; 9-4-86

Depth; 14.67 ft. below top of casing

Elevation; 1646.33 ft.

Chemistry: Date; NA

pH; NA Sp. cond; NA micromhos/cm

Well Number: (WS3A)

Project: MDU Ash Disposal Program

Construction Data:

Location: 139-81-10DBA

Elevation: Ground; 1657.70 ft. Casing top; 1660.81 ft.

Well Bottom; 1645.31 ft.

Date drilled; 8-5-85 Completion:

Driller; Water Supply, Inc.

Method of drilling; NA

Depth drilled; 13 ft. Boring: Diameter; NA in.

Encountered water (below surface); NA ft.

Diameter; 2 in. Casing: Material; Sch. 40 PVC

Depths (from ground); +3.1-7.5 ft.

Screen:

Diameter; 2 in. Slot size; Material; Factory slotted PVC Depths (from ground); 7.5-12.5 ft.

Elevation of interval; 1645.31-1650.31 ft.

Sand Pack: Type of sand; Washed sand

Depths (from ground); 6-13 ft.

Grout Seal: Depths (from ground); 0-6 ft.

Date sealed; NA

Additional Data:

Date; 10-4-86 Static Water Level:

Depth; 8.37 ft. below top of casing Elevation; 1652.44 ft.

Chemistry: Date; NA

Sp. cond; NA pH; NA micromhos/cm

Well Number: (WS4)

Project: MDU Ash Disposal Program

Construction Data:

Location: 139-81-10DBA

Elevation: Ground; 1659.61 ft. Casing top; 1662.61 ft.

Well Bottom; 1607.60 ft.

Completion: Date drilled; 9-24-81

Driller; Water Supply, Inc.

Method of drilling; NA

Boring: Diameter; NA in. Depth drilled; 52 ft.

Encountered water (below surface); NA ft.

Diameter; 2 in. Casing: Material; Sch. 40 PVC

Depths (from ground); +3-30, 35-52 ft.

Screen: Slot size;

Diameter; 2 in. Slot size; Material; Factory slotted PVC

Depths (from ground); 30-35 ft. Elevation of interval; 1624.60-1629.60 ft.

Sand Pack: Type of sand; Washed sand

Depths (from ground); 27-36 ft.

Grout Seal: Depths (from ground); 0-26 ft.

Date sealed; NA

Additional Data:

Static Water Level: Date; 9-4-86

Depth; 19.62 ft. below top of casing

Elevation; 1642.99 ft.

Chemistry: Date; NA

pH; NA Sp. cond; NA micromhos/cm

Well Number: (WS4A)

Project: MDU Ash Disposal Program

Construction Data:

Location: 139-81-10DBA

Elevation: Ground; 1659.49 ft. Casing top; 1662.49 ft.

Well Bottom; 1641.50 ft.

Completion: Date drilled; 9-24-81

Driller; Water Supply, Inc.

Method of drilling; NA

Boring: Diameter; NA in. Depth drilled; 18 ft.

Encountered water (below surface); NA ft.

Casing: Diameter; 2 in. Material; Sch. 40 PVC

Depths (from ground); +3-13 ft.

Screen: Slot size; 20

Diameter; 2 in. Slot size; Material; Factory slotted PVC Depths (from ground); 13-18

Elevation of interval; 1641.50-1646.50 ft.

Sand Pack: Type of sand; Washed sand

Depths (from ground); 11-18 ft.

Depths (from ground); 0-11 ft. Grout Seal:

Date sealed; NA

Additional Data:

Static Water Level: Date; 9-4-86

Depth; 17.29 ft. below top of casing

Elevation; 1645.20 ft.

Chemistry: Date; NA

pH: NA Sp. cond; NA micromhos/cm

Well Number: (WS4B)

Project: MDU Ash Disposal Program

Construction Data:

Location: 139-81-10DBA

Elevation: Ground; 1659.75 ft. Casing top; 1662.75 ft.

Well Bottom; 1635.80 ft.

Completion: Date drilled; 8-5-85

Driller; Water Supply, Inc.

Method of drilling; NA

Boring: Diameter; NA in. Depth drilled; 25 ft.

Encountered water (below surface); NA ft.

Casing: Diameter; 2 in. Material; Sch. 40 PVC

Depths (from ground); +3.1-19.0 ft.

Screen: Slot size;

Diameter; 2 in. Slot size; Material; Factory slotted PVC Depths (from ground); 19-24 ft.

Elevation of interval; 1635.80-1640.80 ft.

Sand Pack: Type of sand; Washed sand

Depths (from ground); 18-25 ft.

Grout Seal: Depths (from ground); 0-18 ft.

Date sealed; NA

Additional Data:

Static Water Level: Date; 9-4-86

Depth; 17.39 ft. below top of casing

Elevation; 1645.36 ft.

Chemistry: Date; NA

pH; NA Sp. cond; NA micromhos/cm

EXHIBIT 5-D

GEOPHYSICAL LOGS

EXHIBIT 5-E

LITHOLOGIC LOGS

- Wells 10, 11, 12 and 13
 0-1 Top soil, silty, clayey, sandy, brown, calcareous; with some limestone pebbles.
- 1-11 Silt, clayey, brownish-tan, slightly indurated, very dry, calcareous; with thin coarse-grained, clean silt lenses and a few small (less than .5 in.) iron oxide concretions. Abundant small gypsum crystals (less than .13 in. long). Some small, black flakes of organic plant material. Cannonball-Ludlow Formations.
- Silt, as above, with some (less than 20%) very fine- to fine-grained sand interspersed.
- 14-30 Silt, as above, clayey, less sand than above interval, oxidized; with very fine-grained silty sand lenses and very few gypsum crystals.
- Silt, very clayey, with some (less than 20%) very fine-grained sand interspersed, steel-gray (color change), moderately indurated; with fewer small gypsum crystals than above intervals.
- Silt, as above, very clayey, with some (less than 20%) fine- to medium-grained sand interspersed in a silt and clay matrix.
- 59-65 Silt, as above, with abundant (more than 20%) fine- to medium-grained sand interspersed.
- Silt, clayey, steel-gray to bluish, moderately indurated; with thin coarse-grained silt to very fine-grained sand lenses in an otherwise fine silt to clay matrix.
- Clay, silty, steel-gray to bluish, moderately indurated, dense.
- Siltstone, sandy, clayey, steel-gray to bluish, slightly indurated; with small fine-grained sand lenses and abundant (more than 20%) sand interspersed in the matrix.
- 91-110 Silt, clayey, bluish-gray, moderately indurated; with thin (less than 1 foot) mudstone lenses.
- 110-120 Silt, very clayey, steel-gray to bluish, moderately indurated, very dense. Cannonball-Ludlow Formations.

Wells 20 and 21

- O-1 Top soil, silty, sandy, clayey, dark-brown, calcareous; with some limestone and granite pebbles.
- Silt, clayey, with minor amounts (less than 10%) of very fine-grained sand interspersed, brownish-tan, slightly indurated, calcareous, oxidized; with small iron oxide concretions and abundant small gypsum crystals.

 Cannonball-Ludlow Formations.
- 21-26 Silt, as above, steel-gray (color change).
- Silt, clayey, with some (less than 20%) very fine- to medium-grained sand interspersed, steel-gray to bluish, slightly indurated; with very few small gypsum crystals and some thin (less than 1 foot) siltstone lenses.
- 49-53 Silt, as above, with abundant (more than 20%) fine- to medium-grained sand interspersed.
- 53-63 Silt, as above, clayey, less sand, with thin (less than 1 foot) siltstone to mudstone lenses.
- 63-80 Silt, very clayey, steel-gray to bluish, moderately indurated, very dense. Cannonball-Ludlow Formations.

Wells 30, 31, 32 and 33

- O-1 Top soil, silty, sandy, brownish, calcareous; with some granite and limestone pebbles.
- 1+2 Pebble-loam (glacial till), silty, sandy, clayey, yellowish-brown, dry, calcareous.
- 2-31 Silt, clayey, with minor amounts (less than 10%) of very fine-grained sand interspersed, brownish-tan, slightly indurated, calcareous, oxidized; with small iron oxide concretions. Some small, black flakes organic plant material. Cannonball-Ludlow Formations.
- Silt, clayey, steel-gray (color change), slightly indurated, calcareous; with small iron oxide concretions, thin coarse silt lenses, small gypsum crystals and gray to reddish-brown mottling.

- Silt, as above, with some (less than 20%) fineto medium-grained sand interspersed.

 Silt, as above, with abundant (more than 20%)
- fine- to medium-grained sand interspersed, dense.

 Silt, as above, clayey, less sand, some thin
- 65-76 Silt, as above, clayey, less sand, some thin (less than 1 foot) lenses of siltstone to mudstone.
- 76-80 Siltstone, sandy, clayey, steel-gray to bluish, slightly indurated; with small fine-grained sand lenses and abundant (more than 20%) fine-grained sand interspersed in the matrix.
- 80-92 Silt, clayey, steel-gray to bluish, moderately indurated, with some (less than 20%) very fine- to fine grained sand interspersed.
- 92-120 Silt, very clayey, steel-gray to bluish, moderately indurated, very dense. Cannonball-Ludlow Formations.
- Well 40 0-1 Top soil, sandy, silty, brownish-tan, calcareous; with some granite and limestone pebbles.
- Pebble-loam (glacial till), sandy, silty, with detrital lignite and organic matter, yellowish-brown, very dry, calcareous.
- 5-22 Sand, very fine- to medium-grained, unconsolidated, with thin lenses of clay and detrital lignite, brownish-yellow, calcareous.
- Silt, clayey, with minor amounts (less than 10%) very fine-grained sand interspersed, brownish-tan, slightly indurated, calcareous, oxidized; with small iron oxide concretions and small gypsum crystals; Cannonball-Ludlow Formations.
- Silt, clayey, with minor amounts (less than 10%) of very fine-grained sand interspersed, steel-gray (color change), moderately indurated; with some reddish-brown mottling and some very thin (less than 6 inches) mudstone lenses.
- 51-58 Silt, as above, with abundant (more than 20%) fine-grained sand and thin silty-clay lenses.

- Siltstone, sandy, clayey, steel-gray to bluish, moderately indurated; with small fine-grained sand lenses and abundant (more than 20%) sand interspersed in the matrix.
- Silt, clayey, with some (less than 20%) fine- to medium-grained sand interspersed, steel-gray to bluish, moderately indurated; with thin (less than 2 feet) sandy lenses.
- 70-80 Silt, as above, very clayey, some (less than 10%) fine-grained sand interspersed; less sand than above interval.
- 80-120 Silt, as above, dark-steel-gray. Cannonball-Ludlow Formations.

Wells 41, 42 and 43 O-1 Top soil, sandy, silty, dark-brown, calcareous; with some granite and limestone pebbles.

- 1-4 Pebble-loam (glacial till), sandy, silty, clayey, yellowish-brown, very dry, calcareous.
- 4-40 Silt, clayey, with some (less than 20%) very fine-grained sand interspersed, brownish-tan, unconsolidated, noncompacted, calcareous to 25 feet, oxidized; with small iron oxide concretions and abundant small gypsum crystals.

 Cannonball-Ludlow Formations.
- Silt, clayey, with minor amounts (less than 10%) of very fine-grained sand interspersed, steel-gray (color change), moderately indurated; with some reddish-brown mottling and some very thin (less than 6 inches) mudstone lenses.
- 51-58 Silt, as above, with abundant (more than 20%) fine-grained sand and thin silty-clay lenses.
- 58-62 Siltstone, sandy, clayey, steel-gray to bluish, moderately indurated; with small fine-grained sand lenses and abundant (more than 20%) sand interspersed in the matrix.
- 62-70 Silt, clayey, with some (less than 20%) fine- to medium-grained sand interspersed, steel-gray to bluish, moderately indurated; with thin (less than 2 feet) sandy lenses.

30-40 Silt, as above, very clayey, less sand than above interval, dark-steel-gray. Cannonball-Ludlow Formations.

Wells 53 and 54 0-4 Top soil, clayey, silty, very dark-brown, wet, sticky.

- 4-15 Clay, silty, with some (less than 20%) fine- to medium-grained sand interspersed, brownish-tan, slightly indurated, dry, calcareous; with small iron oxide concretions, small gypsum crystals and occasional reddish-brown mottling; Cannonball-Ludlow Formations.
- Sand, very fine-grained to medium-grained, silty, clayey, unconsolidated, yellowish-brown, oxidized.
- 20-30 Silt, clayey, with some (less than 20%) fine-grained sand interspersed, steel-gray (color change), slightly indurated; with clay and sand lenses, some small concretions and some small gypsum crystals.
- 30-45 Silt, as above, very clayey.
- 45-60 Silt, as above, clayey, brownish-gray, moderately indurated, some reddish-brown mottling.

 Cannonball-Ludlow Formations.

Wells 55 and 56 0-5 Sandy-loam (glacial), with fine- to medium-grained sand, silty, calcareous; with small granite and limestone pebbles.

- Clay, silty, with minor amounts (less than 10%) of very fine-grained sand, dark-brownish-tan, moderately indurated, brittle, very dry, calcareous; with small iron oxide concretions, small gypsum crystals and occasional thin sandstone laminae. Some small, black flakes of organic plant material. Cannonball-Ludlow Formations.
- 26-35 Clay, as above, very silty, sandy, brownish-tan, oxidized.

- Silt, clayey, with some (less than 20%) very fine- to fine-grained sand interspersed, steel-gray (color change) moderately indurated; with small gypsum crystals and occasional clay lenses.
- Silt, as above, with minor amounts (less than 10%) of fine-grained sand interspersed.
- 60-85 Silt, as above, clayey, less sand than above interval.
- Silt, as above, very clayey, with minor amounts (less than 10%) of sand interspersed, light-gray. Cannonball-Ludlow Formations.
- Wells 60, 61 and 62

 Top soil, silty, clayey, dark-brown to tanish-brown, calcareous.
- 2-25 Silt, very clayey, with some minor amounts (less than 10%) of very fine- to fine-grained sand interspersed, brownish-tan, slightly indurated, dry, calcareous; with abundant small gypsum crystals and thin silt and sand lenses; Cannonball-Ludlow Formations.
- Silt, as above, with abundant (more than 20%) fine- to medium-grained sand interspersed.
- 29-36 Silt, as above, clayey, less sand than above interval, dark-brownish-tan, oxidized.
- Silt, very clayey, with some (less than 20%) very fine-grained sand interspersed, steel-gray (color change), moderately indurated; with thin (less than 1 foot) sandy-silt lenses.

 Cannonball-Ludlow Formations.
- Well 70 0-2 Pebble-loam (glacial till), clayey, sandy, yellowish-brown, unconsolidated, damp, calcareous.
- 2-21 Silty, clayey, with some (less than 20%) fine-grained sand interspersed, brownish-tan, moderately indurated, very dry, calcareous, oxidized; with small iron oxide concretions and abundant small gypsum crystals. Cannonball-Ludlow Formations.

Shale, silty, steel- to dark-gray (color change), 21-24 indurated, fissile, very dry; with occasional thin silt and sand lenses. 24-31 Silt, clayey, with abundant (more than 30%) sand, steel-gray, moderately indurated. Silt, clayey, with some (less than 20%) very 31-62 fine- to fine- grained sand interspersed, steel-gray, moderately indurated; with some small gypsum crystals and small iron oxide concretions. 62-76 Silt, as above, with some (less than 20%) fine-grained sand interspersed. 76-82 Silt, as above, with abundant (more than 20%) fine- to medium-grained sand. 82-100 Silt, as above, clayey, with some (less than 20%) fine-grained sand interspersed, dark-gray. Cannonball-Ludlow Formations.

EXHIBIT 5-F

SITE SOILS CLASSIFICATION MAP

EXHIBIT 5-G

WATER LEVEL DATA

WELL DATA

WELL	TOP	GROUND	3-1-1-1		CASING
NO.	OF CASE	SURFACE	SCREENED	INTERVAL	HEIGHT
	***************************************	total state state state salar salar			
10	1725.01	1722.06	1604.01		2.95
11	1725.01	1722.10	1642.81		2.91
12	1724.90	1721.88	1643.51		3.02
13	1724.98	1721.80	1681.51		3.18
20	1709.48	1707.04	1627.48		2.44
21	1709.40	1707.22	1661.90		2.18
30	1717.64	1715.55	1595.64		2.09
31	1717.58	1715.24	1635.58		2.34
32	1717.79	1715.34	1641.69		2.45
33	1717.91	1715.48	1669.69	to 1689.69	2.43
40	1710.15	1708.02	1592.25	to 1596.25	2.13
41	1710.07	1708.03	1626.77		2.04
42	1710.31	1708.12	1652.61	to 1672.61	2.19
43	1711.03	1708.92	1650.14		2.11
44	1711.40	1709.09	1685.88		2.31
45	1710.17	1708.34	1667.61		1.83
50	1677.01	1674.58	1647.51	to 1667.51	2.43
51	1676.70	1674.47	1637.33		2.23
52	1676.71	1674.45	1658.01	to 1668.01	2.26
53	1688.17	1685.71	1665.70		2.46
54	1688.10	1685.71	1633.11	to 1638.11	2.39
55	1696.10	1693.86	1636.95	to 1661.95	2.24
56	1696.42	1693.86	1597.99		2.56
60	1716.42	1714.23	1662.02		2.19
61	1716.53	1714.23	1670.89	to 1700.89	2.30
62	1716.67	1714.32	1681.40	to 1701.40	2.35
70	1735.67	1733.18	1634.57	to 1638.57	2.49
WS2	1698.64	1696.00	1635.00	to 1640.00	2.64
WS1	1681.71	1679.61	1634.61	to 1639.61	2.10
WS1	1683.67 as				4.06
WS1A	1682.23	1679.10	1657.10	to 1662.10	3.13
WS1B	1682.07	1678.80	1648.80	to 1653.80	3.27
WS4	1662.61	1659.61	1624.60	to 1629.60	3.00
WS4A	1662.49	1659.49	1641.50	to 1646.50	3.00
WS4B	1662.75	1659.75	1635.80	to 1640.80	3.00
WS3	1661.00	1658.00	1628.00		3.00
WS3A	1660.81	1657.70	1645.31	to 1650.31	3.11

CASING ON WELL WS1 WAS REPAIRED IN JANUARY, 1987

ALL VALUES ARE IN FEET ABOVE MEAN SEA LEVEL

SWL-TOP = STATIC WATER LEVEL (in feet) FROM TOP OF CASING SWL-MSL = STATIC WATER LEVEL (in feet) AT MEAN SEA LEVEL SWL-BLS = STATIC WATER LEVEL (in feet) BELOW LAND SURFACE

WELL				
NO.	DATE	SWL-TOP	SWL-MSL	SWL-BLS
10	9-11-86	51.64	1673.37	48.69
	10-16-86	53.32	1671.69	50.37
	11-21-86	53.58	1671.43	50.63
	1-13-87	53.71	1671.30	50.76
	3-6-87	53.61	1671.40	50.66
	4-21-87	53.45	1671.56	50.50
	6-3-87		1671.53	50.53
	5-11-88	54.79	1670.22	51.84
	9-12-88	55.05	1669.96	52.10
	1-4-89	56.33	1668.68	53.38
11	9-11-86	42.42	1682.59	39.51
	10-16-86	41.47	1683.54	38.56
	11-21-86	40.88	1684.13	37.97
	1-13-87	40.72	1684.29	37.81
		40.59	1684.42	37.68
		40.72	1684.29	37.81
		40.65	1684.36	37.74
		42.62	1682.39	39.71
		43.67	1681.34	40.76
	1-4-89	44.10	1680.91	41.19
12	9-11-86	42.42	1682.48	39.40
	10-16-86	40.55	1684.35	37.53
	11-21-86	40.00	1684.90	36.98
	1-13-87	39.86	1685.04	36.84
	3-6-87	39.77	1685.13	36.75
	4-21-87	39.83	1685.07	36.81
	6-3-87	39.90	1685.00	36.88
	5-11-88	41.90	1683.00	38.88
		43.21	1681.69	40.19
	1-4-89	43.37	1681.53	40.35
13	12-15-86	30.09	1694.89	26.91
	1-13-87	29.99	1694.99	26.81
	3-6-87	30.15	1694.83	26.97
	4-21-87	29.92	1695.06	26.74
	6-3-87	29.86	1695.12	26.68
	5-11-88	31.27	1693.71	28.09
	9-12-88	31.53	1693.45	28.35
	1-4-89	31.69	1693.29	28.51

WELL				
NO.	DATE	SWL-TOP	SWL-MSL	SWL-BLS
20	9-11-86	37.17	1672.31	34.73
	10-16-86	36.85	1672.63	34.41
	11-21-86	36.75	1672.73	34.31
	1-13-87	36.68	1672.80	34.24
	3-6-87	35.09	1674.39	32.65
	4-21-87	35.73	1673.75	33.29
	6-3-87		1673.55	33.49
	5-11-88		1671.55	35.49
	9-12-88	39.80	1669.68	37.36
	1-4-89	40.16	1669.32	37.72
21	9-11-86	29.17	1680.23	26.99
	10-16-86	28.94	1680.46	26.76
	11-21-86	28.61	1680.79	26.43
	1-13-87	28.51	1680.89	26.33
	3-6-87	28.41	1680.99	26.23
	4-21-87	27.95	1681.45	25.77
	6-3-87	28.12	1681.28	25.94
	5-11-88	30.77	1678.63	28.59
	9-12-88	32.22	1677.18	30.04
	1-4-89	33.07	1676.33	30.89

	WELL				
		DATE	CHI TOD	CUIL MCI	CILL DIC
	NO.	DATE	SWL-TOP	SWL-MSL	SWL-BLS
•	20	0 11 04	40.00	4.4.0.04	4 - ^
	30	9-11-86		1668.26	47.29
		10-16-86		1668.29	47.26
		11-21-86		1668.36	47.19
		1-13-87		1668.49	47.06
		3-6-87	48.53	1669.11	46.44
		4-21-87		1669.54	46.01
		6-3-87	48.36	1669.28	46.27
		5-11-88	50.36	1667.28	48.27
		9-12-88	51.97	1665.67	49.88
		1-4-89	52.40	1665.24	50.31
	31	9-11-86	43.21	1674.37	40.87
	100	10-16-86		1673.84	41.40
		11-21-86		1673.84	41.40
		1-13-87		1674.17	41.07
		3-6-87		1674.99	40.25
		4-21-87		1675.32	39.92
		6-3-87		1674.99	40.25
		5-11-88			
				1672.57	42.67
		9-12-88		1670.70	44.54
		1-4-89	47.31	1670.27	44.97
	22	0 11 01	40 50	4 4 7 7 7 7 7	40.07
	32	9-11-86		1675.27	40.07
		10-16-86		1675.76	39.58
		11-21-86	41.87	1675.92	39.42
		1-13-87	41.18	1676.61	38.73
			40.29	1677.50	37.84
		4-21-87		1677.79	37.55
		6-3-87		1677.40	37.94
		5-11-88	43.18	1674.61	40.73
		9-12-88	45.18	1672.61	42.73
		1-4-89	45.65	1672.14	43.20
	33	12-15-86	40.68	1677.23	38.25
	33	1-13-87	40.72	1677.19	
					38.29
		3-6-87	39.73	1678.18	37.30
		4-21-87	39.01	1678.90	36.58
		6-3-87	39.54	1678.37	37.11
		5-11-88	42.06	1675.85	39.63
		9-12-88	43.57	1674.34	41.14
		1-4-89	44.03	1673.88	41.60

WELL	pro, A vapo prom	AII	C14 MC1	
NO.	DATE	SWL-TOP	SWL-MSL	SWL-BLS
40	0-11-96	40.00	1444 22	61 60
40	9-11-86 10-16-86	63.82	1646.33	61.69
		63.68	1646.47	61.55
	11-21-86	63.29	1646.86	61.16
	1-13-87	63.39	1646.76	61.26
	3-6-87	63.06	1647.09	60.93
	4-21-87 6-3-87	63.16	1646.99	61.03
		63.26	1646.89	61.13
		63.36	1646.79	61.23
	1-4-89	63.72 63.89	1646.43	61.59
	1-4-69	63.69	1646.26	61.76
41	9-11-86	36.29	1673.78	34.25
	10-16-86	36.09	1673.98	34.05
	11-21-86	35.93	1674.14	33.89
	1-13-87	36.16	1673.91	34.12
		35.83	1674.24	33.79
	4-21-87	35.43	1674.64	33.39
	6-3-87	35.63	1674.44	33.59
	5-11-88	37.40	1672.67	35.36
	9-12-88	39.21	1670.86	37.17
	1-4-89	39.70	1670.37	37.66
4.00				
42	9-11-86	33.30	1677.01	31.11
	10-16-86	32.74	1677.57	30.55
	11-21-86	31.43	1678.88	29.24
	1-13-87	31.46	1678.85	29.27
	3-6-87	31.27	1679.04	29.08
	4-21-87	31.20	1679.11	29.01
	6-3-87	31.30	1679.01	29.11
	5-11-88	32.61	1677.70	30.42
	9-12-88	33.96	1676.35	31.77
	1-4-89	34.12	1676.19	31.93
45	12-15-86	28.71	1681.46	26.88
· -	1-13-87	28.58	1681.59	26.75
	3-6-87	28.48	1681.69	26.65
	4-21-87	28.58	1681.59	26.75
	6-3-87	28.71	1681.46	26.88
	5-11-88	29.89	1680.28	28.06
	9-12-88	30.84	1679.33	29.01
	1-4-89	30.97	1679.20	29.14

WELL				
NO	DATE	SWL-TOP	SWL-MSL	SWL-BLS
	-		~~ ~~ ~~ ~~ ~~ ~~ ~~	
43	10-16-86	26.02	1685.01	23.91
	11-21-86	25.82	1685.21	23.71
	1-13-87	26.08	1684.95	23.97
	3-6-87	25.89	1685.14	23.78
	4-21-87	26.12	1684.91	24.01
	6-3-87	26.58	1684.45	24.47
	5-11-88	27.56	1683.47	25.45
	9-12-88	29.92	1681.11	27.81
	1-4-89	29.20	1681.83	27.09
4.4				
44				
	10-16-86	21.98	1689.42	19.67
	11-21-86	21.85	1689.55	19.54
	1-13-87	22.15	1689.25	19.84
	3-6-87	22.05	1689.35	19.74
	4-21-87	21.72	1689.68	19.41
	6-3-87	22.21	1689.19	19.90
	5-11-88	23.46	1687.94	21.15
	9-12-88	dry		
	1-4-89	24.87	1686.53	22.56

WELL				
NO.	DATE	SWL-TOP	SWL-MSL	SWL-BLS
···· ··· ··· ··· ··· ··· ··· ··· ··· ·			****	****
50	9-11-86	5.45	1671.56	3.02
	10-16-86	4.53	1672.48	2.10
	11-21-86	4.17	1672.84	1.74
	1-13-87	4.76	1672.25	2.33
	3-6-87	not taker	n .	
	4-21-87	3.74	1673.27	1.31
	6-3-87	4.33	1672.68	1.90
	5-11-88	5.41	1671.60	2.98
	9-12-88	7.87	1669.14	5.44
	1-4-89	7.97	1669.04	5.54
51	10-16-86	6.43	1670.27	4.20
	11-21-86	6.07	1670.63	3.84
	1-13-87	6.30	1670.40	4.07
	3-6-87	5.94	1670.76	3.71
	4-21-87	5.45	1671.25	3.22
	6-3-87	5.74	1670.96	3.51
	5-11-88	7.35	1669.35	5.12
	9-12-88	9.61	1667.09	7.38
	1-4-89	9.81	1666.89	7.58
52	10-16-86	4.43	1672.28	2.17
	11-21-86	4.07	1672.64	1.81
	1-13-87	4.56	1672.15	2.30
	3-6-87	3.81	1672.90	1.55
	4-21-87	3.61	1673.10	1.35
	6-3-87	4.20	1672.51	1.94
	5-11-88	4.99	1671.72	2.73
	9-12-88	7.81	1668.90	5.55
	1-4-89	7.89	1668.82	5.63

	WELL	DATE	CLUTOD	CIII MCI	CUIL DI C
-	NO.	DATE	SWL-TOP	SWL-MSL	SWL-BLS
	53	10-16-86	6.66	1681.51	4.20
		11-21-86	6.46	1681.71	4.00
		1-13-87	6.92	1681.25	4.46
		3-6-87	7.55	1680.62	5.09
		4-21-87	6.17	1682.00	3.71
		6-3-87	7.32	1680.85	4.86
		5-11-88	7.51	1680.66	5.05
		9-12-88	11.25	1676.92	8.79
		1-4-89	10.93	1677.24	8.47
	54	10-16-86	21.36	1666.74	18.97
		11-21-86	20.97	1667.13	18.58
		1-13-87	20.87	1667.23	18.48
		3-6-87	21.00	1667.10	18.61
		4-21-87	20.70	1667.40	18.31
		6-3-87	20.54	1667.56	18.15
		5-11-88	22.28	1665.82	19.89
		9-12-88	23.13	1664.97	20.74
		1-4-89	23.62	1664.48	21.23
	55	10-16-86	29.46	1666.64	27.22
		11-21-86	29.50	1666.60	27.26
		1-13-87	29.56	1666.54	27.32
		3-6-87	29.30	1666.80	27.06
		4-21-87	29.30	1666.80	27.06
		6-3-87	29.13	1666.97	26.89
		5-11-88	29.86	1666.24	27.62
		9-12-88	30.35	1665.75	28.11
		1-4-89	29.66	1666.44	27.42
	56	10-16-86	42.52	1653.90	39.96
		11-21-86	39.93	1656.49	37.37
		1-13-87	39.96	1656.46	37.40
		3-6-87	39.83	1656.59	37.27
		4-21-87	39.40	1657.02	36.84
		6-3-87	39.54	1656.88	36.98
		5-11-88	41.08	1655.34	38.52
		9-12-88	42.06	1654.36	39.50
		1-4-89	42.88	1653.54	40.32

	WELL NO.	DATE	SWL-TOP	SWL-MSL	SWL-BLS
**************************************	60	6-3-87	32.58 32.51 32.35 32.35 32.51 32.29 32.25 34.61 35.47 35.92	1683.84 1683.91 1684.07 1684.07 1683.91 1684.13 1684.17 1681.81 1680.95 1680.50	30.39 30.32 30.16 30.16 30.32 30.10 30.06 32.42 33.28 33.73
	61	1-13-87 3-6-87 4-21-87	32.32 34.65	1683.98 1684.15 1684.15 1683.98 1684.21 1684.21 1681.88 1681.06 1680.57	30.25 30.08 30.08 30.25 30.02 30.02 32.35 33.17 33.66
	62		32.74 32.55 32.51 32.71 32.48 32.48 34.81 dry dry	1683.93 1684.12 1684.16 1683.96 1684.19 1684.19 1681.86	30.39 30.20 30.16 30.36 30.13 30.13 32.46
	70	1-13-87 3-6-87 4-21-87 6-3-87 5-11-88	54.53 54.43	1680.65 1680.68 1681.11 1681.21 1681.27 1681.14 1681.24 1681.11 1680.85 1680.75	52.53 52.50 52.07 51.97 51.91 52.04 51.94 52.07 52.33 52.43

WELL				
 NO.	DATE	SWL-TOP	P SWL-MSL	SWL-BLS
WS1	9-4-86	25.00	1656.71	22.90
	10-16-86	25.13	1656.58	23.03
	11-21-86	25.56	1656.15	23.46
	1-13-87*	28.15	1655.52	24.09
	3-6-87		1656.90	22.71
	4-21-87		1658.70	20.91
	6-3-87		1658.31	21.30
	5-11-88		1654.67	24.94
	9-12-88		1653.35	26.26
	1-4-89		1653.81	25.80
	* = WELL			25.60
WS1A	9-4-86	dry		
	10-16-86	dry		
	11-21-86	dry		
	1-13-87	dry		*
	3-6-87	24.31	1657.92	21.18
	4-21-87	22.18	1660.05	19.05
	6-3-87	22.38	1659.85	19.25
	5-11-88	dry	1007.00	*/ · **
	9-12-88	dry		
	1-4-89	dry		
WS1B	9-4-86	25.33	1656.74	22.06
	10-16-86	25.53	1656.54	22.26
	11-21-86	26.08	1655.99	22.81
	1-13-87	27.07	1655.00	23.80
	3-6-87	24.35	1657.72	21.08
	4-21-87	21.82	1660.25	18.55
	6-3-87	22.77	1659.30	19.50
	5-11-88	28.22	1653.85	24.95
	9-12-88	30.18	1651.89	26.91
	1-4-89	29.92	1652.15	26.65
WS2	9-4-86	33.96	1664.68	31.32
	10-16-86	33.66	1664.98	31.02
	11-21-86	33.47	1665.17	30.83
	1-13-87	33.79	1664.85	31.15
	3-6-87	33.73	1664.91	31.09
	4-21-87	32.91	1665.73	30.27
	6-3-87	33.04	1665.60	30.40
	5-11-88	35.33	1663.31	32.69
	9-12-88	36.68	1661.96	34.04
	1-4-89	37.17	1661.47	34.53

WELL NO.	DATE	SWL-TOP	SWL-MSL	SWL-BLS
WS3	9-4-86	14.67	1646.33	11.67
	10-16-86	14.44	1646.56	11.44
	11-21-86	14.40	1646.60	11.40
	1-13-87	13.98	1647.02	10.98
	3-6-87	14.80	1646.20	11.80
	4-21-87	13.94	1647.06	10.94
	6-3-87	14.60	1646.40	11.60
	5-11-88	17.52	1643.48	14.52
	9-12-88	17.88	1643.12	14.88
	1-4-89	17.68	1643.32	14.68
WS3A	10-16-86	8.30	1652.51	5.19
	11-21-86	8.43	1652.38	5.32
	1-13-87	9.55	1651.26	6.44
	3-6-87	10.17	1650.64	7.06
	4-21-87	6.82	1653.99	3.71
	6-3-87	8.73	1652.08	5.62
	5-11-88	13.71	1647.10	10.60
	9-12-88	13.81	1647.00	10.70
	1-4-89	14.73	1646.08	11.62
WS4 -	9-4-86 10-16-86 11-21-86 1-13-87 3-6-87 4-21-87 6-3-87 5-11-88 9-12-88 1-4-89	19.62 19.52 19.42 18.83 19.16 19.00 19.39 21.46 21.95 21.23	1642.99 1643.09 1643.19 1643.45 1643.61 1643.22 1641.15 1640.66 1641.38	16.62 16.52 16.42 15.83 16.16 16.00 16.39 18.46 18.95 18.23
WS4A	9-4-86	17.29	1645.20	14.29
	10-16-86	17.16	1645.33	14.16
	11-21-86	17.13	1645.36	14.13
	1-13-87	17.39	1645.10	14.39
	3-6-87	17.62	1644.87	14.62
	4-21-87	15.81	1646.68	12.81
	6-3-87	16.93	1645.56	13.93
	5-11-88	19.36	1643.13	16.36
	9-12-88	20.11	1642.38	17.11
	1-4-89	19.75	1642.74	16.75
WS4B	9-4-86	17.39	1645.36	14.39
	10-16-86	17.23	1645.52	14.23
	11-21-86	17.16	1645.59	14.16
	1-13-87	17.42	1645.33	14.42
	3-6-87	17.65	1645.10	14.65
	4-21-87	15.81	1646.94	12.81
	6-3-87	17.06	1645.69	14.06
	5-11-88	19.55	1643.20	16.55
	9-12-88	20.28	1642.47	17.28
	1-4-89	19.92	1642.83	16.92

EXHIBIT 5-H

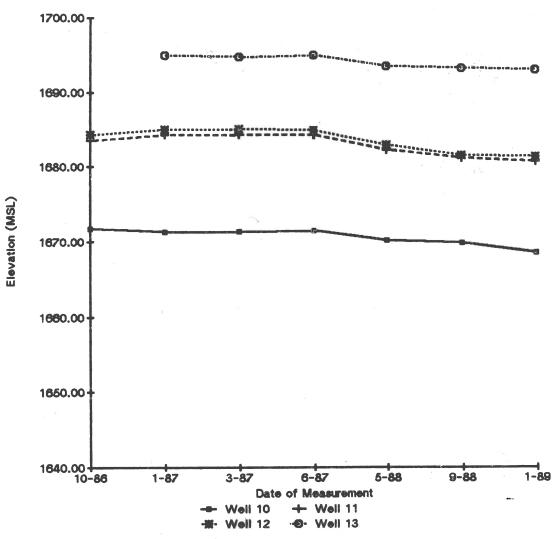
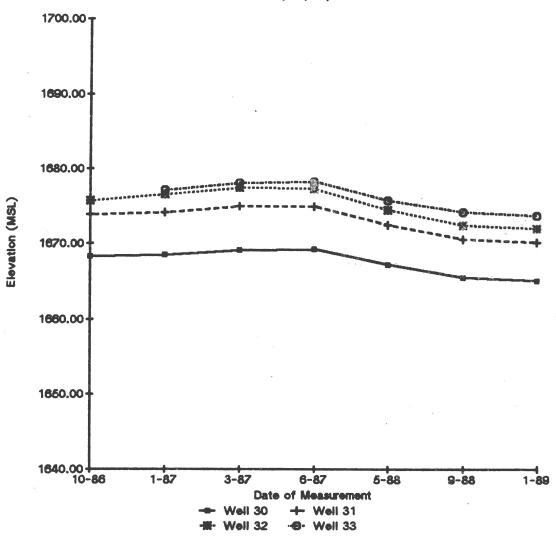
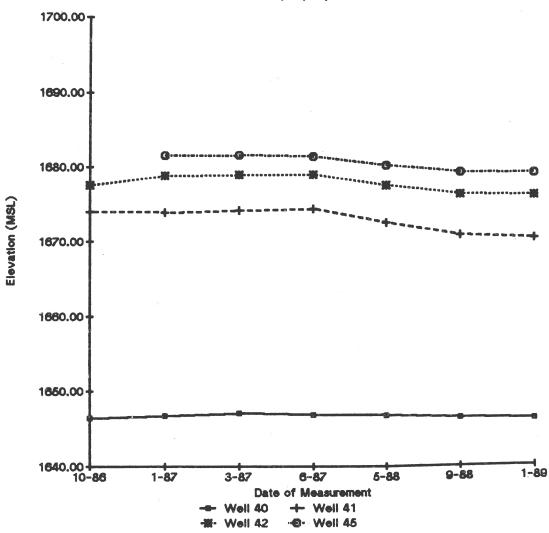

WATER TABLE ELEVATION CONTOUR MAP

EXHIBIT 5-I

SITE HYDROGRAPHS


HYDROGRAPH

Wells 10, 11, 12, 13


HYDROGRAPH

Wells 30, 31, 32, 33

HYDROGRAPH

Wells 40, 41, 42, 45

HYDROGRAPH

Wells 50, 51, 52

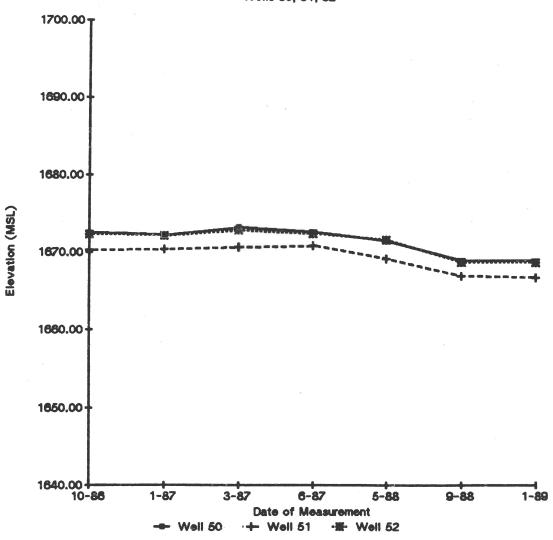


EXHIBIT 5-J

GROUNDWATER CHEMICAL ANALYSIS

Recommended

Constituent	Concentration Limit ¹
Total Dissolved Solids Sulfate (SO ₂) Chloride (Cf) Nitrate (NO ₃) Iron (Fe) Manganese (Mn) Copper (Cu) Zinc (Zn) Boron (B) Hydrogen Sulfide (H ₂ S)	(mg/L) 500 (mg/L) 250 (mg/L) 250 (mg/L) 45 (mg/L) 0.3 (mg/L) 0.05 (mg/L) 1.0 (mg/L) 1.0 (mg/L) 0.05
	Maximum Permissible Concentration ²
Arsenic (As) Antimony (Sb) Barium (Ba) Cadmium (Cd) Chromium (Cr) Lead (Pb) Mercury (Hg) Selenium (Se) Silver (Ag) Fluoride (F)	(mg/L) 0.05 (mg/L) 0.01 (mg/L) 1.0 (mg/L) 0.01 (mg/L) 0.05 (mg/L) 0.050 (mg/L) 0.002 (mg/L) 0.01 (mg/L) 0.050 (mg/L) 1.4-2.41
Organics: Cyanide Phenol Synthetic Detergents	(mg/L) 0.05 (mg/L) 0.001 (mg/L) 0.5

Recommended concentration limits for these constituents are mainly to provide esthetic and taste characteristics.

 $^{^{2}}$ Maximum permissible limits are set according to health criteria.

³Limit depends on average air temperature of the region; fluoride is toxic at about 5-10 mg/L if water is consumed over a long period of time.

Parameter		Well 10	Well 12	Well 30
Sample Collection Date Water Level Elevation; Screen Center Field Water Temp Field pH (standard Field Sp.Cond. (umbard Total Dissolved Solids Total Alkalinity as CaCO ₃ Bicarbonate (HCO ₃) Boron (B)	(ft) (ft) (°C) units) nos/cm) (mg/L) (mg/L) (mg/L)	9-11-86 51.6 1606.0 8.0 7.6 7370.0 9736.0 674.0 825.0	9-11-86 42.4 1653.5 8.4 7.2 8070.0 10396.0 645.0 789.0	9-11-86 49.4 1597.6 8.0 8.1 1350.0 1286.0 425.0 520.0
Calcium (Ca) Chloride (C1) Fluoride (F) Iron (Fe) Potassium (K) Magnesium (Mg) Nitrate (NO ₃) Sodium (Na) Sulfate (SO ₄)	(mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L)	339.0 20.8 0.3 <.2 16.0 302.0 <1 2232.0 6443.0	422.0 20.7 <.2 0.6 13.0 318.0 <1 2438.0 6818.0	33.0 2.1 0.4 <.2 5.8 34.0 <1 352.0 606.0
TRACE ELEMENTS: Arsenic (Ar) Barium (Ba) Cadmium (Cd) Chromium (Cr) Lead (Pb) Manganese (Mn) Mercury (Hg) Molybdenum (Mo) Selenium (Se) Silver (Ag)	(mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L)	<.002 0.090 0.0020 <.002 <.002 0.986 <.0003 0.018 <.002 <.001	.0025 0.157 0.0012 <.002 <.002 2.130 <.0003 <.010 <.002 <.001	<.002 0.030 <.001 <.002 <.002 0.124 <.0003 <.010 <.002 <.001

¹From top of PCV casing. TDS is calculated.

Parameter		Well 32	Well 40	Well 42
Sample Collection Date Water Level Elevation; Screen Center Field Water Temp Field pH (standard Field Sp.Cond. (um Total Dissolved Solids Total Alkalinity as CaCO ₃ Bicarbonate (HCO ₃) Boron (B) Calcium (Ca) Chloride (Cl) Fluoride (F) Iron (Fe) Potassium (K) Magnesium (Mg) Nitrate (NO ₃) Sodium (Na) Sulfate (SO ₄)	hos/cm) (mg/L)	9-11-86 42.5 1651.7 8.3 6.9 3150.0 3927.0 467.0 571.0 313.0 10.0 0.3 <.2 14.0 318.0 <1 464.0 2538.0	9-11-86 63.8 1594.3 8.6 7.5 4290.0 5333.0 565.0 691.0 422.0 15.2 0.2 <.2 12.0 136.0 <1 1047.0 3378.0	9-11-86 33.3 1662.6 8.5 7.0 3700.0 4658.0 424.0 519.0 432.0 46.8 0.3 0.3 15.0 250.0 4.3 648.0 3058.0
TRACE ELEMENTS: Arsenic (Ar) Barium (Ba) Cadmium (Cd) Chromium (Cr) Lead (Pb) Manganese (Mn) Mercury (Hg) Molybdenum (Mo) Selenium (Se) Silver (Ag) 1 From top of PCV casing. TDS is calculated.	(mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L)	<.002 0.093 <.001 <.002 <.002 0.462 <.0003 0.014 <.002 <.001	<.002 0.083 <.001 <.002 <.002 0.037 <.0003 <.010 0.005 <.001	<.002 0.198 <.001 <.002 <.002 0.670 <.0003 <.010 0.032 <.001

Parameter		Well 44	Well 50	Well 50
Sample Collection Date Water Level Elevation; Screen Center Field Water Temp Field pH (standard Field Sp.Cond. (umbard) Total Dissolved Solids Total Alkalinity as CaCO ₃ Bicarbonate (HCO ₃) Boron (B)	nos/cm) (mg/L)	11-21-86 21.85 1687.9 6.5 6.76 7580.0 11240.0 401.0 491.0	9-11-86 5.5 1657.5 9.7 7.5 4310.0 4999.0 418.0 511.0	11-21-86 4.17 1657.5 8.5 7.37 3620.0 5196.0 416.0 509.2
Calcium (Ca) Chloride (Cl) Fluoride (F) Iron (Fe) Potassium (K) Magnesium (Mg) Nitrate (NO ₃) Sodium (Na) Sulfate (SO ₄)	(mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L)	648.0 558.0 0.5 <0.2 51.0 1322.0 30.0 1589.0 7390.0	313.0 34.8 0.3 <.2 12.0 250.0 23.5 871.0 3302.0	391.0 33.0 <0.2 <0.2 13.0 257.0 112.0 902.0 3384.0
TRACE ELEMENTS: Arsenic (Ar) Barium (Ba) Cadmium (Cd) Chromium (Cr) Lead (Pb) Manganese (Mn) Mercury (Hg) Molybdenum (Mo) Selenium (Se) Silver (Ag) Phenol Oil & Grease	(mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L)	<.002 0.156 <.001 <0.001 <.005 0.218 <.0003 <.010 0.086 <.002 <1.0 <3.0	<.002 0.084 <.001 <.002 <.002 0.010 <.0003 <.010 0.055 <.001 <1.0 <3.0	<.002 0.128 <.001 0.003 <.005 0.005 <.0003 <.010 0.076 <.002 <1.0 <3.0

 $^{^{1}}_{2}$ From top of PCV casing. TDS is calculated.

Parameter		Well 52	Well 54	Well 55
Total Dissolved Solids' Total Alkalinity as CaCO ₃ Bicarbonate (HCO ₃)	(ft) (ft) (oC) units) nos/cm) (mg/L) (mg/L) (mg/L)	1-21-86 4.07 1663.0 8.7 7.38 4650.0 6072.0 424.0 519.0	11-21-86 20.97 1635.1 6.9 8.03 4570.0 7223.0 616.0 754.0	11-21-86 29.50 1648.9 7.5 6.81 9007.0 13081.0 528.0 646.3
Boron (B) Calcium (Ca) Chloride (C1) Fluoride (F) Iron (Fe) Potassium (K) Magnesium (Mg) Nitrate (NO ₃) Sodium (Na) Sulfate (SO ₄)	(mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L)	392.0 45.0 <0.2 <0.2 15.0 305.0 148.0 1115.0 3991.0	295.0 92.0 0.3 <0.2 13.0 439.0 6.0 1490.0 4617.0	445.0 81.0 0.7 <0.2 28.0 862.0 154.0 2423.0 9007.0
TRACE ELEMENTS: Arsenic (Ar) Barium (Ba) Cadmium (Cd) Chromium (Cr) Lead (Pb) Manganese (Mn) Mercury (Hg) Molybdenum (Mo) Selenium (Se) Silver (Ag) Phenol Oil & Grease	(mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L)	<.002 0.125 <.001 0.003 <.005 0.004 <.0003 <.010 0.088 <.002	<.002 0.105 <.001 0.003 <.005 1.080 <.0003 0.041 0.025 <.002 <1.0 <3.0	<.002 0.133 <.001 0.003 <.005 0.045 <.0003 <.010 0.386 <.002

 $^{^{1}}_{2}$ From top of PCV casing. TDS is calculated.

Parameter		Well 60	Well 70
Sample Collection Date Water Level Elevation; Screen Center Field Water Temp Field pH (standard Field Sp.Cond. (umbard) Total Dissolved Solids Total Alkalinity as CaCO ₃ Bicarbonate (HCO ₃) Boron (B)	(ft)	11-21-86	9-11-86
	(ft)	32.35	55.0
	(°C)	1677.0	1636.4
	units)	7.6	8.6
	nos/cm)	6.83	8.3
	(mg/L)	10440.0	10370.0
	(mg/L)	14917.0	13129.0
	(mg/L)	540.0	491.0
	(mg/L)	661.0	600.0
Calcium (Ca) Chloride (Cl) Fluoride (F) Iron (Fe) Potassium (K) Magnesium (Mg) Nitrate (NO ₃) Sodium (Na) Sulfate (SO ₄)	(mg/L)	417.0	192.0
	(mg/L)	208.0	10.9
	(mg/L)	0.5	0.3
	(mg/L)	<0.2	<.2
	(mg/L)	41.0	22.0
	(mg/L)	1355.0	121.0
	(mg/L)	170.0	<1
	(mg/L)	1148.0	3682.0
	(mg/L)	11632.0	8818.0
TRACE ELEMENTS: Arsenic (Ar) Barium (Ba) Cadmium (Cd) Chromium (Cr) Lead (Pb) Manganese (Mn) Mercury (Hg) Molybdenum (Mo) Selenium (Se) Silver (Ag) Phenol Oil & Grease	(mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L)	<.002 0.151 <.001 0.004 <.005 0.033 <.0003 <.010 0.195 <.002 <1.0 <3.0	.0032 0.080 0.0010 <.002 <.002 0.110 <.0003 0.017 <.002 <.001

 $^{^{1}}_{2}\mathrm{From}$ top of PCV casing. TDS is calculated.

GENERAL I. AMATION)	
Sample Location/I.D.	45	52	09	33	13	70
Casing Diameter	2" PVC	2" PVC	2" PVC	2" PVC	2" PVC	2" PVC
Total Well Depth	40، ځ	17' ?	3 .87	38, 2	5 .07	100' ?
Past Static Water Level	30.6	7.7'	35.8'	36.8'	31.9	54.85
Approximate Volume of Water	1.5 gal	1.5 gal	2 gal	.25 gal	1.5 gal	7.5 gal
STATIC LEVEL MEASUREMENT						
Date	12/19/88	12/19/88	12/19/88	12/19/88	12/19/88	12/19/88
Time	14:20	14:45	15:00	15:25	15:25 16:00	16:35
Datum	PVC Top	PVC Top	PVC Top	PVC Top	PVC Top	PVC Top
Measurement Equipment	SteelTape	SteelTape	SteelTape	SteelTabe	SteelTabe	SteelTane
Static Water Level	30.60	0 7.6	30.60 7.65 35.80	0 36.80	0 31.92	54.85
PRE-SAMPLING PREPARATION						

er		
PVCbaile	6 gal	
PVCbailer	1.5 gal	
PVCbailer	.5 gal	(dirty)
PVCbailer	2 gal	
PVCbailer	1 gal	
PVCbailer PVCbailer PVCbailer PVCbailer PVCbailer	1.5 gal	(dirty)

Pre-Sample Technique/Equip.

Volume Removed

SAMPLING

Date

Time

12/20/88 12/20/88 12/20/88 12/21/88 12/21/88 12/21/88 10:15 10:45 11:25 12:00 15:50 16:22 SteelTape SteelT
--

7	5.90	1190
7	5.60	2800
2	5.50	1400
2	5.80	7200
9	2.60	3800

6.40

		1 125ml 1 125ml	
liters *	125ml	1 125ml	105m]
7	7	-	-
liters	125ml	1 125ml	105m]
7	7	-	*
liters	125ml	1 125ml	105m]
7	7	-	-

1 125ml 125ml

DELIVERY

Unfiltered/Sulferic Acid

Sampling Technique/Equip.

Field Temperature (C)

Field Conductivity

Field pH

Samples Collected Raw-Unfiltered

Measurement Equipment

Static Water Level

Other (unfilter/untreat)

Filtered/Nitric Acid

12/20/88 - 12/22/88 Hand Delivered Delivered To Time Date

Minnesota Valley Testing Laboratories, Inc. 4:30 - 10:30

Cooler with Ice Delivery Container

COMMENTS

* Well 33 had insufficient water for any samples - field parameters taken Well 45 - samples were dirty

MINNESOTA VALLEY TESTING LABORATORIES, $\mathcal{G}_{nc.}$

1411 SOUTH 12TH STREET • P.O. BOX 1873 BISMARCK, NORTH DAKOTA 58502-1873 WATER ANALYSIS REPORT

Montana-Dakota Utilities 400 North Fourth Bismarck, ND 58501

Date: January 27, 1989

W.O. #: 82-045

Attention: John Verwey

Lab. #: M- 156

Sample Identification:

MDU - Heskett #13 15:50 CST

P.O. #: M04548

12/20/88

Date Received: 12/22/88

PHYSICAL PARAMETERS:		NUTRIENTS:		
Color units of apparent color			mg/l	
Conductivity micromhos/cm @ 25°C		Nitrite-Nitrogen as N	Vmg/l	
pH	7.2	Nitrate-Nitrogen as	Nmg/l	25.8
Solids (Total)mg/		Organic-Nitrogen	mg/l	
Solids (Total Dissolved) mg/	11967	Total - Kieldahl Nitre	ogen mg/l	
Solids (Total Suspended) mg/		Ortho-phosphate as	P mg/l	
Solids (Total Volatile)mg/		Phosphorus (Total)	as P mg/l	
Turbidity — NTU		Phosphorus (Dissolv	/ed) as Pmg/l	
COMMON IONS:		METALS:	red) as F	
Calcium mg/l	366.0		mg/l	
Magnesiummg/l		Iron (Total)	mg/l	
Sodium mg/l	1965.0	Manganese (Total)		
Potassiummg/l		MISCELLANEOUS:	· : : : : : : : : : : : : : : : : : : :	
Acidity as CaCO ₃ mg/l				
Alkalinity (Total) as CaCO ₃ mg/l		Biochemical Oxyger	n Demand mg/l	
Biçarbonate as CaCO ₃ mg/l	600	Chemical Oxygen F	Demand mg/l	
Bicarbonate as HCO ₃ mg/l		Cvanide	mg/l	
Carbonate as CaCO ₃ mg/l	0	Fecal Coliform Cour	at — Milliporo	
P-Alkalinity as CaCO ₃ mg/l				
Sulfatemg/l		Fluoride		0.62
Chloride mg/l			· · · · · · · · · · · · · · · · · · ·	
		Oil & Grease	mg/l	
Total Hardness as CaCO ₃ mg/l	3556	Phenois	mg/l	
Sodium Adsorption Ratio		Total Organic Carbo	on mg/l	
Cations		Total Plate Count ne	er 100ml	
Anions	164.2	Total Flato Godin po	37 7001111 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	-
% Error				
TRACE ELEMENTS:				
Aluminum mg/l (Cobalt	mg/l	Silver	ma// 0.034
		mg/l	Strontium	•
		mg/l = 0.11	Thallium	
		$\frac{1}{4}$ mg/l $\frac{1}{4}$	Thorium	
		mg/l _<0.05	Tin	
•		•	Titanium	
		${<0.100}$	Vanadium	
		mg/l	Zinc	
Chromiummg/l <0.050 S	elenium	ma/l <0.002		.mg/i
****** Metals are	reported as dissolv	red. unless otherwise ind	icated ******	

FIELD DATA:

T°C 7.0°C pH 5.90 31.85

Jathenin anno Phelps

MINNESOTA VALLEY TESTING LABORATORIES, $\mathcal{I}_{nc.}$

1411 SOUTH 12TH STREET • P.O. BOX 1873 BISMARCK, NORTH DAKOTA 58502-1873 WATER ANALYSIS REPORT

Montana-Dakota Utilities 400 North Fourth Bismarck, ND 58501

Date: January 24, 1989

W.O. #: 82-041

Attention: John Verwey

Lab. #: M- 145

Sample Identification:

MDU - Heskett #45 10:15 CST P.O. #: M04548

12-20-88

Date Received: 12-21-88

PHYSICAL PARAMETERS:		NUTRIENTS:		
Color units of apparent color				
Conductivity micromhos/cm @ 25°C	3937	Nitrite-Nitrogen as 1	mg/l N mg/l	
рН	7 5	Nitrate-Nitrogen as	N mg/l	1 6
Solids (Total)mg/l		Organic-Nitrogen as	ma/l	4.0
Solids (Total Dissolved)mg/l	3611	Total - Kieldahl Nitr	mg/l	
Solids (Total Suspended)mg/l		Ortho-phosphate as	ogen mg/l	
Solids (Total Volatile) mg/l		Phosphorus (Total)	P mg/l	
Turbidity — NTU		Phosphorus (Dissolv	as P mg/l	
COMMON IONS:		METALS:	ved) as P mg/l	
Calcium mg/l	465.0			
Magnesiummg/l		Iron (Total)		
Sodiummg/l	247 0	Manganasa (Tatal)	· · · · · · · · · · · · · · · · · · ·	
Potassiummg/l	11 7	MISCELLANEOUS:		
Acidity as CaCO ₃ mg/l			<i>u</i>	
Alkalinity (Total) as CaCO ₃ mg/l	340	Richamical Owner		
Bicarbonate as CaCO ₃ mg/l		Chamical Oxyger	n Demand mg/l	
Bicarbonate as HCO ₃ mg/l			Demand mg/l	
Carbonate as CaCO ₃ mg/l	0	Cyanide	mg/l	
P-Alkalinity as CaCO ₃ mg/l		Fecal Coliform Cour	nt — Millipore	
Sulfate		Fluorida		
Chloride		Iron Doctoria	mg/l	0.20
		Tron Bacteria		
Total Hardness as CaCO ₃ mg/l	1865	Oli & Grease		
Sodium Adsorption Ratio		Prienois	* * * *	
Cations		Total Organic Carbo	onmg/l	
Anions		Total Plate Count pe	er 100ml	
% Error	49.0	9		ĸ
TRACE ELEMENTS:				
	obalt	II	0.1	0.010
	obalt	-	Silver	mg/l 0.019
	opper	9	Strontium	. mg/l
	on		Thallium	.mg/l
	ead		Thorium	mg/l
	langanese		Tin	. mg/l
	lercury			. mg/l
		mg/l <u><0.10</u>	Vanadium	
	ickel		Zinc	, mg/l
9	elenium		*CEP	
Metals are	reported as dissolve	ed. unless otherwise inc	licated. *******	

FIELD DATA:

*Analysis completed by Controls for Environmental

Pollution; Santa Fe, New Mexico

Catherine A. Phelps, Chemist

MINNESOTA VALLEY TESTING LABORATORIES, $\mathcal{I}_{nc.}$

1411 SOUTH 12TH STREET • P.O. BOX 1873 BISMARCK, NORTH DAKOTA 58502-1873 WATER ANALYSIS REPORT

Mon	tana-D	akota	Utilities
400	North	Four	th
Bist	marck,	ND	58501

Date: January 24, 1989

w.o. #: 82-041

Attention: John Verwey

Lab. #: M- 146

Sample Identification:

MDU - Heskett

P.O. #: M04548

lentification: #52 10:45 CST 12-20-88

Date Received: 12-21-88

PHYSICAL PARAMETERS:		NUTRIENTS:			
Color units of apparent color			mg/l		
Conductivity micromhos/cm @ 25°C		Nitrite-Nitrogen as	N mg/l		
pH	7.6	Nitrate-Nitrogen as	N mg/l	27	8
Solids (Total)mg/l		Organic-Nitrogen .	mg/l		
Solids (Total Dissolved) mg/l	6724	Total - Kieldahl Niti	rogenmg/l		
Solids (Total Suspended) mg/l		Ortho-phosphate a	s P mg/l		
Solids (Total Volatile)mg/l	4	Phosphorus (Total)	as Pmg/l		
Turbidity — NTU		Phosphorus (Disso	lved) as P mg/l		
COMMON IONS:		METALS:	, as		
Calcium mg/l		Copper (Total)	mg/l		
Magnesiummg/l	285.0	Iron (Total)	mg/l		
Sodium mg/l	_1060.0	Manganese (Total)	mg/l		
Potassiummg/l	14.3	MISCELLANEOUS:	g.,		
Acidity as CaCO ₃ mg/l	9		g/l		
Alkalinity (Total) as CaCO ₃ mg/l	438	Biochemical Oxyge	en Demand mg/l		
Bicarbonate as CaCO ₃ mg/l	438	Chemical Oxygen I	Demand mg/l		
Bicarbonate as HCO ₃ mg/l		Cyanide	mg/l		
Carbonate as CaCO ₃ mg/l	0	Fecal Coliform Cou	int — Millipore		
P-Alkalinity as CaCO ₃ mg/l		filter/100 ml	* RECEPTATION		
Sulfateamg/l		Fluoride	mg/l	0	.29
Chloride	99.3		*********		
		Oil & Grease			
Total Hardness as CaCO ₃ mg/l		Phenois	mg/l		
Sodium Adsorption Ratio		Total Organic Carb	on mg/l		
Cations		Total Plate Count p	er 100ml		
Anions					
% Error	2.3				
TRACE ELEMENTS:					
		mg/l	Silver	mg/l	0.02
	Copper		Strontium		
	on		Thallium	mg/l _	
	ead	$_{\rm mg/l}$ $\frac{< 0.001}{}$	Thorium	.mg/l	
_	langanese		Tin	.mg/l	
	fercury		Titanium		
		mg/l ≤ 0.10	Vanadium		
		,mg/l	Zinc		
	elenium . , . ,		*CEP	-	
****** Metals are	reported as dissolve	ed, unless otherwise inc	dicated. ******		
FIELD DATA					

 *Analysis completed by Controls for Environmental Pollution; Santa Fe. New Mexico

Principal and Phelps

MINNESOTA VALLEY TESTING LABORATORIES, $\mathcal{G}_{nc.}$

1411 SOUTH 12TH STREET • P.O. BOX 1873 BISMARCK, NORTH DAKOTA 58502-1873 PORT

WATER	ANALYSIS	REPORT		
	Date:	January	24,	1989

*	Mon	tana-D	akota	Utilities
	400	North	Four	th
	Bisr	narck.	ND	58501

w.o. #: 82-041

Attention: John Verwey

M- 147 Lab. #:

Sample Identification: MDU - Heskett M04548 P.O. #:

60 11:25 CST

12-20-88 **Date Received:**

12-21-88

PHYSICAL PARAMETERS:		NUTRIENTS:	
Color units of apparent color		Ammonia-Nitrogen mg	/1
Conductivity micromhos/cm @ 25°C	15,166	Nitrite-Nitrogen as N mg	//
pH	7.0	Nitrate-Nitrogen as N mg	// 19.4
Solids (Total) mg/l		Organic-Nitrogen mg	//
Solids (Total Dissolved) mg/l	17,634**	Total - Kjeldahl Nitrogenmg	/
Solids (Total Suspended) mg/l		Ortho-phosphate as P mg	//
Solids (Total Volatile) mg/l		Phosphorus (Total) as Pmg	//
Turbidity — NTU		Phosphorus (Dissolved) as P mg	//
COMMON IONS:		METALS:	
Calcium mg/l	415.0	Copper (Total) mg	/1
Magnesiummg/l	1,340.0	Iron (Total) mg	//
Sodium mg/l	2,245.0	Manganese (Total) mg	//
Potassiummg/l		MISCELLANEOUS:	
Acidity as CaCO ₃ mg/l		ADAg	/I
Alkalinity (Total) as CaCO ₃ mg/l	524	Biochemical Oxygen Demand mg	//
Biçarbonate as CaCO ₃ mg/l	524	Chemical Oxygen Demand mg	//
Bicarbonate as HCO ₃ mg/l		Cyanide mg	
Carbonate as CaCO ₃ mg/l	0	Fecal Coliform Count — Millipore	
P-Alkalinity as CaCO ₃ mg/l		filter/100 ml	
Sulfatemg/l		Fluoride mg	0.64
Chloride mg/l	273.0	Iron Bacteria	
		Oil & Grease mg	·
Total Hardness as CaCO ₃ mg/l	6,552	Phenols mg	/
Sodium Adsorption Ratio		Total Organic Carbonmg	/
Cations	230.4	Total Plate Count per 100ml	
Anions	244.2		
% Error	2.9 *	*High TDS due to hygroscopic	nature of
TRACE ELEMENTS:		cations and anions.	
Aluminum mg/l C	obalt	mg/l Silver	ma/1 0.04
		mg/l Strontium	
		mg/l <u>0.20</u> Thallium	
		mg/l <0.001 Thorium	
		mg/l 0.08 Tin	
Boron mg/l <u>1.800</u> M		mg/l 0.001 Titanium	
Bromide mg/l M	lolybdenum	mg/l <0,10 Vanadium	
Cadmium mg/l<0.001* N	ickel	mg/l Zinc	
Chromium	elenium	ma/l < 0.002	g//
****** Metals are	reported as dissolve	ed, unless otherwise indicated. *******	

CHE	51 F	П	M'	ГА:
1.15				. A.

Flow 1400 E. C. pH Static Water Level

*Analysis completed by Controls for Environmental

Pollution; Santa Fe, New Mexico

Catherine A. Phelps, Chemist

MINNESOTA VALLEY TESTING LABORATORIES, $\mathcal{G}_{nc.}$

1411 SOUTH 12TH STREET • P.O. BOX 1873 BISMARCK, NORTH DAKOTA 58502-1873 WATER ANALYSIS REPORT

Montana-Dakota Utilities 400 North Fourth Bismarck, ND 58501

Date: January 27, 1989

W.O. #: 82-045

Attention:

John Verwey

Lab. #:

M- 157

Sample Identification:

MDU - Heskett #70 16:22 CST P.O. #: M04548

12/20/88

Date Received: 12/22/88

PHYSICAL PARAMETERS:	NUTRIENTS:
Color units of apparent color	Ammonia-Nitrogen mg/l
Conductivity micromhos/cm @ 25 ℃ 14841	Nitrite-Nitrogen as N mg/l
pH 8.0	Nitrate-Nitrogen as N mg/l <1.0
Solids (Total) mg/l	Organic-Nitrogenmg/l
Solids (Total Dissolved) mg/l 13393	Total - Kjeldahl Nitrogen mg/l
Solids (Total Suspended) mg/l	Ortho-phosphate as P mg/l
Solids (Total Volatile) mg/l	Phosphorus (Total) as Pmg/l
Turbidity — NTU	Phosphorus (Dissolved) as P:mg/l
COMMON IONS:	METALS:
Calcium mg/l212.5	Copper (Total) mg/l
Magnesium	Iron (Total)
Sodium mg/l 3880.0	Manganese (Total)
Potassium	MISCELLANEOUS:
Acidity as CaCO ₃ mg/l	ADAg/l
Alkalinity (Total) as CaCO ₃ mg/l 510	Biochemical Oxygen Demand mg/l
Biçarbonate as CaCO ₃ mg/l 510	Chemical Oxygen Demand mg/l
Bicarbonate as HCO ₃ mg/l	Cyanida Cygen Demand
Carbonate as CaCO ₃ mg/l0	Cyanide mg/l Fecal Coliform Count — Millipore
P-Alkalinity as CaCO ₃ mg/l	filter/100 ml
Sulfate	Fluoride
Chloride	
	Iron Bacteria
Total Hardness as CaCO ₃ mg/l 1012	Oil & Grease mg/l
Sodium Adsorption Ratio 53.19	Phenols mg/l
Cations	Total Plate Court per 100ml
Anions	Total Plate Count per 100ml
% Error	
TRACE ELEMENTS:	
	mg/l Silvermg/l0.030
	9
Barium mg/l <0.100 Lead	40 003
	J. J. J. J. J. J. J. J. J. J. J. J. J. J
_	9
	gg
40.000	
3	Zincmg/l Zincmg/l
	ssolved, unless otherwise indicated. *******
	ssolved, unless otherwise indicated.
FIELD DATA: Flow T°C 6.0°C	

Jatherin anno Phelps

Catherine A. Phelps, Chemist

EXHIBIT 5-K

HYDRAULIC CONDUCTIVITIES, CATION EXCHANGE CAPACITIES,

AND PARTICLE SIZE ANALYSES

(WELLS 60, WS1, WS2, WS3, AND WS4)

PROJECT:

LABORATORY TEST RESULTS
PROPOSED ASH PIT HESKETT STATION
MANDAN, NORTH DAKOTA

Montana-Dakota Utilities

REPORTED TO: Attn: John Verwey
400 North 4th Street

400 North 4th Street Bismarck, ND 58501

3100 EAST BROADWAY P.O. BOX 1114 BISMARCK, ND 58502 PHONE 701/223-6149

DATE: September 18, 1986

FURNISHED BY:

COPIES TO:

LABORATORY No. 5200-86-454

INTRODUCTION

A sample of fat clay was submitted to Twin City Testing Corporation on August 14, 1986. We were authorized by you to perform an Atterberg limit test, standard proctor test and permeability test. We are transmitting two (2) copies of this report.

RESULTS

The test results can be found on the attached drafts. The permeability test was performed with the falling head method on a sample remolded to 14.5% of the maximum dry density at a moisture content of 32.4%, or 0.1% above the optimum moisture content. The maximum dry density and optimum moisture content were determined in accordance with ASTM:D698.

The test results indicate that the coeficient of permeability is 2.0×10^{-7} centimeters per second on the remolded sample.

CLOSURE

If you desire to test the coeficient of permeability at a higher remolded compaction level and/or higher moisture content, please contact us. Also contact us if you have any questions in regards to this report or if we can be of further service to you.

AS A MUTUAL PROTECTION TO CLIENTS, THE PUBLIC AND OURSELVES, ALL REPORTS ARE SUBMITTED AS THE CONFIDENTIAL PROPERTY OF CLIENTS, AND AUTHORIZATION FOR PUBLICATION OF STATEMENTS, CONCLUSIONS OR EXTRACTS FROM OR REGARDING OUR REPORTS IS RESERVED PENDING OUR WRITTEN APPROVAL.

Twin City Testing Corporation

By Jel Zel Amgu

MOISTURE - DENSITY CURVE

SAMPLE NO. 1 - Hole 60, 20'-40

PROPOSED ASH PIT HESKETT STATION

MANDAN, NORTH DAKOTA

DATE: August 21, 1986

REPORTED TO:

Attn:

Montana-Dakota Utilities Company

COPIES TO:

John Verwey

*LIQUID LIMIT:

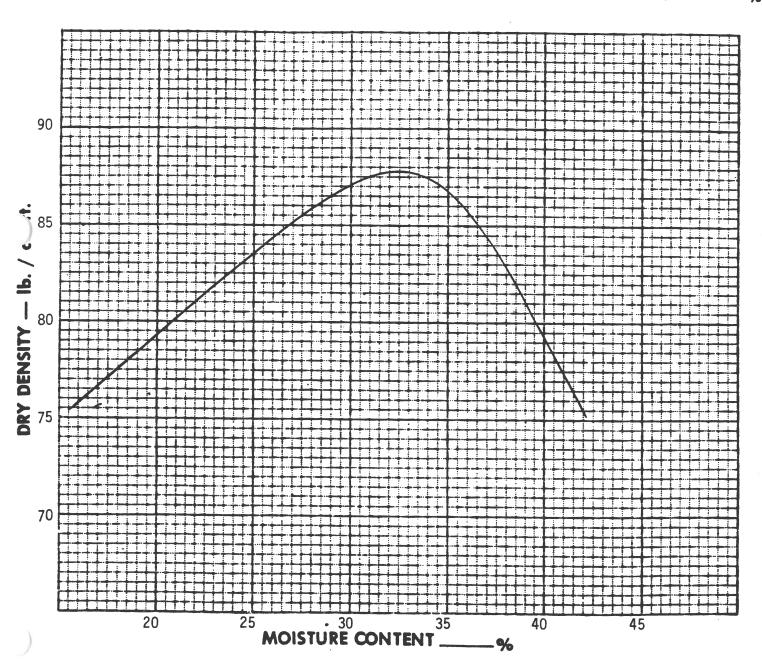
5200-86-454

*PLASTIC LIMIT: 23.9

METHOD OF TEST:

ASTM: D698-78, Method "A"

TYPE OF MATERIAL:


Fat Clay, brown (CH)

MAXIMUM DENSITY:

87.8

lb./cu. ft.

OPTIMUM MOISTURE 32.3 %

Twin City Testing and Engineering Laboratory, Inc.

PROJECT: PROPOSED ASH PIT-HESKETT STATION-MANDAN, NORTH DAKOTA JOB NO.: 5200-86-454 REPORTED TO: Attn: John Verwey Montana-Dakota Utilities Company Boring No. Sample No. Hole 60 Sample Designation 20-40 Depth (ft) Bag Type of Sample Fat Clay Soil Classification (CH) (ASTM:D2487) In-Place Moisture Content (%) Moisture-Density Relation of Soil (ASTM:D698) 87.8 Max. Dry Density (PCF) Optimum Moisture Content (%) 32.3 Permeability Test 6.8 Trial No. Falling Head Type of Test Compacted Type of Specimen 3.00 Specimen Height (inches) 2.82 Specimen Diameter (inches) 82.9 Dry Density (PCF) 94.5 Percent of Max. Density 32.4 Moisture Content (%) 5.0 Max. Head Differential (ft) Confining Pressure 2.0 (effective - PSI) Water Temperature (°C) 21 Coefficient of Permeability 2×10^{-7} K @ 20°C (cm/sec) 4×10^{-7} K @ 20°C (ft/min) Atterberg Limits 59.4 Liquid Limit (%) 23.9 Plastic Limit (%) Plasticity Index 35.5

twin city testing

December 14, 1981

Water Supply, Inc PO Box 1191 Bismarck, ND 58502

Attn: Roger Schmid

Gentlemen

Subj: Soil Testing for MDU Heskett Power Plant

Mandan, North Dakota Invoice #52-0688

Attached herewith, please find our laboratory test results for permeability tests, cation exchange capacity, particle size distribution curves and U.S.D.A. textural classification charts.

If you have any questions or need any additional information, please contact us at the Bismarck office.

Very truly yours,

Gary L Ayman, P.E. Operations Manager Western North Dakota

GLA:djs

Encs

PROJECT	SOIL TESTING FOR MDU HES	KETT POWER PLAN	T - MANDAN, ND	DATE: Dece	mber 14, 1981
KEPORTE	ED TO: Water Supply, Inc			- JOB NO.:	2-0688
Boring No).	MDU Heskett 1	MDU Heskett 1	MDU Heskett 1	MDU Heskett 2
Sample No Sample De					
Depth (ft)		20-21	25-26	30-31	29-30
Type of Sa	ample	Core	Core	Core '	Core
Soil Classi (ASTM:D2		SILTY CLAY & FAT CLAY (CL & CH)	SILTY CLAY & FAT CLAY (CL & CH)	SILTY CLAY & FAT CLAY (CL & CH)	SHALE, (Tex- tural Classi- fication: Fat Clay) (CH)
In-Place M	oisture Content (%)			•.	
	Density Relation of Soil TM:D698) Max. Dry Density (PCF)			,	
·	Optimum Moisture Content (%)				
			•		
'Permeabil	ity Test Trial No.	1	1	1	1
)	Type of Test	Falling Head	Falling Head	Falling Head	Falling Head
	Type of Specimen	Natural	Natural	Natural	Natural
	Specimen Height (Inches)	4.36	3.49	3.76	2.08
	Specimen Diameter (inches)	4.00	2.86	4.00	1.98
	Dry Density (PCF)				
	Percent of Max. Density		·		
	Moisture Content (%)				
	Max. Head Differential (ft)	5.0	5.0	5.0	5.0
	Confining Pressure (effective - PSI)	2.0	2.0	2.0	2.0
	Water Temperature (°C)	21	21	20	21
	Coefficient of Permeability K @ 20°C (cm/sec)	2.6x10 ⁻⁸	1.5x10 ⁻⁸	1.7x10 ⁻⁸	2.7x10 ⁻⁹
	K @ 20°C (ft/min)	5.2x10 ⁻⁸	2.9x10 ⁻⁸	3.4x10 ⁻⁸	5.4x10 ⁻⁹
Atterberg	Liquid Limit (%)				
	Plastic Limit (%)				
)	Plasticity Index				
		TWIN CITY TE	STING LAB		5.

PROJECT: SOIL TESTING FOR MDU HESKETT POWER PLANT - MANDAN, ND

DATE: December 14, 1981

52-0688

REPORTED TO: Water Supply, Inc

JOB NO.: 52-0688

REPORTE	D TO:			JOB NO.:	
Boring No.	P	MDU Heskett 2	MDU Heskett 2	MDU Heskett 3	MDU Heskett
Sample No. Sample Des					·
Depth (ft)		61-62	73-74	15-16	19-20
Type of Sai	mple	Core	Core	Core	Core ·
Soil Classifi (ASTM:D2		SHALE, (Tex- tural Classi- fication: Fat Clay) (CH)	SHALE, (Tex- tural Classi- fication: Fat Clay) (CH)	SILTY CLAY (CL-ML)	FAT CLAY & SILTY CLAY (CH & CL)
In-Place Mo	oisture Content (%)				
	ensity Relation of Soil "M:D698)				
_	Max. Dry Density (PCF)				
	Optimum Moisture Content (%)				
Permeabilit	ty Test Trial No.	1.	1	1	1
	Type of Test	Falling Head	Falling Head	Falling Head	Falling Hea
_	Type of Specimen	Natural	Natural	Natural	Natural
	Specimen Height (inches)	1.96	0.80	2.93	3.29
_	Specimen Diameter (inches)	1.99	1.98	4.00	4.00
	Dry Density (PCF)	·	·		
_	Percent of Max. Density				
_	Moisture Content (%)				
_	Max. Head Differential (ft)	5.0	5.0	5.0	50.0
	Confining Pressure (effective - PSI)	2.0	2.0	2.0	2.0
_	Water Temperature (°C)	21	19	22	22
	Coefficient of Permeability K @ 20°C (cm/sec)	3.6x10 ⁻⁸	1.8x10 ⁻⁸	8.5x10 ⁻⁸	1.8x10 ⁻⁹
	K @ 20°C (ft/min)	7.1x10 ⁻⁸	3.6x10 ⁻⁸	1.7x10 ⁻⁷	3.5x10 ⁻⁹
Atterberg l	Limits Liquid Limit (%)				
	Plastic Limit (%)				
•	Plasticity Index				

DATE: December 14, 1981 PROJECT: SOIL TESTING FOR MOU HESKETT POWER PLANT - MANDAN, ND JOB NO.: 52-0688 REPORTED TO: Water Supply, Inc MDU Heskett 3 MDU Heskett 4 MDU Heskett 4 MDU Heskett 4 Boring No. Sample No. Sample Designation 31-32 9-10 Depth (ft) 41-42 51-52 Type of Sample Core Core Core Core SILTY CLAY & FAT CLAY & SHALE, (Tex-SHALE, (Tex-Soil Classification FAT CLAY SILTY CLAY tural Classitural Classi-(ASTM:D2487) (CL & CH) (CH & CL) fication: fication: Organic Fat Silty Clay . Clay (CH-OH) (CL)) In-Place Moisture Content (%) Maisture-Density Relation of Soil (ASTM:D698) Max. Drv Density (PCF) Optimum Moisture Content (%) Permeability Test Trial No. Type of Test Falling Head Falling Head Falling Head Falling Head Natura 1 Type of Specimen Natural Natural Natural 2.20 Specimen Height (inches) 3.63 2.31 2.31 4.00 Specimen Diameter (inches) 4.00 1.98 1.45 Dry Density (PCF) Percent of Max. Density Moisture Content (%) 30.0 50.0 Max. Head Differential (ft) 5.0 5.0 Confining Pressure 2.0 2.0 2.0 2.0 (effective - PSI) Water Temperature (°C) 21 22 20 21 Coefficient of Permeability 9.1x10⁻⁹ 7.2x10-⁹ 1.9x10⁻⁷ $7.6x10^{-9}$ K@ 20°C (cm/sec) K @ 20°C (ft/min) 1.8x10⁻⁸ 1.4x10⁻⁸ 1.5x10⁻⁸ 3.7x10⁻⁷ Atterberg Limits Liquid Limit (%) Plastic Limit (%) Plasticity Index TWIN CITY TESTING LAB SL-26(77-B)

REPORT OF:

CATION EXCHANGE CAPACITY 701/223-6149

SOIL TESTING FOR MDU HESKETT POWER

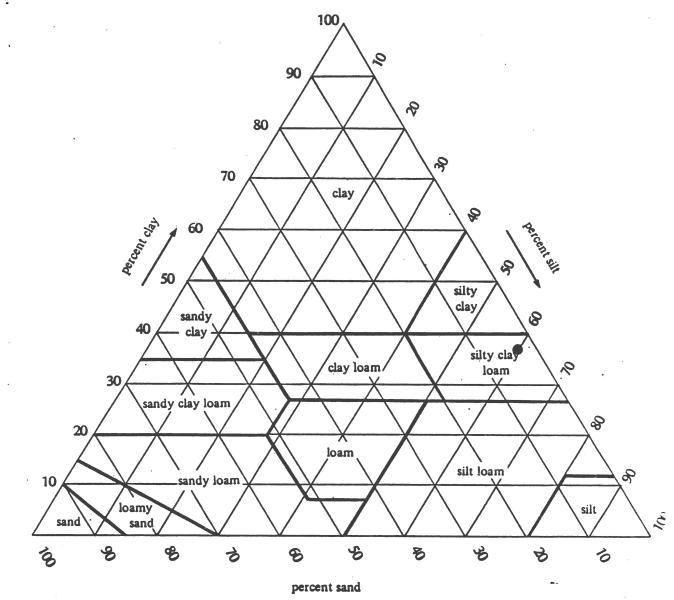
PLANT - MANDAN, NORTH DAKOTA

December 14, 1981 DATE:

REPORTED TO:

Water Supply, Inc PO Box 1191

Bismarck, ND 58502 Attn: Roger Schmid

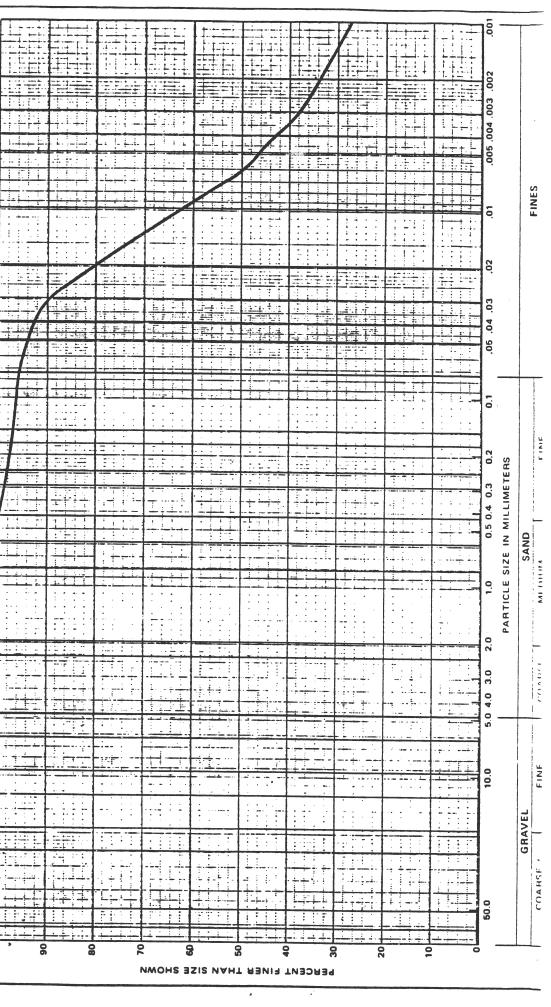

52-0688 LABORATORY No.

MDU Heskett #1 20'-21 71.8 #1 25'-26' 12.3 #1 30'-31' 74.2 #1 40'-41' 27.4 MDU Heskett #2 29'-30' 92.2 #2 56'-57' 69.7 #2 61'-62' 12.0 #2 73'-74' 48.4 MDU Heskett #3 15'-16' 70.1 #3 19'-20' 58.1 #3 31'-32' 58.1 MDU Heskett #4 9'-10' 40.4 #4 15'-16' 60.9 #4 31'-32' 26.1 #4 41'-42' 51.3 #4 51'-52' 56.4	SAMPLE NUMBE	<u>ER</u>	DEPTHS	CATION EXCHANGE CAPACITY (meq/100g) (milliequivalents/100 gr)
#1 25'-26' 12.3 #1 30'-31' 74.2 #1 40'-41' 27.4 MDU Heskett #2 29'-30' 92.2 #2 56'-57' 69.7 #2 61'-62' 12.0 #2 73'-74' 48.4 MDU Heskett #3 15'-16' 70.1 #3 19'-20' 58.1 #3 31'-32' 35.6 MDU Heskett #4 9'-10' 40.4 #4 15'-16' 60.9 #4 31'-32' 26.1 #4 41'-42' 51.3	MDU Heskett	#1	20'-21	71.8
#1 40'-41' 27.4 MDU Heskett #2 29'-30' 92.2 #2 56'-57' 69.7 #2 61'-62' 12.0 #2 73'-74' 48.4 MDU Heskett #3 15'-16' 70.1 #3 19'-20' 58.1 #3 31'-32' 35.6 MDU Heskett #4 9'-10' 40.4 #4 15'-16' 60.9 #4 31'-32' 26.1 #4 41'-42' 51.3		#1	25'-26'	12.3
MDU Heskett #2 29'-30' 92.2 #2 56'-57' 69.7 #2 61'-62' 12.0 #2 73'-74' 48.4 MDU Heskett #3 15'-16' 70.1 #3 19'-20' 58.1 #3 31'-32' 35.6 MDU Heskett #4 9'-10' 40.4 #4 15'-16' 60.9 #4 31'-32' 26.1 #4 41'-42' 51.3		#1	30'-31'	74.2
#2 56'-57' 69.7 #2 61'-62' 12.0 #2 73'-74' 48.4 MDU Heskett #3 15'-16' 70.1 #3 19'-20' 58.1 #3 31'-32' 35.6 MDU Heskett #4 9'-10' 40.4 #4 15'-16' 60.9 #4 31'-32' 26.1 #4 41'-42' 51.3		#1	40'-41'	27.4
#2 61'-62' 12.0 #2 73'-74' 48.4 MDU Heskett #3 15'-16' 70.1 #3 19'-20' 58.1 #3 31'-32' 35.6 MDU Heskett #4 9'-10' 40.4 #4 15'-16' 60.9 #4 31'-32' 26.1 #4 41'-42' 51.3	MDU Heskett	#2	29'-30'	92.2
#2 73'-74' 48.4 MDU Heskett #3 15'-16' 70.1 #3 19'-20' 58.1 #3 31'-32' 35.6 MDU Heskett #4 9'-10' 40.4 #4 15'-16' 60.9 #4 31'-32' 26.1 #4 41'-42' 51.3		#2	56'-57'	69.7
MDU Heskett #3	.2	#2	61'-62'	12.0
#3 19'-20' 58.1 #3 31'-32' 35.6 MDU Heskett #4 9'-10' 40.4 #4 15'-16' 60.9 #4 31'-32' 26.1 #4 41'-42' 51.3)	#2	73'-74'	48.4
#3 31'-32' 35.6 MDU Heskett #4 9'-10' 40.4 #4 15'-16' 60.9 #4 31'-32' 26.1 #4 41'-42' 51.3	MDU Heskett	#3	15'-16'	70.1
MDU Heskett #4 9'-10' 40.4 #4 15'-16' 60.9 #4 31'-32' 26.1 #4 41'-42' 51.3	9	#3	19'-20'	58.1
#4 15'-16' 60.9 #4 31'-32' 26.1 #4 41'-42' 51.3		#3	31'-32'	35.6
#4 31'-32' 26.1 #4 41'-42' 51.3	MDU Heskett	#4 ·	9'-10'	40.4
#4 41'-42' 51.3		#4	15'-16'	60.9
		#4	31'-32'	26.1
#4 51'-52' 56.4		#4	41'-42'	51.3
		#4	51'-52'	56.4

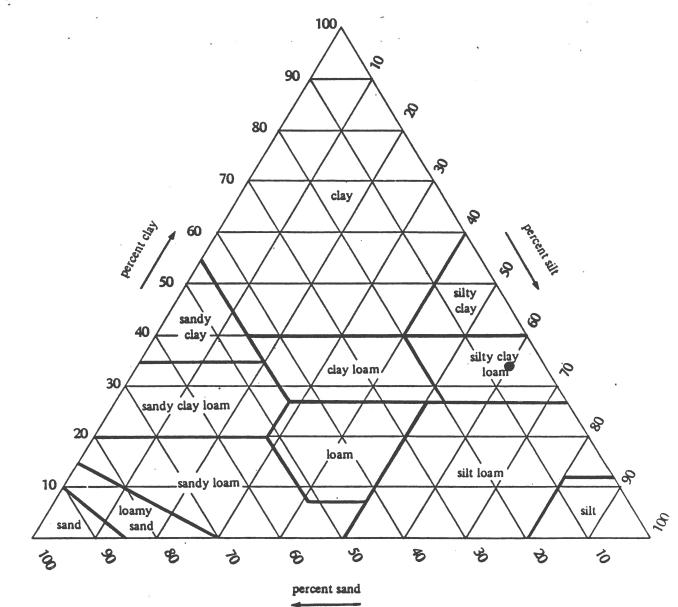
NORTH DAKOTA .005 .004 .003 .002 Project: SOIL TESTING FOR MDU HESKETT POWER PLANT - MANDAN, FINES Reported To: Mater Supply, Inc. 0. 9 .04 .03 .05 #200 GRAIN SIZE DISTRIBUTION CURVE 662 CROMWELL AVENUE ST PAUL, MN 55114 PHONE 612,645,3601 and engineering isboratory, inc. twin city testing 0.1 001# 08# 09# 05# U.S. STANDARD SIEVE SIZES FINE PARTICLE SIZE IN MILLIMETERS 0.5 0.4 #20 #30 MEDIUM #10 2.0 # COARSE Deput: 20'-21' 3.0 5.0 4.0 #4 : % FAT CLAY 3/8" ಹ FINE 10.0 Sample No.MDU Heskett #1 ر ر : X ಿ Classification (ASTM:D2487) SILTY CLAY GRAVEL × : 52-0688 COARSE 3" 2%" 2" 50.0 Description_ Job No. 80 20 9 8 PERCENT FINER THAN SIZE SHOWN


00.

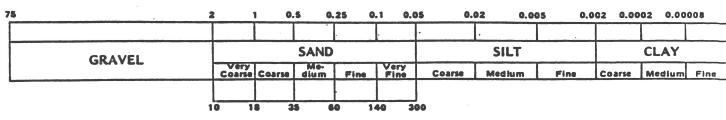
MDU HESKETT #1, 20'-21'



COMPARISON OF PARTICLE SIZES IN USDA SYSTEM

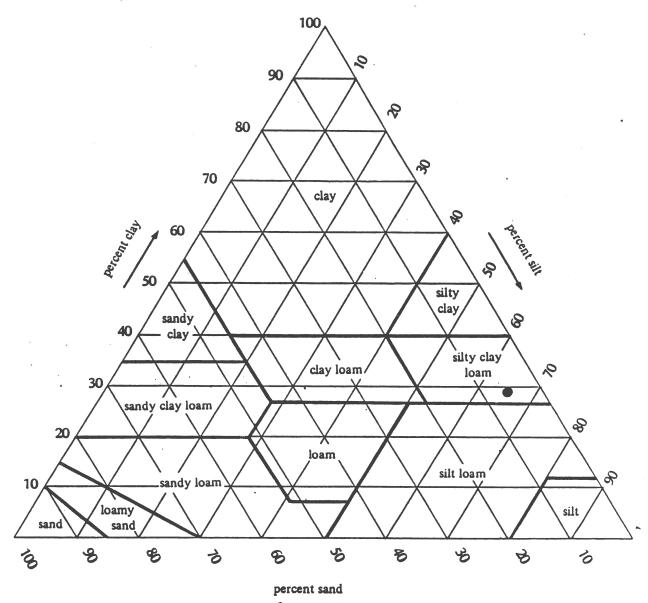

Size Range in Millimeters (Mean Diameter)

POWER PLANT - MANDAN, NORTH DAKOTA Project: SOIL TESTING FOR MDU HESKETT Water Supply, Inc. Reported To: #200 GRAIN SIZE DISTRIBUTION CURVE 662 CROMWELL AVENUE ST PAUL, MN 55114 PHONE 612/645-3601 and enqineering laboratory, mc. twin city testing #50 #60 #80 #100 U.S. STANDARD SIEVE SIZES #20 #30 #40 #10 # Sample No.MDU Heskett #1 Depth: 25'-26' #4 CLAY : X S CH 3/8.. & FAT Classification (ASTM:D2487)_CL : × SILTY CLAY × 52-0688 3.2%.2. Description Job No. 90

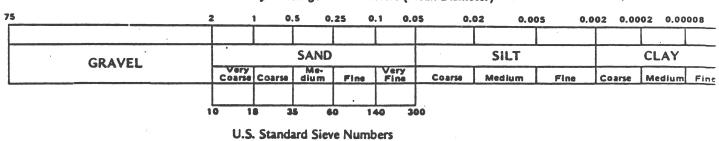


MDU HESKETT #1, 25'-26'

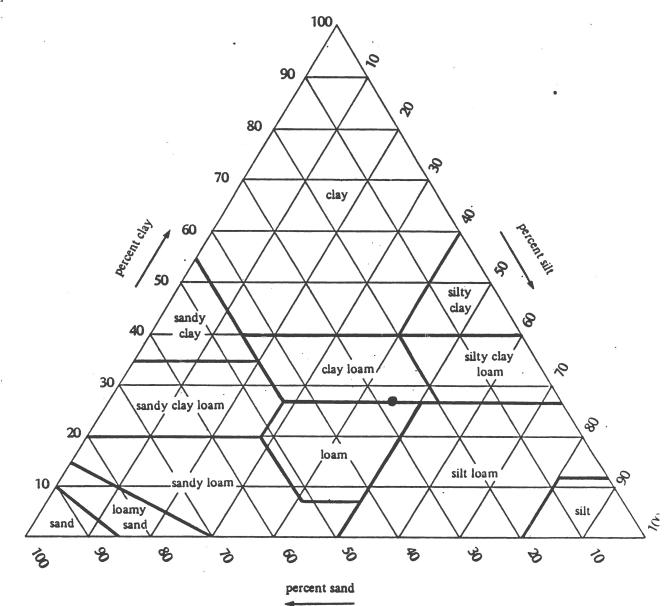
COMPARISON OF PARTICLE SIZES IN USDA SYSTEM


Size Range in Millimeters (Mean Diameter)

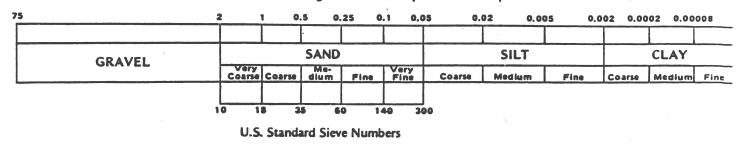
U.S. Standard Sieve Numbers


POWER PLANT - MANDAN, NORTH DAKOTA .005 .004 .003 .002 Project: SOIL TESTING FOR MDU HESKETT FINES Reported To: Water Supply, Inc. 0. 07 .04 .03 05 #200 GRAIN SIZE DISTRIBUTION CURVE 662 CROMWELL AVENUE ST PAUL, MN 55114 PHONE 612/645-3601 and engineering laboratory, inc. twin city testing #50 #60 #80 #100 U.S. STANDARD SIEVE SIZES PARTICLE SIZE IN MILLIMETERS 0.5 6.4 0.3 #20 #30 #40 AAE CHIINA #10 # 30'-31 3.0 5.0 4.0 # Sample No.MDU Heskett #1 Depth: : % CLAY œ CH 3/8. FINE FAT 10.0 J ; X රේ Classification (ASTM:D2487) CLAY GRAVEL ; SILTY Job No. 52-0688 COARSE 3" 2%" 2" 50.0 Description_ 8 20 8 20 PERCENT FINER THAN SIZE SHOWN

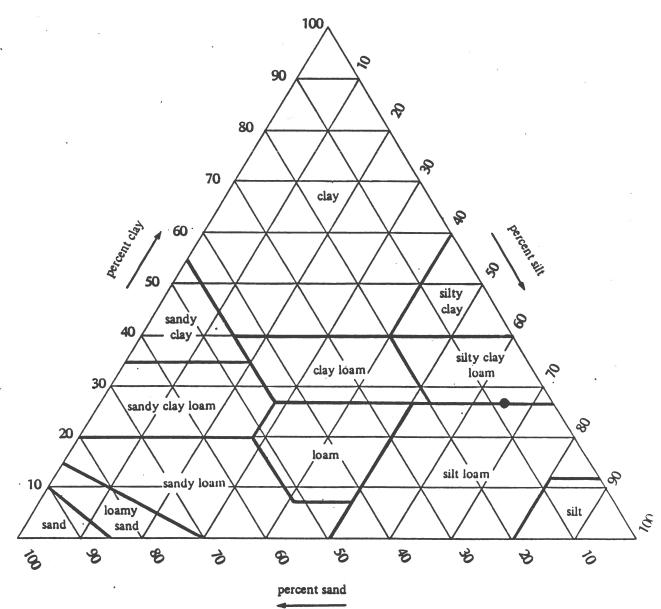
MDU HESKETT #1, 30'-31'


COMPARISON OF PARTICLE SIZES IN USDA SYSTEM

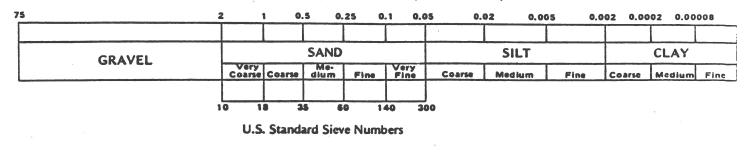
Size Range in Millimeters (Mean Diameter)


.00 POWER PLANT - MANDAN, NORTH DAKOTA .005 .004 .003 .002 SOIL TESTING FOR MDU HESKETT Water Supply, Inc. FINES <u>o</u> .02 .03 Project:_ 0.4 .05 #200 Reported To: GRAIN SIZE DISTRIBUTION CURVE 662 CHOMWELL AVENUE ST PAUL, MN 55114 PHONE 6127645-3601 and engineering laboratory, Inc. twin city testing 0.1 #50 #60 #80 #100 U.S. STANDARD SIEVE SIZES FINE 0.2 PARTICLE SIZE IN MILLIMETERS 0.5 0.4 0.3 #20 #30 #40 MEDIUM 1.0 #8 #10 2.0 COARSE 3.0 Classifica-Depth.: 29'-30' 5.0 4.0 #4 : % 3/8; FINE SHALE, (Textural 10.0 Sample No. MDU Heskett #2 ; % Classification (ASTM:D2487)_ GRAVEL : % 52-0688 tion: Fat Clay COARSE 3" 2%" 2" 50.0 Description_ Job No. 8 8 70 9 S 40 20 0 9 PERCENT FINER THAN SIZE SHOWN

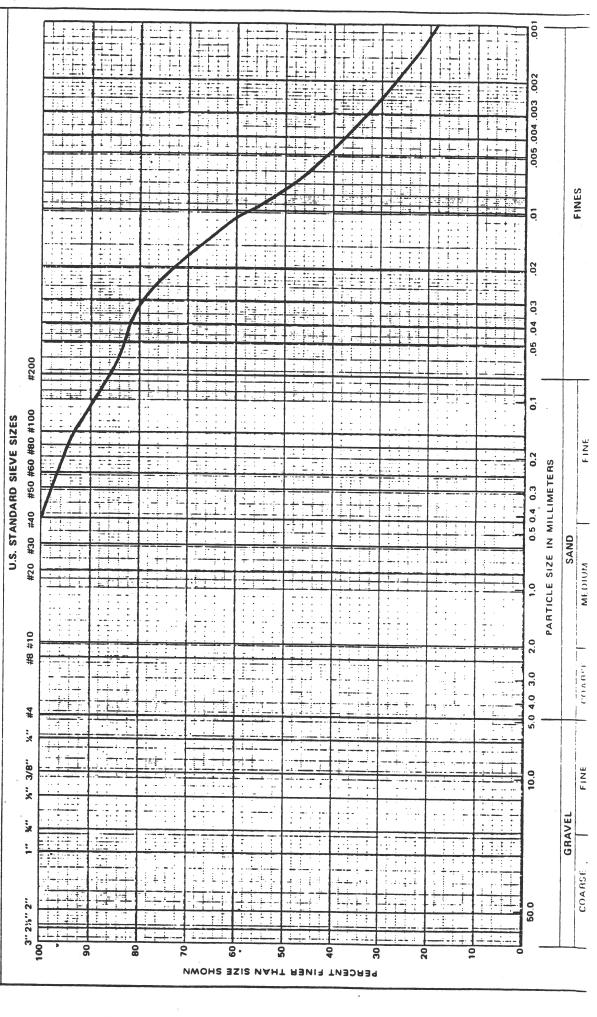
MDU HESKETT #2, 29'-30'


COMPARISON OF PARTICLE SIZES IN USDA SYSTEM

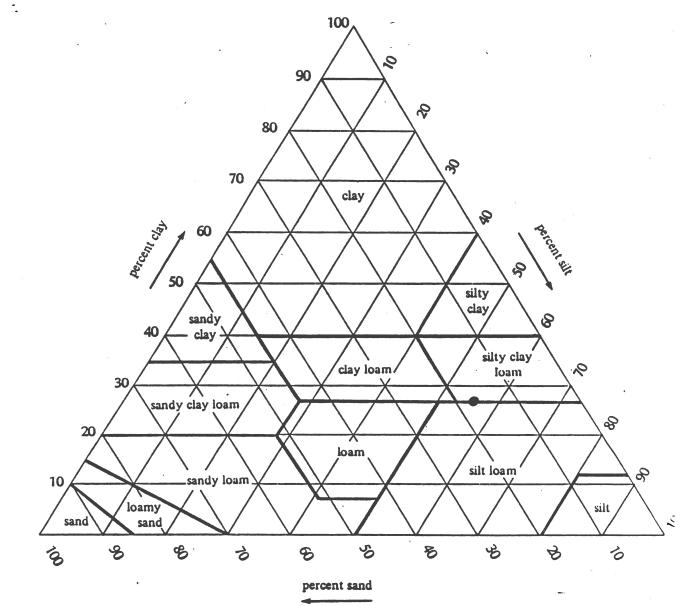
Size Range in Millimeters (Mean Diameter)


001 POWER PLANT - MANDAN, NORTH DAKOTA .005 .004 .003 .002 Project: SOIL TESTING FOR MDU HESKETT FINES Reported To: Water Supply, Inc. 0 .02 .05 .04 .03 #200 GRAIN SIZE DISTRIBUTION CURVE 662 CHOMMELL AVENUE ST PAUL, MN 55114 PHONE 612/645/3601 and engineering laboratory, inc. twin city testing 0.1 #50 #60 #80 #100 U.S. STANDARD SIEVE SIZES PARTICLE SIZE IN MILLIMETERS #20 #30 #10 # 61,-62 Classifica-5.0 4.0 3.0 #4 Sample No.MDU Heskett #2 Depur. : % 3/8.. Description SHALE, (Textural 10.0 : × Classification (ASTM:D2487)_ GRAVEL : 52-0688 tion: Fat Clay) 3" 2%" 2" 50.0 Job No. <u>0</u> 80 70 9 8 PERCENT FINER THAN SIZE SHOWN

MDU HESKETT #2, 61!-62!

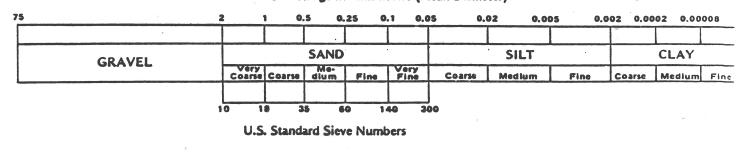

COMPARISON OF PARTICLE SIZES IN USDA SYSTEM

Size Range in Millimeters (Mean Diameter)



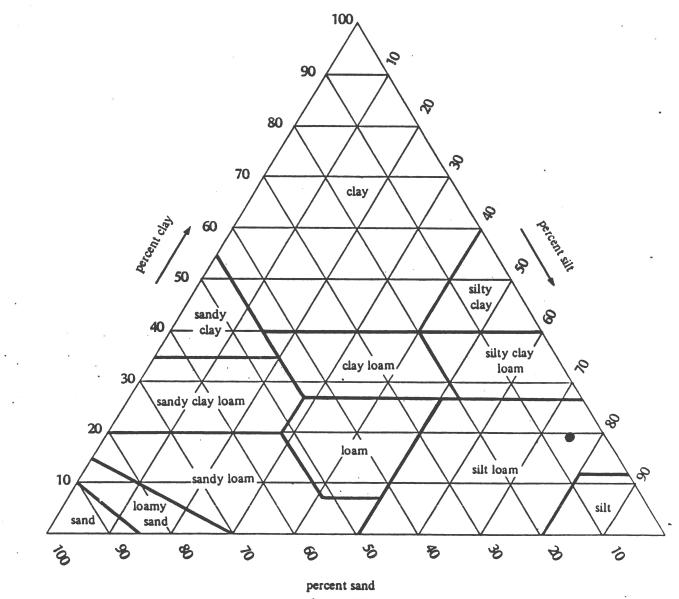
Reported To: Water Supply, Inc. Project:_ GRAIN SIZE DISTRIBUTION CURVE 662 CROMMELL AVENUE ST PAUL MN 55114 PHONE 612/645-3601 TWIN CITY TESTING 3 and engineering laboratory, inc. Sample No. MDU Heskett #2 Depth.: 73'-74' Description SHALE, (Textural Classifica-Classification (ASTM:D2487) (CH) 52-0688 Fat Clay tion:

POWER PLANT - MANDAN, NORTH DAKOTA SOIL TESTING FOR MDU HESKETT

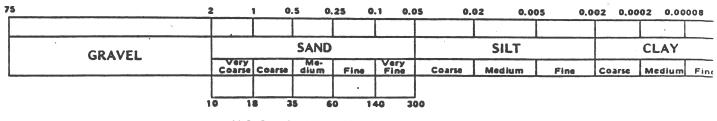


MDU HESKETT #2, 73'-74'

COMPARISON OF PARTICLE SIZES IN USDA SYSTEM

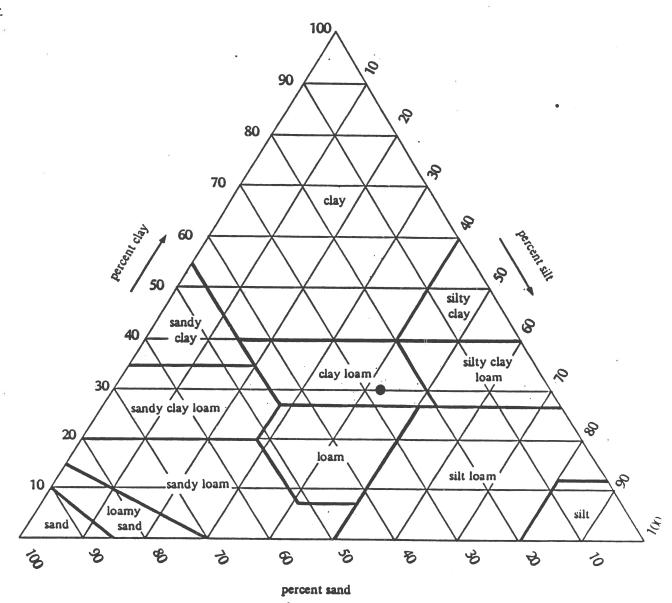

Size Range in Millimeters (Mean Diameter)

POWER PLANT - MANDAN, NORTH DAKOTA 00. SOIL TESTING FOR MDU HESKETT .002 .005 .004 .003 FINES Water Supply, Inc. <u>0</u> .02 .03 Project:_ .04 .05 Reported To: #200 GRAIN SIZE DISTRIBUTION CURVE 662 CHOMMELL AVENUE ST PAUL, MN 55114 PHONE 612/645-3601 LWIN CITY TESTING

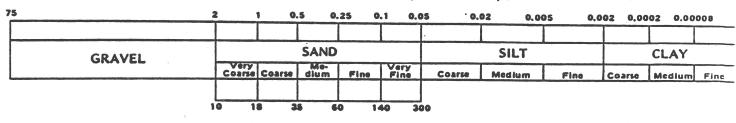

and engineering laboratoru, inc. 0. #50 #60 #80 #100 U.S. STANDARD SIEVE SIZES FINE 0.2 PARTICLE SIZE IN MILLIMETERS 0.5 0.4 0.3 #40 #20 #30 MEDIUM #10 2.0 8 LOVELL Sample No. MDU Heskett #3 Deput: 15'-16' 4.0 #4 5.0 : % 3/8.. Classification (ASTM:D2487) CL-ML FINE 10.0 ; X SILTY CLAY GRAVEL × ... 52-0688 COARSE 50.0 3. 2%. 2. Description Job No. 9 20 10 PERCENT FINER THAN SIZE SHOWN

MDU HESKETT #3, 15'-16'

COMPARISON OF PARTICLE SIZES IN USDA SYSTEM

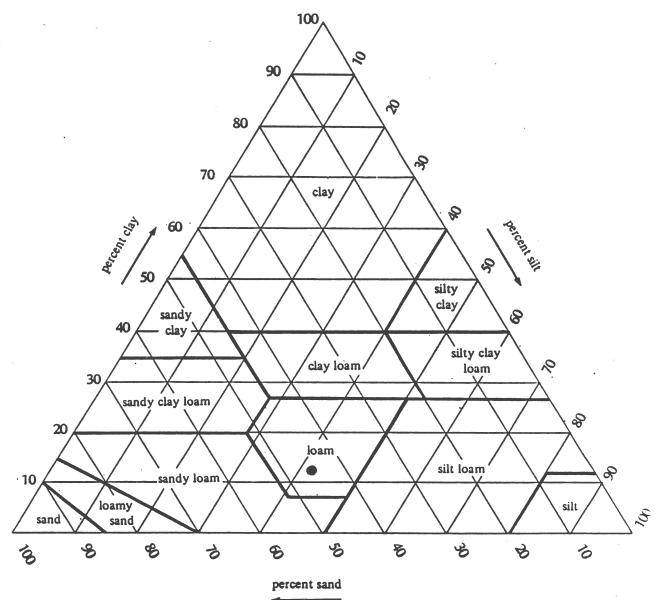

Size Range in Millimeters (Mean Diameter)

U.S. Standard Sieve Numbers

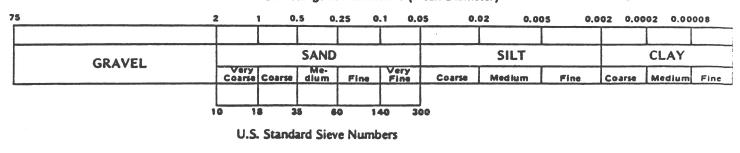

.00 NORTH DAKOTA .005 .004 .003 .002 Project: SOIL TESTING FOR MDU HESKETT POWER PLANT - MANDAN, FINES 9 Water Supply, .02 .03 0. .05 Reported To: #200 GRAIN SIZE DISTRIBUTION CURVE and enqineering laboratoru, inc.
662 CROMELL AVENE
ST PAUL. MN 55114
PHONE 612/645:3601 twin city testing 0.1 #50 #60 #80 #100 U.S. STANDARD SIEVE SIZES -10 material used for hydrometer test rather than total sample due FINE on PARTICLE SIZE IN MILLIMETERS Distribution curve based 0.5 0.4 0.3 #20 #30 #40 MEDIUM #10 \$ COARSE Sample No. MDU Heskett #3Deput. 19'-20' 3.0 Description FAT CLAY & SILTY CLAY (Note: to small boulder in a small sample.) 4.0 # : % Classification (ASTM:D2487) CH & CL 3/8.. FINE 10.0 <u>×</u> GRAVEL ; % : 52-0688 COARSE 3.2%.2. 60.0 Job No. 8 80 70 9 20 10 PERCENT FINER THAN SIZE SHOWN

MDU HESKETT #3, 19'-20'

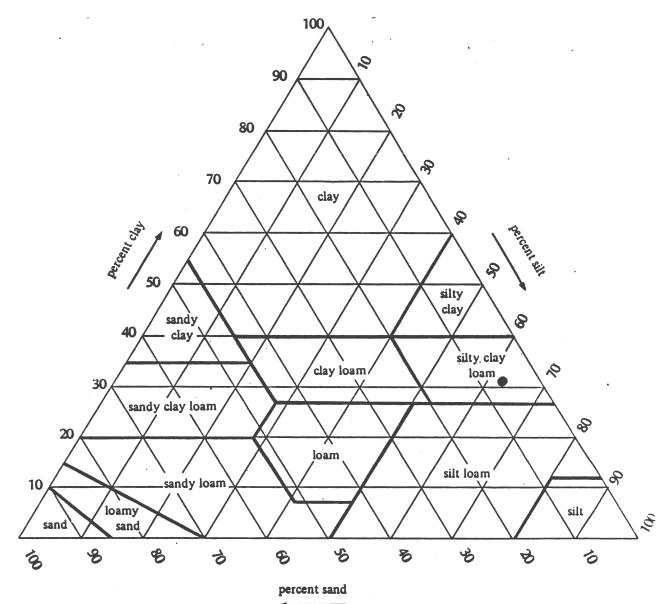
COMPARISON OF PARTICLE SIZES IN USDA SYSTEM


Size Range in Millimeters (Mean Diameter)

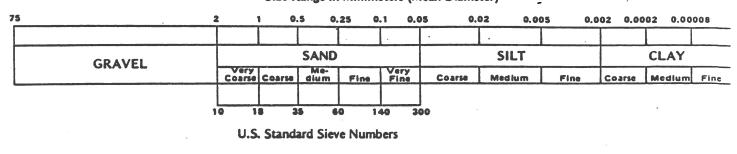
U.S. Standard Sieve Numbers


POWER PLANT - MANDAN, NORTH DAKOTA 001 SOIL TESTING FOR MDU HESKETT .002 .005 .004 .003 FINES Reported To: Water Supply, Inc. 6 .02 Project:__ .03 .04 .05 #200 GRAIN SIZE DISTRIBUTION CURVE 662 CROMWELL AVENUE ST PAUL, MN 55114 PHONE 612/645-3601 and engineering laboratory, inc. twin city testing 0.1 #50 #60 #80 #100 U.S. STANDARD SIEVE SIZES FINE 0.2 PARTICLE SIZE IN MILLIMETERS 0.5 0.4 0.3 #20 #30 #40 MEDIUM 0. #8 #10 2.0 COARSE 3.0 Sample No. MDU Heskett #3 Depth: 31'-32' 4.0 #4 5.0 : % FAT. CLAY 3/8" FINE 10.0 : X Classification (ASTM:D2487) CLAY GRAVEL ; % 52-0688 : COARSE 3" 2%" 2" 50.0 Description Job No. 9 90 80 2 9 2 PERCENT FINER THAN SIZE SHOWN

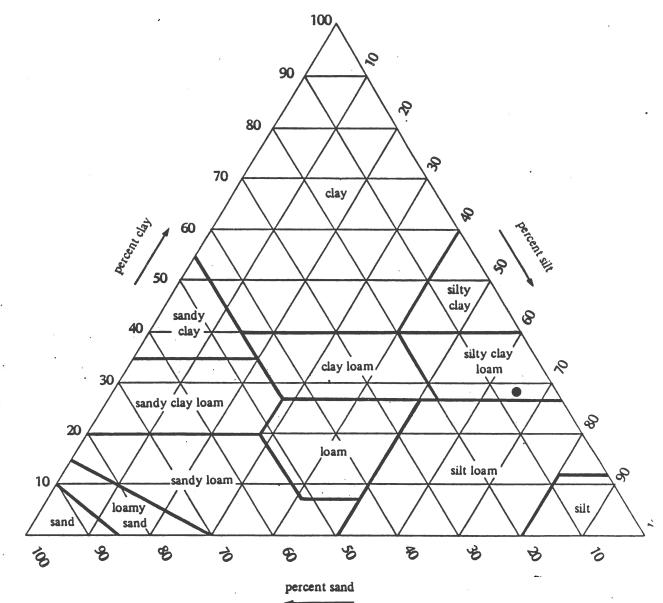
MDU HESKETT #3, 31'-32'


COMPARISON OF PARTICLE SIZES IN USDA SYSTEM

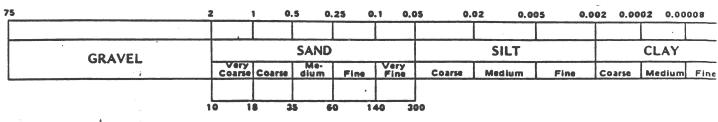
Size Range in Millimeters (Mean Diameter)


NORTH DAKOTA 001 SOIL TESTING FOR MDU HESKETT .005 .004 .003 .002 - MANDAN, FINES POWER PLANT Water Supply, Inc. <u>0</u> 9 .04 .03 Project:_ .05 Reported To: #200 GRAIN SIZE DISTRIBUTION CURVE 662 CROMMELL AVENUE ST PAUL, MN 55114 PHONE 612/645-3601 LWIN CITY TESTING 0.1 #50 #60 #80 #100 U.S. STANDARD SIEVE SIZES 0.2 PARTICLE SIZE IN MILLIMETERS 0.5 0.4 0.3 #40 #20 #30 #10 2.0 8 3.0 9'-10' 5.0 4.0 Deptr. CLAY : 7 ಞ 3/8.. SILTY 10.0 F SAMPLE NO.MDU Heskett #4 : % GRAVEL Classification (ASTM:D2487) ∞ಶ ; % CLAY 52-0688 : FAT 3. 2%.. 2.. 60.0 Description_ Job No. 96 20 S 8 PERCENT FINER THAN SIZE SHOWN

MDU HESKETT #4, 9'-10"


COMPARISON OF PARTICLE SIZES IN USDA SYSTEM

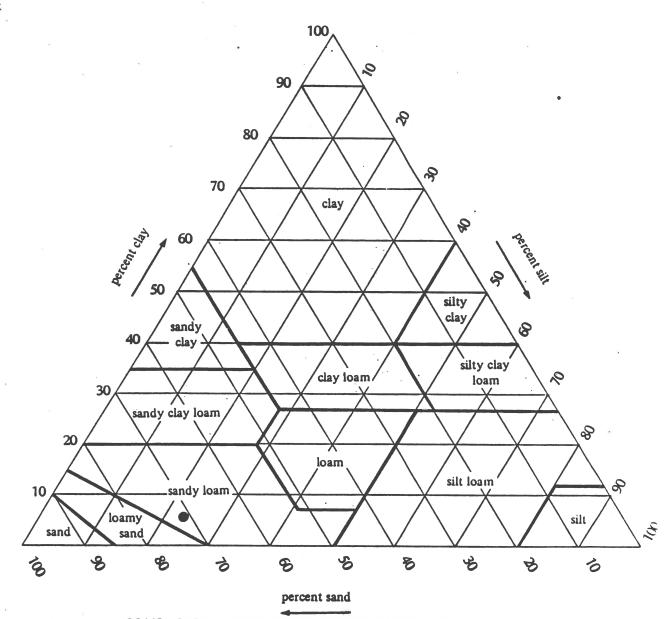
Size Range in Millimeters (Mean Diameter)


- MANDAN, NORTH DAKOTA 00. SOIL TESTING FOR MDU HESKETT .005 .004 .003 .002 FINES Water Supply, Inc. POWER PLANT Ö 0. .03 Project:_ 0. 0. Reported To: #200 GRAIN SIZE DISTRIBUTION CURVE 662 CROMWELL AVENUE ST PAUL, MN 55114 PHONE 612/645-3601 TWIN CITY TESTING and enquieering important, inc. 0.1 #50 #60 #80 #100 U.S. STANDARD SIEVE SIZES FINIE PARTICLE SIZE IN MILLIMETERS 0.5 0.4 0.3 #40 #20 #30 SAND MLDHIM #8 #10 Sample No. MDU Heskett #4 Depth: 15'-16' 4.0 3.0 #4 5.0 CLAY 3 H ≪ಶ 3/8; FINE FAT 10.0 J : % 0ర Classification (ASTM:D2487) GRAVEL Description SILTY CLAY ; % 52-0688 COARSE 3" 2%" 2" 50.0 Job No. 96 8 70 20 63 PERCENT FINER THAN SIZE SHOWN

MDU HESKETT #4, 15'-16'

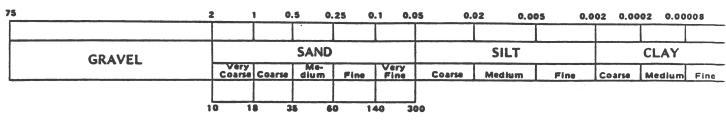
COMPARISON OF PARTICLE SIZES IN USDA SYSTEM

Size Range in Millimeters (Mean Diameter)



U.S. Standard Sieve Numbers

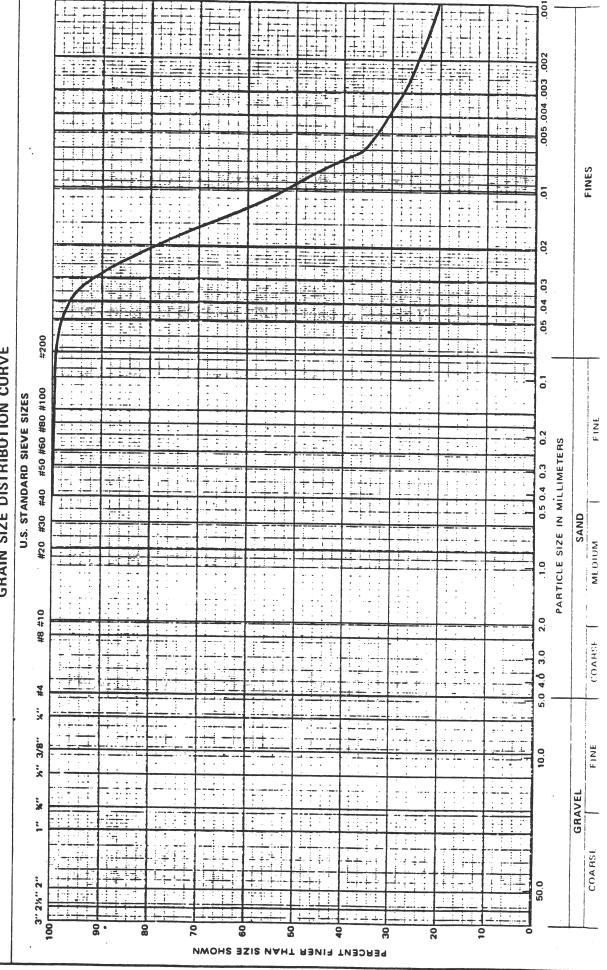
00. NORTH DAKOTA .005 .004 .003 .002 Project: SOIL TESTING FOR MDU HESKETT POWER PLANT - MANDAN, FINES Water Supply, Inc 0. .03 .05 .04 Reported To: #200 GRAIN SIZE DISTRIBUTION CURVE 662 CHOMMELL AVENUE ST PAUL, MN 55114 PHONE 612/645-3601 and enqineering laboratory, inc. twin city testing #50 #60 #80 #100 U.S. STANDARD SIEVE SIZES FINE 0.2 PARTICLE SIZE IN MILLIMETERS #40 0.5 0.4 #30 #20 MEDIOM #10 2.0 8 COARSE Sample No.MDU Heskett #4 Depu.: 31'-32' 5.0 4.0 3.0 grained #4 : * 3/8.. fine FINE 10.0 \mathbb{S} : X SILTY SAND, Classification (ASTM:D2487)_ GRAVEL ; % 52-0688 COARSE Description_ 3. 2%.. 2.. 50.0 Job No. 80 9 S 10 PERCENT FINER THAN SIZE SHOWN


USDA SOIL TEXTURAL CLASSIFICATION

MDU HESKETT #4, 31'-32'

COMPARISON OF PARTICLE SIZES IN USDA SYSTEM

Size Range in Millimeters (Mean Diameter)

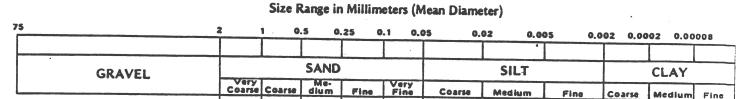

U.S. Standard Sieve Numbers

TWIN CITY TESTING LAB

Project: SOIL TESTING FOR MDU HESKETT Reported To: Water Supply, Inc g and enqineering laboratory, inc. 662 CROMWELL AVENUE ST PAUL, MN 55114 twin city testing PHONE 612/645-3601 Sample No.MDU Heskett #4 Deput. 41'-42' SHALE, (Textural Classifica-CH-0H tion: Organic Fat Clay) Classification (ASTM:D2487)_ 52-0688 Description Job No.

POWER PLANT - MANDAN, NORTH DAKOTA

GRAIN SIZE DISTRIBUTION CURVE



USDA SOIL TEXTURAL CLASSIFICATION

MDU HESKETT #4, 41-42'

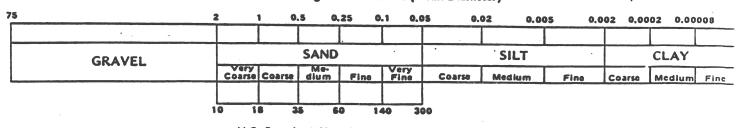
COMPARISON OF PARTICLE SIZES IN USDA SYSTEM

U.S. Standard Sieve Numbers


TWIN CITY TESTING LAB

- MANDAN, NORTH DAKOTA SOIL TESTING FOR MDU HESKETT .005 .004 .003 .002 FINES POWER PLANT Water Supply, Inc 0. .02 .04 .03 Project:_ 90 Reported To:__ #200 GRAIN SIZE DISTRIBUTION CURVE 662 CHOMMELL AVENUE ST PAUL, MN 55114 PHONE 6127645-3601 and enqineering laboratory, Inc. twin city testing 0.1 #50 #60 #80 #100 U.S. STANDARD SIEVE SIZES PARTICLE SIZE IN MILLIMETERS 0.5 0.4 0.3 #20 #30 #40 A 4 [[] | 1 | 1 | 4 | #10 8 Classifica-51'-52' 5.0 4.0 #4 Sample No. MDU Heskett #4Depth. × 3/8.. SHALE, (Textural FINIT 10.0 × Classification (ASTM:D2487) GRAVEL × tion: Silty Clay 3. 2%. 2. Job No. 80 70 9 2 PERCENT FINER THAN SIZE SHOWN

.00


USDA SOIL TEXTURAL CLASSIFICATION

MDU HESKETT #4, 51'-52'

COMPARISON OF PARTICLE SIZES IN USDA SYSTEM

Size Range in Millimeters (Mean Diameter)

U.S. Standard Sieve Numbers

TWIN CITY TESTING LAB

6.1 Site Preparation and Construction

6.1.1 Access and Preconstruction

Exhibit 5-F presents soil information on the Heskett site currently available through the Morton County Agricultural Stabilization and Conservation Service office. Because this data was gathered from fieldwork conducted several decades ago and provides little site-specific soil depth information, a new soil survey will be commissioned. The survey will be conducted prior to the onset of construction and cover the entire permit area. Soil profiles will be developed identifying soil types and topsoil (A horizon) and subsoil (B horizon) depths. This information will be used to establish plant growth material (SPGM) salvage and replacement depths during future construction and reclamation activities.

Surface water drainage of adjoining land east of the site will be improved by the permanent installation of a grass-lined ditch (Exhibit 6-B). This drainageway will be located along the base of an existing draw and enhance movement of surface runoff waters and permitted discharges from impoundments located to the south on Amoco Refinery property. The drainageway will be about 8 feet deep, 8 feet wide at the base, and provide a slope of 1% to a discharge at Rock Haven Creek. Existing surface water drainage patterns should not be significantly altered by this installation.

Primary access to the site will be along a dedicated haul road extending eastward to Heskett Station (Exhibit 6-B). Roadbed construction will require 34,500 cy of excess earthern material removed during the excavation of the initial disposal slot. The road surface will be covered with

gravel to allow all weather access to the site. All haulage road construction activities will be performed on Montana-Dakota property and will not interfere with traffic on surrounding public roads.

Other points of access to the site will be restricted by the installation of a lockable personnel fence around the perimeter of the facility.

Public access to the site will not be allowed.

6.1.2 Facility Construction

The first phase of the facility described in Exhibit 6-B will be constructed and made operational during the 1989 earthwork construction season. Waste placement will begin upon the completion of the initial waste disposal slot. To minimize impacts to the landscape and reduce potential fugitive dust and leachate generation, new disposal trenches of similar design will be excavated approximately every other year. Filled trenches will be closed and reclaimed concurrently with new trench construction

The 47 acre disposal facility will be developed in two phases. Phase I, comprising the disposal area on the north side of the haul road, will provide about 13 years (approximately 700,000 cy) of disposal capacity. The initial disposal slot will be constructed along the western edge of the Phase I area. Subsequent excavations will proceed eastward until the Phase I area is filled. Phase II of the disposal site lies south of the haul road and will provide disposal capacity for about 15 years (approximately 600,000 cy). Phase II development (Exhibit 6-C) will begin parallel to the southern edge of the haul road and proceed southward. The final trench excavation at the site will lie parallel to the southern edge of the site. It is not currently expected that ash will be placed directly beneath the on-site portion of the

haul road. However, ash emplacement beneath the road may be considered as a contingency if needed.

Exhibit 6-D provides information regarding earth quantity movements for each disposal trench. These estimates (and the subsequent size of the trenches) may be adjusted somewhat if ash waste generation rates markedly differ from projections. The initial slot of Phase I will be constructed to contain slightly over one year of waste (60,000 cy). Subsequent trenches will be constructed to contain all ash generated during the ensuing one to two years.

All construction activities will be performed during the normal earthwork construction season. Equipment such as bulldozers, scrapers, graders, and compactors will remove, modify, and/or replace earthen materials. Most material excavation and relocation operations will rely upon scrapers.

Each trench will have a compacted in-situ clay liner along its base to restrict downward migration of in-pit liquids. Available information (see Exhibits 5-E and 5-K) indicates an abundance of naturally occurring clay and silt which will be uncovered in conjunction with trench excavations. These materials will be scarified to a depth of 18 inches and recompacted to a permeability of not more than 1 \times 10-7 cm sec-1. Occurrences of sand or gravel will be removed and replaced with clay-rich spoil. In-situ materials providing marginally acceptable rates of permeability will be replaced, treated with a soil liner admixture such as bentonite, or thickened to provide the equivalent permeability of 18 inches of 1 \times 10-7 cm sec-1 material. The in-situ liner will cover the entire floor of the trench, the liquids collection sump, and be extended to include the lower five feet of the trench sidewall. Liner installations associated with new trench construction will be keyed into the previous trench liners, thereby providing contiguous liquids

6.1.3 Excavated Materials

The removal and stockpiling of suitable plant growth material (SPGM) will be completed prior to any operation which would interfere with the use and integrity of the top soil. Top soil thickness information provided by the soil survey (see Section 6.1.1) will be used to establish SPGM salvage depth. SPGM will be removed by scraper in two lifts; soil horizon A will be removed in the first lift, soil horizon B will comprise the second lift. Each lift will be separately stockpiled in an area described in the Site Plan of Exhibit 6-B. Because filled trenches will be closed in conjunction with new trench construction, removed SPGM shall be stockpiled only when it is not practical for direct placement in areas concurrently undergoing reclamation.

Exhibit 6-D projects the amount of earthen materials which will be excavated. The largest single Phase I excavation (59,000 cy) will be the initial trench construction. Resulting excess materials from drainage ditch and disposal slot excavation will be used in the construction of the access road, evaporation pond, and a permanent visual obstruction berm along the southern perimeter of the site. Excess spoil may be diverted to the closure of the adjacent Heskett ash pile if available. Because future excavations will generate volumes of materials which approximate requirements for closure (i.e., cap construction and overburden placement) relatively little material should require stockpiling along the western edge of the site. Stockpile Area No. 1 and 2 may be converted into an additional visual obstruction berm if excess spoils require permanent dislocation from the reclamation area.

All temporary SPGM and clay material stockpiles will be maintained in a manner which minimizes the effects of erosion yet maintains soil integrity. Protective measures will be applied and include the planting of cover crops, mulching, use of chemical binders, contour tillage, or other site specific

infiltration protection. Verification of construction quality and attainment of proper rates of permeability will be made by an independent registered professional engineer.

Each trench floor will be positioned to provide at least five feet of separation between the waste and the 1986 water table elevation. Additionally, the base of each slot will be contoured to provide a positive drainage slope of not less than 1% both laterally and lengthwise, thus promoting rapid movement of in-pit liquids away from the waste and into the collection sump.

Exhibit 6-C, Section X-X illustrates a typical cross-section of the leachate collection pipe which will be permanently installed with each new trench. A perforated pipe will gather liquids from the operational and closed portions of the facility and discharge them into the liquids collection sump in use at that time. Liquids will continue to be gathered by the collection line after the closure of Phase I and discharge directly into the evaporation pond. Waste leachates collected by the Phase II line will not discharge into the active sump but rather directly into the evaporation pond.

All liquids collected within the pit sump and leachate collection lines will be evaporated in a 53,000 square foot evaporation pond (Exhibit 6-B, Section D-D). This pond will be constructed to contain in-pit liquids resulting from normally-occurring rainfall plus a single 24 hour 2.5 inch precipitation event. The evaporation pond will have 5 foot side walls and be equipped with a three foot thick clay liner possessing a permeability of not more than 1 \times 10-7 cm sec-1. The evaporation pond will service the disposal facility throughout the operational life of the site.

treatments. Annual cover crops may be planted in areas of frequent stockpile disturbance if necessary to control wind and water erosion. Obstructional berms will be permanently reclaimed to native grasses as soon as possible after completion.

6.2 Operation and Management

6.2.1 Waste Placement

Coal combustion ash will be loaded onto trucks and slightly wetted for dust control before transportation to the disposal site via the ash haul road. Haulage will take place daily during daylight hours; only in emergencies will ash haulage occur after nightfall. Spilled waste material on the haul road and at the site will be immediately cleaned-up and placed in the disposal trench. Ash waste will not be temporarily stored at the site prior to disposal.

Haul trucks will enter the trench by way of ramps located at the end of the trench with the highest elevation (Exhibit 6-B, Operational Schematic). Waste will be initially placed in each trench near the ramp and expanded to provide a surface for unloading activities. Vehicular traffic upon the disposal slot floor will be held to a minimum to reduce inadvertent liner damage. Dumped waste will be leveled with a front end loader and spread across the trench floor in lifts 5 to 8 feet thick. The active sump area will not be filled with waste. Ash will not be dumped from the pit highwall into the trench.

Because initial disposal activity will be conducted at an elevation below ground surface the waste will receive only moderate exposure to surface winds. Consequently, little fugitive dust is expected to be generated. As

the waste elevation increases, however, strong surface winds might produce increasing amounts of airborne nuisance particulates. Dust suppression measures will be implemented as required to control fugitive dust. These measures will include the selective placement of AFBC bottom ash (a relatively low dust emitting material) over other ash wastes or the thin spreading of earthen or other dust control material. A 2,500 gallon water spray truck is available for dust control applications over the ash haul road. Water spray will not be used for dust control over the disposed of waste.

Montana-Dakota personnel will perform all daily operational monitoring and disposal activities at the site. Facility points-of-contact are:

Station Superintendent - Duane Steen

Fuel and Grounds Supervisor - Darhl Bowers

Facility Telephone - (701) 663-9576

The Fuel and Grounds Supervisor (or his designee) at Heskett Station will have general supervision of the site and verify that procedures specified in this permit application are adhered to. The site will be monitored daily in conjunction with normal ash haulage activities. Weekly log entries will be made concerning the amount of ash hauled, waste-contaminated water transferences, and unusual operational occurrences such as waste spillages or failures in site reclamation. Corrective actions will also be noted.

6.2.2 Surface Water Management

Ground surface runoff waters will be prevented from entering the pit by either a positive slope away from the edge of the pit or the construction of diversionary trenches or berms. Uncontaminated ground surface runoff waters

will not be controlled at the site except in instances where erosion and/or sedimentation is occurring. Waste spillages at the site and on the haul road will be immediately cleaned-up after each incident; consequently no contaminated waters should be generated in these areas. The ash haul road will be graded to promote surface water run off away from the active disposal area (see Exhibit 6-B, Section b-b and Exhibit 6-C, Section b-b) and into the drainage ditch.

The in-pit sump will hold all meteoric-source precipitation falling within the trench (both waste contacting and non-contacting liquids) and infiltrated water gathered by the leachate collection line (Phase I only). Each collection sump will be sized to provide 100% retention of normal rainfall plus one 2.5 inch precipitation event occurring in a 24-hour period. The sumps will be equipped with an 18 inch compacted clay liner similar in design to the rest of the pit floor. When accumulated liquids approach 3 feet in depth (see Exhibit 6-B, Section X-X), the liquids will be transferred to the evaporation pond. It should be noted that restraints regarding weather, accessibility, equipment or personnel availability may occasionally change the 3 foot liquids volume transfer standard.

Liquid transfer to the evaporation pond will be performed through the use of a portable pump and an overland pipe constructed of PVC or similar material. Pumping activities will normally be conducted during periods of ash haulage and will be continually monitored for leakage during operation. Pumping will not be performed at night or during freezing conditions which could damage the pipe.

Minimal care should be required around the evaporation pond. Surface discharges will not be made from the pond. Growth of vegetation in the impoundment will be controlled through additions of herbicide or mechanical

cutting whenever damage to the clay liner is considered likely. The pond will be monitored monthly for evidence of deterioration and leakage. The ground-water monitoring plan provides for the installation of a water table elevation and quality monitoring well immediately downgradient of the impoundment. Samples of impounded liquids will be taken (if available) semi-annually in conjunction with the groundwater sampling program and analyzed for the same chemical parameters. Surface impoundment analytical data will be combined with the groundwater quality information and submitted to the NDSDH according to the schedule specified in Section 7.3

6.2.3 Contingencies and Potential Impacts

The proposed waste facility was sited and designed to reasonably ensure that groundwater will not intrude upon the waste. Two consecutive years of potentiometric monitoring has shown a relatively stable water table elevation with little apparent seasonal fluctuation. This general stability, even during the severe drought of 1988, might be partially attributable to constant upgradient recharge provided by surface impoundments on Amoco Refinery property to the south. Discussions with Amoco personnel has indicated there are no proposals to expand or otherwise modify this impoundment system.

The facility will be located over a marginal groundwater resource. Groundwater chemical characterizations (Exhibit 5-J) indicate it to be of comparable quality with the waste leachate (Exhibit 2-A). Furthermore, recent studies (referenced in Section 5.2.4) have shown that heavy metals which exist in the leachate (such as arsenic, cadmium, and lead) are effectively attenuated by clay and silt materials which naturally occur in abundance throughout the Heskett Site. The Cannonball Formation water at the Heskett Site is unsuitable for most domestic or agricultural purposes without prior

purification. Area residences rely upon other underlying aquifers such as the Ludlow for their domestic water supplies. Consequently, the proposed facility will not pose a threat to a desirable groundwater resource. Indeed, even major releases of Heskett ash leachate to the underlying groundwater might be expected to result in only minor deviations from normal background chemical makeup.

A number of simple remedial measures are available at the site should groundwater elevations rise to intrude upon the waste, thereby endangering an area resource. Because Rock Haven Creek on the west and north of the site. along with the small draw located to east, already provides natural points of surface discharge to a rising groundwater table, modification to these topographic depressions or the installation of a shallow subsurface drainage system in their vicinity would serve to allow groundwater discharge at a lower elevation. This would serve to permanently lessen the potentiometric level of the water table. Increasing the depth of the drainageway might be particularly appropriate due to its close proximity to the lowest point of waste placement (i.e. the eastern edges of Phases I and II). Another option includes the permanent installation of a subsurface drainage pipe or french drain five to eight feet below the southern edge of the last Phase II trench. Such a system would intercept the groundwater below and upgradient of the waste and divert flow laterally to a discharge point on the drainageway. This would hydraulically isolate the waste.

An in-pit leachate collection system will be constructed to detect and gather in-waste liquids that would occur during the operational life of the site. Significant leachate collections may extend the life of the gathering pipes (and evaporation pond) beyond the site closure date until the problem is remedied. The in-pit sump and evaporation pond will have compacted clay

liners to assure minimal rates of subsurface leachate migration. The evaporation pond will be monitored monthly to determine liquids volume and detect evidence of deterioration, erosion, seepage, or overtopping. The in-put collection sump will be similarly inspected weekly and after precipitation events. Should a sudden drop occur in the liquids level of the impoundment or groundwater quality monitoring indicate significant leakage is occurring, repair or replacement of the liner with a soil-based or admixed liner will be performed. Similarly, the size of in-pit collection sumps will be expanded in subsequent trench excavations should it become apparent that more retention volume is needed.

Provisions have been made which allow for visual and acoustical obstructions (earthen berms and tree shelter belts) between facility operations and residences to the south. Additional tree plants and berm construction (depending upon materials availability) may be emplaced around the facility perimeter at a future date. Shelter belts or berms will not be placed over waste disposal areas. Decisions regarding these features will be made after the facility becomes operational and their need at a specific location becomes apparent. Dust control measures (as described in Section 6.2.1) will be implemented until these features become permanently established.

6.3 Closure and Reclamation

6.3.1 Closure Methods

As each trench is brought to its final waste elevation, a 1 to 3 inch layer of earthen material will be applied to the waste if fugitive waste dust requires suppression. New trenches will be first constructed adjacent to the

disposal area intended for closure. Excavated materials from the new trench will be used to close the waste filled trench. Excess excavated material may be temporarily stockpiled in the area described in Exhibit 6-B or used in permanent berm construction. Similarly, new trenches providing inadequate volumes of earth for closure work will require withdrawal from stockpiled inventories.

A two-foot thick compacted clay cap will be constructed over the waste (Exhibit 6-C, Sections A-A and B-B). The cap will be developed from clay-rich spoil materials such as those documented in Exhibit 5-K. Earth moving equipment such as bulldozers, scrapers, graders, and compactors will emplace materials so that compaction of approximately 95% of maximum dry density and a permeability of 1 \times 10⁻⁷ cm sec⁻¹ or less is attained. If available materials cannot provide for a two-foot thickness of 1 \times 10⁻⁷ cm sec⁻¹ permeability, cap thickness will be increase commensurably and/or treated with an admixture to a point which affords equivalent moisture infiltration protection. Verification of adequate construction quality and permeability will be made by an independent registered professional engineer.

Uncompacted spoil will be immediately spread over the completed clay cap and shaped to prevent surface water ponding. Surface slopes will range from 4% to 10%. Spread depth will be adequate to create a total earthern material profile above the waste (i.e., Clay cap, uncompacted spoil, and SPGM) of not less than eight feet.

SPGM will be spread over the spoil material at a uniform depth determined by material availability. The respread will be done in accordance with currently accepted practices and procedures which assure proper interlift adhesion. Compaction of materials will be held to a minimum.

The final Phase II trench closure (thus leading to final site closure) will include the removal of the waste haulage road surface and the evaporation pond. All waste-contaminated material will be placed with the waste in the final disposal trench. Disturbed areas will be shaped to the topography illustrated in the site plan of Exhibit 6-D and reclaimed. The leachate collection lines will be abondoned in-place and will not be monitored or maintained. Points of access to the leachate collection line will be sealed during final closure for purposes of safety. The drainageway will not be modified or restored to original contours during or after final closure of the site unless deemed necessary at the time.

6.3.2 Reclamation

SPGM will be sampled and tested to determine soil nutrient status.

Fertilizer application recommendations will be solicited from a soil testing laboratory and utilized in consideration of existing soil properties, topography, seed mix components, and practical experience.

The seedbed will be prepared in a fashion which would promote a stable, self-supporting prairie grassland. Rates for seed mixture will approximate:

Species	Rate (1b/acre)
Western Wheatgrass	6.0
Pubescent Wheatgrass Smooth Brome	4.0 2.0

Seed implantation will be performed with a seed drill during the first favorable planting period; typically from April 15 through June 7, August 10 through September 15, or after October 20. A straw mulch or cover crop will be applied immediately after seeding to provide temporary erosion control. Reseeding or interseeding will be performed if grass fails to establish over

large areas. Bale dikes, excelsior mats, or other appropriate measures will be utilized for control of significant erosion features.

6.3.3 Post-Closure Surface Care

The Heskett Site will be incrementally reclaimed as individual disposal trenches are filled and closed. Post-closure surface care will continue until five years after final closure of the facility. Reclamation failures at the site would extend the surface care requirement period until such time as the deficiency is permanently corrected.

The post-closure maintenance will begin from the date of vegetation seeding. During the first year, each reclaimed area will be examined monthly and after storm events to:

- 1. Verify that final contours and drainages are maintained,
- 2. Ensure that healthy vegetative cover is established, and
- Maintain proper erosion control measures which may be in-place at the site.

Post-closure inspections will be performed quarterly for the remaining four years of the surface care period. Inspection results and corrective actions will be logged. These records will be summarized into an annual facility status report and forwarded to the NDSDH.

The reclaimed area will resemble a gently sloping hill supporting a typical grassland prairie. The growth of woody species (whose root system might penetrate the underlying clay cap) will be suppressed through cutting or chemical treatment. Montana-Dakota may eventually sell hayland or pasture rights if the integrity and plant growth productivity of the site can be maintained with minimal care. No haying or grazing activities will be allowed

for at least three years following initial vegetation establishment of each reclaimed increment.

Montana-Dakota intends to continue ownership of the site for the forseeable future. No plans to allow surface disturbance or agricultural utilization (except hayland or pasture usage) of the reclaimed area exist. The current industrial land use zoning classification will be retained.

EXHIBIT 6-A

EXISTING CONDITIONS AND AREA MAPS

EXHIBIT 6-B

PHASE I DEVELOPMENT

EXHIBIT 6-C

PHASE I CLOSURE - PHASE II DEVELOPMENT

EXHIBIT 6-D

FINAL CLOSURE

7.0 GROUNDWATER MONITORING

7.1 Operational Monitoring

Analysis of disposal site groundwater quality and potentiometric surfaces will focus upon the uppermost 15 feet of the Cannonball Formation saturated zone. Because facility expansion will eventually destroy most of the existing site instrumentation positioned for possible water quality monitoring purposes, a new series of monitoring wells will be installed prior to waste placement. Four new wells (3 downgradient, 1 upgradient) will be placed in the approximate areas described in Exhibit 6-B. These wells will be constructed similarly to existing site wells and fitted with a 20 foot screen, the lower 15 feet of which will be positioned below the existing water table. Each well will be lithologically logged during installation.

With the possible exception of infrequent potentiometric level determinations, all other wells existing at the site will not be relied upon for any monitoring functions. These deactivated wells will remain undisturbed until such time as their permanent closure is warrented by facility expansion. Permanently closed wells will be sealed their entire length with grout or other appropriate material in order to assure that groundwater communication between subsurface strata does not occur along the well casing.

Wells which monitor facility operations will be sampled quarterly for the first year to establish background chemical data. The first quarterly sample will be acquired before waste is placed in the facility. The sampling frequency will thereafter be reduced to a semi-annual basis throughout the remaining operational life of the facility.

Water quality samples will be collected and analyzed by personnel experienced in groundwater characterization protocols. Static water table

elevation measurements will be made in advance of any well disturbances.

Wells will be purged by pumping three to five well volumes (or until dry)

immediately prior to well sampling. Delays in sampling greater than 24 hours

will require re-purging.

All first-year background groundwater samples will be analyzed for water quality parameters specified in Table 7-1. This list of parameters will be reduced to a semi-annual groundwater quality characterization of Table 7-2 constituents subsequent to the completion of the first year collection of background data gathering.

7.2 Post-Closure Monitoring

Annual post-closure groundwater monitoring will continue for 30 years after final closure of the entire facility. Sampling for the first five years of the closure period will be performed on the same wells for the same chemical parameters as is in effect for operational monitoring program at the time of closure (i.e., Table 7-2 constituents).

If, after review of all accumulated operational and five years of post-closure data, no leachate contamination is statistically evident in the groundwater when compared to background levels, the suite of annually-monitored parameters will be reduced to:

pH Static Water Level

Specific Conductance Arsenic

Total Dissolved Solids Boron

Carbonate Selenium

Bicarbonate Calcium

Sod ium Lead

Sulfate Temperature

TABLE 7-1

Background Groundwater Quality Analysis Parameters

Alkalinity, total (as CaCO₃)

Arsenic (As)*

Barium (Ba)*

Bicarbonate (HCO₃)

Boron (B)*

Cadmium (Cd)*

Calcium (Ca)

Carbonate (CO₃)

Chloride (C1)

Chromium, total (Cr)*

Fluorine (F)

Hardness (as CaCO₃)

Iron (Fe)*

Lead (Pb)*

Magnesium (Mg)

Manganese (Mn)*

Mercury (Hg)*

Molybdenum (Mo)*

Nitrate (NO₃)

pH**

Potassium (K)*

Selenium (Se)*

Silver (Ag)*

Sodium (Na)

Specific Conductance**

Sulfate (SO₄)

Temperature**

Total Dissolved Solids (TDS)

*Analyses only for dissolved metal concentration

**Field determinations

Static water levels will be measured from top-of-pipe.

TABLE 7-2

Operational Groundwater Quality Analysis Parameters

Alkalinity, total (as CaCO₃)

Molybdenum (Mo)*

Arsenic (As)*

pH**

Bicarbonate (HCO₃)

Potassium (K)*

Boron (B)*

Selenium (Se)*

Cadmium (Cd)*

Sodium (Na)

Calcium (Ca)

Specific Conductance**

Carbonate (CO₃)

Sulfate (SO₄)

Hardness (as CaCO₃)

Temperature**

Lead (Pb)*

Total Dissolved Solids (TDS)

Magnesium (Mg)

*Analyses only for dissolved metal concentration

**Field determinations

Static water levels will be measured from top-of-pipe.

Characterization of these groundwater quality indicator parameters will continue for the remaining 25 year post-closure groundwater monitoring period.

7.3 Quality Assurance and Data Management

Montana-Dakota currently relies upon experienced independent contractors to acquire analytical and potentiometric groundwater information. This practice is expected to continue for the forseeable future. Minimum levels of performance for such contractors will include:

- Use of non-contaminating, non-aerating equipment for all monitoring activities. Equipment other than bailers or submersible diaphragm pumps for purging and sampling must be specifically approved by Montana-Dakota before use. Air-lift pumps may not be used in any circumstance.
- All samples must be conditioned, preserved, and analyzed according to methods and limitations prescribed in Methods for Chemical Analysis of Water and Wastes, EPA-600/4-79-020 (revised March 1983).
- Description of field sampling methods and analytical quality controls will be required of each contractor. Evidence of appropriate laboratory certification and participation in interlaboratory comparison will be requested. Brief resumes of involved personnel must also be provided.
- Cation/anion balances and replicate values for each set of data must be identified on the analysis report.

Montana-Dakota shall annually evaluate accumulated water table elevation and groundwater quality information gathered from site instrumentation by the contractor. Post-closure groundwater data obtained from wells surrounding

the adjacent Heskett ash waste pile (WS-series wells) will also be examined to determine their possible contribution to Heskett Site contamination monitoring. Data evaluation techniques will include chemical constituent comparisons between upgradient and downgradient wells at the same point in time and comparisons of individual wells to their historic backround concentrations. A variety of statistical tools will be examined for application against the data base. Goodness-of-fit testing will confirm or deny the existence of normally distributed data. Specific test procedures might include hypothesis testing (t-test), parametric analysis of variance (ANOVA), ANOVA's based upon ranks, and perhaps tolerance intervals. Significance will be established at the 0.05 confidence level.

Operational groundwater monitoring will typically be performed in the second and fourth calendar quarters. Annual post-closure groundwater monitoring will be performed during the second or third quarter. All groundwater sample analysis results, water table surface elevations, and other associated information will be forwarded to the North Dakota State Department of Health within 30 days of its receipt from the independent groundwater sampling contractor. Cumulative statistical data summaries (including descriptions of the statistical methods employed) will be forwarded to the Department annually as they are completed.

8.0 PERMITTING

Upon approval by the North Dakota State Department of Health of the proposed solid waste disposal facility but before the onset of actual disposal activities, a notarized affidavit shall be recorded in the tract system of the Morton County Registrar of Deeds. This affidavit shall specify that the SW1/4 of Section 10, Range 81 West, Township 139 North, has been permitted to receive solid waste for disposal. Another affidavit shall be similarly filed upon final closure of the site which provides information concerning waste types, location, construction, and management. Copies of both instruments shall be forwarded to the North Dakota State Department of Health within 30 days of recording.

Other requirements, as specified by the North Dakota State Department of Health and other regulatory authorities, will be complied with as they become evident.

Upon the beginning of normal operations of the proposed disposal facility all waste placement at the current disposal facility (i.e. the Heskett Ash Pile) will cease. The ash pile will then be closed according to the specifications described in the relevant Special Use Disposal Site permit application (submitted to the North Dakota State Department of Health on March 10, 1986: Solid Waste Permit issuance still pending).

APPLICATION FOR PERMIT TO CONSTRUCT/OPERATE A SPECIAL USE DISPOSAL SITE NORTH DAKOTA STATE DEPARTMENT OF HEALTH SFN 8376 (01/86)

NOTE: Please remd the instructions for details on information and documents required to support your application.

PERSON TO BE RESPONSIBLE FOR OPERATION (APPLICANT) Station Manager, Heskett Station			APPLICATION DATE March 1, 1989		
ADDRESS OF APPLICANT 400 North Fourth Street, Bismarck, ND 58501			TELEPHONE NUMBER (701) 222-7900		
NAME OF SITE Heskett Ash Site	Hesket		Miles North	of Mandan, N	TELEPHONE NUMBER D (701) 663-9576
PROPERTY OWNER Montana-Dakota Utilities	ADDRESS OF PROPERTY OWNER 400 North Fourth St., Bismarck, ND 58501		TELEPHONE NUMBER (701) 222-7900		
LEGAL DESCRIPTION OF SITE A Portion of the SW1/4		SECTION 10	TOWNSHIP 139N	RANGE 81W	COUNTY Morton
PRESENT ZONING CLASSIFICATION	OF SITE	DOES PRESENT ZO	ONING ALLOW THIS	PROPOSED USE?	EXPECTED LIFETIME OF SITE
Industrial		_x YES N	10		28YEARS

I hereby affirm all information in this application is true and accurate to the best of my knowledge and belief.

SIGNATURE OF APPLICANT

SEND COMPLETED APPLICATION TO:

NORTH DAKOTA STATE DEPARTMENT OF HEALTH
DIVISION OF HAZARDOUS WASTE MANAGEMENT AND SPECIAL STUDIES
1200 MISSOURI AVENUE, ROOM 302
BOX 5520
BISMARCK, ND 58502-5520

INSTRUCTIONS FOR COMPLETING AN APPLICATION FOR A PERMIT TO CONSTRUCT AND/OR OPERATE A SPECIAL USE DISPOSAL SITE

APPLICATION AND ALL ACCOMPANYING DOCUMENTS MUST BE SUBMITTED IN QUADRUPLICATE

These instructions are considered to be general guidelines only. More or less data may be required by the Department depending on the waste and on conditions at the specific disposal sites. The information required for a specific site will be determined by a preliminary site evaluation by the Department. This may eliminate the expense of investigations at some sites which are obviously unacceptable. After the required site investigation has been completed by the applicant, further work may be required as deemed necessary by the results of the initial investigation.

Permit applications must be prepared and compiled as one cohesive document that logically presents all information necessary to review a permit. Any modifications or information submitted to the Department subsequent to the initial permit application should be in a format that can be physically incorporated into the formal permit application. The Department reserves the right to reject or return a permit application if it is not complete, or if the information is not presented in an orderly and logical format.

The instructions below address the following required information:

- I. Waste Information
- II. Location Information
- III. General Geographic Setting
- IV. Site Specific Characteristics (Geology and Hydrology)
- V. Construction Plans and Specifications
- VI. Groundwater Monitoring
- VII. Operation and Management Methods
- VIII. Record Solid Waste Activity with County Registrar of Deeds
- IX. Closure
- I. WASTE INFORMATION: For each type of solid waste to be managed, specify (a) amount in tons per day or cubic yards per day, or gallons per day; (b) physical description; and (c) qualitative and quantitative chemical analyses.
- II. LOCATION INFORMATION: Show the facility location on a USGS 7 ½ minute quadrangle map (scale not less than 1:24,000). Also include a current map or aerial photograph of the area showing existing land use. Aerial

photographs are often available from the Agricultural Stabilization and Conservation Service (ASCS). The map or aerial photograph shall be of sufficient scale to show those man-made and natural features of the area, such as water courses, flood plains, dry runs, wells, roads, and other appropriate details and the general topography of the area.

This section should also address the zoning within a quarter mile of the proposed location and any proposed changes in zoning required for waste disposal activities. The Department may request additional information from the applicant and/or the local zoning authorities regarding the zoning requirements for the site.

- III. GENERAL GEOGRAPHIC SETTING: This narrative should be a general description of the site. It should include a general treatment of the geography, climate, soils, vegetation, geology, and groundwater to give an adequate background and foundation for effective presentation of the hydrogeology of the site and adjacent areas. The description should not be more elaborate than is necessary to accomplish this purpose.
- IV. SITE SPECIFIC CHARACTERISTICS: (Geology and Hydrology) This information shall be a detailed, integrated evaluation of the hydrogeologic conditions beneath and adjacent to the proposed site pertinent to the production and migration of refuse leachate, and to the capability for leachate containment and attenuation to acceptable quality before reaching a present or potential water source.

A qualitative and quantitative analysis of the effects of the emplacement of the refuse on the existing hydrologic regime must be addressed. Hydrogeologic data must be based on a systematic investigation utilizing data from borings, piezometers, water wells and other nearby water sources, the chemical characteristics of subsurface waters, and other available information.

After all pertinent information has been obtained, site investigation borings must be properly sealed or grouted in a manner that will prevent cross-contamination or interconnection of formations of strata.

A. TYPE AND EXTENT OF SUBSURFACE MATERIALS: A minimum of one boring is required for each ten (10) acres at the site. Regardless of minimum requirements, the degree of subsurface information obtained must be sufficiently comprehensive to allow the design hydrologist/geologist or engineer to make a detailed evaluation of the hydrologic and geologic properties of the subsurface materials, both at the site and laterally extrapolated, such that a reasonable estimate of the effects of these materials on the containment, migration, and attenuation of the leachate can be made. The site specific details must be incorporated into at least two or three cross-sections showing details on the site's geology, hydrology, and elevation. Any clay-rich soil to be used for compacted clay liners or cap must be accurately identified, located, and analyzed.

Borings used for the cross-sections must extend to a minimum depth of fifty (50) feet below the proposed elevation of the buried refuse, or if pertinent, a sufficient depth into bedrock to

determine its character and hydraulic characteristics. In-situ permeability tests may be necessary to determine the permeability of the formations surrounding and underlying the proposed facility. A lithologic and geophysical log may be required for each boring. The geophysical log may include a gamma-gamma and a gamma-density log.

The placement, construction and design of borings piezometer(s) and/or monitoring well(s) should be coordinated with an appropriate representative of the Department. The complete logs of each boring must be provided as well as the following information.

- 1. Date of boring
- 2. Location of boring
- Method of drilling including the circulation technique (air, air-mist, water, mud)
- 4. Method of sampling
- 5. Diameter of borehole
- 6. Elevation at surface of boring, referenced to mean sea level to the nearest 0.1 foot
- 7. For monitoring wells, the elevations of the screened interval
- 8. Depth and elevation of the water level in the borehole or piezometer
- 9. Method of piezometer and/or monitor well completion or method used to seal and abandon borehole, whichever is applicable
- B. MATERIAL CLASSIFICATION AND ANALYSIS: Material samples should be taken by split spoon or shelby tube at depths in the boring operation where the type of material encountered differs from that immediately overlying, or in homogeneous materials, at regular intervals. These samples and any samples of clay-rich soil to be used for clay liners must be classified, tested, and analyzed in a materials testing laboratory and the following data reported:
 - Textural classification (USDA System or Unified System) plotted on the appropriate textural classification.
 - 2. Particle size distribution curves of representative samples.
 - Coefficient of permeability based on field (preferred) and/or laboratory tests.
 - 4. Ion-exchange capacity of samples and ability to adsorb and "fix" heavy metals. Results should be reported in millequivalents per 100 grams of sample. Most fine textured materials will favor ion-exchange because of their mineralogy,

low permeability and large surface area. Sands and gravels are less effective and hence will permit less attenuation of leachate per unit of flow path, and will allow more rapid rates of travel.

C. HYDROLOGY: The hydrology of the site will dictate its ultimate suitability and the final design of the facility.

The design and operation, if soundly based on hydrogeologic principles, will incorporate one or more of the following: elevating the base of the disposal facility above any existing or potential zones of saturation; utilization of existing natural environment to contain and "treat" the leachate; modification of the natural environment to provide the desired hydrogeologic characteristics to either contain the leachate within the refuse, or to provide attenuation in the resulting hydrologic flow system and; isolate the refuse from the surrounding flow system by the use of a natural or artificially-installed liner, and thence collecting and treating the leachate by an engineered system.

Placement of refuse above the zone of saturation does not preclude all leachate production and resultant groundwater pollution, since precipitation during site operation as well as after site closure may generate leachate.

The hydrogeological factors which must be sufficiently considered include:

- The permeability of the subsurface materials beneath and surrounding the area to be filled with waste;
- The rate(s) and direction(s) of groundwater movement;
- 3. The spatial distribution of the potentiometric surface(s) at the time instrumentation is completed, as well as after the facility is constructed, including the water table and the potentiometric surfaces for aquifers in the vicinity of the site;
- 4. Any structural features which may affect the flow path for groundwater and/or leachate migration. Facilities proposed for areas underlain by significant lignite seams or for areas where lignite has been mined should include a structural contour map of the base of the lignite seam;
- 5. The effects of facility construction and the emplacement of the refuse on the existing hydrologic regimen, including consideration of flow-system changes as a result of site disruption, construction, or pumpage from present or potential water sources; and
- 6. The thickness, composition, and configuration of the final cover of the filled area, as well as the post-reclamation vegetation and its effect on surface water infiltration.

- V. CONSTRUCTION PLANS AND SPECIFICATIONS: Submit a detailed narrative report with the following:
 - A. A detailed topographic map of the existing site, (scale 1" = 200' or larger) using a contour interval of five (5) feet where the relief exceeds twenty (20) feet, and two (2) foot contour intervals where the relief is less than twenty (20) feet. The map should show all buildings, ponds, streams, ditches, utilities, roads, fences, location(s) of boreholes, and any other items of significance.
 - B. A second topographic map, matched to the scale of the above map, prepared to completely describe the final construction of the proposed site. This should include the construction of disposal areas of trenches; the development of control features for surface water run-off, run-on, and drainage; any installation for the collection and treatment of leachate; access roads; buildings; utilities; fencing; monitoring wells; topsoil and subsoil stockpiles; cover material stockpiles; liner and clay cap material stockpiles; and all other features of the developed facility.
 - C. A soil survey report with appropriate maps and a narrative. This section should describe the types of soils at the site and describe the thickness of the topsoil ("A" horizons) and the subsoil ("B" horizons). A description of how these horizons will be removed, handled, and stockpiled for later respreading during site reclamation must be included in detail. This stockpiled soil material (Suitable Plant Growth Material or SPGM) must be handled, stockpiled, and the piles revegetated in a manner that minimizes erosion and/or contamination of the material. The maps included in the construction plans should identify locations of SPGM stockpiles.
 - D. Submit a series of cross-sections or profiles (scale 1" = 200'or larger) of the developed site. These sections should number no less than three (3), but in any case must be adequate to define the three dimensional distribution of materials to a depth of fifty (50) feet below the proposed elevation of refuse.

These profiles should clearly indicate the constructed pits, the geologic strata or lithology surrounding and underlying the disposal facility, the placement of any required side and/or bottom liners, the placement of any surface water sumps, the placement and screened interval of appropriate monitoring wells, the levels of the water table, groundwater flow directions, the proposed sequence of placement and total compacted thickness of each lift of waste, thickness of cover material for each lift, and the slope of the completed landfill with final cover in place. These cross-sections should be in a format that allows permit reviewers to obtain a quick and concise view of the proposed facility.

E. The construction plans should address the Quality Control and Assurance Procedures to be used during site construction, liner

installation, groundwater monitoring, site operation, and site closure. The Department may require a routine report from the facility on the status of the operation and its construction (especially the liners) and its operation (especially surface water control and dust control). The description of the Quality Control Procedures for liner construction or any other appropriate construction (clay cap, etc.) should be signed by an independent registered engineer. A routine status report could be included with the quarterly groundwater monitoring report.

- VI. GROUNDWATER MONITORING: The design of a groundwater monitoring system and the parameters for water analysis should be based on an assessment of the waste analysis, the site's geology and hydrology, the plans for construction, and the facility's method of operation. Items that should be discussed include:
 - A. The water level in the boreholes immediately after boring completion and sufficient periodic measurements of the depth to water until stabilization has been attained.
 - B. The vertical and horizontal components of the hydraulic gradients; a contour map for each potentiometric surface (data for which may be based on local domestic and industrial wells, and on-site piezometers and boreholes).
 - C. The location of one or more up-gradient groundwater quality monitoring well nests and a minimum of two down-gradient groundwater quality monitoring piezometer nests to be located in the expected path(s) of the leachate migration. The location and construction of the piezometers should be in accordance with the hydrogeology of the site as determined by the exploratory program, subject to final approval by the Department.
 - D. All monitoring wells must be cased and must be installed in compliance with Chapter 43-35 of the North Dakota Century Code and in compliance with Chapter 33-18-01 of the North Dakota Administrative Code governing water well construction. Monitoring wells must be completed in a manner that maintains the integrity of the borehole and precludes cross-contamination or interconnection of aquifers or geologic strata. The casing must be screened with an appropriately sized factory slotted pipe and packed with clean sand or gravel to allow collection of groundwater samples. The annular space between the well casing and borehole must be properly sealed to prevent contamination of samples and the groundwater.

At the surface, all wells must have a proper apron to prevent surface water infiltration and a protective outer casing to prevent physical damage to the well. The outer casing should include a cap and lock.

The monitoring piezometer should be constructed of non-metallic material, with a two (2) inch or greater inside diameter. Such piezometers will aid in evaluation of the effectiveness of the proposed facility design, and provide an early warning of design malfunction so that timely remedial measures can be initiated.

E. Background analysis for the following chemical characteristics shall be mandatory for at least one groundwater sample taken from a piezometer installed in the expected flow path(s) of the leachate.

EPA standard procedure shall be used for obtaining, transporting, and analyzing samples. The results of the analysis shall be submitted to the Department before an operating permit can be issued.

CHEMICAL PARAMETERS FOR GROUNDWATER ANALYSIS

- Total Alkalinity (CACO₃)
- Arsenic (AS*)
- 3. Bicarbonate (HCO₂)
- 4. Cadmium (Cd) *
- 5. Calcium (Ca) *
- 6. Carbonate (CO₃)
- 7. Chloride (C1)
- 8. Total Chromium *
- 9. Fluoride (F-)
- 10. Hardness (as calcium carbonate)
- 11. Iron (Fe) *
- 12. Lead (pb) *
- 13. Magnesium (Mg) *
- 14. Manganese (Mn) *
- 15. Mercury (Hg) *
- 16. Nitrate (NO₃)
- 17. pH
- 18. Potassium (K) *
- 19. Sodium (Na) *
- 20. Specific Conductance**
- 21. Sulfate (SO_A)
- 22. Total Dissolved Solids
- 23. Selenium (Se) *
- 24. Barium (Ba) *
- 25. Silver (Ag) *
- 26. Molybdenum *
- * Analyzed for "dissolved" metals. (i.e. samples filtered through an 0.45u membrane filter.
- ** Reported in micromhos at 25 degrees C.

Additional parameters may be assigned by the Department. These parameters will be determined by the detailed chemical analysis of the waste.

All constituents reported in milligrams per liter (mg/l).

Periodic groundwater samples shall be collected and analyzed by the applicant, or his designated representative, to monitor for alterations in groundwater quality. The frequency of samples and parameters required for analysis will be specified by the Department.

- VII. OPERATION AND MANAGEMENT METHODS: The permit application must contain details on the facility's operation and maintenance. This should include in detail:
 - A Personnel
 - B Contingency and emergency plans
 - C Control of access to the site (fence, gates, signs, etc.)
 - D Roads (including maintenance)
 - E Confining disposal to as small an area as possible
 - F Dust control
 - G Spill prevention and cleanup
 - H Storage (if any)
 - I Source and thickness of cover
 - J Frequency of covering
 - K Methods of waste handling and haulage
 - L Leachate (including pit water) and surface water run-on/run-off control, handling, and disposal
 - M Recordkeeping
 - N Development Plans
 - O Quality Assurance and Quality Control
- VIII. RECORD OF SOLID WASTE DISPOSAL ACTIVITY WITH THE COUNTY REGISTER OF DEEDS: Prior to onset of disposal activities, the permittee shall record a notarized affidavit with the County Register of Deeds to place a notation in the County's tract system specifying that this solid waste management site, as specified in the legal description, is permitted to accept solid wastes for disposal.

This affidavit shall specify that another affidavit must be recorded upon the facility's final closure.

Upon closure, an additional affidavit shall be recorded, as above, specifying any final details regarding the types of wastes disposed at the site, as well as any final details regarding the site's location, construction, management, etc.

The Department must be provided with a copy of both affidavits certified by the County Register of Deeds in the county in which the disposal site is located, within thirty (30) days of their recorded dates.

IX. CLOSURE: A closure plan must be included which describes in detail the procedures to be followed and the materials and manpower to be used in accomplishing final closure of the disposal facility. Generally, closed sites should have an adequate slope to promote surface water run-off without causing active erosion of the final cover.

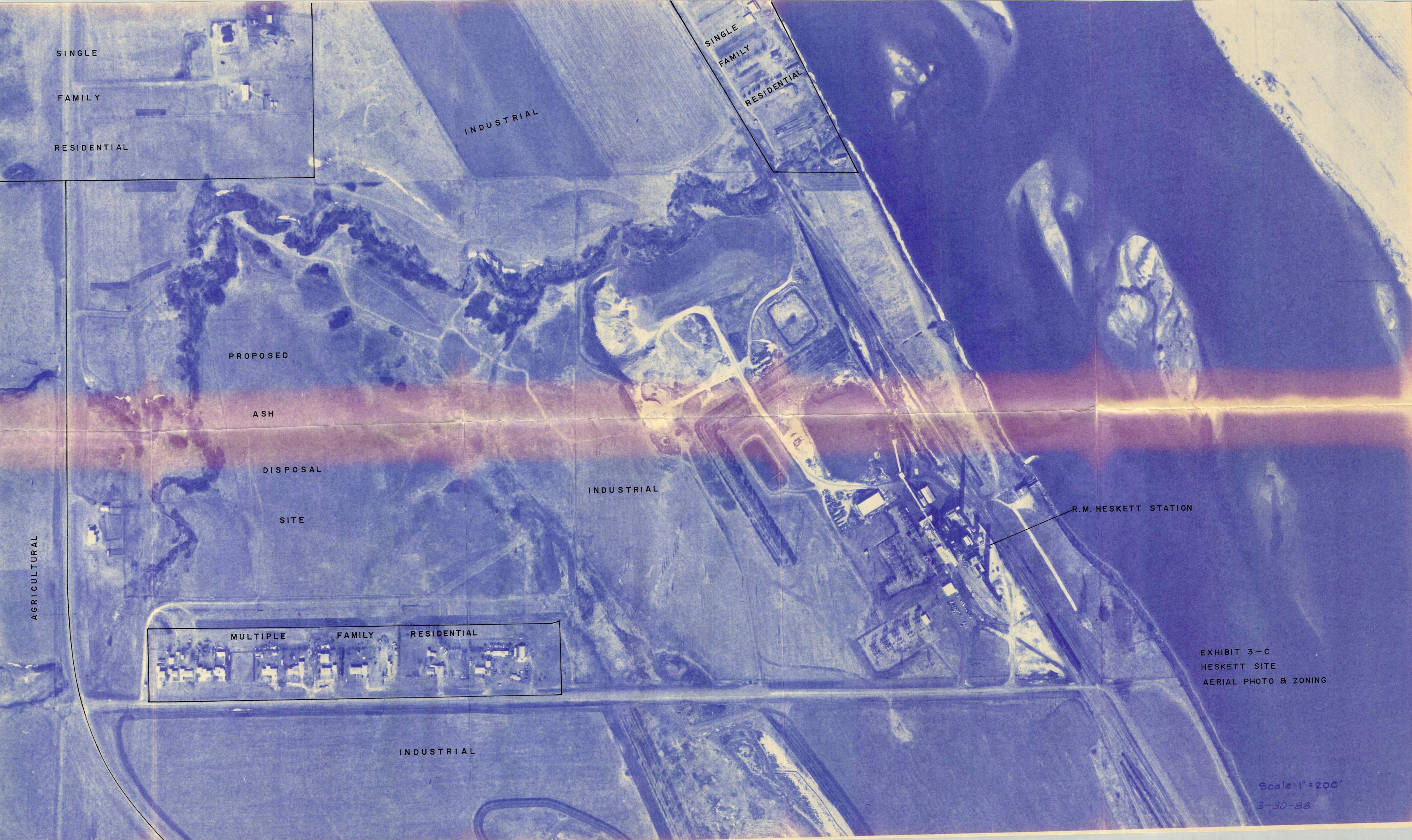
The plan should include whatever maps, cross-sections, diagrams, and narrative is necessary to detail such things as:

- A. Schedule or timetable of closure.
- B. Final elevation of disposed wastes.

- C. Equipment necessary to accomplish closure.
- D. Type, volume, and source of cover material.
- E. Construction and placement of clay and/or synthetic cap and any drainage layers.
- F. Final grading/contouring of the facility.
- G. Topsoil replacement.
- H. Seed, fertilizer, and irrigation necessary to establish cover.
- I. Surface water run-off.
- J. Schedule for post-closure groundwater monitoring.
- K. Maintenance of leachate control or collection system.
- L. A short description of the utilization and maintenance of the disposal area after closure. The closed site should be managed in a careful manner that will prevent deterioration of the desired plant community and the low permeability final cover. The closure plan should provide for routine inspection and maintenance of the closed site, including the replanting of vegetation and the replacement of any eroded final cover.

9.0 SUMMARY

A permanent coal combustion ash disposal facility will be constructed north of Mandan, ND adjacent to the R. M. Heskett power station. The disposal site will be incrementally developed to minimize impact upon the landscape and reduce potential for fugitive dust emissions and waste leachate generation. Disposal trenches will be bi-annually constructed and equipped with an in situ clay liner sloping towards an in-pit leachate collection system. Collected leachate will be evaporatively treated in a clay-lined surface impoundment.


Earthen berms and tree plantings will provide visual and acoustical obstructions between facility operations and adjacent dwellings to the south. Additional landscaping may be performed as needed. Filled trenches will be covered with a compacted clay cap along with uncompacted overburden and plant growth materials to a total depth of eight feet. Reclamation will be performed with each disposal trench closure and produce a gently sloping grassland.

The groundwater immediately beneath the site is of poor quality and marginally useful as a domestic or agricultural resource. All waste will be emplaced above the historic water table. Facility operations should not effect local groundwater flow. A monitoring program will be established to characterize deviations in groundwater hydrology and chemistry. Contingencies have been identified in the event of site characterization errors, incompatible facility design, or operational difficulties as outlined in this permit application.

10.0 REFERENCES

- Ackerman, D.J., 1977, Ground-water basic data for Morton County, North Dakota: North Dakota Geological Survey Bulletin 72, pt. II and North Dakota Water Commission County Ground-Water Studies 27, pt. 2, 528 p.
- Ackerman, D.J., 1980, Ground-water resources of Morton County, North Dakota: North Dakota Geological Survey Bulletin 72, pt. III and North Dakota Water Commission County Ground-Water Studies 27, pt. III, 51 p.
- Armstrong, C.A., and Schmid, R.W., 1986, Hydrogeologic Investigation of the Heskett Station Ash Pile for Montana-Dakota Utilities: Unpublished report to Montana-Dakota Utilities Company, Bismarck, North Dakota, 8 p.
- Beaver, F.W., 1986, The effect of fly ash and flue-gas desulfurization wastes on groundwater in a reclaimed lignite stripe mine disposal site: University of North Dakota Ph.D dissertation, p. 1-210.
- Beaver, F.W., 1987, Verbal communication: Manager of the Coal By-Products Utilization Laboratory, University of North Dakota, Grand Forks, ND.
- Bluemle, J.P., 1971, Geology of McLean County, North Dakota: North Dakota Geological Survey Bulletin 60, pt. I and North Dakota State Water Commission County Ground-Water Studies 19, pt 1, p. 16-20.
- Carlson, G.C., 1983, Geology of Morton County, North Dakota: North Dakota Geological Survey Bulletin 72, pt. I and North Dakota Water Commission County Ground-Water Studies 29, pt. 1, 37p.
- Cvancara, A.M., 1976, Geology of the Cannonball Formation (Paleocene) in the Williston Basin, with reference to uranium potential: North Dakota Geological Survey Report of Investigation 57, 22 p.
- Drever, J.I., 1982, The geochemistry of natural waters: Prentice-Hall Inc., Englewood Cliffs, NJ, 388 p.
- Edwards, J.M., and Ableiter, J.K., 1936, Soil survey of Morton County, North Dakota: U.S. Department of Agriculture, Soil Survey, Series 1936, no 28, 145 p.
- Freeze, R.A. and Cherry, J.A., 1979, Groundwater: Prentice-Hall Inc., Englewood Cliffs, NJ, 604 p.
- Groenewold, G.H., Hemish, L.A., Cherry, J.A., Rehm, B.W., Meyer, G.N., Clayton, L.S. and Winczewski, L.M., 1979, Geology and geohydrology of the Knife River Basin and adjacent areas of west-central North Dakota Geological Survey Report of Investigation 64,402 p.
- Groenewold, G.H., Cherry, J.A., Manz, O.E., Gullicks, H.A., Hassett, D.J. and Rehm, B.W., 1980, Potential effects on groundwater of fly ash and FGD waste disposal in lignite surface-mine pits in North Dakota: Proceedings of the Symposium on Flue Gas Desulfization, Houston, Texas, p. 657-693.

- Groenewold, G.H., Koob, G.J., McCarthy, B.W., and Peterson, W.M., 1983, Geological and geochemical controls on the chemical evolution of subsurface water in undisturbed and surface-mined landscapes on western North Dakota: North Dakota Geological Survey Report of Investigation 79, 151 p.
- Hassett, D.J. and Groenewold, G.H., 1986, Attenuation capacity of western North Dakota overburden sediments: North Dakota Mining and Mineral Resource Research Institute, Bulletin 86-04-MMRRI-01, 105 p.
- Jensen, R., 1984, Climate of North Dakota: North Dakota National Weather Service, North Dakota State University, Fargo, North Dakota, 45 p.
- Koob, R.D. and Groenewold, G.H., 1984, Alkaline buffering capacity of Northern Plains overburden materials: Final Technical Report, U.S. Department of Energy, DOE/FC/10120-1717.
- Kume, J., and Hansen, D.E., 1965, Geology and ground water resources of Burleigh County, North Dakota: North Dakota Geological Survey Bulletin 42, pt. I, and North Dakota Water Commission County Ground-Water Studies 3, pt. 2, p. 46.
- Patterson, D.D., Johnsgard, G.A., Sweeney, M.D., and Omodt, H.W., 1968, Soil survey report: North Dakota State University Agricultural Experiment Station, Fargo, ND, Bulletin No. 473, 150 p.
- U.S. Environmental Protection Agency, 1982, Handbook for sampling and sample preservation of water and waste water: U.S. EPA 600/4-82-029, Cincinnati, OH, p. 1-88.
- U.S. Environmental Protection Agency, 1979, Methods for chemical analysis of water and wastes: U.S. EPA 600/4-79-020, 3rd ed., Cincinnati, OH.
- U.S. Department of Commerce, 1973, Monthly normals of temperature, precipitation and heating and cooling days 1941-1970: U.S. Department of Commerce, Climatography of the United States, no 81 (North Dakota).

R. M. HESKETT STATION

SPECIAL USE DISPOSAL SITE
PERMIT APPLICATION

Montana-Dakota Utilities Co. 400 North 4th Street Bismarck, ND 58501

March 1, 1989

TABLE OF CONTENTS

			Pa	age	<u> </u>
1.0	INTR	ODUCTION	1	-	1
2.0	WAST	E INFORMATION			
	2.1	Sources of Waste	2	-	1
	2.2	Amounts of Waste Produced	2	_	1
	2.3	Description of Waste	2	-	3
3.0	PROP	OSED SPECIAL USE DISPOSAL SITE			
	3.1	Site Location	3	-	1
	3.2	Land Use and Zoning	3	-	1
4.0	AREA	DESCRIPTION			
	4.1	Geographical Setting	4	-	1
	4.2	Regional Geology	4	-	1
	4.3	Regional Groundwater	4	-	2
	4.4	Climate	4	_	3
	4.5	Regional Soils	4	-	3
	4.6	Vegetation	4	-	4
5.0	SITE	SPECIFIC CHARACTERISTICS			
	5.1	Site Investigation Methods			
		5.1.1 Site Selection Criteria	5	_	1
		5.1.2 Subsurface Borings	5	-	2
4. 0		5.1.3 Monitoring Well Construction	5	-	3
		5.1.4 Groundwater Monitoring	5	-	4
	5.2	Site Investigation Results			
		5.2.1 Geology	5	***	4
		5.2.2 Geohydrology	5	-	7
		5.2.3 Hydrogeochemistry	5	-	12
		5 2 4 Chemical Attenuation of Leachate in Soil	5	_	15

		Page
7.0 8.0 9.0	FACILITY CONSTRUCTION, OPERATION AND CLOSURE	
	6.1 Site Preparation and Construction	
	6.1.1 Access and Preconstruction	6 - 1
	6.1.2 Facility Construction	6 - 2
	6.1.3 Excavated Materials	6 - 5
	6.2 Operation and Management	
	6.2.1 Waste Placement	6 - 6
	6.2.2 Surface Water Management	6 - 7
	6.2.3 Contingencies and Potential Impacts	6 - 9
	6.3 Closure and Reclamation	
	6.3.1 Closure Methods	6 - 11
	6.3.2 Reclamation	6 - 13
	6.3.3 Post-Closure Surface Care	6 - 14
7.0	GROUNDWATER MONITORING	
	7.1 Operational Monitoring	7 - 1
	7.2 Post-Closure Monitoring	7 - 2
	7.3 Quality Assurance and Data Management	7 - 5
8.0	PERMITTING	8 - 1
9.0	SUMMARY	9 - 1
10.0	REFERENCES	10 - 1

LIST OF TABLES

		Page
Table 2-1	Annual Ash Generation	2 - 2
Table 5-1	Hydraulic Conductivities and Cation Exchange Capacities	5 - 9
Table 5-2	Single Well Response Tests	5 - 11
Table 7-1	Background Groundwater Quality Analysis Parameters	7 - 3
Table 7-2	Operational Groundwater Quality Analysis Parameters	7 - 4

LIST OF EXHIBITS

		<u>Page</u>
Exhibit 2-A	Waste Leachate Extraction Analyses	2 - 5
Exhibit 3-A	Study Review Area and Final Sites	3 - 3
Exhibit 3-B	Site Plat/Well Sitings	3 - 4
Exhibit 3-C	Aerial Photo and Zoning	3 - 5
Exhibit 4-A	Regional Geologic Formations	4 - 6
Exhibit 5-A	Topography and Borehole/Cross-Section Locations	5 - 19
Exhibit 5-B	Geohydrologic Cross-Section (A-H)	5 - 20
Exhibit 5-C	Well Completion Reports	5 - 21
Exhibit 5-D	Geophysical Logs	5 - 22
Exhibit 5-E	Lithologic Logs	5 - 23
Exhibit 5-F	Site Soils Classification Map	5 - 24
Exhibit 5-G	Water Level Data	5 - 25
Exhibit 5-H	Water Table Elevation Contour Map	5 - 26
Exhibit 5-I	Site Hydrographs	5 - 27
Exhibit 5-J	Groundwater Chemical Analysis	5 - 28
Exhibit 5-K	Hydraulic Conductivities, Cation Exchange	
	Capacities, and Particle Size Analyses	5 - 29
Exhibit 6-A	Existing Conditions and Area Maps	6 - 16
Exhibit 6-B	Phase I Development	6 - 16
Exhibit 6-C	Phase I Closure - Phase II Development	6 - 17
Exhibit 6-D	Final Closure	6 - 17

1.0 INTRODUCTION

This application describes hydrogeologic, constructional, and operational details relevant to the procurement of a Solid Waste Disposal Permit from the State of North Dakota. The characterization data and design specifications contained within this application are based upon results obtained from a 1986 investigation which focused upon selecting a waste disposal site that would be suitable for long-term disposal of coal combustion ash generated at the R.M. Heskett Station. The specific objective was to locate a site that would require minimal engineering design and allow the use of in-situ materials for leachate containment and chemical attenuation. Several localities were considered with one site being selected for a highly detailed geohydrologic evaluation. The proposed ash disposal site is located approximately one-quarter mile west of Heskett Station and 2 miles north of Mandan, ND.

A total of 27 monitoring wells were installed in and around the site. The monitoring of well water levels over a two year period has indicated the presence of a static water table (generally 30-40 feet below the ground surface) which flows in a north-northeasterly direction. Potentiometric levels indicated a substantial downward component of groundwater flow over the entire proposed disposal site.

During the operational phase of ash disposal primary objectives will include the minimization of fugitive dust production and preservation of the area landscape by continual reclamation of ash-filled "trenches". Frequent coverage of the trenches with low permeability earthen materials, in conjunction with in-pit water collection devices and an evaporative liquids treatment system, is expected to reduce highly mineralized leachate generation and its degradation potential to the poor-quality groundwater resource beneath

the facility. The suitability of the disposal setting is further assured by the placement of waste above the historic water table and the construction of a surface water drainage system adjacent to the site. Contingencies have also been identified which would hinder unanticipated increases in water table elevation.

2.0 WASTE INFORMATION

2.1 Sources of Waste

Montana-Dakota Utilities Co. currently operates two lignite-fired electrical generation units at its R. M. Heskett Station. Unit #1, operational since 1954, utilizes a spreader stoker-type steam generator in the production of up to 20,000 Kw/hr of electrical energy. Unit #2 became functional in 1963 with a boiler similar in design to Unit #1. In early 1987, Unit #2 was converted to an atmospheric fluidized bed combustor capable of supporting a turbine capacity of 73,000 Kw/hr. Units #1 and #2 have an anticipated remaining operational life of 20 years and 30 years, respectively. Both units produce fly ash and bottom ash as the mineral residue of lignite combustion.

2.2 Amounts of Waste Produced

Annual ash generation rates from Heskett Station are estimated in Table 2.1. The proposed disposal facility is designed to accommodate the combustion wastes that will be generated throughout the remaining operational life of Unit #1 (175,000 tons or 1.5×10^5 cy) and Unit #2 (1,569,000 tons or 1.4×10^6 cy).

TABLE 2-1

Annual Ash Generation from Units 1 and 2 at R. M. Heskett Station

	F	FLY ASH	BOT	TOM ASH	SAND 1		
	Tons	Cubic Yards	Tons	Cubic Yards	Tons	Cubic Yards	
Unit 1	4035	4000	4737	3500			
Unit 2	25877	25500	10569	7800	15854	11800	
Total	29912	29500	15306	11300	15854	11800	
Percent (by weig	49 ght)		25		26	,	
Estimated total weight of ash (with sand) 61,070 tons Estimated total volume of ash (with sand) 52,600 cubic yards							

¹ Sand is only used within the fluidized bed of Unit #2.

2.3 Description of Waste

All lignite combustion waste produced at Heskett Station will be deposited within the disposal facility in a nonsegregated manner. The combined ash-types differ in color from a light brown to gray-black. Waste texture can vary from a fine, flour-like powder to a distinctly granular consistency. The fluidized bed combustor for Unit #2 utilizes significant amounts of inert sand as a bed matrix. During combustion this sand becomes coated and interspersed with bottom ash slag. Bed sand will be disposed of with the fly ash/bottom ash mixture. The fluidized bed material is visually obvious in the ash mixture due to its uniform granular appearance.

An analysis was performed on the leachate of representative samples of each type of ash waste intended for disposal at the proposed facility. Fly ash and bottom ash samples were collected from Unit #1 ash hoppers during normal operations. Unit #2 fly ash and bottom ash samples were obtained during a "test burn" of Beulah lignite in a scale model fluidized bed steam generation system.

Leachate was extracted from each ash sample using EPA Extraction

Procedure Method 1310 (EP Toxicity Test) without pH adjustments (no acetic acid additions). Exhibit 2-A present results of the analytical analysis for both fly ash and bottom ash types. (Because Unit #2 fly ash and bottom ash were collected from a test burn, an EP Toxicity Test was later performed to characterize operational ash samples - these results also appear in Exhibit 2-A.)

The pH of all ash leachates appeared quite alkaline in nature. Fly ashes from Units #1 and #2 contained more alkali than their respective bottom

ashes. Leachate pH was considered an important factor in judging site suitability in that it controls the release of trace elements which are locked in the lattice structures of various mineral phases of lignite combustion residue (Groenewold et al., 1980). Sulfate and sodium concentrations were also higher in the fly ashes when compared to those of the bottom ashes.

Leachate from all ash samples, except Unit #1 bottom ash, contained detectable levels of arsenic, cadmium and lead. Selenium was detected only in the fly ash of both units. Fluoride, iron, magnesium, chloride and boron occurred in both the fly and bottom ash leachate at very low concentrations. Nitrates and other analyzed trace elements were near or below laboratory detection limits.

EXHIBIT 2-A

WASTE LEACHATE EXTRACTION ANALYSES

PHONE (507) 354-8517 Report To: P.O. BOX 249, CENTER & GERMAN STREETS, NEW ULM, MINNESOTA 56073-0249

Montana Dakota Utilities 400 North 4th Street

Date: November 11, 1986

Bismarck, ND 58501

Work Order # CS-2251

Attn: John Verwey

Date Received: 9-25-86

	Sample Identification: Coarse Ash	Hop	oper. Precipi unit *1 (Bottom Ash	,	on Hopper Comp. Unit *I Fly Ash
	Analyses		Coarse 1 Hopper		cipitation per Comp.
	Total Alkalinity as CaCOJmg/l		414		1.472
	Bicarbonate as CaCO3mg/l		161		150
	Calciummg/l		77.5		95.0
	Carbonate as CaCO3mg/l		253		1,323
)	Chloridemg/l		19.0		23.0
	Fluoridemg/l		0 . 11		0.22
	Hardness as CaCO3mg/l		194		238
	Ironmg/l		0.2		0.2
	Manganesemg/l	<	0.01		0.01
	Magnesiummg/l		0.1		0.1
	Nitratemg/l	<	1.0	<	1.0
	pH		11.5		12.6
	Potassiummg/l		15.0		100
	Sodiummg/l		380		2,200
	Specific Conductance micromhos/cm		2,544		15,001
	Sulfatemg/l		900		6.550
	Total Dissolved Solidsmg/l		1,357		10,389
	Boronmg/l		0.91		1. n e
-	TOX Extraction		la love to	Tot	o Du

EP TOX Extraction

and Authorization

As a Mutual Protection to Clients, the Public and Ourselves, All Reports are Submitted as the Confidential Property of Clients, and Auth For Publication of Statements, Conclusions of Extracts From or Regioning Our Reports is Reserved Pending Our Written Approva

PHONE (507) 354-8517

P.O. BOX 249, CENTER & GERMAN STREETS, NEW ULM, MINNESOTA 56073-0249

Report To: Montana Dakota Utilities

400 North 4th Street Bismarck, ND 58501

Attn: John Verwey

Date: November 11, 1986

Work Order # CS-2251

Date Received: 9-25-86

Sample Identification: Coarse Ash Hopper, Precipitation Hopper Comp.

	Bo Hom A	45h / 7/4 Ash
Analyses	Coarse Ash Hopper	Precipitation Hopper Comp.
page ages sales from the sales from		
Arsenicmg/l	< 0.002	0.070
Bariummg/l	< 0.5	< 0.5
Cadmiummg/l	< 0.01	0.02
Chromiummg/l	< 0.05	< 0.05
Lead::::::mg/l	< 0.10	0.40
Mercurymg/l	< 0.002	< 0.002
Seleniummg/l	< 0.003	0.003
Silvermg/l	< 0.05 /	< 0.05
Molybdenummg/l	< 0.50	< 0.50

EP-TOX Extraction
no acid added

EY Glone Katcherky

PHONE (507) 354-8517 Report To: P.O. BOX 249, CENTER & GERMAN STREETS, NEW ULM, MINNESOTA 56073-0249

Montana Dakota Utilities 400 North 4th Street

Date: November 11, 1986

Bismarck, ND 58501

Work Order # CS-2251

Attn: John Verwey

Date Received: 9-25-86

Sample Identification: Bed Ash, Ba	ag h	House Un'	tom Ast	-		Unit #2 Fly Ash
Anal vses	Be	ed Ash			House	
Total Alkalinity as CaCO3mg/l		173			598	
Bicarbonate as CaCO3mg/l		69.0			8°.5	
Calciummg/l		570			105	
Carbonate as CaCO3mg/l		103.5			517.5	
Chloridemg/l		5.0			21.0	
Fluoridemg/l	K,	0.10			0.27	
Hardness as CaCO3mg/l		1,429			263	
Ironmg/l		0.2			0.1	
Manganesemg/l	<	0,01		<	0.01	
Magnesiummg/l		1.4			O.1	
Nitratemg/l	<	1 . O		<	1.0	
pH		10.7			11.9	
Potassiummg/l		40,0			100	
Sodiummg/l		1,200			2,350	
Specific Conductance micromhos/cm		7,066			10,870	
Sulfatemg/l		4,300			6,160	
Total Dissolved Solidsmg/l		5,774			8,324	
Boronmg/l		1.20	1	,	1.7A	
TOX Extraction BY		plome	2 XA	D	kecky	7) 20- -

As a Mutual Protection to Clients, the Public and Ourseives. All Reports are Cummitted as the Confidential Property of Clients and Authorization. For Publication of Statements. Conclusions or Extracts, From or Regardly, Our Reports is Reserved Pending Our Written Approval.

PHONE (507) 354-8517

P.O. BOX 249, CENTER & GERMAN STREETS, NEW ULM, MINNESOTA 56073-0249

Report To: Montana Dakota Utilities

400 North 4th Street Bismarck, ND 58501

Attn: John Verwey

Date: November 11, 1986

Work Order # CS-2251

Date Received: 9-25-86

Sample Identification: Bed Ash. Bag House

Bottom Ash Analyses Bed Ash Bag House ----Arsenic.....mq/l....... 0.155 0.045 < 0.5 < 0.5 Cadmium.....mg/l........ 0.02 0.03 Chromium.....mg/l........ < 0.05 < 0.05 Lead........mg/l......... 0.35 0.25 Mercury......mg/l........ < 0.002 < 0.002 Selenium....mg/l..... < 0.003 0.004 Silver.....mg/l..... < 0.05 < 0.05 Molybdenum...mg/l...... < 0.50 < 0.50

FP TOR Extraction

erome Katolecky

PHONE (507) 354-8517

P.O. BOX 249, CENTER & GERMAN STREETS, NEW ULM, MINNESOTA 56073-0249

Report To:

Montana Dakato Utilities Co. Attn: Gene Brown P.O. Box 40 Mandan, ND 58554

Date: November 18, 1987

Work Order # 12-2237

Date Received: 9-29-87

Sample Identification: EPA Toxicity

Unit #2 Gotton all

Analysis 4638

Arsenic ... mg/L ... 0.004

Barium ... mg/L ... < 0.1

Cadmium ... mg/L ... < 0.05

Chromium ... mg/L ... < 0.14

Lead ... mg/L ... < 0.100

Mercury ... mg/L ... < 0.003

Selenium ... mg/L ... < 0.003

Silver ... mg/L ... < 0.04

AFULL SEE

BY David At. Diamond

MVTL guarantees the accuracy of the analysis done on the sample submitted for testing. It is not possible for MVTL to guarantee that a test result obtained on a particular sample will be the same on any other sample unless all conditions affecting the sample are the same, including sampling by MVTL. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

ENERGY LABORATORIES, INC.

P.O. BOX 30916 • 1107 SOUTH BROADWAY • BILLINGS, MT 59107-0916 • PHONE (406) 252-6325

LABORATORY REPORT

Mineral Specialities

Address: P.O. Box 1563

Billings, Montana 59103 ATTN: Jerry Vollmer

(1)

Lab No.: 87-7859

Date: 7/24/87 pjf

EP TOXICITY ANALYSIS - Fly Ash . thit 2

Heskett Plant, North Dakota Submitted 6/26/87

Extraction and analysis performed according to SW-846, Test Methods for Evaluating Solid Waste.

CONSTITUENT	mg/1	in extract
Arsenic	 • • •	<0.5
Barium	 • • •	<10
Cadmium	 • • •	<0.1
Chromium	 • • •	<0.5
Lead	 • • •	<0.5
Mercury		
Selenium	 • • •	0.2
Silver	 • • •	<0.5

Post-it® Fax Note 7671	Date 4 3 # of pages
To alan welfe	From Andrea
Co./Dept.	Co.
Phone #	Phone #
Fax #	Fax #

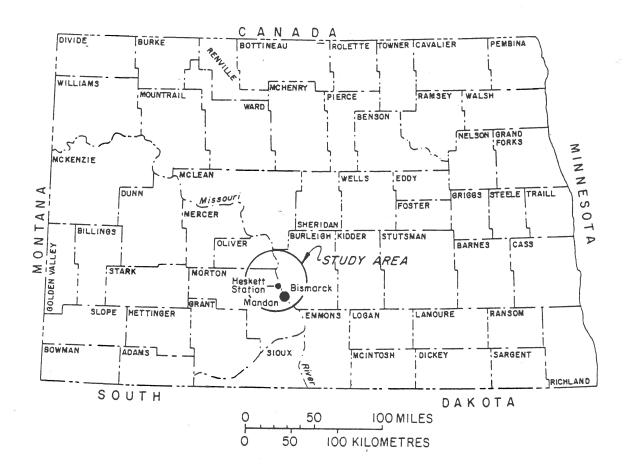
3.0 PROPOSED SPECIAL USE DISPOSAL SITE

3.1 Site Location

The R. M. Heskett Station is located in Morton County approximately two miles north of Mandan, ND. Disposal facility siting began by reviewing existing published geologic and hydrologic data to preliminarily identify potential sites within a 20 mile radius of Heskett Station. Five candidate sites were chosen and field evaluated. Two sites were determined as meriting further characterization and were comparatively examined in detail (Exhibit 3-A). Hydrologic, lithologic, aesthetic, economic, land use, and safety considerations indicated that the Heskett Site would prove best suited for the proposed disposal facility.

The Heskett Site is located east of Highway No. 1806 and approximately one-half mile west of Heskett Station. The site covers 47 acres of the SW1/4 of Section 10, Range 81 West, Township 139 North and is bound on the west and north by Rock Haven Creek, east by Heskett Station and the existing ash storage pile, and on the south by 43rd Street Northeast. Industrial property belonging to the Amoco Oil Refinery lies directly to the south of 43rd Street Northeast. Scattered residential housing lies adjacent to the north, west, and south of Heskett Site.

3.2 Land Use and Zoning


Heskett Site is currently owned by Montana-Dakota Utilities Co. and holds an industrial zoning designation. A plat of the site appears in Exhibit 3-B along with monitoring well location/elevation information. An examination

of Exhibits 3-B and 3-C indicates area land use to be primarily of an industrial and agricultural nature. The site itself is native grassland previously used for grazing livestock. Flat farmlands extend to the north while hilly pasture predominates to the west of Highway No. 1806. Level cropland and wildlife sanctuary exists on Amoco Refinery property south of 43rd Street Northeast.

Several family dwellings exist to the south and west of the Heskett Site. Other dwellings are scattered singly and in groups throughout the surrounding area. Because of the close proximity of some residences to the proposed facility, certain features will be incorporated into the design which will preserve the landscape by presenting line-of-site obstructions from the south and, if needed, west and north.

EXHIBIT 3-A

STUDY REVIEW AREA AND FINAL SITES

		T		1 17 7	
T. 140 N	36	31	32	33 0	34
T. 140 N T. 139 N		SIT	6 ondary Site)		A of as
	1	(Sec	ondary Site) 5 	4	3
	12	7	8 H (F	9 ESKETT SIT Primary Site)	10 Per
	13	18	17	16	R.M.HESKETT STATION 15
	24	19	20	21	22
	25	30	29	28 N	27 IANDAN
T. 139 N.	36	31	32	33	34
T. 138 N.	l	6	5	4	3
, '	R.82 W.	R.81 W.	9		2 Mi.
			0		2 3 Km.

EXHIBIT 3-B

SITE PLAT/WELL SITINGS

EXHIBIT 3-C

AERIAL PHOTO AND ZONING

4.0 AREA DESCRIPTION

4.1 Geographical Setting

The disposal area is located entirely within the Missouri Plateau of the Great Plains Physiographic Province. Characterized by plains and gently sloping hills, the landscape is interrupted by isolated tablelands and river valleys entrenched 200 to 400 feet (Ackerman, 1980). Surface altitudes generally increase towards the west.

The Heskett site is a relatively flat area bounded on the west and north by an ephemeral stream (Rock Haven Creek) which supports a small shrub/woodlands community. Rock Haven Creek drains a small hilly area of approximately 2.4 square miles to the west of the site. Discharge is made directly into the Missouri River. No surface water flow gauging has ever been done at Rock Haven Creek. The North Dakota State Water Commission estimated annual flow of at least 50 acre-feet for every 80 years out of 100. One hundred acre feet of flow can be expected for 50 years out of 100.

4.2 Regional Geology

The Tertiary Cannonball Formation underlies the entire Heskett site and lies stratigraphically under several other regional formations (Exhibit 4-A). The Cannonball Formation crops out over a large portion of eastern Morton County. The bluffs along the Missouri River north of Mandan near Heskett Station are resultant from these outcrops.

The Cannonball Formation is characterized by deposits of sand, silt and clay. The beds within this formation are generally unconsolidated and tend to weather rapidly. Some of the sand units are partially cemented and are resistant to erosion. The resistant units often form benches along eroded

drainages (Carlson, 1983). Cvancara (1976) points out another characteristic of the Cannonball Formation; lack of persistent lithostratigraphic units or beds. The units are often truncated because most bedding within this formation is lenticular.

The Cretaceous and Tertiary rocks in this portion of North Dakota generally dip toward the center of the Williston Basin. Reported dips of the Cannonball Formation in the Bismarck-Mandan area are generally less than 1° and trend toward the northwest. Local irregularities in dip direction and magnitude are common in the Cannonball Formation. These minor variations are caused by small synclines and anticlines which are superimposed on the larger structure of the basin (Kume and Hansen, 1965). These small anomalies may often be responsible for local irregularities in groundwater flow direction and magnitude.

4.3 Regional Groundwater

The Cannonball Formation interfingers with its continental equivalent, the Ludlow Formation. The two formations are contemporary with deposition of the Cannonball occurring in a marine environment and deposition of the Ludlow occurring in a fresh water environment.

Aquifers within these formations are generally found in fine grained sandstones. Such units range from 5 to 129 feet thick and contain from 5 to 40 percent silt and clay. Lateral extensiveness is typically lacking. Core samples from these aquifers possess hydraulic conductivities ranging 2.9 X 10^{-3} cm sec⁻¹ to 1.5 X 10^{-5} cm sec⁻¹ (Ackerman, 1980). General groundwater movement is to the east or northeast with major discharge areas occurring in the valleys of the Missouri River, Heart River, and Big Muddy Creek.

Ackerman (1980) further states that the Cannonball and Ludlow Formation aquifers maybe in hydraulic connection with adjacent glacial drift aquifers. Area groundwater is generally of a sodium bicarbonate or sodium bicarbonatesulfate type. Such waters are usually of poor quality for domestic usage because of high sulfate concentrations and excessive levels of total dissolved solids.

4.4 Climate

The climate of the Heskett site is semiarid with widely ranging seasonal temperatures. Summer temperatures may exceed 100°F (38°C) while winter temperatures may drop below -40°F (-40°C). The mean average annual temperature at Mandan, ND is 41.4°F (5.2°C) with average annual precipitation being 16.8 inches (42.6 cm). Approximately 60 percent of the annual precipitation (10 inches) occurs as rain during a four month period beginning in April and extending through July (U.S. Department of Commerce, 1973).

There are on the average about 125 frost-free days in this region of North Dakota. The mean depth of frost penetration is 4.5 feet (1.4 m). Extremely cold winters may occasionally allow frost to penetrate up to a depth of 7.0 feet (2.1 m) (Jensen, 1984).

The prevailing wind in the Bismarck-Mandan area is from the west-northwest with a mean velocity of 10 mph (16.1 km/hr). Winds are generally stronger in the spring and early summer as opposed to the fall and winter (Jensen, 1984).

4.5 Regional Soils

Regional near-surface materials are soils which have developed from climatic and biotic interactions with poorly consolidated sand, silt, and clay

of the Upper Cretaceous and Tertiary Formations. Glacial till appears preserved on some upland surfaces and lowland alluviums (Carlson, 1983).

Area hills have moderately steep slopes and typically have well entrenched dendritic drainageways. Patterson, et al. (1968) stated that the Bainville and Morton soil series dominate the smoothly rounded hills west of the proposed site. These soils appear on slopes of 2 to 30 percent and are well to excessively drained. Both soils, being derived from weathered medium-textured beds of the Tertiary period, tend to be loamy with high water holding capacities and somewhat limited permeabilities. Morton soils comprise 35 to 50 percent of the immediate area and are often used for cropland. Bainville soils cover 40 to 55 percent of area acreage and, being susceptible to water erosion hazards, are commonly used for pasturage.

Adjacent to the Heskett site lies the floodplain of the Missouri River. Alluvial Havre soils overlay medium-textured sediments and dominate 60 to 85 percent of the nearly level floodplain. Havre soils, with their moderate permeability and high water-holding capacities, are extensively utilized for croplands and pasturage. Well-drained Banks and Lohmiller soils each comprise 5 to 15 percent of the slightly elevated ridges and flats associated with the Missouri River floodplain (Patterson, et al., 1968).

4.6 Vegetation

The principle natural vegetative community in the study area is the mixed-grass prairie dominated by short grasses. Edwards and Ableiter (1936) stated that the smooth heavy soils of the uplands support substantial growths of western wheatgrass (Agropyron smithii) and needlegrass (Stipa comata). Little bluestem (Andropogon scoparius) commonly grows on exposed knobs and

steep slopes. Sedges, weeds, and cattails are typical of the poorly drained areas.

Natural forests are confined to bottomlands and along large streams and drainageways. Steep-sided gullies, especially those with northern exposures, contain ash (Fraxinus lanceolata), elm (Ulmus americana), aspen (Populus tremuloides), and oak (Quercus macrocarpa). The Missouri River floodplain contains significant natural stands of cottonwood trees (Populus deltoides). Also present are occasional occurrences of thicket-type woody vegetative communities dominated by buffaloberry (Shepherdia argentea). Such thickets are common in or near "woody draws" and bottomlands but seldom cover large surface expanses.

EXHIBIT 4-A

REGIONAL GEOLOGIC FORMATIONS

Regional Geologic Formations

ERA	SYSTEM	F0 OF	RMATION R GROUP	THICKNESS (FEET)	LITHOLOGY
CENOZOIC	QUATERNARY	ALLUVIUM		0-30	SILT, SAND AND GRAVEL
		COLEHARBOR		0 - 300	TILL, GRAVEL AND SAND
	TERTIARY	FORT UNION GROUP	GOLDEN VALLEY	0-60	SILT, CLAY AND SANDSTONE
			SENTINEL BUTTE	0-700	SILT, CLAY, SAND AND LIGNITE
			BULLION	0-500	SILT, CLAY, SAND AND LIGNITE
			SLOPE	0-60	SILT, CLAY, SAND AND LIGNITE
			CANNONBALL	0-300	SILT, CLAY AND SAND
			LUDLOW	0-200	SILT, CLAY, SAND AND LIGNITE

5.0 SITE SPECIFIC CHARACTERISTICS

5.1 Site Investigation Methods

5.1.1 Site Selection Criteria

A primary concern involved the location and development of a site which would have near-surface (upper 30 feet) in-situ materials possessing characteristics similar to those of clay liner material. Relatively level near-surface sediments characterized by high clay and silt content were considered desirable. Because such materials typically transmit groundwater at slow rates, the migration of leachate into usable subsurface water supplies would be severely hindered. Another consideration was the chemical attenuation capabilities of the subsurface geologic materials. Clay and silt have been reported to generally have higher chemical attenuation capabilities than do other sediments, thereby making their presence desirable for many waste disposal settings. (Drever, 1982).

Selection of potential site areas larger than 1 square mile were based solely upon existing available data. A database was constructed which included published information from county geologic and groundwater investigative reports, soil survey reports, and water well drilling reports submitted to the North Dakota State Water Commission (NDSWC) by private contractors. Topographic maps and county zoning maps were also reviewed.

Five candidate sites were selected based upon geologic, geomorphic, and hydrologic data evaluations. Limited surficial investigations (including soil borings) were then conducted at each of the five sites. The position of the water table was very important in defining an acceptable site. Only those

sites with water tables more than 25 feet below a relatively level ground surface were considered.

Selection of two final sites were based on lithology, transport distance, road limitations, topography, and apparent depth to groundwater. Boreholes were drilled at each of the sites (maximum drilled depth was 120 feet) and lithologic/hydrologic/geophysical information recorded. Review of this information indicated that the final candidate sites had very similar geologic and hydrologic characteristics. Economics of site development, local zoning conditions, land use, transportation safety, facility access, and operational monitoring factors strongly suggested that the Heskett site was the most suitable disposal facility location.

5.1.2 Subsurface Borings

Boreholes were drilled by either a Portadrill 524 or a Denver-Gardner Heavy Duty 1000. All borings were air drilled (without the addition of drilling fluids) to reduce contaminations to groundwater. Drilling conditions for each bore hole are presented in Exhibit 5-C. Samples were collected at 5-foot intervals or at occurrences of lithologic change.

A total of 27 observation wells were installed at the Heskett site with twelve of the boreholes developed into water table monitoring wells and 15 developed as piezometers. The location of the various observation wells are shown in Exhibit 5-A. Additional information on area hydrogeochemistry was obtained from 9 wells (identified in this report as monitoring wells WS1, WS1A, WS1B, WS2, WS3, WS3A, WS4, WS4A, and WS4B) that were installed during a previous groundwater investigation which was conducted around the ash waste pile immediately east of the proposed facility (Armstrong and Schmid, 1986).

The observation wells were installed in nests of 2 to 4 single wells screened at differing elevations. Nine separate piezometer nests were installed over the Heskett study area. The deepest well in each nest was geophysically and lithologically logged (Exhibits 5-D and 5-E, respectively). A typical nest contained one water table monitoring well and two piezometers screened at different elevations.

5.1.3 Monitoring Well Construction

Monitoring wells were constructed of two-inch schedule 40 PVC pipe with screened lengths of either 4 or 20 feet. The 20-foot screened sections were installed to monitor the elevation of the water table and for water quality sampling. The 4-foot screened sections were primarily installed to monitor hydraulic head. A factory slotted size of 1 X .020 inches was used for all well screens.

A filter sand pack was placed around the screened portion of each well after the pipe was lowered into the bore hole. Washed quartz sand was packed with the use of packing poles to a height of two feet above the top of the screened interval. Before sampling was conducted each well was developed twice by backwash and mechanical surge methods.

After the sand pack was complete, sealing grout was slurried down the annulus between the bore hole and the PVC pipe. The grout seal was continued to the land surface where a two-foot diameter grout pad was constructed around each monitoring well. The monitoring wells were capped with threaded male PVC cap adapters and assigned unique well numbers.

The water level measuring reference point for the wells was the top of the PVC well pipe. Well locations and elevations can be seen on Exhibits 3-B and 5-A. Well construction data are presented in Exhibit 5-C.

5.1.4 Groundwater Monitoring

Water levels were monitored periodically during and after the course of the formal characterization study. Water level information, as determined with an electric-contact gauge tape, appears in Exhibit 5-G.

Each well was purged prior to sampling by removing at least 3 well volumes of standing water or until dry, which ever occurred first. The wells were purged with either a stainless steel and teflon mechanical two-inch submersible pump or a 1.25 inch hand bailer. All well groundwater samples were collected with a hand bailer in accordance with the Environmental Protection Agency's publication 600/4-82-029, "Handbook for Sampling and Sample Preservation of Water and Waste Water" (US EPA, 1982). Immediately after the samples were collected field pH, specific conductance and temperature were measured and recorded.

Samples were collected and preserved for major ion analysis and for trace element determinations. Other samples were collected from select wells for oil, grease, and phenol analyses. Site characterization study samples (collected in 1986) were transported to the University of North Dakota's Mining and Mineral Resources Research Institute's Fuels Analysis Laboratory for chemical analysis. Additional follow-up sampling and chemical analysis was performed in 1988 by Minnesota Valley Testing Labs of Bismarck, ND.

5.2 Site Investigation Results

5.2.1 Geology

Lithologic and geophysical logs of the wells drilled at this site indicated that at least the upper most 100 feet of subsurface material lies

within the Cannonball Formation. Consequently, the proposed Heskett waste disposal facility would be constructed completely within the Cannonball Formation. The Ludlow Formation may appear subsurface of the Heskett site study area below an elevation of 1605 feet above mean sea level (MSL). However, only the deepest bore holes penetrated to this elevation and geophysical logs from these wells do not provide any indication of contact between the two formations.

An existing topographic reference map (with well locations and cross-section locations) is provided in Exhibit 5-A. A series of eight geohydrologic cross-sections of the proposed Heskett disposal site are provided in Exhibit 5-B. Each cross-section includes topography (exaggerated 10 times), dominant lithologies, observation well locations, potentiometric levels and water table position as of October, 1986.

The Heskett Site consists of unconsolidated silt and clay with lesser amounts of very fine to medium-grained sand (lithologic log, Exhibit 5-E). The sand is generally found interspersed in a matrix of silt and clay; however, it sometimes occurs as distinct lenses which range in depth from 0.5 inches to 1 foot. The thin sand lenses are not horizontally persistent. Small gypsum crystals occur throughout the upper 30 feet of the site. These gypsum crystals are presumed to be the result of diagenetic processes which occur above the water table during alternate wetting and drying cycles (Groenewold et al., 1983).

The dominant lithology of the site is silt which commonly occurs in a clay-rich matrix. Above an elevation of 1695 feet MSL the clayey-silt is generally brownish-tan in color with grain coatings and mottling of iron-oxides. Below this elevation the color changes to steel-gray with the iron

compounds existing in the reduced state. The reduced/oxidized boundary is well defined over the site by the color change described above and corresponds with the elevation of the water table.

The uppermost indurated unit encounter beneath the proposed disposal area is a siltstone bed occurring between the elevations of 1625 feet and 1635 feet MSL. This is the most laterally continuous and persistent unit found at the Heskett site.

A thin veneer of till is present in small patches throughout the Heskett study area. This till, along with all glacial material in North Dakota, has been grouped within the Coleharbor Formation (Bluemle, 1971). The till of the Heskett study area is less than 2 feet thick and is of a pebble-loam nature. Other evidence of glaciation includes the presence of several large boulders, less than 3 feet in diameter, which were derived from the Canadian Shield.

The glacial sediments indicate that glacial ice covered the study area during the Pleistocene Epoch. Horizontal sheet fracturing may have developed within the surficial bedrock formations, including the Cannonball Formation, as this glacial ice ablated. The fracturing of these sediments might promote secondary porosity and be responsible for the relatively large groundwater flow volumes encountered within the silts and clays beneath the Heskett site study area.

The soils across the proposed Heskett ash disposal area (Exhibit 5-F) are generally well developed. Edwards and Ableiter (1936) classified upland soils of the site as Hall series silt-loam. The soil is very silty with abundant clay and minor amounts of fine-grained sand. Internal drainage is generally good and surface drainage is sufficient. Most site soils are

approximately 1 foot thick with the upper 6 to 8 inches appearing very dark due to abundant organic matter. The soil becomes lighter in color 8 inches below the soil surface. All soils at the Heskett site are calcareous and freely effervesces with dilute hydrochloric acid.

5.2.2 Geohydrology

Exhibit 5-H illustrates the water table elevation contour of the Heskett site as of October 16, 1986. Because periodic well measurements over two years indicated relatively static potentiometric levels, the described elevation of the water table is considered representative. Water levels of all of the Heskett Site wells are given in Exhibit 5-G. Hydrographs of select piezometer nests appear in Exhibit 5-I.

The shallow groundwater beneath the proposed facility is flowing generally towards the northeast. Local variations do exist and can be attributed to the heterogeneous nature of the lithologies of the Cannonball Formation along with the undulating surface topography of the site. Surface topography appears to exert the most profound effect on groundwater flow with water table elevation mimicking the surface topography. As the groundwater approaches Rock Haven Creek it begins to take a more easterly path following the down-cut gradient of this creek into the Missouri River.

The groundwater flow beneath the base of a small draw, which extends to the north and slightly west from the south-central border of Section 10 to its intersection with the Rock Haven Creek, is nearly directly north. This groundater flow is strongly influenced by the surficial topography which also dips toward the north. Industrial surface water holding ponds located on Amoco

refinery property south of the proposed site occasionally provides surface discharge into this draw. Running and ponded water resultant from these discharges as well as area ground surface runoff are frequently evident on MDU property just north of 43rd Street Northeast.

Morton County often experiences a drop in the elevation of the water table during the winter months due to a lack of recharge (Groenewold, et at., 1979 and 1983). Hydrographs (Exhibit 5-I) developed from two years of accumulated site potentiometric data indicate little apparent seasonal effect. An overall potentiometric level drop can be noted during the drought year of 1988. The data also indicated that the groundwater is flowing strongly downward. Thus, it can be expected that water will not be entering the proposed disposal pit from beneath the site.

Six subsurface lithologic intervals were sampled from in and near the proposed ash disposal site and laboratory tested to determine certain physical/chemical properties. Table 5-1 summarizes the results of cation exchange capacity and hydraulic conductivity testing for these samples (See Exhibit 5-K for greater detail). Data obtained from such lab permeability testing should be considered representative only of the point of sampling. Samples are often modified, in terms of hydraulic conductivity, during well drilling and sample collection. Minor subsurface fracturing might not be preserved in the laboratory. However, these data are useful in estimating flow rates through interstices in the subsurface geologic media and in situations where in-situ sediments will be modified by compaction to reduce secondary permeability.

Single-well response tests performed on select Heskett site wells (wells 11, 20, 31, 41 and 43) show greater in-situ permeabilities than the falling-head lab permeabilities of wells screened in the same sediments.

TABLE 5-1
Hydraulic Conductivities and Cation Exchange Capacities

Well Number	60	WS2	WS2
Sample Depth (ft)	20-40	29-30	61-62
Type of Sample	Bag	Core	Core
Permeability K @ 20°C (cm/sec) K @ 20°C (ft/min)	2.0 X 10 ⁻⁷	2.7 X 10-9	3.6 X 10 ⁻⁸
	4.0 X 10 ⁻⁷	5.4 X 10-9	7.1 X 10 ⁻⁸
Cation Exchange Cap. (meq/100 grams)		92.2	12.0
Well Number Sample Depth (ft) Type of Sample	WS1	WS1	WS1
	20-21	25-26	30-31
	Core	Core	Core
Permeability K@20°C (cm/sec) K@20°C (ft/min)	2.6 X 10 ⁻⁸	1.5 X 10 ⁻⁸	1.7 X 10 ⁻⁸
	5.2 X 10 ⁻⁸	2.9 X 10 ⁻⁸	3.4 X 10 ⁻⁸
Cation Exchange Cap. (meq/100 grams)	71.8	12.3	74.2

WS - Refers to wells installed and sampled during a previous groundwater investigation around the coal ash waste pile at Heskett Station. This study was conducted by Water Supply, Incorporated.

These slug tests provide estimates of permeability over the screened 4-foot interval. Results, which appear in Table 5-2, show that wells 11 and 31 have the lowest permeabilities of the wells tested with values on the order of $K = 10^{-5}$ cm sec⁻¹. Higher conductivities were encountered in wells 20, 41 and 43 with values approximating $K = 10^{-4}$ cm sec⁻¹.

TABLE 5-2
Single Well Response Tests

Well	Permeability	Screen Depth (MSL)
11	$3.78 \times 10^{-5} \text{ cm sec}^{-1}$	1642.81 - 1646.81
20	$6.57 \times 10^{-4} \text{ cm sec}^{-1}$	1627.48 - 1631.48
31	$2.84 \times 10^{-5} \text{ cm sec}^{-1}$	1635.58 - 1639.58
41	$4.12 \times 10^{-4} \text{ cm sec}^{-1}$	1626.77 - 1630.77
43	$5.07 \times 10^{-4} \text{ cm sec}^{-1}$	1650.14 - 1654.14

Reference: Freeze, R. A., and Cherry, J. A., 1979., Groundwater: Chapter 8.5, pgs. 339-342, Prentice-Hall Inc., Englewood Cliffs, NJ.

5.2.3 Hydrogeochemistry

Results of the site groundwater characterizations are shown in Exhibit 5-J. Analysis of samples collected in 1986 from wells 10-70 were conducted by the Mining and Mineral Resources Research Institute's Fuels Analysis Laboratory at the University of North Dakota. Supplemental sampling was conducted in 1988 by Minnesota Valley Testing Labs of Bismarck, ND. All samples were analyzed in accordance with EPA publication 600/4-79-020, "Methods for Chemical Analysis of Water and Wastes" (U.S. EPA, 1979).

The quality of the shallow (less than 120 feet below the land surface) groundwater at the proposed Heskett disposal site was found to be quite poor. Similar groundwater quality has been reported in other shallow wells within the Cannonball Formation (Ackerman, 1977 and 1980). Large quantities of salts and soluble mineral phases were deposited along with the sediments of the Cannonball. These materials dissociate as undersaturated interstitial groundwater flows through the formation. The ultimate quality of the water depends on the solubility of the geologic media and saturation condition of the groundwater which flows through it. Soluble constituents of the shallow groundwater at the Heskett site, as is characteristic of other Cannonball Formation wells, are high or very high relative to water in other aquifers in the area. Without pretreatment such groundwater is generally considered to be unfit for consumption by humans and livestock. Most of the local domestic wells tap either the underlying Hell Creek or the Fox Hills aquifers which possess waters with qualities far superior to that of the Cannonball.

An examination of the 1986 data appearing in Exhibit 5-J shows that the specific conductance and pH of wells sampled at the Heskett site are within the range of what has been reported as characteristic of the Cannonball Formation. Well 70 is located upgradient from known industrial influences and

can be considered representative of background groundwater quality at the site. Chemical analyses indicate that water within wells 60 and 70 have the highest specific conductance of all monitored wells.

Total dissolved solids (TDS) concentrations show the shallow ground-water at the Heskett site to be highly mineralized, ranging from 1,286 mg/L in well 30 to 14,917 mg/L in well 60. Wells screened within the Cannonball Formation commonly have TDS concentrations ranging from 1,000 to 3,000 mg/L (Ackerman, 1980).

Wells finished within the Cannonball Formation typically have sodium concentrations ranging from 500 mg/L to 1000 mg/L (Ackerman, 1977 and 1980). Sodium levels of wells 10, 12, 55 and 70 were well above these levels. Sulfate concentrations were highest in wells 44, 55, 60 and 70 with observed maximum occurring in well 60 (11,632 mg/L). Sodium, TDS and sulfate concentrations indicated that extremely saline pockets of groundwater exist at the southwestern (near wells 70, 10-13, and 60-62) and east-central (near wells 55 and 56) borders of the Heskett study area.

Both magnesium and calcium concentrations were relatively high and variable over the Heskett site study area. Well 44 contained the highest levels of these two constituents with 648 mg/L of calcium and 1,322 mg/L of magnesium. Heskett site water would be considered quite hard with actual values (expressed as CaCO₃) ranging from 222 mg/L in well 30 to 7,040 ______ mg/L in well 60.

Chloride, potassium, iron, and fluoride concentrations were generally within the expected range of concentrations for wells finished within the Cannonball Formation. However, potassium was slightly elevated in wells 44 and 60 where it reached concentrations of 51 mg/L and 41 mg/L, respectively.

Nitrate concentrations were found to be erratic over the Heskett site. Wells 55 and 60 contain the highest nitrate levels with 154 mg/L and 170 mg/L, respectively. The drinking water standard (provided in Exhibit 5-J for reference purposes) for nitrate (NO_3 -) is currently set at 45 mg/L. The elevated nitrate concentrations in wells 50, 52, 55 and 60 would tend to indicate contamination from biological sources. Domestic sewage drainfields are known to exist near the center of the south border of the proposed disposal site in the vicinity of wells 43 and 44. It is believed that these sources contribute at least a portion of the observed elevated nitrate concentrations.

Selenium is a common naturally-occurring element in sediments, especially in shale and clay (Freeze and Cherry, 1979). Wells 55 and 60 had the highest concentrations with 0.368 mg/L and 0.195 mg/L, respectively. The levels observed in these two wells are above levels common to groundwater systems which contain shale and dissolved selenium. Indeed, these levels approach 100 times the concentration observed in groundwater taken elsewhere from the Cannonball Formation (Ackerman, 1977).

Molybdenum was detected at reduced concentrations in wells 10, 32, 54 and 70. Water Supply Incorporated (WS), in their previous groundwater investigation concerning the currently operational Heskett ash pile, noted concentrations of molybdenum in well WS4 similar to those observed in this study in wells 10, 54 and 70. Well WS4 was at the time noted for increasing molybdenum levels with the greatest concentration reaching 0.11 mg/L on September 11, 1985 (Armstrong and Schmid, 1986). Further groundwater monitoring has shown that after this finding molybdenum levels then dropped below analytical detection limits. Minimum detection levels have only occasionally been exceeded in the ensuing years. With this study's addition

of background monitoring wells upgradient from the current ash pile it can be determined that concentrations of molybdenum in well WS4 were within the background range of groundwater at the Heskett site. The elevated molybdenum concentrations as noted by W.S. are therefore not believed caused by the migration of leachate from the existing ash pile.

The 1988 groundwater data characterized only the uppermost zone of saturation near the proposed site. Its review indicated that the same general relationship between water quality and heavy metal parameters still exists after two years. A general diminishing of nitrate concentrations can be noted. Boron, an untested analyte in 1986, appeared in concentrations ranging from 1.0 ppm to 2.8 ppm (wells 45 and 70, respectively). Molybdenum was not detected. Wells 60 and 70 continued to exhibit extremely poor overall quality.

5.2.4 Chemical Attenuation of Leachate in Soil

A major concern in developing a waste disposal landfill is the potential generation and migration of toxic leachate. If highly mineralized subsurface leachate moves beyond the disposal site degradation of valuable groundwater supplies might occur. The leachate from the fly ash and bottom ash samples were generally comparable, in terms of overall quality, to the chemical composition of naturally-occurring groundwater at the Heskett site. An examination of Exhibits 2-A and 5-J shows that several of the major ions actually occurred at lower concentrations in the leachate than in the groundwater. Unit 1 bottom ash leachate appeared to be of much better quality than any groundwater sampled. Fly ash samples produced more highly mineralized (higher TDS) leachate than did bottom ash samples.

The overall quality of the existing groundwater at the proposed Heskett ash disposal site is brackish to saline with an average TDS concentration of 8,000 mg/L. The ash leachate produced using the modified EP toxicity test had an average TDS concentration of 6,500 mg/L. Consequently it may be expected that Heskett ash leachate will not significantly affect the TDS content of contaminated underlying groundwater even if soil buffer and attenuation mechanisms would be discounted.

The heavy metal analytes of primary concern in the leachate appear to be arsenic, cadmium, and lead. Sorptive, precipitation and co-precipitation processes are the major attenuation mechanisms that effect the concentration of these dissolved elements. Hassett and Groenewold (1986) studied trace element attenuation capabilities of coal-bearing Tertiary overburden deposits of central and western North Dakota. They found that the pH of a given leachate and the alkaline buffering capacity of the geologic media were the most critical variables in trace element attenuation. Western fly ash leachates are typically very alkaline with pH values approaching 13. In order to buffer such a solution either protons (H⁺) must be added or hydroxyls (OH-) must be removed. Oxides tend to loose protons in strongly alkaline solutions. This H^+ source, along with other acid producing reactions such as pyrite oxidation and organic decomposition, are the main alkaline buffering reactions. The protons that are liberated during these reactions will tend to neutralize the hydroxyl ions, thereby lowering the pH of the solution. The pH of the leachate will be buffered until it reaches equilibrium with the groundwater. In central and western North Dakota this equilibrium is generally attained at a pH value of between 7 and 9 (Groenewold et al., 1983; Koob and Groenewold, 1984).

Direct precipitation of cadmium and lead occur at pH values above 6.5. The solubility product of lead carbonate (PbCO₃) at 18°C is 3.3 X 10⁻¹⁴. In groundwater systems which contain abundant carbonate lead will be precipitated as lead carbonate, thereby maintaining dissolved lead at low concentrations (Beaver, 1986 and 1987). The same type of reaction maintains cadmium at very low concentrations. Hassett and Groenewold (1986) found that cadmium was removed in excess of 99 percent during laboratory experiments with reduced and oxidized silts. Beaver (1986) confirmed the attenuation capabilities of similar geologic media during a coal ash field monitoring program near Center, North Dakota. He noted that several ions, including arsenic, cadmium and lead, were highly mobile under alkaline conditions within the ash itself. However, the alkaline leachate was buffered as soon as it came into contact with the surrounding clay and silt deposits. As the pH became lower the concentrations of cadmium and lead were greatly reduced (Beaver, 1986).

Arsenic attenuation is also controlled by solution pH. Laboratory experiments performed by Hassett and Groenewold (1986) have shown that arsenic, as As^{5+} , is significantly attenuated by the Tertiary sediments of western North Dakota. Arsenic appears to be most strongly attenuated in the pH range of 7-9. The mobility of selenium is similar to that of arsenic and the same attenuation processes control its concentration in groundwater systems. Sorptive processes appear responsible for arsenic attenuation in geologic media but the mechanisms of attenuation have not yet been well defined (Hassett and Groenewold, 1986). It does appear that cation and anion adsorption on clay particles and hydroxide coatings are important mechanisms in attenuating arsenic and other trace elements.

Hassett and Groenewold (1986) have shown that the clay, silt and sand sediments of central and western North Dakota have a strong capacity to buffer

highly alkaline leachates and attenuate trace elements such as arsenic and selenium. The ash pile at Heskett station has been subjected to continuous leaching for the past 30 years. When the quality of the shallow groundwater in the vicinity of the ash pile (data currently on file with the Health Department) was compared to the proposed disposal site it was apparent that upgradient groundwater quality was similar to or of poorer quality than the water near the ash pile. Consequently, groundwater sampling data around the existing ash pile may support the Hassett and Groenewold conclusions if buffered and attenuated leachate from the ash pile is infiltrating underlying groundwater.

EXHIBIT 5-A

TOPOGRAPHY AND BOREHOLE/CROSS-SECTION LOCATIONS

EXHIBIT 5-B

GEOHYDROLOGIC CROSS-SECTIONS

(PLATES A THROUGH H)

EXHIBIT 5-C

WELL COMPLETION REPORTS

Project: MDU Ash Disposal Program

Construction Data:

Location: 139-81-10CCD

Elevation: Ground; 1722.06 ft. Casing top; 1725.01 ft.

Well Bottom; 1604.01 ft.

Completion: Date drilled; 8-12-86

Driller; Mohl Drilling, Beulah, ND Method of drilling; Air rotary, dry; some air-mist

Boring: Diameter; 5 5/8 in. Depth drilled; 120 ft.

Encountered water (below surface); 65 ft.

Geophysical log recorded

Casing: Diameter; 2 in. Material; Sch. 40 PVC

Depths (from ground); +2.90-115.30 ft.

Screen: Diameter; 2 in. Slot size; 20

Material; Factory slotted PVC

Depths (from ground); 115.30-119.30 ft. Elevation of interval; 1604.01-1608.01 ft.

Sand Pack: Type of sand; Washed sand

Depths (from ground); 114-120 ft.

Grout Seal: Depths (from ground); 0-114 ft.

Date sealed; 8-13-86

Additional Data:

Static Water Level: Date; 8-21-86

Depth; 51.97 ft. below top of casing

Elevation; 1673.04 ft.

Chemistry: Date; 8-21-86

pH; 7.75 Sp. cond; 11050 micromhos/cm

Temp; 8.9 oC

Project: MDU Ash Disposal Program

Construction Data:

Location:

139-81-10CCD

Elevation: Ground; 1722.10 ft. Casing top; 1725.01 ft.

Well Bottom; 1642.81 ft.

Completion: Date drilled; 8-12-86

Driller; Mohl Drilling, Beulah, ND Method of drilling; Air rotary, dry;

some air-mist

Boring:

Depth drilled; 80 ft. Diameter; 5 5/8 in.

Encountered water (below surface); 65 ft.

Casing:

Diameter; 2 in. Material; Sch. 40 PVC

Depths (from ground); +2.90-78.20 ft.

Screen:

Diameter; 2 in. Slot size; Material; Factory slotted PVC Slot size; 20

Depths (from ground); 78.20-82.20 Elevation of interval; 1642.81-1646.81 ft.

Sand Pack:

Type of sand; Washed sand

Depths (from ground); 77-79 ft.

Grout Seal:

Depths (from ground); 0-77 ft.

Date sealed; 8-13-86

Additional Data:

Static Water Level: Date; 8-21-86

Depth; 43.83 ft. below top of casing

Elevation; 1681.18 ft.

Chemistry:

Date; 8-21-86

pH; 7.75

Sp. cond; 9840 micromhos/cm

Temp; 8.6 oC

Project: MDU Ash Disposal Program

Construction Data:

Location: 139-81-10CCD

Elevation: Ground; 1721.88 ft. Casing top; 1724.90 ft.

Well Bottom; 1643.51 ft.

Completion: Date drilled; 8-12-86

Driller; Mohl Drilling, Beulah, ND Method of drilling; Air rotary, dry; some air-mist

Boring: Diameter; 5 5/8 in. Depth drilled; 80 ft.

Encountered water (below surface); 65 ft.

Casing: Diameter; 2 in. Material; Sch. 40 PVC

Depths (from ground); +3.02-58.37 ft.

Screen: Diameter; 2 in. Slot size; 20

Material; Factory slotted PVC

Depths (from ground); 58.37-78.37 ft. Elevation of interval; 1643.51-1663.51 ft.

Sand Pack: Type of sand; Washed sand

Depths (from ground); 57-79 ft.

Grout Seal: Depths (from ground); 0-57 ft.

Date sealed; 8-13-86

Additional Data:

Static Water Level: Date: 8-21-86

Depth; 43.60 ft. below top of casing

Elevation; 1681.30 ft.

Chemistry: Date; 8-21-86

pH; 7.60 Sp. cond; 11440 micromhos/cm

Temp; 8.5 oC

Project: MDU Ash Disposal Program

Construction Data:

Location: 139-81-10CCD

Elevation: Ground; 1721.88 ft. Casing top; 1724.90 ft.

Well Bottom; 1681.88 ft.

Completion: Date drilled; 11-13-86

Driller; Mohl Drilling, Beulah, ND Method of drilling; Air rotary, dry

Boring: Diameter; 5 5/8 in. Depth drilled; 40 ft.

Encountered water (below surface); ? ft.

Casing: Diameter; 2 in. Material; Sch. 40 PVC

Depths (from ground); +3.02-20.37 ft.

Screen: Diameter; 2 in. Slot size; 20

Material; Factory slotted PVC Depths (from ground); 20.37-40.37 ft.

Elevation of interval; 1681.51-1701.51 ft.

Sand Pack: Type of sand; Washed sand

Depths (from ground); 19-41

Grout Seal: Depths (from ground); 0-19 ft.

Date sealed; 1-27-87

Additional Data:

Static Water Level: Date; 12-15-86

Depth; 30.09 ft. below top of casing

Elevation; 1694.81 ft.

Chemistry: Date: NA

pH; NA

Sp. cond; NA

Temp; NA

Project: MDU Ash Disposal Program

Construction Data:

Location: 139-81-10CAC

Elevation: Ground; 1707.04 ft. Casing top; 1709.48 ft.

Well Bottom; 1627.48 ft.

Completion: Date drilled; 8-12-86

Driller; Mohl Drilling, Beulah, ND Method of drilling; Air rotary, dry

Diameter; 5 5/8 in. Depth drilled; 80 ft. Boring:

Encountered water (below surface); 45 ft.

Geophysical log recorded

Material; Sch. 40 PVC Diameter; 2 in. Casing:

Depths (from ground); +2.44-75.56 ft.

Diameter; 2 in. Slot size; Material; Factory slotted PVC Slot size; 20 Screen:

Depths (from ground); 75.56-79.56 Elevation of interval; 1627.48-1631.48 ft.

Type of sand; Washed sand Sand Pack:

Depths (from ground); 74-80 ft.

Depths (from ground); 0-74 ft. Grout Seal:

Date sealed; 8-13-86

Additional Data:

Date; 8-21-86 Static Water Level:

Depth; 37.96 ft. below top of casing

Elevation; 1671.52 ft.

Chemistry: Date; 8-21-86

Sp. cond; 4970 micromhos/cm pH; 7.98

Temp; 8.7 oC

Project: MDU Ash Disposal Program

Construction Data:

Location: 139-81-10CAC

Elevation: Ground; 1707.22 ft. Casing top; 1709.40 ft.

Well Bottom; 1661.90 ft.

Completion: Date drilled; 8-12-86

Driller; Mohl Drilling, Beulah, ND Method of drilling; Air rotary, dry;

Boring: Diameter; 5 5/8 in. Depth drilled; 50 ft.

Encountered water (below surface); 45 ft.

Casing: Diameter; 2 in. Material; Sch. 40 PVC

Depths (from ground); +2.66-21.32 ft.

Diameter; 2 in. Slot size; Material; Factory slotted PVC Screen: Slot size; 20

Depths (from ground); 21.32-45.32 Elevation of interval; 1661.90-1685.90 ft.

Sand Pack: Type of sand; Washed sand

Depths (from ground); 20-46

Grout Seal: Depths (from ground); 0-20 ft.

Date sealed; 8-13-86

Additional Data:

Static Water Level: Date; 8-21-86

Depth; 29.33 ft. below top of casing

Elevation; 1680.07 ft.

Chemistry: Date; 8-21-86

pH; 6.95 Sp. cond; 13920 micromhos/cm

Temp; 8.5 oC

Project: MDU Ash Disposal Program

Construction Data:

Location: 139-81-10CBA

Elevation: Ground; 1715.55 ft. Casing top; 1717.64 ft.

Well Bottom; 1595.64 ft.

Completion: Date drilled; 8-12-86

Driller; Mohl Drilling, Beulah, ND Method of drilling; Air rotary, dry; some air-mist

Boring: Diameter; 5 5/8 in. Depth drilled; 120 ft.

Encountered water (below surface); 60 ft.

Geophysical log recorded

Casing: Diameter; 2 in. Material; Sch. 40 PVC

Depths (from ground); +2.90-115.91 ft.

Screen: Diameter; 2 in. Slot size; 20

Material; Factory slotted PVC

Depths (from ground); 115.91-119.91 ft. Elevation of interval; 1595.64-1599.64 ft.

Sand Pack: Type of sand; Washed sand

Depths (from ground); 114-120 ft.

Grout Seal: Depths (from ground); 0-114 ft.

Date sealed; 8-13-86

Additional Data:

Static Water Level: Date; 8-21-86

Depth; 49.41 ft. below top of casing

Elevation; 1668.23 ft.

Chemistry: Date; 8-21-86

pH; 7.95 Sp. cond; 1993 micromhos/cm

Temp; 8.6 oC

Project: MDU Ash Disposal Program

Construction Data:

Location: 139-81-10CBA

Elevation: Ground; 1715.24 ft. Casing top; 1717.58 ft.

Well Bottom; 1635.58 ft.

Completion: Date drilled; 8-12-86

Driller; Mohl Drilling, Beulah, ND Method of drilling; Air rotary, dry; some air-mist

Boring: Diameter; 5 5/8 in. Depth drilled; 80 ft.

Encountered water (below surface); 60 ft.

Casing: Diameter; 2 in. Material; Sch. 40 PVC

Depths (from ground); +2.34-75.66 ft.

Screen: Diameter; 2 in. Slot size; 20

Material; Factory slotted PVC

Depths (from ground); 75.66-79.66 ft. Elevation of interval; 1635.58-1639.58 ft.

Sand Pack: Type of sand; Washed sand

Depths (from ground); 74-80 ft.

Grout Seal: Depths (from ground); 0-74 ft.

Date sealed; 8-13-86

Additional Data:

Static Water Level: Date; 8-21-86

Depth; 43.54 ft. below top of casing

Elevation; 1674.04 ft.

Chemistry: Date; 8-21-86

pH; 7.96 Sp. cond; 1993 micromhos/cm

Temp; 7.8 oC

Project: MDU Ash Disposal Program

Construction Data:

Location: 139-81-10CBA

Elevation: Ground; 1715.34 ft. Casing top; 1717.79 ft.

Well Bottom; 1641.69 ft.

Completion: Date drilled; 8-12-86

Driller; Mohl Drilling, Beulah, ND Method of drilling; Air rotary, dry; some air-mist

Boring: Diameter; 5 5/8 in. Depth drilled; 80 ft.

Encountered water (below surface); 60 ft.

Casing: Diameter; 2 in. Material; Sch. 40 PVC

Depths (from ground); +2.45-53.65 ft.

Diameter; 2 in. Slot size; Material; Factory slotted PVC Screen: Slot size; 20

Depths (from ground); 53.65-73.65 ft. Elevation of interval; 1641.69-1661.69 ft.

Sand Pack: Type of sand; Washed sand

Depths (from ground); 52-75

Grout Seal: Depths (from ground); 0-52 ft.

Date sealed; 8-13-86

Additional Data:

Static Water Level: Date; 8-21-86

Depth; 42.03 ft. below top of casing

Elevation; 1675.76 ft.

Chemistry: Date; 8-21-86

pH; 7.22 Sp. cond; 3000 micromhos/cm

Temp; 8.0 oC

Project: MDU Ash Disposal Program

Construction Data:

Location: 139-81-10CBA

Elevation: Ground; 1715.34 ft. Casing top; 1717.79 ft.

Well Bottom; 1672.79 ft.

Completion: Date drilled; 11-13-86

Driller; Mohl Drilling, Beulah, ND Method of drilling; Air rotary, dry

Boring: Diameter; 5 5/8 in. Depth drilled; 45 ft.

Encountered water (below surface); ? ft.

Casing: Diameter; 2 in. Material; Sch. 40 PVC

Depths (from ground); +2.45-25.65 ft.

Screen: Diameter; 2 in. Slot size; 20

Material; Factory slotted PVC

Depths (from ground); 25.65-45.65 ft. Elevation of interval; 1669:69-1689.69 ft.

Sand Pack: Type of sand; Washed sand

Depths (from ground); 24-45 ft.

Grout Seal: Depths (from ground); 0-24 ft.

Date sealed; 1-27-87

Additional Data:

Static Water Level: Date; 12-15-86

Depth; 40.68 ft. below top of casing

Elevation; 1677.11 ft.

Chemistry: Date; NA

pH; NA

Sp. cond; NA

Temp; NA

Project: MDU Ash Disposal Program

Construction Data:

Location: 139-81-10CDB

Elevation: Ground; 1708.02 ft. Casing top; 1710.15 ft.

Well Bottom; 1592.25 ft.

Completion: Date drilled; 8-13-86

Driller; Mohl Drilling, Beulah, ND Method of drilling; Air rotary, dry; some air-mist

Boring: Diameter; 5 5/8 in. Depth drilled; 120 ft.

Encountered water (below surface); 50 ft.

Geophysical log recorded

Casing: Diameter; 2 in. Material; Sch. 40 PVC

Depths (from ground); +2.13-111.77 ft.

Screen: Diameter; 2 in. Slot size; 20

Material; Factory slotted PVC

Depths (from ground); 111.77-115.77 ft. Elevation of interval; 1592.25-1596.25 ft.

Sand Pack: Type of sand; Washed sand

Depths (from ground); 110-117 ft.

Grout Seal: Depths (from ground); 0-117 ft.

Date sealed: 8-13-86

Additional Data:

Static Water Level: Date; 8-21-86

Depth; 63.72 ft. below top of casing

Elevation; 1646.43 ft.

Chemistry: Date; 8-21-86

pH; 7.58 Sp. cond; 6260 micromhos/cm

Temp; 8.2 oC

Project: MDU Ash Disposal Program

Construction Data:

Location: 139-81-10CDB

Elevation: Ground; 1708.03 ft. Casing top; 1710.07 ft.

Well Bottom; 1626.77 ft.

Completion: Date drilled; 8-13-86

Driller; Mohl Drilling, Beulah, ND Method of drilling; Air rotary, dry; some air-mist

Boring: Diameter; 5 5/8 in. Depth drilled; 82 ft.

Encountered water (below surface); 50 ft.

Casing: Diameter; 2 in. Material; Sch. 40 PVC

Depths (from ground); +2.04-77.26 ft.

Screen: Diameter; 2 in. Slot size; 20

Material; Factory slotted PVC

Depths (from ground); 77.26-81.26 ft. Elevation of interval; 1626.77-1630.77 ft.

Sand Pack: Type of sand; Washed sand

Depths (from ground); 76-82 ft.

Grout Seal: Depths (from ground); 0-76 ft.

Date sealed; 8-13-86

Additional Data:

Static Water Level: Date; 8-21-86

Depth; 36.58 ft. below top of casing

Elevation; 1673.49 ft.

Chemistry: Date; 8-21-86

pH; 7.57 Sp. cond; 5480 micromhos/cm

Temp; 8.4 oC

Project: MDU Ash Disposal Program

Construction Data:

Location: 139-81-10CDB

Elevation: Ground; 1708.12 ft. Casing top; 1710.31 ft.

Well Bottom; 1652.61 ft.

Date drilled; 8-13-86 Completion:

> Driller; Mohl Drilling, Beulah, ND Method of drilling; Air rotary, dry;

some air-mist

Boring: Diameter; 5 5/8 in. Depth drilled; 60 ft.

Encountered water (below surface); 50 ft.

Casing: Diameter; 2 in. Material; Sch. 40 PVC

Depths (from ground); +2.19-35.51 ft.

Screen: Slot size; 20

Diameter; 2 in. Slot size; Material; Factory slotted PVC

Depths (from ground); 35.51-55.51 ft. Elevation of interval; 1652.61-1672.61 ft.

Sand Pack: Type of sand; Washed sand

> Depths (from ground); 34-56 ft.

Grout Seal: Depths (from ground); 0-34 ft.

Date sealed; 8-13-86

Additional Data:

Static Water Level: Date; 8-21-86

Depth; 32.88 ft. below top of casing

Elevation; 1677.43 ft.

Chemistry: Date; 8-21-86

> pH; 7.22 Sp. cond; 5060 micromhos/cm

Temp; 8.6 oC

Project: MDU Ash Disposal Program

Construction Data:

Location: 139-81-10CDD

Elevation: Ground; 1708.92 ft. Casing top; 1711.03 ft.

Well Bottom; 1650.14 ft.

Completion: Date drilled; 9-18-86

Driller; Mohl Drilling, Beulah, ND Method of drilling; Air rotary, dry

Boring: Diameter; 5 5/8 in. Depth drilled; 60 ft.

Encountered water (below surface); 25 ft.

Casing: Diameter; 2 in. Material; Sch. 40 PVC

Depths (from ground); +2.11-54.78 ft.

Screen: Diameter; 2 in. Slot size; 20

Material; Factory slotted PVC

Depths (from ground); 54.78-58.78 ft. Elevation of interval; 1650.14-1654.14 ft.

Sand Pack: Type of sand; Washed sand

Depths (from ground); 53-59 ft.

Grout Seal: Depths (from ground); 0-53 ft.

Date sealed; 9-18-86

Additional Data:

19. 等性等性は、19.1. 引い出ては無く 19.1. 等種の 18.0. ないない 後間を見ない 20.1.

Static Water Level: Date; 10-4-86

Depth; 25.85 ft. below top of casing

Elevation; 1685.18 ft.

Chemistry: Date; 10-4-86

pH; 6.70 Sp. cond; 6950 micromhos/cm

Temp; 8.5 oC

Project: MDU Ash Disposal Program

Construction Data:

Location: 139-81-10CDD

Elevation: Ground; 1709.09 ft. Casing top; 1711.40 ft.

Well Bottom; 1685.88 ft.

Completion: Date drilled; 9-18-86

Driller; Mohl Drilling, Beulah, ND Method of drilling; Air rotary, dry

Boring: Diameter; 5 5/8 in. Depth drilled; 25 ft.

Encountered water (below surface); 25 ft.

Casing: Diameter; 2 in. Material; Sch. 40 PVC

Depths (from ground); +2.31-3.21 ft.

Screen: Diameter; 2 in. Slot size; 20

Material; Factory slotted PVC Depths (from ground); 3.21-23.54 ft. Elevation of interval; 1685.88-1705.88 ft.

Sand Pack: Type of sand; Washed sand

Depths (from ground); 2.5-24.0 ft.

Grout Seal: Depths (from ground); 0-2.5 ft.

Date sealed; 9-18-86

Additional Data:

Static Water Level: Date; 10-4-86

Depth; 21.92 ft. below top of casing

Elevation; 1689.48 ft.

Chemistry: Date; 10-4-86

pH; 6.72 Sp. cond; 10270 micromhos/cm

Temp; 9.1 oC

Project: MDU Ash Disposal Program

Construction Data:

Location: 139-81-10CDB

Elevation: Ground; 1708.12 ft. Casing top; 1710.31 ft.

Well Bottom; 1668.12 ft.

Completion: Date drilled; 11-13-86

Driller; Mohl Drilling, Beulah, ND Method of drilling; Air rotary, dry;

Boring: Diameter; 5 5/8 in. Depth drilled; 40 ft.

Encountered water (below surface); ? ft.

Casing: Diameter; 2 in. Material; Sch. 40 PVC

Depths (from ground); +2.19-20.51 ft.

Screen: Diameter; 2 in. Slot size; 20

Material; Factory slotted PVC

Depths (from ground); 20.51-40.51 ft. Elevation of interval; 1667.61-1687.61 ft.

Sand Pack: Type of sand; Washed sand

Depths (from ground); 19-41 ft.

Grout Seal: Depths (from ground); 0-19 ft.

Date sealed; 1-27-86

Additional Data:

Static Water Level: Date; 12-15-86

Depth; 28,71 ft. below top of casing

Elevation; 1681.60 ft.

Chemistry: Date; NA

ollo NA

pH; NA Sp. cond; NA

Temp; NA

Project: MDU Ash Disposal Program

Construction Data:

Location: 139-81-10CAD

Elevation: Ground; 1674.58 ft. Casing top; 1677.01 ft.

Well Bottom; 1647.51 ft.

Date drilled; 8-13-86 Completion:

Driller; Mohl Drilling, Beulah, ND Method of drilling; Air rotary, dry; some air-mist

Boring: Diameter; 5 5/8 in. Depth drilled; 30 ft.

Encountered water (below surface); 17 ft.

Geophysical log recorded

Diameter; 2 in. Casing: Material; Sch. 40 PVC

Depths (from ground); +2.43-7.07 ft.

Screen: Diameter; 2 in. Slot size; 20

Material; Factory slotted PVC

Depths (from ground); 7.07-27.07 ft. Elevation of interval; 1647.51-1667.51 ft.

Sand Pack: Type of sand; Washed sand

> Depths (from ground); 6-29 ft.

Grout Seal: Depths (from ground); 0-6

Date sealed; 8-13-86

Additional Data:

Static Water Level: Date; 8-21-86

Depth; 5.45 ft. below top of casing

Elevation; 1671.56 ft.

Chemistry: Date; 8-21-86

pH; 7.56 Sp. cond; 6480 micromhos/cm

Temp; 10.8 oC

Project: MDU Ash Disposal Program

Construction Data:

Location: 139-81-10CAD

Elevation: Ground; 1674.47 ft. Casing top; 1676.70 ft.

Well Bottom; 1637.33 ft.

Completion: Date drilled; 9-18-86

Driller; Mohl Drilling, Beulah, ND Method of drilling; Air rotary, dry; some air-mist

Boring: Diameter; 5 5/8 in. Depth drilled; 40 ft.

Encountered water (below surface); 18 ft.

Casing: Diameter; 2 in. Material; Sch. 40 PVC

Depths (from ground); +2.23-32.14 ft.

Screen: Diameter; 2 in. Slot size; 20

Material; Factory slotted PVC

Depths (from ground); 32.14-37.14 ft. Elevation of interval; 1637.33-1642.33 ft.

Sand Pack: Type of sand; Washed sand

Depths (from ground); 31-38 ft.

Grout Seal: Depths (from ground); 0-31 ft.

Date sealed; 9-18-86

Additional Data:

Static Water Level: Date; 10-4-86

Depth; 5.77 ft. below top of casing

Elevation; 1670.93 ft.

Chemistry: Date; 10-4-86

pH; 7.46 Sp. cond; 3700 micromhos/cm

Temp; 8.2 oC

Project: MDU Ash Disposal Program

Construction Data:

Location: 139-81-10CAD

Elevation: Ground; 1674.45 ft. Casing top; 1676.71 ft.

Well Bottom; 1658.01 ft.

Completion: Date drilled; 9-18-86

Driller; Mohl Drilling, Beulah, ND Method of drilling; Air rotary, dry; some air-mist

Boring: Diameter; 5 5/8 in. Depth drilled; 20 ft.

Encountered water (below surface); 18 ft.

Casing: Diameter; 2 in. Material; Sch. 40 PVC

Depths (from ground); +2.26-6.44 ft.

Screen: Diameter; 2 in. Slot size; 20

Material; Factory slotted PVC Depths (from ground); 6.44-16.44

Elevation of interval; 1658.01-1668.01 ft.

Sand Pack: Type of sand; Washed sand

Depths (from ground); 5-18 ft.

Grout Seal: Depths (from ground); 0-5 ft.

Date sealed; 9-18-86

Additional Data:

Static Water Level: Date; 10-4-86

Depth; 4.13 ft. below top of casing

Elevation; 1672.58 ft.

Chemistry: Date; 10-4-86

pH; 7.29 Sp. cond; 6300 micromhos/cm

Temp; 9.4 oC

Project: MDU Ash Disposal Program

Construction Data:

Location: 139-81-10DCC

Elevation: Ground; 1685.71 ft. Casing top; 1688.17 ft.

Well Bottom; 1665.70 ft.

Completion: Date drilled; 9-18-86

Driller; Mohl Drilling, Beulah, ND Method of drilling; Air rotary, dry

Boring: Diameter; 5 5/8 in. Depth drilled; 21 ft.

Encountered water (below surface); 15 ft.

Casing: Diameter; 2 in. Material; Sch. 40 PVC

Depths (from ground); +2.46-5.01 ft.

Screen: Diameter; 2 in. Slot size; 20

Material; Factory slotted PVC

Depths (from ground); 5.01-20.01 ft. Elevation of interval; 1665.70-1680.70 ft.

Sand Pack: Type of sand; Washed sand

Depths (from ground); 4-21 ft.

Grout Seal: Depths (from ground); 0-4 ft.

Date sealed; 9-18-86

Additional Data:

Static Water Level: Date; 10-4-86

Depth; 6.30 ft. below top of casing

Elevation; 1681.87 ft.

Chemistry: Date; 10-4-86

pH; NA Sp. cond; NA micromhos/cm

Project: MDU Ash Disposal Program

Construction Data:

Location: 139-81-10DCC

Elevation: Ground; 1685.71 ft. Casing top; 1688.10 ft.

Well Bottom; 1633.11 ft.

Completion: Date drilled; 9-18-86

Driller; Mohl Drilling, Beulah, ND Method of drilling; Air rotary, dry

Boring: Diameter; 5 5/8 in. Depth drilled; 60 ft.

Encountered water (below surface); 15 ft.

Casing: Diameter; 2 in. Material; Sch. 40 PVC

Depths (from ground); +2.39-47.60 ft.

Diameter; 2 in. Slot size; 20 Material; Factory slotted PVC Screen:

Depths (from ground); 47.60-52.60 ft. Elevation of interval; 1633.11-1638.11 ft.

Sand Pack: Type of sand; Washed sand

Depths (from ground); 46-54

Grout Seal: Depths (from ground); 0-46 ft.

Date sealed: 9-18-86

Additional Data:

Date; 10-4-86 Static Water Level:

Depth; 15.16 ft. below top of casing

Elevation; 1672.94 ft.

Chemistry: Date; 10-4-86

pH; 9.55 Sp. cond; 1100 micromhos/cm

Temp; 9.8 oC

Project: MDU Ash Disposal Program

Construction Data:

Location: 139-81-10DCA

Elevation: Ground; 1693.86 ft. Casing top; 1696.10 ft.

Well Bottom; 1636.95 ft.

Completion: Date drilled; 9-18-86

Driller; Mohl Drilling, Beulah, ND Method of drilling; Air rotary, dry

Depth drilled; 60 ft. Boring: Diameter; 5 5/8 in.

Encountered water (below surface); 45 ft.

Casing: Diameter; 2 in. Material; Sch. 40 PVC

Depths (from ground); +2.24-31.91 ft.

Diameter; 2 in. Slot size; Material; Factory slotted PVC Slot size; Screen:

Depths (from ground); 31.91-56.91 ft. Elevation of interval; 1636.95-1661.95 ft.

Sand Pack: Type of sand; Washed sand

Depths (from ground); 30-58

Grout Seal: Depths (from ground); 0-30 ft.

Date sealed; 9-18-86

Additional Data:

Date; 10-4-86 Static Water Level:

Depth; 29.46 ft. below top of casing

Elevation; 1666.64 ft.

Chemistry: Date; 10-4-86

pH; 6.81 Sp. cond; 10840 micromhos/cm

Temp; 8.5 oC

Project: MDU Ash Disposal Program

Construction Data:

Location: 139-80-10DCA

Elevation: Ground; 1693.86 ft. Casing top; 1696.42 ft.

Well Bottom; 1597.99 ft.

Completion: Date drilled; 9-18-86

Driller; Mohl Drilling, Beulah, ND Method of drilling; Air rotary, dry

Boring: Diameter; 5 5/8 in. Depth drilled; 100 ft.

Encountered water (below surface); 45 ft.

Casing: Diameter; 2 in. Material; Sch. 40 PVC

Depths (from ground); +2.56-91.87 ft.

Screen: Diameter; 2 in. Slot size; 20 Material; Factory slotted PVC

Material; Factory slotted PVC Depths (from ground); 91.87-96.87 ft. Elevation of interval; 1597.99-1601.99 ft.

Sand Pack: Type of sand; Washed sand

Depths (from ground); 90-98 ft.

Grout Seal: Depths (from ground); 0-90 ft.

Date sealed; 9-18-86

Additional Data:

Static Water Level: Date; 10-4-86

Depth; 42.03 ft. below top of casing

Elevation; 1654.39 ft.

Chemistry: Date; 10-4-86

pH; 8.44 Sp. cond; 4160 micromhos/cm

Temp; 8.3 oC

Project: MDU Ash Disposal Program

Construction Data:

Location: 139-18-10CDB

Elevation: Ground; 1714.23 ft. Casing top; 1716.42 ft.

Well Bottom; 1662.02 ft.

Completion: Date drilled; 8-13-86

Driller; Mohl Drilling, Beulah, ND Method of drilling; Air rotary, dry; some air-mist

Boring: Diameter; 5 5/8 in. Depth drilled; 60 ft.

Encountered water (below surface); 45 ft.

Geophysical log recorded

Casing: Diameter; 2 in. Material; Sch. 40 PVC

Depths (from ground); +2.19-22.21 ft.

Diameter; 2 in. Slot size; Material; Factory slotted PVC Screen: Slot size; 20

Depths (from ground); 22.21-52.21 Elevation of interval; 1662.02-1692.02 ft.

Sand Pack: Type of sand; Washed sand

> Depths (from ground); 21-54 ft.

Grout Seal: Depths (from ground); 0-21 ft.

Date sealed; 8-13-86

Additional Data:

Static Water Level: Date; 8-21-86

Depth; 31.01 ft. below top of casing

Elevation; 1685.41 ft.

Chemistry: Date; 8-21-86

pH; 6.94 Sp. cond; 15760 micromhos/cm

Temp; 8.5 oC

Project: MDU Ash Disposal Program

Construction Data:

Location: 139-81-10CDA

Elevation: Ground; 1714.23 ft. Casing top; 1716.53 ft.

Well Bottom; 1670.89 ft.

Completion: Date drilled; 9-18-86

Driller; Mohl Drilling, Beulah, ND Method of drilling; Air rotary, dry

Boring: Diameter; 5 5/8 in. Depth drilled; 46 ft.

Encountered water (below surface); 37 ft.

Diameter; 2 in. Material; Sch. 40 PVC Casing:

Depths (from ground); +2.30-13.34 ft.

Diameter; 2 in. Slot size; Material; Factory slotted PVC Screen: Slot size; 20

Depths (from ground); 13.34-43.34 Elevation of interval; 1670.89-1700.89 ft.

Sand Pack: Type of sand; Washed sand

Depths (from ground); 12-45 ft.

Depths (from ground); 0-12 ft. Grout Seal:

Date sealed; 9-18-86

Additional Data:

Static Water Level: Date; 10-4-86

Depth; 32.58 ft. below top of casing

Elevation; 1683.95 ft.

Chemistry: Date; 10-4-86

pH; 6.83 Sp. cond; 12750 micromhos/cm

Temp; 8.4 oC

Project: MDU Ash Disposal Program

Construction Data:

Location: 139-81-10CDB

Elevation: Ground; 1714.32 ft. Casing top; 1716.67 ft.

Well Bottom; 1681.40 ft.

Completion: Date drilled; 9-18-86

> Driller; Mohl Drilling, Beulah, ND Method of drilling; Air rotary, dry

Diameter; 5 5/8 in. Boring: Depth drilled; 35 ft.

Encountered water (below surface); 35 ft.

Casing: Diameter; 2 in. Material; Sch. 40 PVC

Depths (from ground); +2.35-12.92 ft.

Screen: Slot size;

Diameter; 2 in. Slot size; Material; Factory slotted PVC

Depths (from ground); 12.92-32.91 ft. Elevation of interval; 1681.40-1701.40 ft.

Sand Pack: Type of sand; Washed sand

> Depths (from ground); 11-34 ft.

Grout Seal: Depths (from ground); 0-11 ft.

Date sealed; 9-18-86

Additional Data:

Static Water Level: Date; 10-4-86

Depth; 32.74 ft. below top of casing

Elevation; 1683.93 ft.

Chemistry: Date; 10-4-86

pH; 6.71 Sp. cond; 13170 micromhos/cm

Temp; 9.3 oC

Project: MDU Ash Disposal Program

Construction Data:

Location: 139-81-16ABA

Elevation: Ground; 1733.18 ft. Casing top; 1735.67 ft.

Well Bottom; 1634.57 ft.

Completion: Date drilled; 8-13-86

Driller; Mohl Drilling, Beulah, ND Method of drilling; Air rotary, dry; some air-mist

Diameter; 5 5/8 in. Boring: Depth drilled; 102 ft.

Encountered water (below surface); 45 ft.

Geophysical log recorded

Casing: Diameter; 2 in. Material; Sch. 40 PVC

Depths (from ground); +2.49-94.61 ft.

Diameter; 2 in. Slot size; Material; Factory slotted PVC Screen: Slot size; 20

Depths (from ground); 94.61-98.61 Elevation of interval; 1634.57-1638.57 ft.

Sand Pack: Type of sand; Washed sand

Depths (from ground); 93-99

Depths (from ground); 0-93 ft. Grout Seal:

Date sealed; 8-13-86

Additional Data:

Static Water Level: Date; 8-21-86

Depth; 54.20 ft. below top of casing

Elevation; 1681.47 ft.

Chemistry: Date; 8-21-86

pH; 7.85 Sp. cond; 13000 micromhos/cm

Temp; 10.1 oC

Well Number: (WS1)

Project: MDU Ash Disposal Program

Construction Data:

Location: 139-81-DBB

Elevation: Ground; 1679.61 ft. Casing top; 1681.71 ft.

Well Bottom; 1606.73 ft.

Repaired casing top (1-13-86); 1683.67 ft.

Completion: Date drilled; 9-22-81

Driller; Water Supply, Inc.

Method of drilling; NA

Boring: Diameter; NA in. Depth drilled; 73 ft.

Encountered water (below surface); NA ft.

Casing: Diameter; 2 in. Material; Sch. 40 PVC

Depths (from ground); +2.7-40, 45-73 ft. (as of 1-13-87); +4.7-40, 45-73 ft.

Screen: Diameter; 2 in. Slot size; 20

Material; Factory slotted PVC

Depths (from ground); 40-45 ft. Elevation of interval; 1634.61-1639.61 ft.

Sand Pack: Type of sand; Washed sand

Depths (from ground); 37-47 ft.

Depths (from ground); 0-37 ft. Grout Seal:

Date sealed; NA

Additional Data:

Static Water Level: Date; 8-21-86

Depth; 24.61 ft. below top of casing

Elevation; 1657.10 ft.

Chemistry: Date; 8-21-86 pH; 7.47

Sp. cond; 1899 micromhos/cm

Temp 7.0 oC

Well Number: (WS1A)

Project: MDU Ash Disposal Program

Construction Data:

Location: 139-81-DBB

Elevation: Ground; 1679.10 ft. Casing top; 1682.23 ft.

Well Bottom; 1657.10 ft.

Completion: Date drilled; 8-5-85

Driller; Water Supply, Inc. Method of drilling; NA

Diameter; NA in. Depth drilled; 23 ft. Boring:

Encountered water (below surface); NA ft.

Material; Sch. 40 PVC Diameter; 2 in. Casing:

Depths (from ground); +3.2-17 ft.

Slot size; Screen:

Diameter; 2 in. Slot size; Material; Factory slotted PVC Depths (from ground); 17-22 ft.

Elevation of interval; 1657.10-1662.10 ft.

Sand Pack: Type of sand; Washed sand

Depths (from ground); 15-23 ft.

Grout Seal: Depths (from ground); 0-15 ft.

Date sealed; NA

Additional Data:

Static Water Level: Date; 8-21-86

Depth; DRY ft. below top of casing

Elevation; ft.

Chemistry: Date: 8-21-86

micromhos/cm pH; NA Sp. cond; NA

Well Number: (WS1B)

Project: MDU Ash Disposal Program

Construction Data:

Location: 139-81-10DBB

Elevation: Ground; 1678.80 ft. Casing top; 1682.07 ft.

Well Bottom; 1648.80 ft.

Completion: Date drilled; 8-6-85

Driller; Water Supply, Inc.

Method of drilling; NA

Boring: Diameter; NA in. Depth drilled; 30 ft.

Encountered water (below surface); NA ft.

Casing: Diameter; 2 in. Material; Sch. 40 PVC

Depths (from ground); +3.3-25 ft.

Screen: Diameter; 2 in. Slot size; 20

Material; Factory slotted PVC

Depths (from ground); 25-30 ft.

Elevation of interval; 1648.80-1653.80 ft.

Sand Pack: Type of sand; Washed sand

Depths (from ground); 23-30 ft.

Grout Seal: Depths (from ground); 0-22 ft.

Date sealed; NA

Additional Data:

Static Water Level: Date; 8-21-86

Depth; 24.48 ft. below top of casing

Elevation; 1657.59 ft.

Chemistry: Date; 8-21-86

pH; 7.07 Sp. cond; 3940 micromhos/cm

Temp; 8.5 oC

Well Number: (WS2)

Project: MDU Ash Disposal Program

Construction Data:

Location: 139-81-10DCC

Elevation: Ground; 1696.00 ft. Casing top; 1698.64 ft.

Well Bottom; 1607.00 ft.

Completion: Date drilled; 9-23-81

Driller; Water Supply, Inc.

Method of drilling; NA

Boring: Diameter; NA in. Depth drilled; 90 ft.

Encountered water (below surface); NA ft.

Casing: Diameter; 2 in. Material; Sch. 40 PVC

Depths (from ground); +3-56, 61-89 ft.

Screen: Diameter; 2 in. Slot size; 20

Material; Factory slotted PVC Depths (from ground); 56-61 ft.

Elevation of interval; 1635.00-1640.00 ft.

Sand Pack: Type of sand; Washed sand

Depths (from ground); 53-62 ft.

Grout Seal: Depths (from ground); 0-52 ft.

Date sealed; NA

Additional Data:

Static Water Level: Date; 10-4-86

Depth; 33.86 ft. below top of casing

Elevation; 1664.78 ft.

Chemistry: Date; 8-21-86

pH; 7.04 Sp. cond; 3760 micromhos/cm

Temp; 8.6 oC

Well Number: (WS3)

Project: MDU Ash Disposal Program

Construction Data:

Location: 139-81-10DBA

Elevation: Ground; 1658.00 ft. Casing top; 1661.00 ft.

Well Bottom; 1608.00 ft.

Completion: Date drilled; 9-21-81

Driller; Water Supply, Inc. Method of drilling; NA

Boring: Diameter; NA in. Depth drilled; 50 ft.

Encountered water (below surface); NA ft.

Casing: Diameter; 2 in. Material; Sch. 40 PVC

Depths (from ground); +3-25, 30-50 ft.

Screen: Diameter; 2 in. Slot size; 20

Material; Factory slotted PVC Depths (from ground); 25-30 ft.

Elevation of interval; 1628.00-1633.00 ft.

Sand Pack: Type of sand; Washed sand

Depths (from ground); 24-32 ft.

Grout Seal: Depths (from ground); 0-23 ft.

Date sealed; NA

Additional Data:

Static Water Level: Date; 9-4-86

Depth; 14.67 ft. below top of casing

Elevation; 1646.33 ft.

Chemistry: Date; NA

pH; NA Sp. cond; NA micromhos/cm

Well Number: (WS3A)

Project: MDU Ash Disposal Program

Construction Data:

Location: 139-81-10DBA

Elevation: Ground; 1657.70 ft. Casing top; 1660.81 ft.

Well Bottom; 1645.31 ft.

Date drilled; 8-5-85 Completion:

Driller; Water Supply, Inc.

Method of drilling; NA

Depth drilled; 13 ft. Boring: Diameter; NA in.

Encountered water (below surface); NA ft.

Diameter; 2 in. Casing: Material; Sch. 40 PVC

Depths (from ground); +3.1-7.5 ft.

Screen:

Diameter; 2 in. Slot size; Material; Factory slotted PVC Depths (from ground); 7.5-12.5 ft.

Elevation of interval; 1645.31-1650.31 ft.

Sand Pack: Type of sand; Washed sand

Depths (from ground); 6-13 ft.

Grout Seal: Depths (from ground); 0-6 ft.

Date sealed; NA

Additional Data:

Date; 10-4-86 Static Water Level:

Depth; 8.37 ft. below top of casing Elevation; 1652.44 ft.

Chemistry: Date; NA

Sp. cond; NA pH; NA micromhos/cm

Well Number: (WS4)

Project: MDU Ash Disposal Program

Construction Data:

Location: 139-81-10DBA

Elevation: Ground; 1659.61 ft. Casing top; 1662.61 ft.

Well Bottom; 1607.60 ft.

Completion: Date drilled; 9-24-81

Driller; Water Supply, Inc.

Method of drilling; NA

Boring: Diameter; NA in. Depth drilled; 52 ft.

Encountered water (below surface); NA ft.

Diameter; 2 in. Casing: Material; Sch. 40 PVC

Depths (from ground); +3-30, 35-52 ft.

Screen: Slot size;

Diameter; 2 in. Slot size; Material; Factory slotted PVC

Depths (from ground); 30-35 ft. Elevation of interval; 1624.60-1629.60 ft.

Sand Pack: Type of sand; Washed sand

Depths (from ground); 27-36 ft.

Grout Seal: Depths (from ground); 0-26 ft.

Date sealed; NA

Additional Data:

Static Water Level: Date; 9-4-86

Depth; 19.62 ft. below top of casing

Elevation; 1642.99 ft.

Chemistry: Date; NA

pH; NA Sp. cond; NA micromhos/cm

Well Number: (WS4A)

Project: MDU Ash Disposal Program

Construction Data:

Location: 139-81-10DBA

Elevation: Ground; 1659.49 ft. Casing top; 1662.49 ft.

Well Bottom; 1641.50 ft.

Completion: Date drilled; 9-24-81

Driller; Water Supply, Inc.

Method of drilling; NA

Boring: Diameter; NA in. Depth drilled; 18 ft.

Encountered water (below surface); NA ft.

Casing: Diameter; 2 in. Material; Sch. 40 PVC

Depths (from ground); +3-13 ft.

Screen: Slot size; 20

Diameter; 2 in. Slot size; Material; Factory slotted PVC Depths (from ground); 13-18

Elevation of interval; 1641.50-1646.50 ft.

Sand Pack: Type of sand; Washed sand

Depths (from ground); 11-18 ft.

Depths (from ground); 0-11 ft. Grout Seal:

Date sealed; NA

Additional Data:

Static Water Level: Date; 9-4-86

Depth; 17.29 ft. below top of casing

Elevation; 1645.20 ft.

Chemistry: Date; NA

pH: NA Sp. cond; NA micromhos/cm

Well Number: (WS4B)

Project: MDU Ash Disposal Program

Construction Data:

Location: 139-81-10DBA

Elevation: Ground; 1659.75 ft. Casing top; 1662.75 ft.

Well Bottom; 1635.80 ft.

Completion: Date drilled; 8-5-85

Driller; Water Supply, Inc.

Method of drilling; NA

Boring: Diameter; NA in. Depth drilled; 25 ft.

Encountered water (below surface); NA ft.

Casing: Diameter; 2 in. Material; Sch. 40 PVC

Depths (from ground); +3.1-19.0 ft.

Screen: Slot size;

Diameter; 2 in. Slot size; Material; Factory slotted PVC Depths (from ground); 19-24 ft.

Elevation of interval; 1635.80-1640.80 ft.

Sand Pack: Type of sand; Washed sand

Depths (from ground); 18-25 ft.

Grout Seal: Depths (from ground); 0-18 ft.

Date sealed; NA

Additional Data:

Static Water Level: Date; 9-4-86

Depth; 17.39 ft. below top of casing

Elevation; 1645.36 ft.

Chemistry: Date; NA

pH; NA Sp. cond; NA micromhos/cm

EXHIBIT 5-D

GEOPHYSICAL LOGS

EXHIBIT 5-E

LITHOLOGIC LOGS

- Wells 10, 11, 12 and 13
 0-1 Top soil, silty, clayey, sandy, brown, calcareous; with some limestone pebbles.
- 1-11 Silt, clayey, brownish-tan, slightly indurated, very dry, calcareous; with thin coarse-grained, clean silt lenses and a few small (less than .5 in.) iron oxide concretions. Abundant small gypsum crystals (less than .13 in. long). Some small, black flakes of organic plant material. Cannonball-Ludlow Formations.
- Silt, as above, with some (less than 20%) very fine- to fine-grained sand interspersed.
- 14-30 Silt, as above, clayey, less sand than above interval, oxidized; with very fine-grained silty sand lenses and very few gypsum crystals.
- Silt, very clayey, with some (less than 20%) very fine-grained sand interspersed, steel-gray (color change), moderately indurated; with fewer small gypsum crystals than above intervals.
- Silt, as above, very clayey, with some (less than 20%) fine- to medium-grained sand interspersed in a silt and clay matrix.
- 59-65 Silt, as above, with abundant (more than 20%) fine- to medium-grained sand interspersed.
- Silt, clayey, steel-gray to bluish, moderately indurated; with thin coarse-grained silt to very fine-grained sand lenses in an otherwise fine silt to clay matrix.
- 81-84 Clay, silty, steel-gray to bluish, moderately indurated, dense.
- Siltstone, sandy, clayey, steel-gray to bluish, slightly indurated; with small fine-grained sand lenses and abundant (more than 20%) sand interspersed in the matrix.
- 91-110 Silt, clayey, bluish-gray, moderately indurated; with thin (less than 1 foot) mudstone lenses.
- 110-120 Silt, very clayey, steel-gray to bluish, moderately indurated, very dense.

 Cannonball-Ludlow Formations.

Wells 20 and 21

- O-1 Top soil, silty, sandy, clayey, dark-brown, calcareous; with some limestone and granite pebbles.
- Silt, clayey, with minor amounts (less than 10%) of very fine-grained sand interspersed, brownish-tan, slightly indurated, calcareous, oxidized; with small iron oxide concretions and abundant small gypsum crystals.

 Cannonball-Ludlow Formations.
- 21-26 Silt, as above, steel-gray (color change).
- Silt, clayey, with some (less than 20%) very fine- to medium-grained sand interspersed, steel-gray to bluish, slightly indurated; with very few small gypsum crystals and some thin (less than 1 foot) siltstone lenses.
- 49-53 Silt, as above, with abundant (more than 20%) fine- to medium-grained sand interspersed.
- 53-63 Silt, as above, clayey, less sand, with thin (less than 1 foot) siltstone to mudstone lenses.
- 63-80 Silt, very clayey, steel-gray to bluish, moderately indurated, very dense. Cannonball-Ludlow Formations.

Wells 30, 31, 32 and 33

- O-1 Top soil, silty, sandy, brownish, calcareous; with some granite and limestone pebbles.
- 1+2 Pebble-loam (glacial till), silty, sandy, clayey, yellowish-brown, dry, calcareous.
- 2-31 Silt, clayey, with minor amounts (less than 10%) of very fine-grained sand interspersed, brownish-tan, slightly indurated, calcareous, oxidized; with small iron oxide concretions. Some small, black flakes organic plant material. Cannonball-Ludlow Formations.
- Silt, clayey, steel-gray (color change), slightly indurated, calcareous; with small iron oxide concretions, thin coarse silt lenses, small gypsum crystals and gray to reddish-brown mottling.

- Silt, as above, with some (less than 20%) fineto medium-grained sand interspersed.

 Silt, as above, with abundant (more than 20%)
- fine- to medium-grained sand interspersed, dense.

 Silt, as above, clayey, less sand, some thin
- 65-76 Silt, as above, clayey, less sand, some thin (less than 1 foot) lenses of siltstone to mudstone.
- 76-80 Siltstone, sandy, clayey, steel-gray to bluish, slightly indurated; with small fine-grained sand lenses and abundant (more than 20%) fine-grained sand interspersed in the matrix.
- 80-92 Silt, clayey, steel-gray to bluish, moderately indurated, with some (less than 20%) very fine- to fine grained sand interspersed.
- 92-120 Silt, very clayey, steel-gray to bluish, moderately indurated, very dense. Cannonball-Ludlow Formations.
- Well 40 0-1 Top soil, sandy, silty, brownish-tan, calcareous; with some granite and limestone pebbles.
- Pebble-loam (glacial till), sandy, silty, with detrital lignite and organic matter, yellowish-brown, very dry, calcareous.
- 5-22 Sand, very fine- to medium-grained, unconsolidated, with thin lenses of clay and detrital lignite, brownish-yellow, calcareous.
- Silt, clayey, with minor amounts (less than 10%) very fine-grained sand interspersed, brownish-tan, slightly indurated, calcareous, oxidized; with small iron oxide concretions and small gypsum crystals; Cannonball-Ludlow Formations.
- Silt, clayey, with minor amounts (less than 10%) of very fine-grained sand interspersed, steel-gray (color change), moderately indurated; with some reddish-brown mottling and some very thin (less than 6 inches) mudstone lenses.
- 51-58 Silt, as above, with abundant (more than 20%) fine-grained sand and thin silty-clay lenses.

- Siltstone, sandy, clayey, steel-gray to bluish, moderately indurated; with small fine-grained sand lenses and abundant (more than 20%) sand interspersed in the matrix.
- Silt, clayey, with some (less than 20%) fine- to medium-grained sand interspersed, steel-gray to bluish, moderately indurated; with thin (less than 2 feet) sandy lenses.
- 70-80 Silt, as above, very clayey, some (less than 10%) fine-grained sand interspersed; less sand than above interval.
- 80-120 Silt, as above, dark-steel-gray. Cannonball-Ludlow Formations.

Wells 41, 42 and 43 O-1 Top soil, sandy, silty, dark-brown, calcareous; with some granite and limestone pebbles.

- 1-4 Pebble-loam (glacial till), sandy, silty, clayey, yellowish-brown, very dry, calcareous.
- 4-40 Silt, clayey, with some (less than 20%) very fine-grained sand interspersed, brownish-tan, unconsolidated, noncompacted, calcareous to 25 feet, oxidized; with small iron oxide concretions and abundant small gypsum crystals.

 Cannonball-Ludlow Formations.
- Silt, clayey, with minor amounts (less than 10%) of very fine-grained sand interspersed, steel-gray (color change), moderately indurated; with some reddish-brown mottling and some very thin (less than 6 inches) mudstone lenses.
- 51-58 Silt, as above, with abundant (more than 20%) fine-grained sand and thin silty-clay lenses.
- 58-62 Siltstone, sandy, clayey, steel-gray to bluish, moderately indurated; with small fine-grained sand lenses and abundant (more than 20%) sand interspersed in the matrix.
- 62-70 Silt, clayey, with some (less than 20%) fine- to medium-grained sand interspersed, steel-gray to bluish, moderately indurated; with thin (less than 2 feet) sandy lenses.

Silt, as above, very clayey, less sand than 30-40 above interval, dark-steel-gray. Cannonball-Ludlow Formations.

Wells 53 and 54 0 - 4Top soil, clayey, silty, very dark-brown, wet,

- 4-15 Clay, silty, with some (less than 20%) fine- to medium-grained sand interspersed, brownish-tan, slightly indurated, dry, calcareous; with small iron oxide concretions, small gypsum crystals and occasional reddish-brown mottling; Cannonball-Ludlow Formations.
- 15 20Sand, very fine-grained to medium-grained, silty, clayey, unconsolidated, yellowish-brown, oxidized.
- 20 30Silt, clayey, with some (less than 20%) fine-grained sand interspersed, steel-gray (color change), slightly indurated; with clay and sand lenses, some small concretions and some small gypsum crystals.
- 30 45Silt, as above, very clayey.
- 45-60 Silt, as above, clayey, brownish-gray, moderately indurated, some reddish-brown mottling. Cannonball-Ludlow Formations.

Wells 55 and 56 Sandy-loam (glacial), with fine- to

medium-grained sand, silty, calcareous; with small granite and limestone pebbles.

- 5-26 Clay, silty, with minor amounts (less than 10%) of very fine-grained sand, dark-brownish-tan, moderately indurated, brittle, very dry, calcareous; with small iron oxide concretions, small gypsum crystals and occasional thin sandstone laminae. Some small, black flakes of organic plant material. Cannonball-Ludlow Formations.
- 26-35 Clay, as above, very silty, sandy, brownish-tan, oxidized.

- Silt, clayey, with some (less than 20%) very fine- to fine-grained sand interspersed, steel-gray (color change) moderately indurated; with small gypsum crystals and occasional clay lenses.
- Silt, as above, with minor amounts (less than 10%) of fine-grained sand interspersed.
- 60-85 Silt, as above, clayey, less sand than above interval.
- Silt, as above, very clayey, with minor amounts (less than 10%) of sand interspersed, light-gray. Cannonball-Ludlow Formations.
- Wells 60, 61 and 62

 Top soil, silty, clayey, dark-brown to tanish-brown, calcareous.
- 2-25 Silt, very clayey, with some minor amounts (less than 10%) of very fine- to fine-grained sand interspersed, brownish-tan, slightly indurated, dry, calcareous; with abundant small gypsum crystals and thin silt and sand lenses; Cannonball-Ludlow Formations.
- Silt, as above, with abundant (more than 20%) fine- to medium-grained sand interspersed.
- 29-36 Silt, as above, clayey, less sand than above interval, dark-brownish-tan, oxidized.
- Silt, very clayey, with some (less than 20%) very fine-grained sand interspersed, steel-gray (color change), moderately indurated; with thin (less than 1 foot) sandy-silt lenses.

 Cannonball-Ludlow Formations.
- Well 70 0-2 Pebble-loam (glacial till), clayey, sandy, yellowish-brown, unconsolidated, damp, calcareous.
- 2-21 Silty, clayey, with some (less than 20%) fine-grained sand interspersed, brownish-tan, moderately indurated, very dry, calcareous, oxidized; with small iron oxide concretions and abundant small gypsum crystals. Cannonball-Ludlow Formations.

Shale, silty, steel- to dark-gray (color change), 21-24 indurated, fissile, very dry; with occasional thin silt and sand lenses. 24-31 Silt, clayey, with abundant (more than 30%) sand, steel-gray, moderately indurated. Silt, clayey, with some (less than 20%) very 31-62 fine- to fine- grained sand interspersed, steel-gray, moderately indurated; with some small gypsum crystals and small iron oxide concretions. 62-76 Silt, as above, with some (less than 20%) fine-grained sand interspersed. 76-82 Silt, as above, with abundant (more than 20%) fine- to medium-grained sand. 82-100 Silt, as above, clayey, with some (less than 20%) fine-grained sand interspersed, dark-gray. Cannonball-Ludlow Formations.

EXHIBIT 5-F

SITE SOILS CLASSIFICATION MAP

EXHIBIT 5-G

WATER LEVEL DATA

WELL DATA

WELL	TOP	GROUND	3-1-1-1		CASING
NO.	OF CASE	SURFACE	SCREENED	INTERVAL	HEIGHT
	***************************************	total state state state salar salar			
10	1725.01	1722.06	1604.01		2.95
11	1725.01	1722.10	1642.81		2.91
12	1724.90	1721.88	1643.51		3.02
13	1724.98	1721.80	1681.51		3.18
20	1709.48	1707.04	1627.48		2.44
21	1709.40	1707.22	1661.90		2.18
30	1717.64	1715.55	1595.64		2.09
31	1717.58	1715.24	1635.58		2.34
32	1717.79	1715.34	1641.69		2.45
33	1717.91	1715.48	1669.69	to 1689.69	2.43
40	1710.15	1708.02	1592.25	to 1596.25	2.13
41	1710.07	1708.03	1626.77		2.04
42	1710.31	1708.12	1652.61	to 1672.61	2.19
43	1711.03	1708.92	1650.14		2.11
44	1711.40	1709.09	1685.88		2.31
45	1710.17	1708.34	1667.61		1.83
50	1677.01	1674.58	1647.51	to 1667.51	2.43
51	1676.70	1674.47	1637.33		2.23
52	1676.71	1674.45	1658.01	to 1668.01	2.26
53	1688.17	1685.71	1665.70		2.46
54	1688.10	1685.71	1633.11	to 1638.11	2.39
55	1696.10	1693.86	1636.95	to 1661.95	2.24
56	1696.42	1693.86	1597.99		2.56
60	1716.42	1714.23	1662.02		2.19
61	1716.53	1714.23	1670.89	to 1700.89	2.30
62	1716.67	1714.32	1681.40	to 1701.40	2.35
70	1735.67	1733.18	1634.57	to 1638.57	2.49
WS2	1698.64	1696.00	1635.00	to 1640.00	2.64
WS1	1681.71	1679.61	1634.61	to 1639.61	2.10
WS1	1683.67 as				4.06
WS1A	1682.23	1679.10	1657.10	to 1662.10	3.13
WS1B	1682.07	1678.80	1648.80	to 1653.80	3.27
WS4	1662.61	1659.61	1624.60	to 1629.60	3.00
WS4A	1662.49	1659.49	1641.50	to 1646.50	3.00
WS4B	1662.75	1659.75	1635.80	to 1640.80	3.00
WS3	1661.00	1658.00	1628.00		3.00
WS3A	1660.81	1657.70	1645.31	to 1650.31	3.11

CASING ON WELL WS1 WAS REPAIRED IN JANUARY, 1987

ALL VALUES ARE IN FEET ABOVE MEAN SEA LEVEL

SWL-TOP = STATIC WATER LEVEL (in feet) FROM TOP OF CASING SWL-MSL = STATIC WATER LEVEL (in feet) AT MEAN SEA LEVEL SWL-BLS = STATIC WATER LEVEL (in feet) BELOW LAND SURFACE

WELL				
NO.	DATE	SWL-TOP	SWL-MSL	SWL-BLS
10	9-11-86	51.64	1673.37	48.69
	10-16-86	53.32	1671.69	50.37
	11-21-86	53.58	1671.43	50.63
	1-13-87	53.71	1671.30	50.76
	3-6-87	53.61	1671.40	50.66
	4-21-87	53.45	1671.56	50.50
	6-3-87		1671.53	50.53
	5-11-88	54.79	1670.22	51.84
	9-12-88	55.05	1669.96	52.10
	1-4-89	56.33	1668.68	53.38
11	9-11-86	42.42	1682.59	39.51
	10-16-86	41.47	1683.54	38.56
	11-21-86	40.88	1684.13	37.97
	1-13-87	40.72	1684.29	37.81
		40.59	1684.42	37.68
		40.72	1684.29	37.81
		40.65	1684.36	37.74
		42.62	1682.39	39.71
		43.67	1681.34	40.76
	1-4-89	44.10	1680.91	41.19
12	9-11-86	42.42	1682.48	39.40
	10-16-86	40.55	1684.35	37.53
	11-21-86	40.00	1684.90	36.98
	1-13-87	39.86	1685.04	36.84
	3-6-87	39.77	1685.13	36.75
	4-21-87	39.83	1685.07	36.81
	6-3-87	39.90	1685.00	36.88
	5-11-88	41.90	1683.00	38.88
		43.21	1681.69	40.19
	1-4-89	43.37	1681.53	40.35
13	12-15-86	30.09	1694.89	26.91
	1-13-87	29.99	1694.99	26.81
	3-6-87	30.15	1694.83	26.97
	4-21-87	29.92	1695.06	26.74
	6-3-87	29.86	1695.12	26.68
	5-11-88	31.27	1693.71	28.09
	9-12-88	31.53	1693.45	28.35
	1-4-89	31.69	1693.29	28.51

WELL				
NO.	DATE	SWL-TOP	SWL-MSL	SWL-BLS
20	9-11-86	37.17	1672.31	34.73
	10-16-86	36.85	1672.63	34.41
	11-21-86	36.75	1672.73	34.31
	1-13-87	36.68	1672.80	34.24
	3-6-87	35.09	1674.39	32.65
	4-21-87	35.73	1673.75	33.29
	6-3-87		1673.55	33.49
	5-11-88		1671.55	35.49
	9-12-88	39.80	1669.68	37.36
	1-4-89	40.16	1669.32	37.72
21	9-11-86	29.17	1680.23	26.99
	10-16-86	28.94	1680.46	26.76
	11-21-86	28.61	1680.79	26.43
	1-13-87	28.51	1680.89	26.33
	3-6-87	28.41	1680.99	26.23
	4-21-87	27.95	1681.45	25.77
	6-3-87	28.12	1681.28	25.94
	5-11-88	30.77	1678.63	28.59
	9-12-88	32.22	1677.18	30.04
	1-4-89	33.07	1676.33	30.89

NO. DATE SWL-TOP SWL-MSL SWL-BLS 10-16-86 49.35 1668.29 47.26 11-21-86 49.28 1668.36 47.19 1-13-87 49.15 1668.49 47.06 3-6-87 48.53 1669.11 46.44 4-21-87 48.10 1669.54 46.01 6-3-87 48.36 1669.28 46.27 5-11-88 50.36 1667.28 48.27 9-12-88 51.97 1665.67 49.88 1-4-89 52.40 1665.24 50.31 31 9-11-86 43.21 1674.37 40.87 10-16-86 43.74 1673.84 41.40 11-21-86 43.74 1673.84 41.40 11-21-86 43.74 1673.84 41.40 1-13-87 42.26 1675.32 39.92 6-3-87 42.59 1674.99 40.25 4-21-87 42.26 1675.32 39.92 6-3-87 42.59 1674.99 40.25 5-11-88 45.01 1672.57 42.67 9-12-88 46.88 1670.70 44.54 1-4-89 47.31 1670.27 44.97 32 9-11-86 42.52 1675.27 40.07 10-16-86 42.03 1675.76 39.58 11-21-86 41.87 1675.92 39.42 1-13-87 41.18 1676.61 38.73 3-6-87 40.29 1677.50 37.84 4-21-87 40.00 1677.79 37.55 6-3-87 40.39 1677.40 37.94 5-11-88 43.18 1674.61 40.73 9-12-88 45.18 1672.61 42.73 1-4-89 45.65 1672.14 43.20	WELL				
10-16-86		DATE	SWL-TOP	SWL-MSL	SWL-BLS
10-16-86				NAME TAXABLE NAME AND ADDRESS TAXABLE AND ADDRESS TAXABLE	
11-21-86	30				
1-13-87					
3-6-87 48.53 1669.11 46.44 4-21-87 48.10 1669.54 46.01 6-3-87 48.36 1669.28 46.27 5-11-88 50.36 1667.28 48.27 9-12-88 51.97 1665.67 49.88 1-4-89 52.40 1665.24 50.31 31 9-11-86 43.21 1674.37 40.87 10-16-86 43.74 1673.84 41.40 11-21-86 43.74 1673.84 41.40 11-21-86 43.74 1673.84 41.40 1-13-87 43.41 1674.17 41.07 3-6-87 42.59 1674.99 40.25 4-21-87 42.26 1675.32 39.92 6-3-87 42.59 1674.99 40.25 5-11-88 45.01 1672.57 42.67 9-12-88 46.88 1670.70 44.54 1-4-89 47.31 1670.27 44.97 32 9-11-86 42.52 1675.27 40.07 10-16-86 42.03 1675.76 39.58 11-21-86 41.87 1675.92 39.42 1-13-87 41.18 1676.61 38.73 3-6-87 40.29 1677.50 37.84 4-21-87 40.00 1677.79 37.55 6-3-87 40.39 1677.40 37.94 5-11-88 43.18 1674.61 40.73 9-12-88 45.18 1672.61 42.73 1-4-89 45.65 1672.14 43.20 33 12-15-86 40.68 1677.23 38.25 1-13-87 40.72 1677.19 38.29				to the second se	
4-21-87 48.10 1669.54 46.01 6-3-87 48.36 1669.28 46.27 5-11-88 50.36 1667.28 48.27 9-12-88 51.97 1665.67 49.88 1-4-89 52.40 1665.24 50.31 31 9-11-86 43.21 1674.37 40.87 10-16-86 43.74 1673.84 41.40 11-21-86 43.74 1673.84 41.40 11-21-86 43.74 1674.17 41.07 3-6-87 42.59 1674.99 40.25 4-21-87 42.26 1675.32 39.92 6-3-87 42.59 1674.99 40.25 5-11-88 45.01 1672.57 42.67 9-12-88 46.88 1670.70 44.54 1-4-89 47.31 1670.27 44.97 32 9-11-86 42.03 1675.76 39.58 11-21-86 41.87 1675.92 39.42 1-13-87 41.18 1676.61 38.73 3-6-87 40.29 1677.50 37.84 4-21-87 40.00 1677.79 37.55 6-3-87 40.39 1677.40 37.94 5-11-88 43.18 1674.61 40.73 9-12-88 45.18 1672.61 42.73 1-4-89 45.65 1672.14 43.20 33 12-15-86 40.68 1677.23 38.25 1-13-87 40.72 1677.19 38.29					
6-3-87 48.36 1669.28 46.27 5-11-88 50.36 1667.28 48.27 9-12-88 51.97 1665.67 49.88 1-4-89 52.40 1665.24 50.31 31 9-11-86 43.21 1674.37 40.87 10-16-86 43.74 1673.84 41.40 11-21-86 43.74 1673.84 41.40 1-13-87 43.41 1674.17 41.07 3-6-87 42.59 1674.99 40.25 4-21-87 42.26 1675.32 39.92 6-3-87 42.59 1674.99 40.25 5-11-88 45.01 1672.57 42.67 9-12-88 46.88 1670.70 44.54 1-4-89 47.31 1670.27 44.97 32 9-11-86 42.03 1675.76 39.58 11-21-86 41.87 1675.92 39.42 1-13-87 41.18 1676.61 38.73 3-6-87 40.29 1677.50 37.84 4-21-87 40.00 1677.79 37.55 6-3-87 40.39 1677.40 37.94 5-11-88 43.18 1674.61 40.73 9-12-88 45.18 1672.61 42.73 1-4-89 45.65 1672.14 43.20 33 12-15-86 40.68 1677.23 38.25 1-13-87 40.72 1677.19 38.29					
5-11-88 50.36 1667.28 48.27 9-12-88 51.97 1665.67 49.88 1-4-89 52.40 1665.24 50.31 31 9-11-86 43.21 1674.37 40.87 10-16-86 43.74 1673.84 41.40 11-21-86 43.74 1673.84 41.40 1-13-87 43.41 1674.17 41.07 3-6-87 42.59 1674.99 40.25 4-21-87 42.26 1675.32 39.92 6-3-87 42.59 1674.99 40.25 5-11-88 45.01 1672.57 42.67 9-12-88 46.88 1670.70 44.54 1-4-89 47.31 1670.27 44.97 32 9-11-86 42.03 1675.76 39.58 11-21-86 41.87 1675.92 39.42 1-13-87 40.29 1677.50 37.84 4-21-87 40.00 1677.79 37.55 6-3-87 40.39 1677.40 37.94 5-11-88 43.18 1674.61 40.73 9-12-88 45.18 1672.61 42.73 1-4-89 45.65 1672.14 43.20 33 12-15-86 40.68 1677.23 38.25 1-13-87 40.72 1677.19 38.29					
9-12-88 51.97 1665.67 49.88 1-4-89 52.40 1665.24 50.31 31 9-11-86 43.21 1674.37 40.87 10-16-86 43.74 1673.84 41.40 11-21-86 43.74 1673.84 41.40 1-13-87 43.41 1674.17 41.07 3-6-87 42.59 1674.99 40.25 4-21-87 42.26 1675.32 39.92 6-3-87 42.59 1674.99 40.25 5-11-88 45.01 1672.57 42.67 9-12-88 46.88 1670.70 44.54 1-4-89 47.31 1670.27 44.97 32 9-11-86 42.52 1675.27 40.07 10-16-86 42.03 1675.76 39.58 11-21-86 41.87 1675.92 39.42 1-13-87 41.18 1676.61 38.73 3-6-87 40.29 1677.50 37.84 4-21-87 40.00 1677.79 37.55 6-3-87 40.39 1677.40 37.94 5-11-88 43.18 1674.61 40.73 9-12-88 45.18 1672.61 42.73 1-4-89 45.65 1672.14 43.20 33 12-15-86 40.68 1677.23 38.25 1-13-87 40.72 1677.19 38.29					
1-4-89 52.40 1665.24 50.31 31 9-11-86 43.21 1674.37 40.87 10-16-86 43.74 1673.84 41.40 11-21-86 43.74 1673.84 41.40 1-13-87 43.41 1674.17 41.07 3-6-87 42.59 1674.99 40.25 4-21-87 42.26 1675.32 39.92 6-3-87 42.59 1674.99 40.25 5-11-88 45.01 1672.57 42.67 9-12-88 46.88 1670.70 44.54 1-4-89 47.31 1670.27 44.97 32 9-11-86 42.52 1675.27 40.07 10-16-86 42.03 1675.76 39.58 11-21-86 41.87 1675.92 39.42 1-13-87 41.18 1676.61 38.73 3-6-87 40.29 1677.50 37.84 4-21-87 40.00 1677.79 37.55 6-3-87 40.39 1677.40 37.94 5-11-88 43.18 1674.61 40.73 9-12-88 45.18 1672.61 42.73 1-4-89 45.65 1672.14 43.20 33 12-15-86 40.68 1677.23 38.25 1-13-87 40.72 1677.19 38.29					
31					49.88
10-16-86		1-4-89	52.40	1665.24	50.31
11-21-86	31	9-11-86	43.21	1674.37	40.87
1-13-87	080	10-16-86	43.74	1673.84	41.40
3-6-87 42.59 1674.99 40.25 4-21-87 42.26 1675.32 39.92 6-3-87 42.59 1674.99 40.25 5-11-88 45.01 1672.57 42.67 9-12-88 46.88 1670.70 44.54 1-4-89 47.31 1670.27 44.97 32 9-11-86 42.52 1675.27 40.07 10-16-86 42.03 1675.76 39.58 11-21-86 41.87 1675.92 39.42 1-13-87 41.18 1676.61 38.73 3-6-87 40.29 1677.50 37.84 4-21-87 40.00 1677.79 37.55 6-3-87 40.39 1677.40 37.94 5-11-88 43.18 1674.61 40.73 9-12-88 45.18 1672.61 42.73 1-4-89 45.65 1672.14 43.20 33 12-15-86 40.68 1677.23 38.25 1-13-87 40.72 1677.19 38.29		11-21-86		1673.84	41.40
4-21-87 42.26 1675.32 39.92 6-3-87 42.59 1674.99 40.25 5-11-88 45.01 1672.57 42.67 9-12-88 46.88 1670.70 44.54 1-4-89 47.31 1670.27 44.97 32 9-11-86 42.52 1675.27 40.07 10-16-86 42.03 1675.76 39.58 11-21-86 41.87 1675.92 39.42 1-13-87 41.18 1676.61 38.73 3-6-87 40.29 1677.50 37.84 4-21-87 40.00 1677.79 37.55 6-3-87 40.39 1677.40 37.94 5-11-88 43.18 1674.61 40.73 9-12-88 45.18 1672.61 42.73 1-4-89 45.65 1672.14 43.20 33 12-15-86 40.68 1677.23 38.25 1-13-87 40.72 1677.19 38.29		1-13-87	43.41	1674.17	41.07
6-3-87 42.59 1674.99 40.25 5-11-88 45.01 1672.57 42.67 9-12-88 46.88 1670.70 44.54 1-4-89 47.31 1670.27 44.97 32 9-11-86 42.52 1675.27 40.07 10-16-86 42.03 1675.76 39.58 11-21-86 41.87 1675.92 39.42 1-13-87 41.18 1676.61 38.73 3-6-87 40.29 1677.50 37.84 4-21-87 40.00 1677.79 37.55 6-3-87 40.39 1677.40 37.94 5-11-88 43.18 1674.61 40.73 9-12-88 45.18 1672.61 42.73 1-4-89 45.65 1672.14 43.20 33 12-15-86 40.68 1677.23 38.25 1-13-87 40.72 1677.19 38.29		3-6-87	42.59	1674.99	40.25
5-11-88 45.01 1672.57 42.67 9-12-88 46.88 1670.70 44.54 1-4-89 47.31 1670.27 44.97 32 9-11-86 42.52 1675.27 40.07 10-16-86 42.03 1675.76 39.58 11-21-86 41.87 1675.92 39.42 1-13-87 41.18 1676.61 38.73 3-6-87 40.29 1677.50 37.84 4-21-87 40.00 1677.79 37.55 6-3-87 40.39 1677.40 37.94 5-11-88 43.18 1674.61 40.73 9-12-88 45.18 1672.61 42.73 1-4-89 45.65 1672.14 43.20 33 12-15-86 40.68 1677.23 38.25 1-13-87 40.72 1677.19 38.29		4-21-87	42.26	1675.32	39.92
9-12-88		6-3-87	42.59	1674.99	40.25
1-4-89 47.31 1670.27 44.97 32 9-11-86 42.52 1675.27 40.07 10-16-86 42.03 1675.76 39.58 11-21-86 41.87 1675.92 39.42 1-13-87 41.18 1676.61 38.73 3-6-87 40.29 1677.50 37.84 4-21-87 40.00 1677.79 37.55 6-3-87 40.39 1677.40 37.94 5-11-88 43.18 1674.61 40.73 9-12-88 45.18 1672.61 42.73 1-4-89 45.65 1672.14 43.20 33 12-15-86 40.68 1677.23 38.25 1-13-87 40.72 1677.19 38.29		5-11-88	45.01	1672.57	42.67
32		9-12-88	46.88	1670.70	44.54
10-16-86 42.03 1675.76 39.58 11-21-86 41.87 1675.92 39.42 1-13-87 41.18 1676.61 38.73 3-6-87 40.29 1677.50 37.84 4-21-87 40.00 1677.79 37.55 6-3-87 40.39 1677.40 37.94 5-11-88 43.18 1674.61 40.73 9-12-88 45.18 1672.61 42.73 1-4-89 45.65 1672.14 43.20 33 12-15-86 40.68 1677.23 38.25 1-13-87 40.72 1677.19 38.29		1-4-89	47.31	1670.27	44.97
11-21-86 41.87 1675.92 39.42 1-13-87 41.18 1676.61 38.73 3-6-87 40.29 1677.50 37.84 4-21-87 40.00 1677.79 37.55 6-3-87 40.39 1677.40 37.94 5-11-88 43.18 1674.61 40.73 9-12-88 45.18 1672.61 42.73 1-4-89 45.65 1672.14 43.20 33 12-15-86 40.68 1677.23 38.25 1-13-87 40.72 1677.19 38.29	32	9-11-86	42.52	1675.27	40.07
1-13-87 41.18 1676.61 38.73 3-6-87 40.29 1677.50 37.84 4-21-87 40.00 1677.79 37.55 6-3-87 40.39 1677.40 37.94 5-11-88 43.18 1674.61 40.73 9-12-88 45.18 1672.61 42.73 1-4-89 45.65 1672.14 43.20 33 12-15-86 40.68 1677.23 38.25 1-13-87 40.72 1677.19 38.29		10-16-86	42.03	1675.76	39.58
3-6-87 40.29 1677.50 37.84 4-21-87 40.00 1677.79 37.55 6-3-87 40.39 1677.40 37.94 5-11-88 43.18 1674.61 40.73 9-12-88 45.18 1672.61 42.73 1-4-89 45.65 1672.14 43.20 33 12-15-86 40.68 1677.23 38.25 1-13-87 40.72 1677.19 38.29		11-21-86	41.87	1675.92	39.42
3-6-87 40.29 1677.50 37.84 4-21-87 40.00 1677.79 37.55 6-3-87 40.39 1677.40 37.94 5-11-88 43.18 1674.61 40.73 9-12-88 45.18 1672.61 42.73 1-4-89 45.65 1672.14 43.20 33 12-15-86 40.68 1677.23 38.25 1-13-87 40.72 1677.19 38.29		1-13-87	41.18	1676.61	38.73
6-3-87 40.39 1677.40 37.94 5-11-88 43.18 1674.61 40.73 9-12-88 45.18 1672.61 42.73 1-4-89 45.65 1672.14 43.20 33 12-15-86 40.68 1677.23 38.25 1-13-87 40.72 1677.19 38.29		3-6-87	40.29	1677.50	
6-3-87 40.39 1677.40 37.94 5-11-88 43.18 1674.61 40.73 9-12-88 45.18 1672.61 42.73 1-4-89 45.65 1672.14 43.20 33 12-15-86 40.68 1677.23 38.25 1-13-87 40.72 1677.19 38.29		4-21-87	40.00	1677.79	37.55
5-11-88 43.18 1674.61 40.73 9-12-88 45.18 1672.61 42.73 1-4-89 45.65 1672.14 43.20 33 12-15-86 40.68 1677.23 38.25 1-13-87 40.72 1677.19 38.29		6-3-87	40.39	1677.40	37.94
9-12-88 45.18 1672.61 42.73 1-4-89 45.65 1672.14 43.20 33 12-15-86 40.68 1677.23 38.25 1-13-87 40.72 1677.19 38.29		5-11-88	43.18	1674.61	40.73
1-4-89 45.65 1672.14 43.20 33 12-15-86 40.68 1677.23 38.25 1-13-87 40.72 1677.19 38.29		9-12-88		1672.61	
1-13-87 40.72 1677.19 38.29					
1-13-87 40.72 1677.19 38.29	33	12-15-86	40.68	1677.23	38.25
		1-13-87	40.72		
37.30		3-6-87	39.73	1678.18	37.30
4-21-87 39.01 1678.90 36.58		4-21-87			
6-3-87 39.54 1678.37 37.11		6-3-87			
5-11-88 42.06 1675.85 39.63		5-11-88			
9-12-88 43.57 1674.34 41.14		9-12-88			
1-4-89 44.03 1673.88 41.60		1-4-89			

WELL NO.	DATE	SWL-TOP	SWL-MSL	SWL-BLS
40	9-11-86	63.82	1646.33	61.69
-70	10-16-86	63.68	1646.47	61.55
	11-21-86	63.29	1646.86	61.16
	1-13-87	63.39	1646.76	61.26
	3-6-87	63.06	1647.09	60.93
	4-21-87	63.16	1646.99	7
		63.26		61.03
		63.36	1646.89	61.13
		63.72	1646.79	61.23
	1-4-89		1646.43	61.59
	1-4-69	63.89	1646.26	61.76
41	9-11-86	36.29	1673.78	34.25
	10-16-86	36.09	1673.98	34.05
	11-21-86	35.93	1674.14	33.89
	1-13-87	36.16	1673.91	34.12
	3-6-87	35.83	1674.24	33.79
	4-21-87	35.43	1674.64	33.39
	6-3-87	35.63	1674.44	33.59
	5-11-88	37.40	1672.67	35.36
		39.21	1670.86	37.17
	1-4-89	39.70	1670.37	37.66
42	9-11-86	33.30	1677.01	31.11
2	10-16-86	32.74	1677.57	30.55
	11-21-86	31.43	1678.88	29.24
	1-13-87	31.46	1678.85	29.27
	3-6-87	31.27	1679.04	29.08
	4-21-87	31.20	1679.11	
	6-3-87			29.01
	5-11-88	31.30	1679.01	29.11
		32.61	1677.70	30.42
	9-12-88	33.96	1676.35	31.77
	1-4-89	34.12	1676.19	31.93
45	12-15-86	28.71	1681.46	26.88
	1-13-87	28.58	1681.59	26.75
	3-6-87	28.48	1681.69	26.65
	4-21-87	28.58	1681.59	26.75
	6-3-87	28.71	1681.46	26.88
	5-11-88	29.89	1680.28	28.06
	9-12-88	30.84	1679.33	29.01
	1-4-89	30.97	1679.20	29.14

WELL				
NO	DATE	SWL-TOP	SWL-MSL	SWL-BLS
	-			
43	10-16-86	26.02	1685.01	23.91
	11-21-86	25.82	1685.21	23.71
	1-13-87	26.08	1684.95	23.97
	3-6-87	25.89	1685.14	23.78
	4-21-87	26.12	1684.91	24.01
	6-3-87	26.58	1684.45	24.47
	5-11-88	27.56	1683.47	25.45
	9-12-88	29.92	1681.11	27.81
	1-4-89	29.20	1681.83	27.09
4.4				
44				
	10-16-86	21.98	1689.42	19.67
	11-21-86	21.85	1689.55	19.54
	1-13-87	22.15	1689.25	19.84
	3-6-87	22.05	1689.35	19.74
	4-21-87	21.72	1689.68	19.41
	6-3-87	22.21	1689.19	19.90
	5-11-88	23.46	1687.94	21.15
	9-12-88	dry		
	1-4-89	24.87	1686.53	22.56

WELL				
NO.	DATE	SWL-TOP	SWL-MSL	SWL-BLS
···· ··· ··· ··· ··· ··· ··· ··· ··· ·			****	****
50	9-11-86	5.45	1671.56	3.02
	10-16-86	4.53	1672.48	2.10
	11-21-86	4.17	1672.84	1.74
	1-13-87	4.76	1672.25	2.33
	3-6-87	not taker	n .	
	4-21-87	3.74	1673.27	1.31
	6-3-87	4.33	1672.68	1.90
	5-11-88	5.41	1671.60	2.98
	9-12-88	7.87	1669.14	5.44
	1-4-89	7.97	1669.04	5.54
51	10-16-86	6.43	1670.27	4.20
	11-21-86	6.07	1670.63	3.84
	1-13-87	6.30	1670.40	4.07
	3-6-87	5.94	1670.76	3.71
	4-21-87	5.45	1671.25	3.22
	6-3-87	5.74	1670.96	3.51
	5-11-88	7.35	1669.35	5.12
	9-12-88	9.61	1667.09	7.38
	1-4-89	9.81	1666.89	7.58
52	10-16-86	4.43	1672.28	2.17
	11-21-86	4.07	1672.64	1.81
	1-13-87	4.56	1672.15	2.30
	3-6-87	3.81	1672.90	1.55
	4-21-87	3.61	1673.10	1.35
	6-3-87	4.20	1672.51	1.94
	5-11-88	4.99	1671.72	2.73
	9-12-88	7.81	1668.90	5.55
	1-4-89	7.89	1668.82	5.63

	WELL	DATE	CLUTOD	CIII MCI	CUIL DI C
-	NO.	DATE	SWL-TOP	SWL-MSL	SWL-BLS
	53	10-16-86	6.66	1681.51	4.20
		11-21-86	6.46	1681.71	4.00
		1-13-87	6.92	1681.25	4.46
		3-6-87	7.55	1680.62	5.09
		4-21-87	6.17	1682.00	3.71
		6-3-87	7.32	1680.85	4.86
		5-11-88	7.51	1680.66	5.05
		9-12-88	11.25	1676.92	8.79
		1-4-89	10.93	1677.24	8.47
	54	10-16-86	21.36	1666.74	18.97
		11-21-86	20.97	1667.13	18.58
		1-13-87	20.87	1667.23	18.48
		3-6-87	21.00	1667.10	18.61
		4-21-87	20.70	1667.40	18.31
		6-3-87	20.54	1667.56	18.15
		5-11-88	22.28	1665.82	19.89
		9-12-88	23.13	1664.97	20.74
		1-4-89	23.62	1664.48	21.23
	55	10-16-86	29.46	1666.64	27.22
		11-21-86	29.50	1666.60	27.26
		1-13-87	29.56	1666.54	27.32
		3-6-87	29.30	1666.80	27.06
		4-21-87	29.30	1666.80	27.06
		6-3-87	29.13	1666.97	26.89
		5-11-88	29.86	1666.24	27.62
		9-12-88	30.35	1665.75	28.11
		1-4-89	29.66	1666.44	27.42
	56	10-16-86	42.52	1653.90	39.96
		11-21-86	39.93	1656.49	37.37
		1-13-87	39.96	1656.46	37.40
		3-6-87	39.83	1656.59	37.27
		4-21-87	39.40	1657.02	36.84
		6-3-87	39.54	1656.88	36.98
		5-11-88	41.08	1655.34	38.52
		9-12-88	42.06	1654.36	39.50
		1-4-89	42.88	1653.54	40.32

	WELL NO.	DATE	SWL-TOP	SWL-MSL	SWL-BLS
**************************************	60	6-3-87	32.58 32.51 32.35 32.35 32.51 32.29 32.25 34.61 35.47 35.92	1683.84 1683.91 1684.07 1684.07 1683.91 1684.13 1684.17 1681.81 1680.95 1680.50	30.39 30.32 30.16 30.16 30.32 30.10 30.06 32.42 33.28 33.73
	61	1-13-87 3-6-87 4-21-87	32.32 34.65	1683.98 1684.15 1684.15 1683.98 1684.21 1684.21 1681.88 1681.06 1680.57	30.25 30.08 30.08 30.25 30.02 30.02 32.35 33.17 33.66
	62		32.74 32.55 32.51 32.71 32.48 32.48 34.81 dry dry	1683.93 1684.12 1684.16 1683.96 1684.19 1684.19 1681.86	30.39 30.20 30.16 30.36 30.13 30.13 32.46
	70	1-13-87 3-6-87 4-21-87 6-3-87 5-11-88	54.53 54.43	1680.65 1680.68 1681.11 1681.21 1681.27 1681.14 1681.24 1681.11 1680.85 1680.75	52.53 52.50 52.07 51.97 51.91 52.04 51.94 52.07 52.33 52.43

WELL				
 NO.	DATE	SWL-TOP	P SWL-MSL	SWL-BLS
WS1	9-4-86	25.00	1656.71	22.90
	10-16-86	25.13	1656.58	23.03
	11-21-86	25.56	1656.15	23.46
	1-13-87*	28.15	1655.52	24.09
	3-6-87		1656.90	22.71
	4-21-87		1658.70	20.91
	6-3-87		1658.31	21.30
	5-11-88		1654.67	24.94
	9-12-88		1653.35	26.26
	1-4-89		1653.81	25.80
	* = WELL			25.60
WS1A	9-4-86	dry		
	10-16-86	dry		
	11-21-86	dry		
	1-13-87	dry		*
	3-6-87	24.31	1657.92	21.18
	4-21-87	22.18	1660.05	19.05
	6-3-87	22.38	1659.85	19.25
	5-11-88	dry	1007.00	*/ · **
	9-12-88	dry		
	1-4-89	dry		
WS1B	9-4-86	25.33	1656.74	22.06
	10-16-86	25.53	1656.54	22.26
	11-21-86	26.08	1655.99	22.81
	1-13-87	27.07	1655.00	23.80
	3-6-87	24.35	1657.72	21.08
	4-21-87	21.82	1660.25	18.55
	6-3-87	22.77	1659.30	19.50
	5-11-88	28.22	1653.85	24.95
	9-12-88	30.18	1651.89	26.91
	1-4-89	29.92	1652.15	26.65
WS2	9-4-86	33.96	1664.68	31.32
	10-16-86	33.66	1664.98	31.02
	11-21-86	33.47	1665.17	30.83
	1-13-87	33.79	1664.85	31.15
	3-6-87	33.73	1664.91	31.09
	4-21-87	32.91	1665.73	30.27
	6-3-87	33.04	1665.60	30.40
	5-11-88	35.33	1663.31	32.69
	9-12-88	36.68	1661.96	34.04
	1-4-89	37.17	1661.47	34.53

WELL NO.	DATE	SWL-TOP	SWL-MSL	SWL-BLS
WS3	9-4-86	14.67	1646.33	11.67
	10-16-86	14.44	1646.56	11.44
	11-21-86	14.40	1646.60	11.40
	1-13-87	13.98	1647.02	10.98
	3-6-87	14.80	1646.20	11.80
	4-21-87	13.94	1647.06	10.94
	6-3-87	14.60	1646.40	11.60
	5-11-88	17.52	1643.48	14.52
	9-12-88	17.88	1643.12	14.88
	1-4-89	17.68	1643.32	14.68
WS3A	10-16-86	8.30	1652.51	5.19
	11-21-86	8.43	1652.38	5.32
	1-13-87	9.55	1651.26	6.44
	3-6-87	10.17	1650.64	7.06
	4-21-87	6.82	1653.99	3.71
	6-3-87	8.73	1652.08	5.62
	5-11-88	13.71	1647.10	10.60
	9-12-88	13.81	1647.00	10.70
	1-4-89	14.73	1646.08	11.62
WS4 -	9-4-86 10-16-86 11-21-86 1-13-87 3-6-87 4-21-87 6-3-87 5-11-88 9-12-88 1-4-89	19.62 19.52 19.42 18.83 19.16 19.00 19.39 21.46 21.95 21.23	1642.99 1643.09 1643.19 1643.45 1643.61 1643.22 1641.15 1640.66 1641.38	16.62 16.52 16.42 15.83 16.16 16.00 16.39 18.46 18.95 18.23
WS4A	9-4-86	17.29	1645.20	14.29
	10-16-86	17.16	1645.33	14.16
	11-21-86	17.13	1645.36	14.13
	1-13-87	17.39	1645.10	14.39
	3-6-87	17.62	1644.87	14.62
	4-21-87	15.81	1646.68	12.81
	6-3-87	16.93	1645.56	13.93
	5-11-88	19.36	1643.13	16.36
	9-12-88	20.11	1642.38	17.11
	1-4-89	19.75	1642.74	16.75
WS4B	9-4-86	17.39	1645.36	14.39
	10-16-86	17.23	1645.52	14.23
	11-21-86	17.16	1645.59	14.16
	1-13-87	17.42	1645.33	14.42
	3-6-87	17.65	1645.10	14.65
	4-21-87	15.81	1646.94	12.81
	6-3-87	17.06	1645.69	14.06
	5-11-88	19.55	1643.20	16.55
	9-12-88	20.28	1642.47	17.28
	1-4-89	19.92	1642.83	16.92

EXHIBIT 5-H

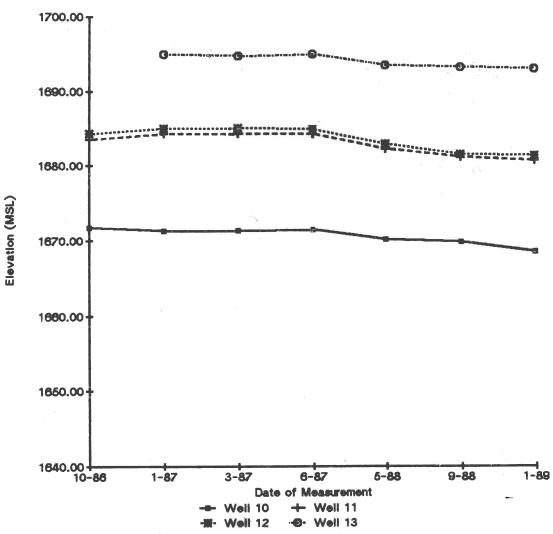
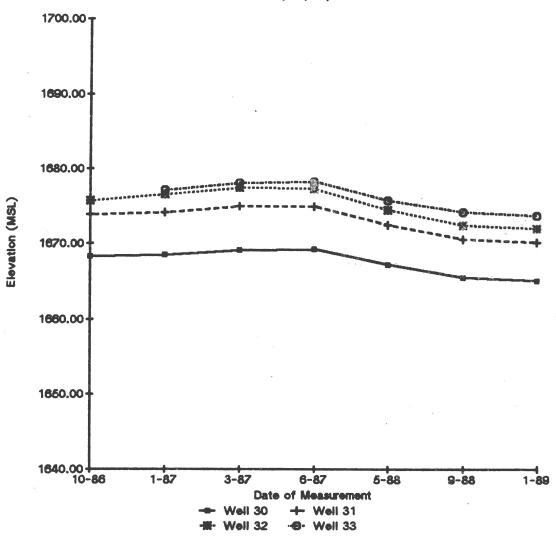
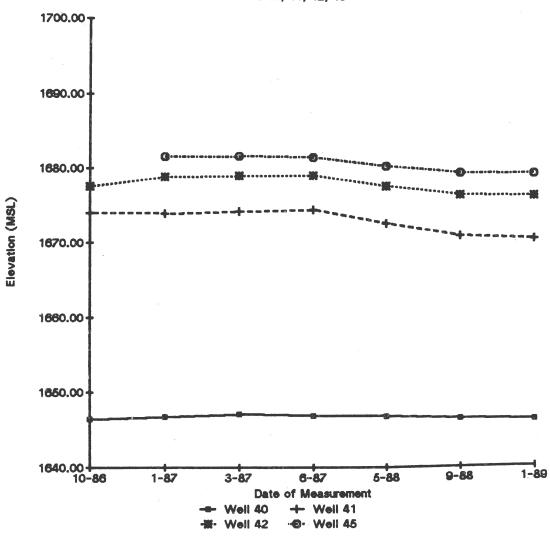

WATER TABLE ELEVATION CONTOUR MAP

EXHIBIT 5-I

SITE HYDROGRAPHS


HYDROGRAPH

Wells 10, 11, 12, 13


HYDROGRAPH

Wells 30, 31, 32, 33

HYDROGRAPH

Wells 40, 41, 42, 45

HYDROGRAPH

Wells 50, 51, 52

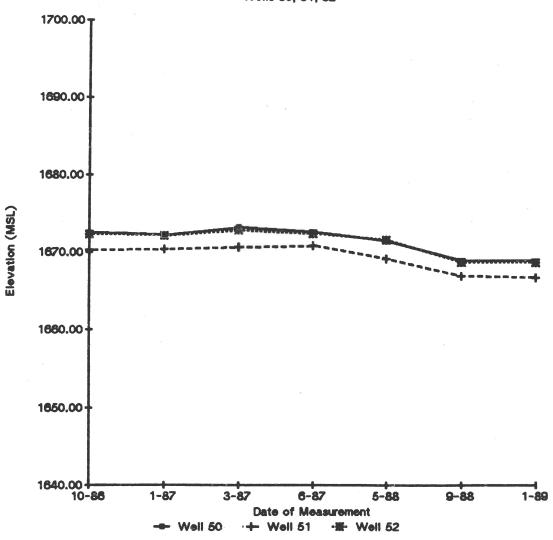


EXHIBIT 5-J

GROUNDWATER CHEMICAL ANALYSIS

Recommended

Constituent	Concentration Limit ¹
Total Dissolved Solids Sulfate (SO ₂) Chloride (Cf) Nitrate (NO ₃) Iron (Fe) Manganese (Mn) Copper (Cu) Zinc (Zn) Boron (B) Hydrogen Sulfide (H ₂ S)	(mg/L) 500 (mg/L) 250 (mg/L) 250 (mg/L) 45 (mg/L) 0.3 (mg/L) 0.05 (mg/L) 1.0 (mg/L) 1.0 (mg/L) 0.05
	Maximum Permissible Concentration ²
Arsenic (As) Antimony (Sb) Barium (Ba) Cadmium (Cd) Chromium (Cr) Lead (Pb) Mercury (Hg) Selenium (Se) Silver (Ag) Fluoride (F)	(mg/L) 0.05 (mg/L) 0.01 (mg/L) 1.0 (mg/L) 0.01 (mg/L) 0.05 (mg/L) 0.050 (mg/L) 0.002 (mg/L) 0.01 (mg/L) 0.050 (mg/L) 1.4-2.41
Organics: Cyanide Phenol Synthetic Detergents	(mg/L) 0.05 (mg/L) 0.001 (mg/L) 0.5

Recommended concentration limits for these constituents are mainly to provide esthetic and taste characteristics.

 $^{^{2}}$ Maximum permissible limits are set according to health criteria.

³Limit depends on average air temperature of the region; fluoride is toxic at about 5-10 mg/L if water is consumed over a long period of time.

Parameter		Well 10	Well 12	Well 30
Sample Collection Date Water Level Elevation; Screen Center Field Water Temp Field pH (standard Field Sp.Cond. (uml Total Dissolved Solids Total Alkalinity as CaCO ₃ Bicarbonate (HCO ₃) Boron (B) Calcium (Ca) Chloride (Cl) Fluoride (F) Iron (Fe) Potassium (K) Magnesium (Mg) Nitrate (NO ₃) Sodium (Na) Sulfate (SO ₄)	nos/cm) (mg/L)	9-11-86 51.6 1606.0 8.0 7.6 7370.0 9736.0 674.0 825.0 339.0 20.8 0.3 <.2 16.0 302.0 <1 2232.0 6443.0	9-11-86 42.4 1653.5 8.4 7.2 8070.0 10396.0 645.0 789.0 422.0 20.7 <.2 0.6 13.0 318.0 <1 2438.0 6818.0	9-11-86 49.4 1597.6 8.0 8.1 1350.0 1286.0 425.0 520.0 33.0 2.1 0.4 <.2 5.8 34.0 <1 352.0 606.0
TRACE ELEMENTS: Arsenic (Ar) Barium (Ba) Cadmium (Cd) Chromium (Cr) Lead (Pb) Manganese (Mn) Mercury (Hg) Molybdenum (Mo) Selenium (Se) Silver (Ag) 1 From top of PCV casing. TDS is calculated.	(mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L)	<.002 0.090 0.0020 <.002 <.002 0.986 <.0003 0.018 <.002 <.001	.0025 0.157 0.0012 <.002 <.002 2.130 <.0003 <.010 <.002 <.001	<.002 0.030 <.001 <.002 <.002 <.003 <.010 <.002 <.001

Parameter		Well	32	Well	40	Well	42
Sample Collection Date Water Level Elevation; Screen Center Field Water Temp Field pH (standard Field Sp.Cond. (um Total Dissolved Solids Total Alkalinity as CaCO ₃ Bicarbonate (HCO ₃) Boron (B) Calcium (Ca) Chloride (Cl) Fluoride (F) Iron (Fe) Potassium (K) Magnesium (Mg) Nitrate (NO ₃) Sodium (Na) Sulfate (SO ₄)	hos/cm) (mg/L)	6 3150 3927 467 571 313 10 0 <14 318	.5 .7 .3 .9 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	1594 4290 5333 565 691 422	3.8 3.6 7.5 0.0 3.0 5.0 1.0 2.0 5.2 2.0 5.0 4.7	370 465 42 51 43 4 1 25	3.3 2.6 5.0 0.0 8.0 9.0 2.0 8.3 0.0 3.0 0.3 8.0
TRACE ELEMENTS: Arsenic (Ar) Barium (Ba) Cadmium (Cd) Chromium (Cr) Lead (Pb) Manganese (Mn) Mercury (Hg) Molybdenum (Mo) Selenium (Se) Silver (Ag) 1 From top of PCV casing. TDS is calculated.	(mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L)	<.00 0.00 <.00 <.00 0.40 <.00 <.00 <.00	93 01 02 02 62 03 14	<.00 <.00 <.00 <.00 <.00 <.00	083 001 002 002 037 003 010	0. <.(<.(0.(<.0(<.0(002 198 001 002 002 670 003 010 032 001

Parameter		Well 44	Well 50	Well 50
Sample Collection Date Water Level Elevation; Screen Center Field Water Temp Field pH (standard Field Sp.Cond. (umbard) Total Dissolved Solids Total Alkalinity as CaCO ₃ Bicarbonate (HCO ₃) Boron (B)	nos/cm) (mg/L)	11-21-86 21.85 1687.9 6.5 6.76 7580.0 11240.0 401.0 491.0	9-11-86 5.5 1657.5 9.7 7.5 4310.0 4999.0 418.0 511.0	11-21-86 4.17 1657.5 8.5 7.37 3620.0 5196.0 416.0 509.2
Calcium (Ca) Chloride (Cl) Fluoride (F) Iron (Fe) Potassium (K) Magnesium (Mg) Nitrate (NO ₃) Sodium (Na) Sulfate (SO ₄)	(mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L)	648.0 558.0 0.5 <0.2 51.0 1322.0 30.0 1589.0 7390.0	313.0 34.8 0.3 <.2 12.0 250.0 23.5 871.0 3302.0	391.0 33.0 <0.2 <0.2 13.0 257.0 112.0 902.0 3384.0
TRACE ELEMENTS: Arsenic (Ar) Barium (Ba) Cadmium (Cd) Chromium (Cr) Lead (Pb) Manganese (Mn) Mercury (Hg) Molybdenum (Mo) Selenium (Se) Silver (Ag) Phenol Oil & Grease	(mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L)	<.002 0.156 <.001 <0.001 <.005 0.218 <.0003 <.010 0.086 <.002 <1.0 <3.0	<.002 0.084 <.001 <.002 <.002 0.010 <.0003 <.010 0.055 <.001 <1.0 <3.0	<.002 0.128 <.001 0.003 <.005 0.005 <.0003 <.010 0.076 <.002 <1.0 <3.0

 $^{^{1}}_{2}$ From top of PCV casing. TDS is calculated.

Parameter		Well 52	Well 54	Well 55
Total Dissolved Solids' Total Alkalinity as CaCO ₃ Bicarbonate (HCO ₃)	(ft) (ft) (oC) units) nos/cm) (mg/L) (mg/L) (mg/L)	1-21-86 4.07 1663.0 8.7 7.38 4650.0 6072.0 424.0 519.0	11-21-86 20.97 1635.1 6.9 8.03 4570.0 7223.0 616.0 754.0	11-21-86 29.50 1648.9 7.5 6.81 9007.0 13081.0 528.0 646.3
Boron (B) Calcium (Ca) Chloride (C1) Fluoride (F) Iron (Fe) Potassium (K) Magnesium (Mg) Nitrate (NO ₃) Sodium (Na) Sulfate (SO ₄)	(mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L)	392.0 45.0 <0.2 <0.2 15.0 305.0 148.0 1115.0 3991.0	295.0 92.0 0.3 <0.2 13.0 439.0 6.0 1490.0 4617.0	445.0 81.0 0.7 <0.2 28.0 862.0 154.0 2423.0 9007.0
TRACE ELEMENTS: Arsenic (Ar) Barium (Ba) Cadmium (Cd) Chromium (Cr) Lead (Pb) Manganese (Mn) Mercury (Hg) Molybdenum (Mo) Selenium (Se) Silver (Ag) Phenol Oil & Grease	(mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L)	<.002 0.125 <.001 0.003 <.005 0.004 <.0003 <.010 0.088 <.002	<.002 0.105 <.001 0.003 <.005 1.080 <.0003 0.041 0.025 <.002 <1.0 <3.0	<.002 0.133 <.001 0.003 <.005 0.045 <.0003 <.010 0.386 <.002

 $^{^{1}}_{2}$ From top of PCV casing. TDS is calculated.

Parameter		Well 60	Well 70
Sample Collection Date Water Level Elevation; Screen Center Field Water Temp Field pH (standard Field Sp.Cond. (umb Total Dissolved Solids Total Alkalinity as CaCO ₃ Bicarbonate (HCO ₃) Boron (B)	(ft) (ft) (OC) units) nos/cm) (mg/L) (mg/L) (mg/L) (mg/L)	11-21-86 32.35 1677.0 7.6 6.83 10440.0 14917.0 540.0 661.0	9-11-86 55.0 1636.4 8.6 8.3 10370.0 13129.0 491.0 600.0
Calcium (Ca) Chloride (Cl) Fluoride (F) Iron (Fe) Potassium (K) Magnesium (Mg) Nitrate (NO ₃) Sodium (Na) Sulfate (SO ₄)	(mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L)	417.0 208.0 0.5 <0.2 41.0 1355.0 170.0 1148.0 11632.0	192.0 10.9 0.3 <.2 22.0 121.0 <1 3682.0 8818.0
TRACE ELEMENTS: Arsenic (Ar) Barium (Ba) Cadmium (Cd) Chromium (Cr) Lead (Pb) Manganese (Mn) Mercury (Hg) Molybdenum (Mo) Selenium (Se) Silver (Ag) Phenol Oil & Grease	(mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L)	<.002 0.151 <.001 0.004 <.005 0.033 <.0003 <.010 0.195 <.002 <1.0 <3.0	.0032 0.080 0.0010 <.002 <.002 0.110 <.0003 0.017 <.002 <.001

 $^{^{1}}_{2}\mathrm{From}$ top of PCV casing. TDS is calculated.

GENERAL 1. AMATION)	
Sample Location/I.D.	45	52	09	33	13	70
Casing Diameter	2" PVC	2" PVC	2" PVC	2" PVC	2" PVC	2" PVC
Total Well Depth	2 .07	17' ?	48' ?	38. 2	2.07	100' 2
Past Static Water Level	30.6	7.7'	35.8	36.8'	31.9'	54.85
Approximate Volume of Water	1.5 gal	1.5 gal	2 gal	.25 gal	1.5 gal	7.5 gal
STATIC LEVEL MEASUREMENT						
Date	12/19/88	12/19/88	12/19/88	12/19/88	12/19/88	12/19/88
Time	14:20	14:45	15:00	15:25	16:00	16.35
Datum	PVC Top	PVC Top	PVC Top	PVC Top	PVC Ton	PVC Top
Measurement Equipment	SteelTap	e SteelTape	SteelTape	SteelTabe	SteelTabe	SteelTane
Static Water Level	30.0	30.60 7.65 35.80 36.80 31.92	5 35.8	0 36.8	0 31.9	2 54.85
PRE-SAMPLING PREPARATION						

Pre-Sample Technique/Equip.

Volume Removed

SAMPLING

Date

Time

12/20/88 12/20/88 12/20/88 12/21/88 12/21/88	16:22	SteelTape SteelTape SteelTape SteelTape SteelTape	35 54.90	PVCbailer PVCbailer PVCbailer PVCbailer PVCbailer	7
12/21/88	15:50	SteelTape	2 31.85	PVCbailer	7
12/20/88	12:00	SteelTape	36.92	PVCbailer	
12/20/88	11:25	SteelTape	35.86	PVCbailer	
12/20/88	10:45	SteelTape	5 7.95	PVCbailer	9
12/20/88	10:15	SteelTape	31.05	PVCbailer	

	5.60 5.90	
2	5.50	1400
2	5.80	7200
9	5.60	3800

5.90	1190	liters	125ml	125ml	125ml	
5.60	2900	2	2	1	1	
5.50	1400	liters		125ml	125ml	
		8	7	-	-	
5.80	7200	liters	125ml	125ml	125ml	
		8	~	-	-	
5.60	3800	liters	125ml	125ml	125ml	
		2	8	-	-	

6.40

2 liters 2 125ml 1 125ml 1 125ml

Unfiltered/Sulferic Acid	Filtered/Nitric Acid	Other (unfilter/untreat)

Sampling Technique/Equip.

Field Temperature (C)

Field Conductivity

Field pH

Samples Collected Raw-Unfiltered

Measurement Equipment

Static Water Level

DELIVERY

4:30 - 10:30

12/20/88 - 12/22/88

Minnesota Valley Testing Laboratories, Inc.

Cooler with Ice Hand Delivered

COMMENTS

Delivery Container

Delivered To

Time

Date

* Well 33 had insufficient water for any samples - field parameters taken Well 45 - samples were dirty

MINNESOTA VALLEY TESTING LABORATORIES, $\mathcal{G}_{nc.}$

1411 SOUTH 12TH STREET • P.O. BOX 1873 BISMARCK, NORTH DAKOTA 58502-1873 WATER ANALYSIS REPORT

Montana-Dakota Utilities 400 North Fourth Bismarck, ND 58501

Date: January 27, 1989

W.O. #: 82-045

Attention: John Verwey

Lab. #: M- 156

Sample Identification:

MDU - Heskett #13 15:50 CST **P.O.** #: M04548

12/20/88

Date Received: 12/22/88

PHYSICAL PARAMETERS:		NUTRIENTS:		
Color units of apparent color		-	· · · · · · · · · · · · · · · mg/l	
Conductivity micromhos/cm @ 25 °C		Nitrite-Nitrogen as N	1	
pH	7.2	Nitrate-Nitrogen as	Nmg/l	25.8
Solids (Total)mg/l		Organic-Nitrogen	mg/l	
Solids (Total Dissolved) mg/l	11967	Total - Kieldahl Nitro	ogenmg/l	
Solids (Total Suspended) mg/l		Ortho-phosphate as	P mg/l	
Solids (Total Volatile)mg/l		Phosphorus (Total)	as P mg/l	
Turbidity — NTU		Phosphorus (Dissolv	/ed) as P mg/l	
COMMON IONS:		METALS:	rea, as in a sure sure sure sure sure sure sure sure	
Calciummg/l	366.0		mg/l .	
Magnesiummg/l	642.0	Iron (Total)	mg/l	
Sodium mg/l	1965.0	Manganese (Total)	mg/l	
Potassiummg/l		MISCELLANEOUS:	· · · · · · · · · · · · · · · · · · ·	
Acidity as CaCO ₃ mg/l				
Alkalinity (Total) as CaCO ₃ mg/l	600	Biochemical Oxyger	Demand mg/l	
Biçarbonate as CaCO ₃ mg/l	600	Chemical Oxygen D	emandmg/l	
Bicarbonate as HCO ₃ mg/l		Cvanide	mg/l	
Carbonate as CaCO ₃ mg/l	0	Fecal Coliform Cour	nt — Millipore	
P-Alkalinity as CaCO ₃ mg/l		filter/100 ml		
Sulfatemg/l				0.62
Chloridemg/l	327.6	Iron Bacteria	· · · · · · · · · · · · · · · · · · ·	
		Oil & Grease		
Total Hardness as CaCO ₃ mg/l	3556	Phenois	mg/l _	
Sodium Adsorption Ratio		Total Organic Carbo	onmg/l _	
Cations		Total Plate Count ne	er 100ml	
Anions		rotar riate dount pe	7 1001111 x x x x x x x x x x x x x x x x	
% Error				
TRACE ELEMENTS:				
Aluminum mg/l Co	obalt	. g sg g mg/l	Silver	ma// 0.034
Antimonymg/l Co	opper	mg/l	Strontium	
		mg/l0.11	Thallium	
			Thorium	
		mg/l <0.05	Tin	mg/l
		mg/l = 0.0011	Titanium	
		$mg/l = \frac{1}{40.100}$	Vanadium	
_		mg/l	Zinc	
		mg/l <0.002		mg/l
	reported as dissolve	ed. unless otherwise ind	icated ******	
		.c. acoo oarerwise illu	oateu.	

FIELD DATA:

Pathenin ama Phelps

MINNESOTA VALLEY TESTING LABORATORIES, Inc.

1411 SOUTH 12TH STREET • P.O. BOX 1873 BISMARCK, NORTH DAKOTA 58502-1873 WATER ANALYSIS REPORT

Montana-Dakota Utilities 400 North Fourth Bismarck, ND 58501

Date: January 24, 1989

W.O. #: 82-041

Attention: John Verwey

Lab. #: M- 145

Sample Identification:

MDU - Heskett #45 10:15 CST P.O. #: M04548

12-20-88

Date Received: 12-21-88

Color		NUTRIENTS:		
Color units of apparent color _			mg/l	
Conductivity micromhos/cm @ 25°C _	3937	Nitrite-Nitrogen as I	N mg/l	
pH	7.5	Nitrate-Nitrogen as	N mg/l	4.6
Solids (Total)mg/l _		Organic-Nitrogen	mg/l	
Solids (Total Dissolved)mg/l _	3611	Total - Kieldahl Nitr	ogenmg/l	
Solids (Total Suspended)mg/l _	54	Ortho-phosphate as	s P mg/l	
Solids (Total Volatile) mg/l _		Phosphorus (Total)	as Pmg/l	
Turbidity — NTU		Phosphorus (Dissol	ved) as P mg/l	
COMMON IONS:		METALS:	199) 40 1	
Calciummg/l _	465.0		mg/l	
Magnesiummg/l _	171 0	Iron (Total)	mg/l	
Sodium	247 0	Manganese (Total)	mg/l	
Potassiummg/l _	11.7	MISCELLANEOUS:	es	
Acidity as CaCO ₃ mg/l				
Alkalinity (Total) as CaCO ₃ mg/l		Biochemical Oxyge	n Demand mg/l	
Bicarbonate as CaCO ₃ mg/l	340	Chemical Oxygen [Demand mg/l	
Bicarbonate as HCO ₃ mg/l		Cvanide	mg/l	
Carbonate as CaCO ₃ mg/l	0	Fecal Coliform Cou	nt — Millinore	
P-Alkalinity as CaCO ₃ mg/l			188 seesee	
Sulfatemg/l	1840.0	Fluoride	mg/l	0.20
Chloride mg/l	124.1	Iron Bacteria	**************************************	
•		Oil & Grease	mg/l	
Total Hardness as CaCO3mg/l	1865	Phenois	**************************************	
Sodium Adsorption Ratio		Total Organic Carbo	on mg/l	
Cations	48.5	Total Plate Count p	er 100ml	
Anions	49.0			
% Error	0.5	W.		*
TRACE ELEMENTS:				
Aluminummg/lCoba	alt was a same o	mg/l	Silver	mg/l 0.019
	oera a a a a a a a a a a a a a a a a a		Strontium	
			Thallium	.mg/l
		9	Thorium	mg/l
	ganese		Tin	.mg/l
<u>.</u>		mg/l = 0.0008	_	.mg/l
		mg/l <u><0.10</u>	Vanadium	
Cadmium	91	ma/i	ZIDC	mail
_	el		Zinc *CEP	_k mg/l

FIELD DATA:

Flow 6.0° C 3800 E. C. 5.6 05 Static Water Level

*Analysis completed by Controls for Environmental

Pollution; Santa Fe. New Mexico

MINNESOTA VALLEY TESTING LABORATORIES, $\mathcal{I}_{nc.}$

1411 SOUTH 12TH STREET • P.O. BOX 1873 BISMARCK, NORTH DAKOTA 58502-1873 WATER ANALYSIS REPORT

•	Mon	tana-D	akota	Utilities
	400	North	Four	th
	Bisr	marck,	ND	58501

Date: January 24, 1989

W.O. #:

w.o. #: 82-041

Attention: John Verwey

Lab. #: M- 146

Sample Identification:

MDU - Heskett #52 10:45 CST

P.O. #: M04548

12-20-88

Date Received: 12-21-88

PHYSICAL PARAMETERS:		NUTRIENTS:		
Color units of apparent colo	or		mg/l	
Conductivity micromhos/cm @ 25°	C _7300	Nitrite-Nitrogen as 1	N mg/l	
pH	7.6	Nitrate-Nitrogen as	N mg/l	27.8
Solids (Total)mg	//		· · · · · · · · · · · · · · · · · · ·	
Solids (Total Dissolved)mg	6724	Total - Kieldahl Nitr	ogenmg/l	
Solids (Total Suspended) mg	/	Ortho-phosphate as	P mg/l	
Solids (Total Volatile)mg	/	Phosphorus (Total)	as Pmg/l	
Turbidity — NTU		Phosphorus (Dissolv	ved) as P mg/l	
COMMON IONS:		METALS:	ved) as r	
Calciummg	/ 421.0		mg/l .	
Magnesiummg		Iron (Total)	mg/l	
Sodiummg	//1060_0	Manganese (Total)		
Potassiummg	/ 14 3	MISCELLANEOUS:		
Acidity as CaCO ₃ mg	//		~ //	
Alkalinity (Total) as CaCO ₃ mg	438	Biochemical Ovygo	n Demand mg/l	
Bicarbonate as CaCO ₃ mg	/ 438	Chemical Oxygen F	emand mg/l .	
Bicarbonate as HCO ₃ mg.	//	Cyanida Cyanida	emanu mg/l .	
Carbonate as CaCO ₃ mg.	0	Fecal Coliform Cour	Millings	
P-Alkalinity as CaCO ₃ mg	/		it — Millipore	
Sulfatemg				
Chloride			· · · · · · · · · · · · · · · · · · ·	
		Oil & Grosso		
Total Hardness as CaCO ₃ amg/	2224	Phonois		
Sodium Adsorption Ratio		Total Organic Carbo		
Cations		Total Plate Count of	on mg/l	
Anions .		Total Flate Count pe	er 100ml	
% Error				
TRACE ELEMENTS:				
Aluminumaaaaaaamg/l	Cobalt	mg/l	Silver	mg/l 0.02
A	Copper		_	mg/l
	Iron			mg/l
_	Lead	9		mg/l
	Manganese			mg/l
_	Mercury			mg/l
_	Molybdenum	9	Vanadium	
	Nickel		Zinc	
	Selenium	mg/l = 0.005	*CEP	111Y/1
	e reported as dissolv	ed. unless otherwise ind	licated ******	
		ea, arriess ourerwise inc	icaicu.	

FIELD DATA:

Static Water Level 7 95

*Analysis completed by Controls for Environmental Pollution; Santa Ee. New Mexico

Josephin Ome Blogs

MINNESOTA VALLEY TESTING LABORATORIES, $\mathcal{G}_{nc.}$

1411 SOUTH 12TH STREET • P.O. BOX 1873 BISMARCK, NORTH DAKOTA 58502-1873 PORT

WA	IER	ANALYSIS	REPORT		
		Date:	January	24,	1989

*	Mon	tana-D	akota	Utilities
	400	North	Four	th
	Bisr	narck.	ND	58501

w.o. #: 82-041

Attention: John Verwey

M- 147 Lab. #:

Sample Identification: MDU - Heskett M04548 P.O. #:

60 11:25 CST

12-20-88 **Date Received:**

12-21-88

PHYSICAL PARAMETERS:		NUTRIENTS:	
Color units of apparent color		Ammonia-Nitrogen	ma/l
Conductivity micromhos/cm @ 25°C	15,166	Nitrite-Nitrogen as N	ma/l
pH	7.0	Nitrate-Nitrogen as N	mg/l 19.4
Solids (Total) mg/l		Organic-Nitrogen	mg/l
Solids (Total Dissolved) mg/l	17,634**	Total - Kjeldahl Nitrogen	mg/l
Solids (Total Suspended) mg/l		Ortho-phosphate as P	mg/l
Solids (Total Volatile) mg/l		Phosphorus (Total) as P	mg/l
Turbidity — NTU		Phosphorus (Dissolved) as P.	mg/l
COMMON IONS:		METALS:	
Calcium mg/l	415.0	Copper (Total)	ma/l
Magnesiummg/l	1,340.0	Iron (Total)	mg/l
Sodium mg/l	2,245.0	Manganese (Total)	mg/l
Potassiummg/l		MISCELLANEOUS:	
Acidity as CaCO ₃ mg/l		ADA	Q/I
Alkalinity (Total) as CaCO ₃ mg/l	524	Biochemical Oxygen Demand.	mg/l
Biçarbonate as CaCO ₃ mg/l	524	Chemical Oxygen Demand	mg/l
Bicarbonate as HCO ₃ mg/l		Cyanide	
Carbonate as CaCO ₃ mg/l	0	Fecal Coliform Count — Millipore	
P-Alkalinity as CaCO ₃ mg/l		filter/100 ml	
Sulfatemg/l		Fluoride	mg/l 0.64
Chloride mg/l	273.0	Iron Bacteria	
		Oil & Grease	ma/l
Total Hardness as CaCO ₃ mg/l	6,552	Phenols	mg/l
Sodium Adsorption Ratio		Total Organic Carbon	
Cations	230.4	Total Plate Count per 100ml	
Anions	244.2		
% Error	2.9 *	*High TDS due to hygroso	copic nature of
TRACE ELEMENTS:		cations and anions.	-
Aluminum mg/l C	obalt	mg/l Silver	mg/l <u>0.04</u>
			mg/l
	on	0 00	mg/l
		10 00	mg/l
			mg/l
Boron mg/l <u>1.800</u> M			mg/l
Bromide mg/l M	lolybdenum	mg/l <0.10 Vanadium	mg/l
Cadmium mg/l<0.001* N	ickel		mg/l
Chromium	elenium	ma/l < 0.002	
****** Metals are	reported as dissolve	d. unless otherwise indicated. ******	*

CHE	51 F	١п	1 / 1	ГА:
1.15				. A.

Flow 1400 E. C. pH Static Water Level

*Analysis completed by Controls for Environmental

Pollution; Santa Fe, New Mexico

Catherine A. Phelps, Chemist

MINNESOTA VALLEY TESTING LABORATORIES, $\mathcal{G}_{nc.}$

1411 SOUTH 12TH STREET • P.O. BOX 1873 BISMARCK, NORTH DAKOTA 58502-1873 WATER ANALYSIS REPORT

Montana-Dakota Utilities 400 North Fourth Bismarck, ND 58501

Date: January 27, 1989

W.O. #: 82-045

Attention:

John Verwey

Lab. #:

M- 157

Sample Identification:

MDU - Heskett #70 16:22 CST P.O. #: M04548

12/20/88

Date Received: 12/22/88

PHYSICAL PARAMETERS:	NUTRIENTS:
Color units of apparent color	Ammonia-Nitrogen mg/l
Conductivity micromhos/cm @ 25 ℃ 14841	Nitrite-Nitrogen as N mg/l
pH <u>8.0</u>	Nitrate-Nitrogen as Nmg/l
Solids (Total) mg/l	Organic-Nitrogen mg/l
Solids (Total Dissolved)	Total - Kjeldahl Nitrogen mg/l
Solids (Total Suspended) mg/l	Ortho-phosphate as P mg/l
Solids (Total Volatile) mg/l	Phosphorus (Total) as Pmg/l
Turbidity — NTU	Phosphorus (Dissolved) as P: mg/l
COMMON IONS:	METALS:
Calcium mg/l212.5	Copper (Total) mg/l
Magnesiummg/l 117.0	Iron (Total)
Sodium mg/l 3880.0	Manganese (Total)
Potassiummg/l 26.5	MISCELLANEOUS:
Acidity as CaCO ₃ mg/l	ADAg/l
Alkalinity (Total) as CaCO ₃ mg/l 510	Biochemical Oxygen Demand mg/l
Biçarbonate as CaCO ₃ mg/l510	Chemical Oxygen Demand mg/l
Bicarbonate as HCO ₃ mg/l	Cyanide
Carbonate as CaCO ₃ mg/l	Fecal Coliform Count — Millipore
P-Alkalinity as CaCO ₃ mg/l	filter/100 ml
Sulfatemg/l <u>8334.9</u>	Fluoride mg/l0.27
Chloride mg/l 19.9	Iron Bacteria
	Oil & Greasemg/l
Total Hardness as CaCO ₃ mg/l 1012	Phenois mg/l
Sodium Adsorption Ratio	Total Organic Carbon mg/l
Cations	Total Plate Count per 100ml
Anions	
% Error	_
TRACE ELEMENTS:	
Aluminum mg/l Cobalt	Silvermg/l Silvermg/l0.030
	mg/l Thalliummg/l
Bariummg/l <0.100 Lead	
	mg/l Tinmg/l
_	mg/l mg/l mg/l
	mg/l <0.100 Vanadium mg/l
40.000	mg/l Zincmg/l
Chromium mg/l <0.050 Selenium	
	solved, unless otherwise indicated. *******
	ACTOR, GINESS OTHERWISE INCIDATED.
FIELD DATA: Flow T° C 6.0°C	

Jatherin anno Phelps

Catherine A. Phelps, Chemist

EXHIBIT 5-K

HYDRAULIC CONDUCTIVITIES, CATION EXCHANGE CAPACITIES,

AND PARTICLE SIZE ANALYSES

(WELLS 60, WS1, WS2, WS3, AND WS4)

PROJECT:

LABORATORY TEST RESULTS
PROPOSED ASH PIT HESKETT STATION
MANDAN, NORTH DAKOTA

Montana-Dakota Utilities

REPORTED TO: Attn: John Verwey
400 North 4th Street

400 North 4th Street Bismarck, ND 58501

3100 EAST BROADWAY P.O. BOX 1114 BISMARCK, ND 58502 PHONE 701/223-6149

DATE: September 18, 1986

FURNISHED BY:

COPIES TO:

LABORATORY No. 5200-86-454

INTRODUCTION

A sample of fat clay was submitted to Twin City Testing Corporation on August 14, 1986. We were authorized by you to perform an Atterberg limit test, standard proctor test and permeability test. We are transmitting two (2) copies of this report.

RESULTS

The test results can be found on the attached drafts. The permeability test was performed with the falling head method on a sample remolded to 14.5% of the maximum dry density at a moisture content of 32.4%, or 0.1% above the optimum moisture content. The maximum dry density and optimum moisture content were determined in accordance with ASTM:D698.

The test results indicate that the coeficient of permeability is 2.0×10^{-7} centimeters per second on the remolded sample.

CLOSURE

If you desire to test the coeficient of permeability at a higher remolded compaction level and/or higher moisture content, please contact us. Also contact us if you have any questions in regards to this report or if we can be of further service to you.

AS A MUTUAL PROTECTION TO CLIENTS, THE PUBLIC AND OURSELVES, ALL REPORTS ARE SUBMITTED AS THE CONFIDENTIAL PROPERTY OF CLIENTS, AND AUTHORIZATION FOR PUBLICATION OF STATEMENTS, CONCLUSIONS OR EXTRACTS FROM OR REGARDING OUR REPORTS IS RESERVED PENDING OUR WRITTEN APPROVAL.

Twin City Testing Corporation

By Jel Zel Amgu

MOISTURE - DENSITY CURVE

SAMPLE NO. 1 - Hole 60, 20'-40

PROJECT:

PROPOSED ASH PIT HESKETT STATION

MANDAN, NORTH DAKOTA

DATE: August 21, 1986

REPORTED TO:

Montana-Dakota Utilities Company

COPIES TO:

LABORATORY NO

Attn: John Verwey 5200-86-454

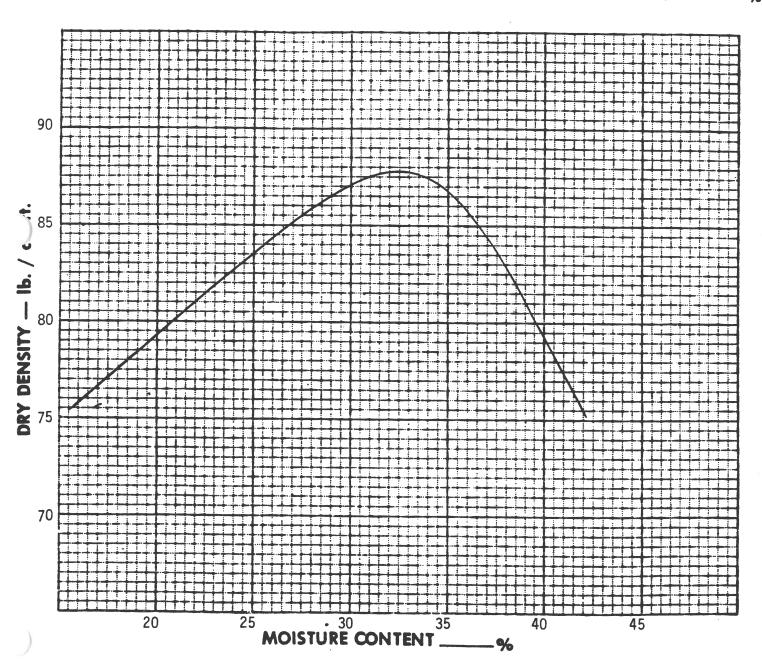
*LIQUID LIMIT: 59.4

*PLASTIC LIMIT: 23.9

METHOD OF TEST:

ASTM: D698-78, Method "A"

TYPE OF MATERIAL:


Fat Clay, brown (CH)

MAXIMUM DENSITY:

87.8

lb./cu. ft.

OPTIMUM MOISTURE 32.3 %

Twin City Testing and Engineering Laboratory, Inc.

By Namil Polinson

G-232(2/84)

LABORATORY TEST DATA

PROJECT: PROPOSED ASH PIT-HESKETT STATION-MANDAN, NORTH DAKOTA JOB NO.: 5200-86-454 REPORTED TO: Attn: John Verwey Montana-Dakota Utilities Company Boring No. Sample No. Hole 60 Sample Designation 20-40 Depth (ft) Bag Type of Sample Fat Clay Soil Classification (CH) (ASTM:D2487) In-Place Moisture Content (%) Moisture-Density Relation of Soil (ASTM:D698) 87.8 Max. Dry Density (PCF) Optimum Moisture Content (%) 32.3 Permeability Test 6.8 Trial No. Falling Head Type of Test Compacted Type of Specimen 3.00 Specimen Height (inches) 2.82 Specimen Diameter (inches) 82.9 Dry Density (PCF) 94.5 Percent of Max. Density 32.4 Moisture Content (%) 5.0 Max. Head Differential (ft) Confining Pressure 2.0 (effective - PSI) Water Temperature (°C) 21 Coefficient of Permeability 2×10^{-7} K @ 20°C (cm/sec) 4×10^{-7} K @ 20°C (ft/min) Atterberg Limits 59.4 Liquid Limit (%) 23.9 Plastic Limit (%) Plasticity Index 35.5

twin city testing

December 14, 1981

Water Supply, Inc PO Box 1191 Bismarck, ND 58502

Attn: Roger Schmid

Gentlemen

Subj: Soil Testing for MDU Heskett Power Plant

Mandan, North Dakota Invoice #52-0688

Attached herewith, please find our laboratory test results for permeability tests, cation exchange capacity, particle size distribution curves and U.S.D.A. textural classification charts.

If you have any questions or need any additional information, please contact us at the Bismarck office.

Very truly yours,

Gary L Ayman, P.E. Operations Manager Western North Dakota

GLA:djs

Encs

LABORATORY TEST DATA

PROJECT: SOIL TESTING FOR MDU HESKETT POWER PLANT - MANDAN, ND DATE: December 14, 198					
KEPORTED TO: Water Supply, Inc				JOB NO.: 52-0688	
Boring No).	MDU Heskett 1	MDU Heskett 1	MDU Heskett 1	MDU Heskett 2
Sample No Sample De			· .	·	
Depth (ft)		20-21	25-26	30-31	29-30
Type of Sa	ample	Core	Core	Core '	Core
Soil Classi (ASTM:D2		SILTY CLAY & FAT CLAY (CL & CH)	SILTY CLAY & FAT CLAY (CL & CH)	SILTY CLAY & FAT CLAY (CL & CH)	SHALE, (Tex- tural Classi- fication: Fat Clay) (CH)
In-Place M	oisture Content (%)			•.	
	Density Relation of Soil TM:D698) Max. Drv Density (PCF)			·	
	Optimum Moisture Content (%)				
	,	·.			
Permeabil	Trial No.	1	1	7	1
)	Type of Test	Falling Head	Falling Head	Falling Head	Falling Head
	Type of Specimen	Natural	Natural	Natural	Natural
	Specimen Height (Inches)	4.36	3.49	3.76	2.08
	Specimen Diameter (inches)	4.00	2.86	4.00	1.98
	Dry Density (PCF)				
	Percent of Max. Density		·		
	Moisture Content (%)				
	Max. Head Differential (ft)	5.0	5.0	5.0	5.0
	Confining Pressure (effective - PSI)	2.0	2.0	2.0	2.0
	Water Temperature (°C)	21	21	20	21
	Coefficient of Permeability K @ 20°C (cm/sec)	2.6x10 ⁻⁸	1.5x10 ⁻⁸	1.7×10 ⁻⁸	2.7x10 ⁻⁹
	K @ 20°C (ft/min)	5.2x10 ⁻⁸	2.9x10 ⁻⁸	3.4x10 ⁻⁸	5.4x10 ⁻⁹
Atterberg .	Liquid Limit (%) Plastic Limit (%)				
1	Plasticity Index	·	· · · · · · · · · · · · · · · · · · ·		
1		TWIN CITY TE	STING LAB		

LABORATORY TEST DATA

PROJECT: SOIL TESTING FOR MDU HESKETT POWER PLANT - MANDAN, ND

DATE: December 14, 1981

52-0688

REPORTED TO: Water Supply, Inc

JOB NO.: 52-0688

REPORTE	D TO:			JOB NO.:	
Boring No.	P	MDU Heskett 2	MDU Heskett 2	MDU Heskett 3	MDU Heskett
Sample No. Sample Des					·
Depth (ft)		61-62	73-74	15-16	19-20
Type of Sample		Core	Core	Core	Core ·
Soil Classification (ASTM:D2487)		SHALE, (Tex- tural Classi- fication: Fat Clay) (CH)	SHALE, (Tex- tural Classi- fication: Fat Clay) (CH)	SILTY CLAY (CL-ML)	FAT CLAY & SILTY CLAY (CH & CL)
In-Place Mo	oisture Content (%)				
	ensity Relation of Soil "M:D698)				
_	Max. Dry Density (PCF)				
	Optimum Moisture Content (%)				
Permeabilit	ty Test Trial No.	1.	1	1	1
)	Type of Test	Falling Head	Falling Head	Falling Head	Falling Hea
_	Type of Specimen	Natural	Natural	Natural	Natural
-	Specimen Height (inches)	1.96	0.80	2.93	3.29
_	Specimen Diameter (inches)	1.99	1.98	4.00	4.00
	Dry Density (PCF)	·	·		
	Percent of Max. Density				
	Moisture Content (%)				
	Max. Head Differential (ft)	5.0	5.0	5.0	50.0
	Confining Pressure (effective - PSI)	2.0	2.0	2.0	2.0
_	Water Temperature (°C)	21	19	22	22
	Coefficient of Permeability K @ 20°C (cm/sec)	3.6x10 ⁻⁸	1.8x10 ⁻⁸	8.5x10 ⁻⁸	1.8x10 ⁻⁹
	K @ 20°C (ft/min)	7.1x10 ⁻⁸	3.6x10 ⁻⁸	1.7x10 ⁻⁷	3.5x10 ⁻⁹
Atterberg l	Limits Liquid Limit (%)				
· .	Plastic Limit (%)				
•	Plasticity Index				

LABORATORY TEST DATA

DATE: December 14, 1981 PROJECT: SOIL TESTING FOR MOU HESKETT POWER PLANT - MANDAN, ND JOB NO.: 52-0688 REPORTED TO: Water Supply, Inc. MDU Heskett 3 MDU Heskett 4 MDU Heskett 4 MDU Heskett 4 Boring No. Sample No. Sample Designation 31-32 9-10 Depth (ft) 41-42 51-52 Type of Sample Core Core Core Core SILTY CLAY & FAT CLAY & SHALE, (Tex-SHALE, (Tex-Soil Classification FAT CLAY SILTY CLAY tural Classitural Classi-(ASTM:D2487) (CL & CH) (CH & CL) fication: fication: Organic Fat Silty Clay . Clay (CH-OH) (CL)) In-Place Moisture Content (%) Maisture-Density Relation of Soil (ASTM:D698) Max. Drv Density (PCF) Optimum Moisture Content (%) Permeability Test Trial No. Type of Test Falling Head Falling Head Falling Head Falling Head Natura 1 Type of Specimen Natural Natural Natural 2.20 Specimen Height (inches) 3.63 2.31 2.31 4.00 Specimen Diameter (inches) 4.00 1.98 1.45 Dry Density (PCF) Percent of Max. Density Moisture Content (%) 30.0 50.0 Max. Head Differential (ft) 5.0 5.0 Confining Pressure 2.0 2.0 2.0 2.0 (effective - PSI) Water Temperature (°C) 21 22 20 21 Coefficient of Permeability 9.1x10⁻⁹ 7.2x10-⁹ 1.9x10⁻⁷ $7.6x10^{-9}$ K@ 20°C (cm/sec) K @ 20°C (ft/min) 1.8x10⁻⁸ 1.4x10⁻⁸ 1.5x10⁻⁸ 3.7x10⁻⁷ Atterberg Limits Liquid Limit (%) Plastic Limit (%) Plasticity Index TWIN CITY TESTING LAB SL-26(77-B)

REPORT OF:

CATION EXCHANGE CAPACITY 701/223-6149

SOIL TESTING FOR MDU HESKETT POWER

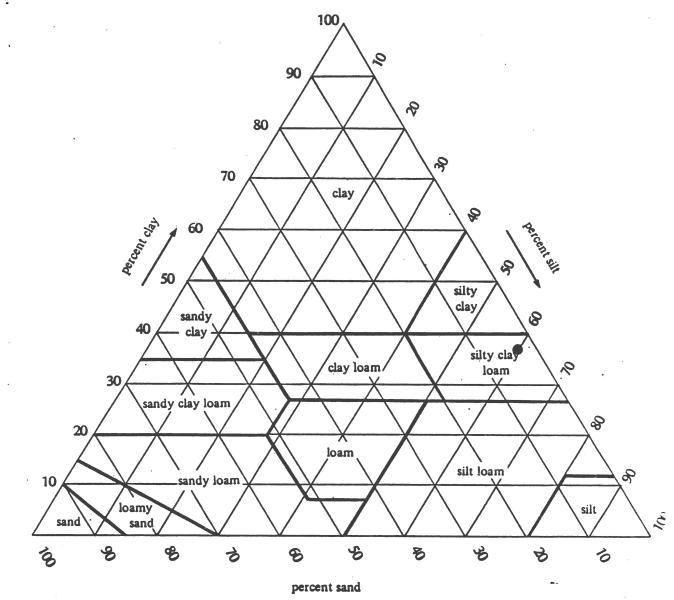
PLANT - MANDAN, NORTH DAKOTA

December 14, 1981 DATE:

REPORTED TO:

Water Supply, Inc PO Box 1191

Bismarck, ND 58502 Attn: Roger Schmid

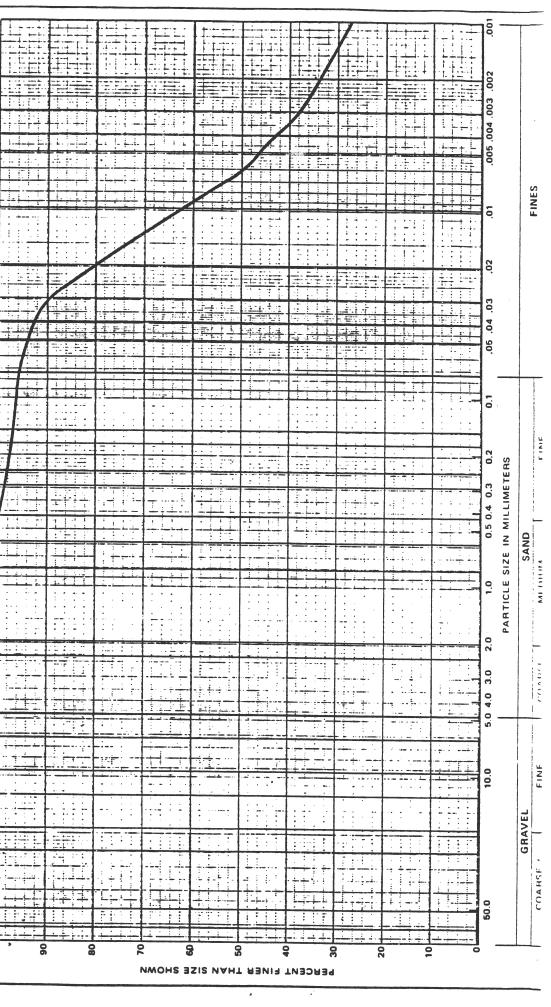

52-0688 LABORATORY No.

MDU Heskett #1 20'-21 71.8 #1 25'-26' 12.3 #1 30'-31' 74.2 #1 40'-41' 27.4 MDU Heskett #2 29'-30' 92.2 #2 56'-57' 69.7 #2 61'-62' 12.0 #2 73'-74' 48.4 MDU Heskett #3 15'-16' 70.1 #3 19'-20' 58.1 #3 31'-32' 58.1 MDU Heskett #4 9'-10' 40.4 #4 15'-16' 60.9 #4 31'-32' 26.1 #4 41'-42' 51.3 #4 51'-52' 56.4	SAMPLE NUMBER		DEPTHS CATION EXCHANGE CAPACITY (meq/milliequivalents/100 gr)	
#1 25'-26' 12.3 #1 30'-31' 74.2 #1 40'-41' 27.4 MDU Heskett #2 29'-30' 92.2 #2 56'-57' 69.7 #2 61'-62' 12.0 #2 73'-74' 48.4 MDU Heskett #3 15'-16' 70.1 #3 19'-20' 58.1 #3 31'-32' 35.6 MDU Heskett #4 9'-10' 40.4 #4 15'-16' 60.9 #4 31'-32' 26.1 #4 41'-42' 51.3	MDU Heskett	#1	20'-21	71.8
#1 40'-41' 27.4 MDU Heskett #2 29'-30' 92.2 #2 56'-57' 69.7 #2 61'-62' 12.0 #2 73'-74' 48.4 MDU Heskett #3 15'-16' 70.1 #3 19'-20' 58.1 #3 31'-32' 35.6 MDU Heskett #4 9'-10' 40.4 #4 15'-16' 60.9 #4 31'-32' 26.1 #4 41'-42' 51.3		#1	25'-26'	12.3
MDU Heskett #2 29'-30' 92.2 #2 56'-57' 69.7 #2 61'-62' 12.0 #2 73'-74' 48.4 MDU Heskett #3 15'-16' 70.1 #3 19'-20' 58.1 #3 31'-32' 35.6 MDU Heskett #4 9'-10' 40.4 #4 15'-16' 60.9 #4 31'-32' 26.1 #4 41'-42' 51.3		#1	30'-31'	74.2
#2 56'-57' 69.7 #2 61'-62' 12.0 #2 73'-74' 48.4 MDU Heskett #3 15'-16' 70.1 #3 19'-20' 58.1 #3 31'-32' 35.6 MDU Heskett #4 9'-10' 40.4 #4 15'-16' 60.9 #4 31'-32' 26.1 #4 41'-42' 51.3		#1	40'-41'	27.4
#2 61'-62' 12.0 #2 73'-74' 48.4 MDU Heskett #3 15'-16' 70.1 #3 19'-20' 58.1 #3 31'-32' 35.6 MDU Heskett #4 9'-10' 40.4 #4 15'-16' 60.9 #4 31'-32' 26.1 #4 41'-42' 51.3	MDU Heskett	#2	29'-30'	92.2
#2 73'-74' 48.4 MDU Heskett #3 15'-16' 70.1 #3 19'-20' 58.1 #3 31'-32' 35.6 MDU Heskett #4 9'-10' 40.4 #4 15'-16' 60.9 #4 31'-32' 26.1 #4 41'-42' 51.3		#2	56'-57'	69.7
MDU Heskett #3	.2	#2	61'-62'	12.0
#3 19'-20' 58.1 #3 31'-32' 35.6 MDU Heskett #4 9'-10' 40.4 #4 15'-16' 60.9 #4 31'-32' 26.1 #4 41'-42' 51.3)	#2	73'-74'	48.4
#3 31'-32' 35.6 MDU Heskett #4 9'-10' 40.4 #4 15'-16' 60.9 #4 31'-32' 26.1 #4 41'-42' 51.3	MDU Heskett	#3	15'-16'	70.1
MDU Heskett #4 9'-10' 40.4 #4 15'-16' 60.9 #4 31'-32' 26.1 #4 41'-42' 51.3	9	#3	19'-20'	58.1
#4 15'-16' 60.9 #4 31'-32' 26.1 #4 41'-42' 51.3		#3	31'-32'	35.6
#4 31'-32' 26.1 #4 41'-42' 51.3	MDU Heskett	#4 ·	9'-10'	40.4
#4 41'-42' 51.3		#4	15'-16'	60.9
		#4	31'-32'	26.1
#4 51'-52' 56.4		#4	41'-42'	51.3
		#4	51'-52'	56.4

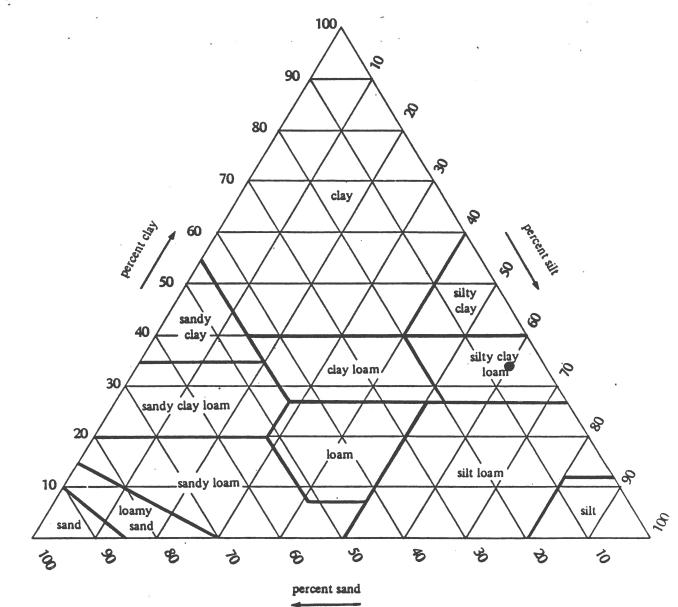
NORTH DAKOTA .005 .004 .003 .002 Project: SOIL TESTING FOR MDU HESKETT POWER PLANT - MANDAN, FINES Reported To: Mater Supply, Inc. 0. 9 .04 .03 .05 #200 GRAIN SIZE DISTRIBUTION CURVE 662 CROMWELL AVENUE ST PAUL, MN 55114 PHONE 612,645,3601 and engineering isboratory, inc. twin city testing 0.1 001# 08# 09# 05# U.S. STANDARD SIEVE SIZES FINE PARTICLE SIZE IN MILLIMETERS 0.5 0.4 #20 #30 MEDIUM #10 2.0 # COARSE Deput: 20'-21' 3.0 5.0 4.0 #4 : % FAT CLAY 3/8" ಹ FINE 10.0 Sample No.MDU Heskett #1 ر ر : % ಿ Classification (ASTM:D2487) SILTY CLAY GRAVEL × : 52-0688 COARSE 3" 2%" 2" 50.0 Description_ Job No. 80 20 9 8 PERCENT FINER THAN SIZE SHOWN


00.

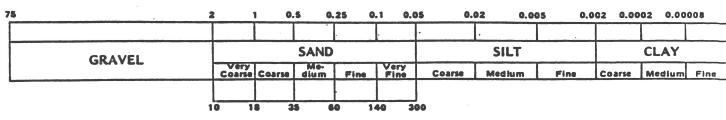
MDU HESKETT #1, 20'-21'



COMPARISON OF PARTICLE SIZES IN USDA SYSTEM

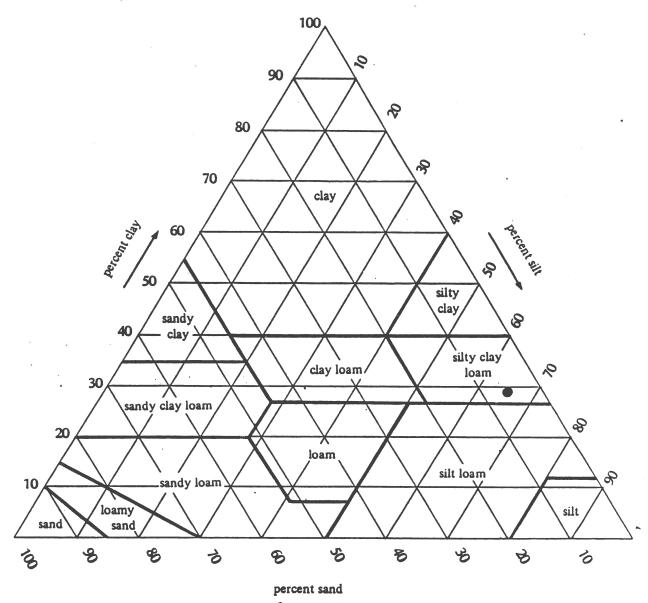

Size Range in Millimeters (Mean Diameter)

POWER PLANT - MANDAN, NORTH DAKOTA Project: SOIL TESTING FOR MDU HESKETT Water Supply, Inc. Reported To: #200 GRAIN SIZE DISTRIBUTION CURVE 662 CROMWELL AVENUE ST PAUL, MN 55114 PHONE 612/645-3601 and enqineering laboratory, mc. twin city testing #50 #60 #80 #100 U.S. STANDARD SIEVE SIZES #20 #30 #40 #10 # Sample No.MDU Heskett #1 Depth: 25'-26' #4 CLAY : X S CH 3/8.. & FAT Classification (ASTM:D2487)_CL : × SILTY CLAY × 52-0688 3.2%.2. Description Job No. 90

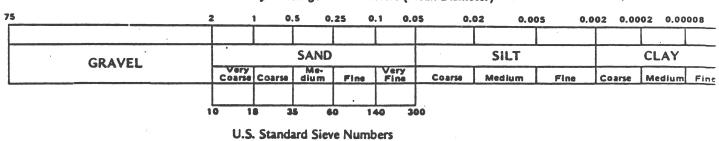


MDU HESKETT #1, 25'-26'

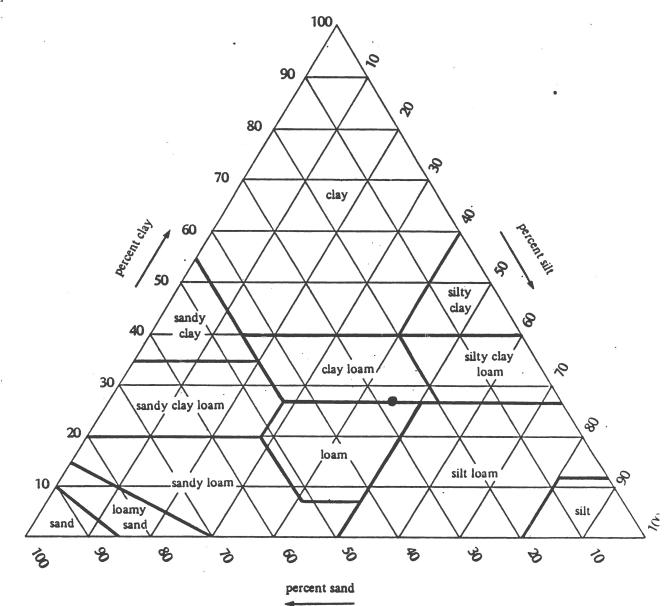
COMPARISON OF PARTICLE SIZES IN USDA SYSTEM


Size Range in Millimeters (Mean Diameter)

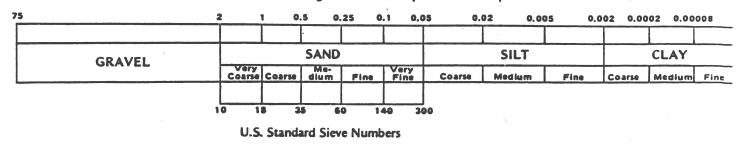
U.S. Standard Sieve Numbers


POWER PLANT - MANDAN, NORTH DAKOTA .005 .004 .003 .002 Project: SOIL TESTING FOR MDU HESKETT FINES Reported To: Water Supply, Inc. 0. 07 .04 .03 05 #200 GRAIN SIZE DISTRIBUTION CURVE 662 CROMWELL AVENUE ST PAUL, MN 55114 PHONE 612/645-3601 and engineering laboratory, inc. twin city testing #50 #60 #80 #100 U.S. STANDARD SIEVE SIZES PARTICLE SIZE IN MILLIMETERS 0.5 6.4 0.3 #20 #30 #40 AAE CHIINA #10 # 30'-31 3.0 5.0 4.0 # Sample No.MDU Heskett #1 Depth: : % CLAY œ CH 3/8. FINE FAT 10.0 J ; X රේ Classification (ASTM:D2487) CLAY GRAVEL ; SILTY Job No. 52-0688 COARSE 3" 2%" 2" 50.0 Description_ 8 20 8 20 PERCENT FINER THAN SIZE SHOWN

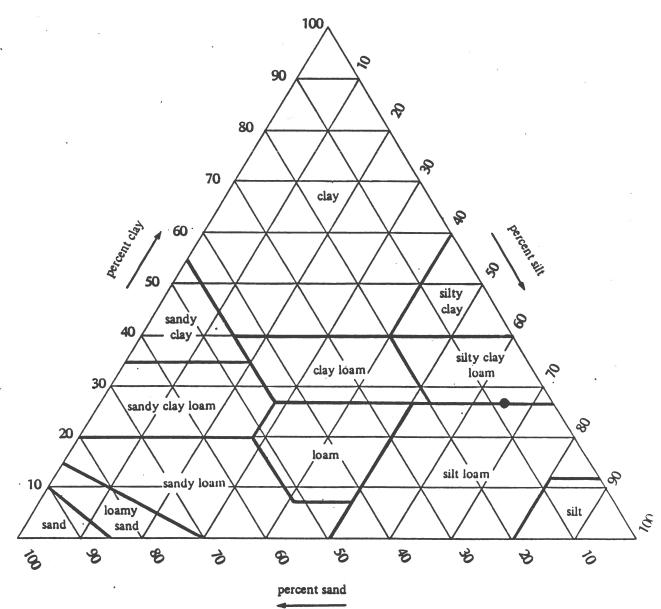
MDU HESKETT #1, 30'-31'


COMPARISON OF PARTICLE SIZES IN USDA SYSTEM

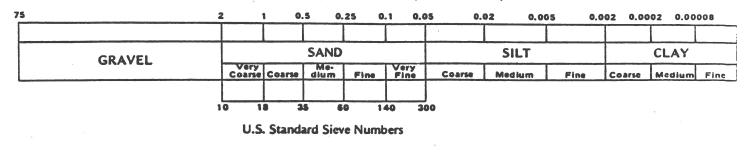
Size Range in Millimeters (Mean Diameter)


.00 POWER PLANT - MANDAN, NORTH DAKOTA .005 .004 .003 .002 SOIL TESTING FOR MDU HESKETT Water Supply, Inc. FINES <u>o</u> .02 .03 Project:_ 0.4 .05 #200 Reported To: GRAIN SIZE DISTRIBUTION CURVE 662 CHOMWELL AVENUE ST PAUL, MN 55114 PHONE 6127645-3601 and engineering laboratory, Inc. twin city testing 0.1 #50 #60 #80 #100 U.S. STANDARD SIEVE SIZES FINE 0.2 PARTICLE SIZE IN MILLIMETERS 0.5 0.4 0.3 #20 #30 #40 MEDIUM 1.0 #8 #10 2.0 COARSE 3.0 Classifica-Depth.: 29'-30' 5.0 4.0 #4 : % 3/8; FINE SHALE, (Textural 10.0 Sample No. MDU Heskett #2 ; % Classification (ASTM:D2487)_ GRAVEL : % 52-0688 tion: Fat Clay COARSE 3" 2%" 2" 50.0 Description_ Job No. 8 8 70 9 S 40 20 0 9 PERCENT FINER THAN SIZE SHOWN

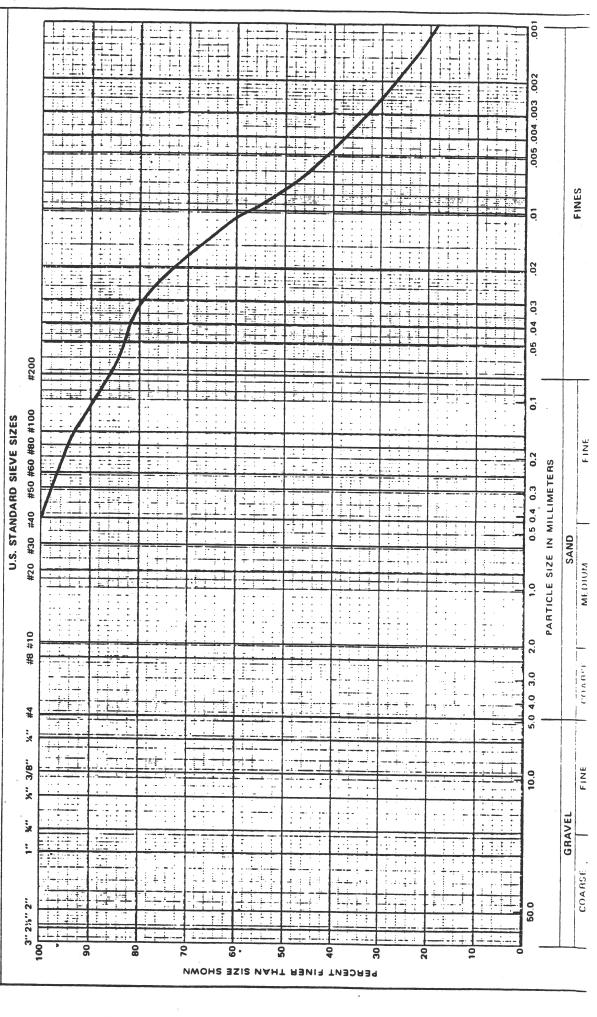
MDU HESKETT #2, 29'-30'


COMPARISON OF PARTICLE SIZES IN USDA SYSTEM

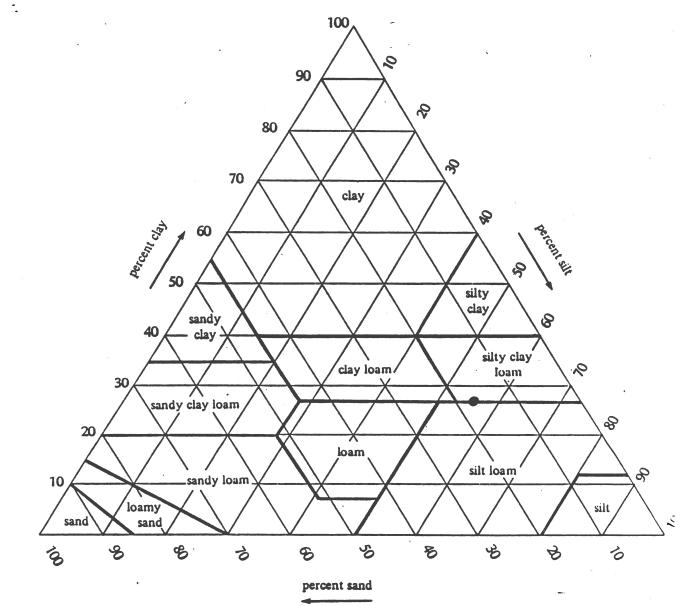
Size Range in Millimeters (Mean Diameter)


001 POWER PLANT - MANDAN, NORTH DAKOTA .005 .004 .003 .002 Project: SOIL TESTING FOR MDU HESKETT FINES Reported To: Water Supply, Inc. 0 .02 .05 .04 .03 #200 GRAIN SIZE DISTRIBUTION CURVE 662 CHOMMELL AVENUE ST PAUL, MN 55114 PHONE 612/645/3601 and engineering laboratory, inc. twin city testing 0.1 #50 #60 #80 #100 U.S. STANDARD SIEVE SIZES PARTICLE SIZE IN MILLIMETERS #20 #30 #10 # 61,-62 Classifica-5.0 4.0 3.0 #4 Sample No.MDU Heskett #2 Depur. : % 3/8.. Description SHALE, (Textural 10.0 : × Classification (ASTM:D2487)_ GRAVEL : 52-0688 tion: Fat Clay) 3" 2%" 2" 50.0 Job No. <u>0</u> 80 70 9 8 PERCENT FINER THAN SIZE SHOWN

MDU HESKETT #2, 61!-62!

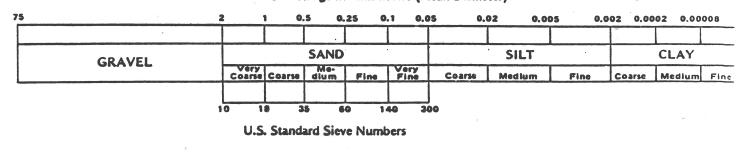

COMPARISON OF PARTICLE SIZES IN USDA SYSTEM

Size Range in Millimeters (Mean Diameter)



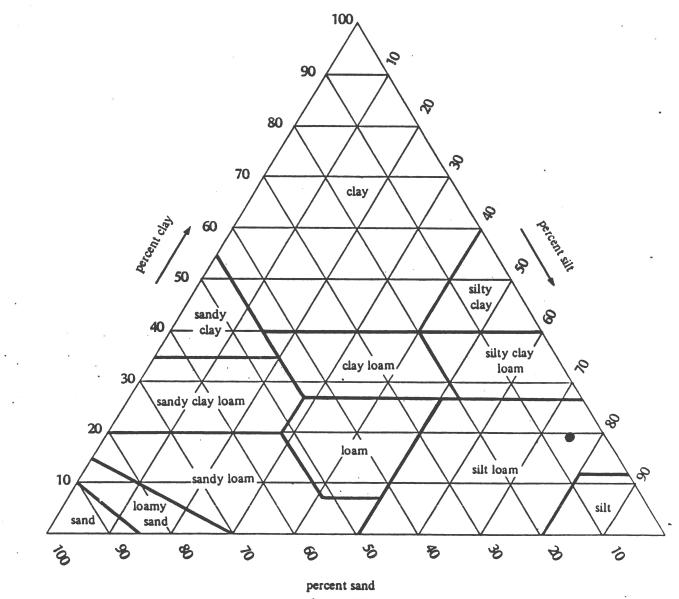
Reported To: Water Supply, Inc. Project:_ GRAIN SIZE DISTRIBUTION CURVE 662 CROMMELL AVENUE ST PAUL MN 55114 PHONE 612/645-3601 TWIN CITY TESTING Sample No. MDU Heskett #2 Depth.: 73'-74' Description SHALE, (Textural Classifica-Classification (ASTM:D2487) (CH) 52-0688 Fat Clay tion:

POWER PLANT - MANDAN, NORTH DAKOTA SOIL TESTING FOR MDU HESKETT

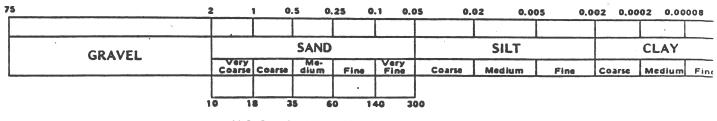


MDU HESKETT #2, 73'-74'

COMPARISON OF PARTICLE SIZES IN USDA SYSTEM

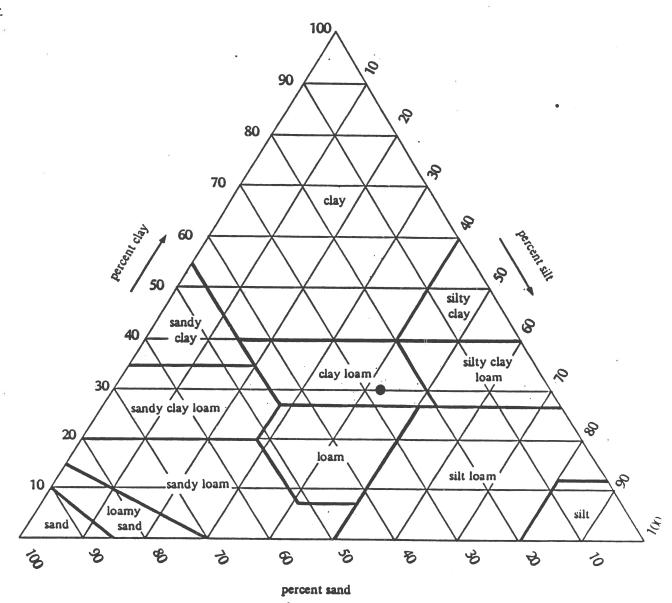

Size Range in Millimeters (Mean Diameter)

POWER PLANT - MANDAN, NORTH DAKOTA 00. SOIL TESTING FOR MDU HESKETT .002 .005 .004 .003 FINES Water Supply, Inc. <u>0</u> .02 .03 Project:_ .04 90. Reported To: #200 GRAIN SIZE DISTRIBUTION CURVE 662 CHOMMELL AVENUE ST PAUL, MN 55114 PHONE 612/645-3601 LWIN CITY TESTING

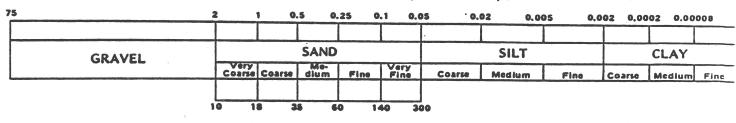

and engineering laboratoru, inc. 0. #50 #60 #80 #100 U.S. STANDARD SIEVE SIZES FINE 0.2 PARTICLE SIZE IN MILLIMETERS 0.5 0.4 0.3 #40 #20 #30 MEDIUM #10 2.0 8 LOVELL Sample No. MDU Heskett #3 Deput: 15'-16' 4.0 #4 5.0 : % 3/8.. Classification (ASTM:D2487) CL-ML FINE 10.0 ; X SILTY CLAY GRAVEL × ... 52-0688 COARSE 50.0 3. 2%. 2. Description Job No. 9 20 10 PERCENT FINER THAN SIZE SHOWN

MDU HESKETT #3, 15'-16'

COMPARISON OF PARTICLE SIZES IN USDA SYSTEM

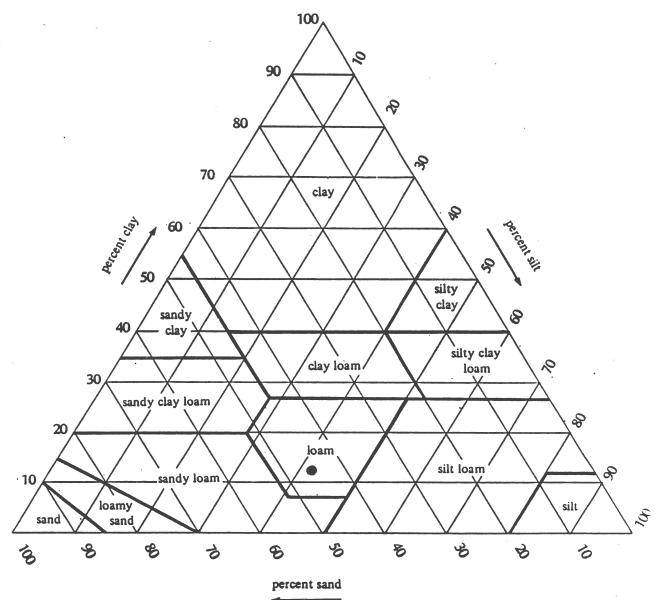

Size Range in Millimeters (Mean Diameter)

U.S. Standard Sieve Numbers

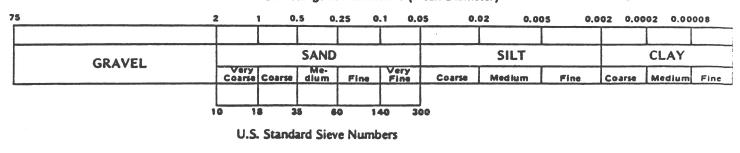

.00 NORTH DAKOTA .005 .004 .003 .002 Project: SOIL TESTING FOR MDU HESKETT POWER PLANT - MANDAN, FINES 0 Water Supply, .02 .03 0. .05 Reported To: #200 GRAIN SIZE DISTRIBUTION CURVE and enqineering laboratoru, inc.
662 CROMELL AVENE
ST PAUL. MN 55114
PHONE 612/645:3601 twin city testing 0.1 #50 #60 #80 #100 U.S. STANDARD SIEVE SIZES -10 material used for hydrometer test rather than total sample due FINE on PARTICLE SIZE IN MILLIMETERS Distribution curve based 0.5 0.4 0.3 #20 #30 #40 MEDIUM #10 \$ COARSE Sample No. MDU Heskett #3Deput. 19'-20' 3.0 Description FAT CLAY & SILTY CLAY (Note: to small boulder in a small sample.) 4.0 # : % Classification (ASTM:D2487) CH & CL 3/8.. FINE 10.0 <u>×</u> GRAVEL ; % : 52-0688 COARSE 3.2%.2. 60.0 Job No. 8 80 70 9 20 10 PERCENT FINER THAN SIZE SHOWN

MDU HESKETT #3, 19'-20'

COMPARISON OF PARTICLE SIZES IN USDA SYSTEM

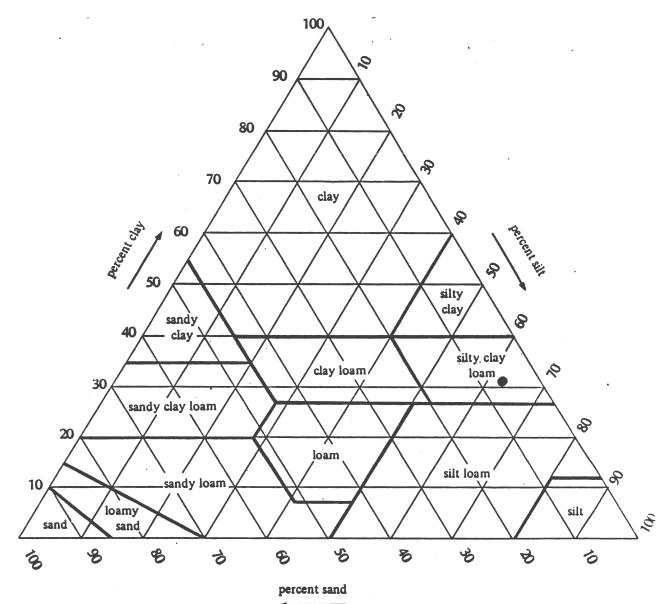

Size Range in Millimeters (Mean Diameter)

U.S. Standard Sieve Numbers

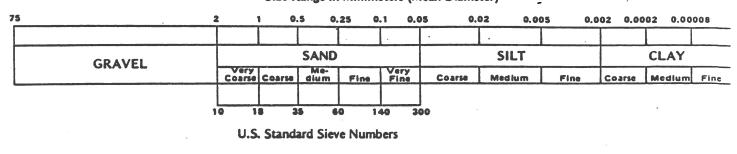

POWER PLANT - MANDAN, NORTH DAKOTA 001 SOIL TESTING FOR MDU HESKETT .002 .005 .004 .003 FINES Reported To: Water Supply, Inc. 6 .02 Project:__ .03 .04 .05 #200 GRAIN SIZE DISTRIBUTION CURVE 662 CROMWELL AVENUE ST PAUL, MN 55114 PHONE 612/645-3601 and engineering laboratory, inc. twin city testing 0.1 #50 #60 #80 #100 U.S. STANDARD SIEVE SIZES FINE 0.2 PARTICLE SIZE IN MILLIMETERS 0.5 0.4 0.3 #20 #30 #40 MEDIUM 0. #8 #10 2.0 COARSE 3.0 Sample No. MDU Heskett #3 Depth: 31'-32' 4.0 #4 5.0 : % FAT. CLAY 3/8" FINE 10.0 : X Classification (ASTM:D2487) CLAY GRAVEL ; % 52-0688 : COARSE 3" 2%" 2" 50.0 Description Job No. 9 90 80 2 9 2 PERCENT FINER THAN SIZE SHOWN

MDU HESKETT #3, 31'-32'

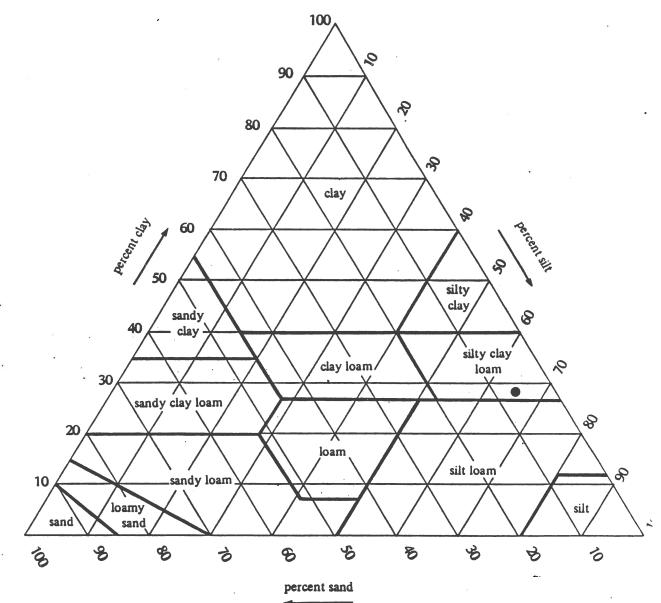
COMPARISON OF PARTICLE SIZES IN USDA SYSTEM


Size Range in Millimeters (Mean Diameter)

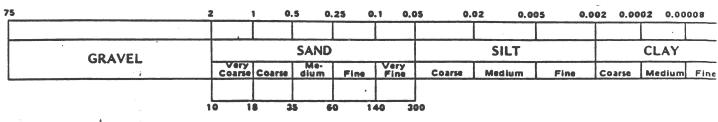
NORTH DAKOTA 001 SOIL TESTING FOR MDU HESKETT .005 .004 .003 .002 - MANDAN, FINES POWER PLANT Water Supply, Inc. <u>0</u> 9 .04 .03 Project:_ .05 Reported To: #200 GRAIN SIZE DISTRIBUTION CURVE 662 CROMMELL AVENUE ST PAUL, MN 55114 PHONE 612/645-3601 LWIN CITY TESTING


and enqineering laboratory, inc. 0.1 #50 #60 #80 #100 U.S. STANDARD SIEVE SIZES 0.2 PARTICLE SIZE IN MILLIMETERS 0.5 0.4 0.3 #40 #20 #30 #10 2.0 8 3.0 9'-10' 5.0 4.0 Deptr. CLAY : 7 ಞ 3/8.. SILTY 10.0 F SAMPLE NO.MDU Heskett #4 : % GRAVEL Classification (ASTM:D2487) ∞ಶ ; % CLAY 52-0688 : FAT 3. 2%.. 2.. 60.0 Description_ Job No. 96 20 S 8 PERCENT FINER THAN SIZE SHOWN

MDU HESKETT #4, 9'-10"

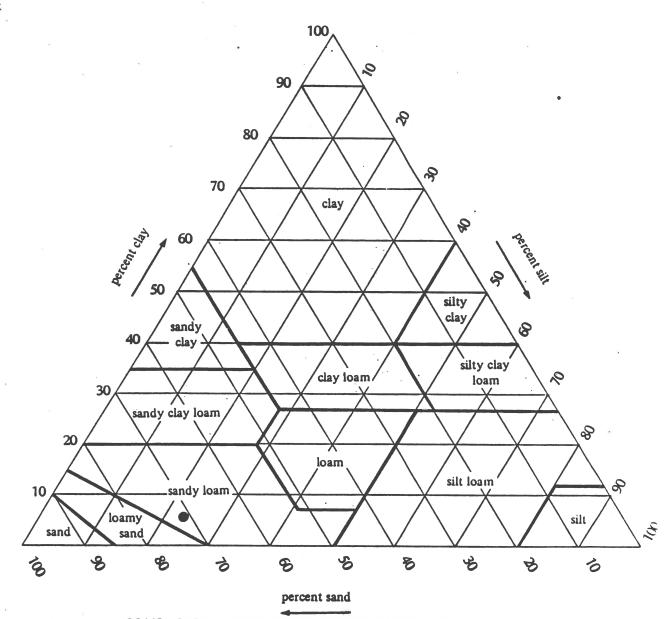

COMPARISON OF PARTICLE SIZES IN USDA SYSTEM

Size Range in Millimeters (Mean Diameter)

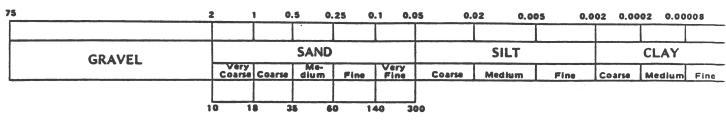

- MANDAN, NORTH DAKOTA 00. SOIL TESTING FOR MDU HESKETT .005 .004 .003 .002 FINES Water Supply, Inc. POWER PLANT Ö 0. .03 Project:_ 0. 0. Reported To: #200 GRAIN SIZE DISTRIBUTION CURVE 662 CROMWELL AVENUE ST PAUL, MN 55114 PHONE 612/645-3601 TWIN CITY TESTING and enquieering important, inc. 0.1 #50 #60 #80 #100 U.S. STANDARD SIEVE SIZES FINIE PARTICLE SIZE IN MILLIMETERS 0.5 0.4 0.3 #40 #20 #30 SAND MLDHIM #8 #10 Sample No. MDU Heskett #4 Depth: 15'-16' 4.0 3.0 #4 5.0 CLAY 3 H ≪ಶ 3/8: FINE FAT 10.0 J : % 0ర Classification (ASTM:D2487) GRAVEL Description SILTY CLAY ; % 52-0688 COARSE 3" 2%" 2" 50.0 Job No. 8 8 70 20 63 PERCENT FINER THAN SIZE SHOWN

MDU HESKETT #4, 15'-16'

COMPARISON OF PARTICLE SIZES IN USDA SYSTEM


Size Range in Millimeters (Mean Diameter)

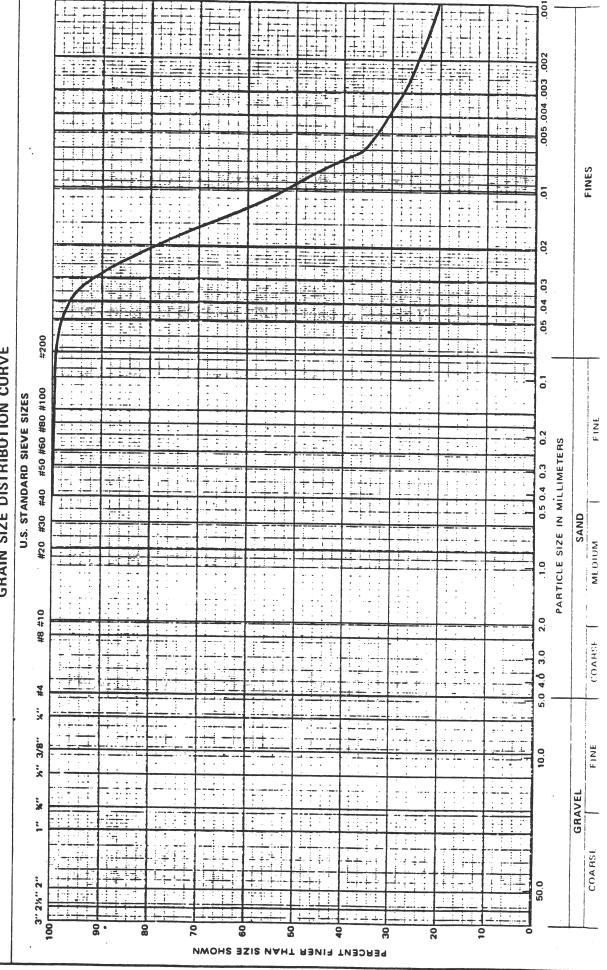
U.S. Standard Sieve Numbers


00. NORTH DAKOTA .005 .004 .003 .002 Project: SOIL TESTING FOR MDU HESKETT POWER PLANT - MANDAN, FINES Water Supply, Inc 0. .03 .05 .04 Reported To: #200 GRAIN SIZE DISTRIBUTION CURVE 662 CHOMMELL AVENUE ST PAUL, MN 55114 PHONE 612/645-3601 and enqineering laboratory, inc. twin city testing #50 #60 #80 #100 U.S. STANDARD SIEVE SIZES FINE 0.2 PARTICLE SIZE IN MILLIMETERS #40 0.5 0.4 #30 #20 MEDIOM #10 2.0 8 COARSE Sample No.MDU Heskett #4 Depu.: 31'-32' 5.0 4.0 3.0 grained #4 : * 3/8.. fine FINE 10.0 \mathbb{S} : X SILTY SAND, Classification (ASTM:D2487)_ GRAVEL ; % 52-0688 COARSE Description_ 3. 2%.. 2.. 50.0 Job No. 80 9 S 10 PERCENT FINER THAN SIZE SHOWN

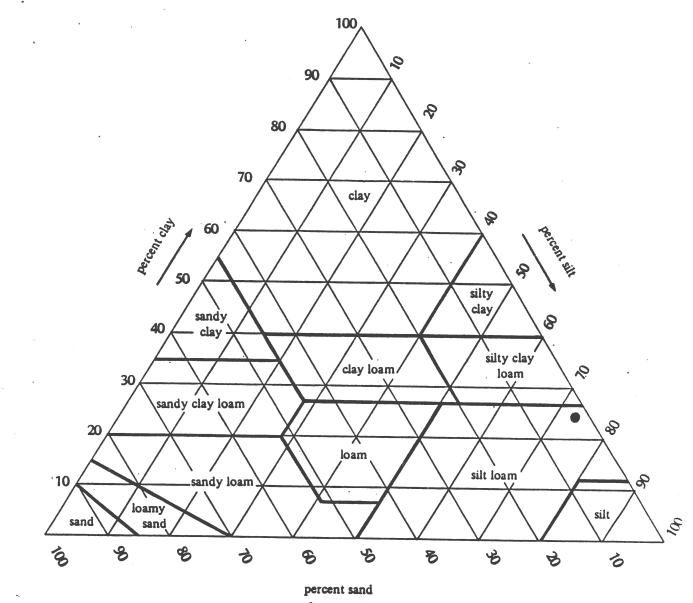
MDU HESKETT #4, 31'-32'

COMPARISON OF PARTICLE SIZES IN USDA SYSTEM

Size Range in Millimeters (Mean Diameter)

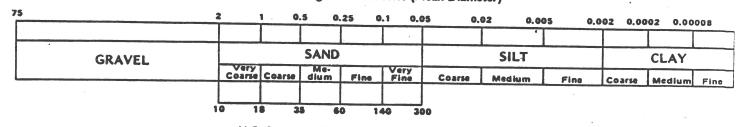


U.S. Standard Sieve Numbers


Project: SOIL TESTING FOR MDU HESKETT Reported To: Water Supply, Inc g and enqineering laboratory, inc. 662 CROMWELL AVENUE ST PAUL, MN 55114 twin city testing PHONE 612/645-3601 Sample No.MDU Heskett #4 Deput. 41'-42' SHALE, (Textural Classifica CH-0H tion: Organic Fat Clay) Classification (ASTM:D2487)_ 52-0688 Description Job No.

POWER PLANT - MANDAN, NORTH DAKOTA

GRAIN SIZE DISTRIBUTION CURVE



MDU HESKETT #4, 41-42'

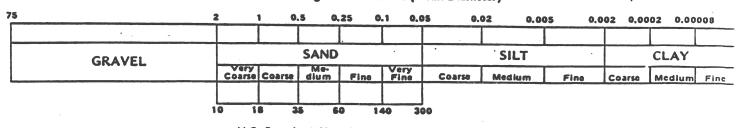
COMPARISON OF PARTICLE SIZES IN USDA SYSTEM

Size Range in Millimeters (Mean Diameter)



U.S. Standard Sieve Numbers

- MANDAN, NORTH DAKOTA SOIL TESTING FOR MDU HESKETT .005 .004 .003 .002 FINES POWER PLANT Water Supply, Inc 0. .02 .04 .03 Project:_ 90 Reported To:___ #200 GRAIN SIZE DISTRIBUTION CURVE 662 CHOMMELL AVENUE ST PAUL, MN 55114 PHONE 6127645-3601 and enqineering laboratory, Inc. twin city testing 0.1 #50 #60 #80 #100 U.S. STANDARD SIEVE SIZES PARTICLE SIZE IN MILLIMETERS 0.5 0.4 0.3 #20 #30 #40 A 4 [[] | 1 | 1 | 4 | #10 8 Classifica-51'-52' 5.0 4.0 #4 Sample No. MDU Heskett #4Depth. × 3/8.. SHALE, (Textural FINIT 10.0 × Classification (ASTM:D2487) GRAVEL × tion: Silty Clay 3. 2%. 2. Job No. 80 70 9 2 PERCENT FINER THAN SIZE SHOWN


.00

MDU HESKETT #4, 51'-52'

COMPARISON OF PARTICLE SIZES IN USDA SYSTEM

Size Range in Millimeters (Mean Diameter)

U.S. Standard Sieve Numbers

6.1 Site Preparation and Construction

6.1.1 Access and Preconstruction

Exhibit 5-F presents soil information on the Heskett site currently available through the Morton County Agricultural Stabilization and Conservation Service office. Because this data was gathered from fieldwork conducted several decades ago and provides little site-specific soil depth information, a new soil survey will be commissioned. The survey will be conducted prior to the onset of construction and cover the entire permit area. Soil profiles will be developed identifying soil types and topsoil (A horizon) and subsoil (B horizon) depths. This information will be used to establish plant growth material (SPGM) salvage and replacement depths during future construction and reclamation activities.

Surface water drainage of adjoining land east of the site will be improved by the permanent installation of a grass-lined ditch (Exhibit 6-B). This drainageway will be located along the base of an existing draw and enhance movement of surface runoff waters and permitted discharges from impoundments located to the south on Amoco Refinery property. The drainageway will be about 8 feet deep, 8 feet wide at the base, and provide a slope of 1% to a discharge at Rock Haven Creek. Existing surface water drainage patterns should not be significantly altered by this installation.

Primary access to the site will be along a dedicated haul road extending eastward to Heskett Station (Exhibit 6-B). Roadbed construction will require 34,500 cy of excess earthern material removed during the excavation of the initial disposal slot. The road surface will be covered with

gravel to allow all weather access to the site. All haulage road construction activities will be performed on Montana-Dakota property and will not interfere with traffic on surrounding public roads.

Other points of access to the site will be restricted by the installation of a lockable personnel fence around the perimeter of the facility.

Public access to the site will not be allowed.

6.1.2 Facility Construction

The first phase of the facility described in Exhibit 6-B will be constructed and made operational during the 1989 earthwork construction season. Waste placement will begin upon the completion of the initial waste disposal slot. To minimize impacts to the landscape and reduce potential fugitive dust and leachate generation, new disposal trenches of similar design will be excavated approximately every other year. Filled trenches will be closed and reclaimed concurrently with new trench construction

The 47 acre disposal facility will be developed in two phases. Phase I, comprising the disposal area on the north side of the haul road, will provide about 13 years (approximately 700,000 cy) of disposal capacity. The initial disposal slot will be constructed along the western edge of the Phase I area. Subsequent excavations will proceed eastward until the Phase I area is filled. Phase II of the disposal site lies south of the haul road and will provide disposal capacity for about 15 years (approximately 600,000 cy). Phase II development (Exhibit 6-C) will begin parallel to the southern edge of the haul road and proceed southward. The final trench excavation at the site will lie parallel to the southern edge of the site. It is not currently expected that ash will be placed directly beneath the on-site portion of the

haul road. However, ash emplacement beneath the road may be considered as a contingency if needed.

Exhibit 6-D provides information regarding earth quantity movements for each disposal trench. These estimates (and the subsequent size of the trenches) may be adjusted somewhat if ash waste generation rates markedly differ from projections. The initial slot of Phase I will be constructed to contain slightly over one year of waste (60,000 cy). Subsequent trenches will be constructed to contain all ash generated during the ensuing one to two years.

All construction activities will be performed during the normal earthwork construction season. Equipment such as bulldozers, scrapers, graders, and compactors will remove, modify, and/or replace earthen materials. Most material excavation and relocation operations will rely upon scrapers.

Each trench will have a compacted in-situ clay liner along its base to restrict downward migration of in-pit liquids. Available information (see Exhibits 5-E and 5-K) indicates an abundance of naturally occurring clay and silt which will be uncovered in conjunction with trench excavations. These materials will be scarified to a depth of 18 inches and recompacted to a permeability of not more than 1 \times 10-7 cm sec-1. Occurrences of sand or gravel will be removed and replaced with clay-rich spoil. In-situ materials providing marginally acceptable rates of permeability will be replaced, treated with a soil liner admixture such as bentonite, or thickened to provide the equivalent permeability of 18 inches of 1 \times 10-7 cm sec-1 material. The in-situ liner will cover the entire floor of the trench, the liquids collection sump, and be extended to include the lower five feet of the trench sidewall. Liner installations associated with new trench construction will be keyed into the previous trench liners, thereby providing contiguous liquids

6.1.3 Excavated Materials

The removal and stockpiling of suitable plant growth material (SPGM) will be completed prior to any operation which would interfere with the use and integrity of the top soil. Top soil thickness information provided by the soil survey (see Section 6.1.1) will be used to establish SPGM salvage depth. SPGM will be removed by scraper in two lifts; soil horizon A will be removed in the first lift, soil horizon B will comprise the second lift. Each lift will be separately stockpiled in an area described in the Site Plan of Exhibit 6-B. Because filled trenches will be closed in conjunction with new trench construction, removed SPGM shall be stockpiled only when it is not practical for direct placement in areas concurrently undergoing reclamation.

Exhibit 6-D projects the amount of earthen materials which will be excavated. The largest single Phase I excavation (59,000 cy) will be the initial trench construction. Resulting excess materials from drainage ditch and disposal slot excavation will be used in the construction of the access road, evaporation pond, and a permanent visual obstruction berm along the southern perimeter of the site. Excess spoil may be diverted to the closure of the adjacent Heskett ash pile if available. Because future excavations will generate volumes of materials which approximate requirements for closure (i.e., cap construction and overburden placement) relatively little material should require stockpiling along the western edge of the site. Stockpile Area No. 1 and 2 may be converted into an additional visual obstruction berm if excess spoils require permanent dislocation from the reclamation area.

All temporary SPGM and clay material stockpiles will be maintained in a manner which minimizes the effects of erosion yet maintains soil integrity. Protective measures will be applied and include the planting of cover crops, mulching, use of chemical binders, contour tillage, or other site specific

infiltration protection. Verification of construction quality and attainment of proper rates of permeability will be made by an independent registered professional engineer.

Each trench floor will be positioned to provide at least five feet of separation between the waste and the 1986 water table elevation. Additionally, the base of each slot will be contoured to provide a positive drainage slope of not less than 1% both laterally and lengthwise, thus promoting rapid movement of in-pit liquids away from the waste and into the collection sump.

Exhibit 6-C, Section X-X illustrates a typical cross-section of the leachate collection pipe which will be permanently installed with each new trench. A perforated pipe will gather liquids from the operational and closed portions of the facility and discharge them into the liquids collection sump in use at that time. Liquids will continue to be gathered by the collection line after the closure of Phase I and discharge directly into the evaporation pond. Waste leachates collected by the Phase II line will not discharge into the active sump but rather directly into the evaporation pond.

All liquids collected within the pit sump and leachate collection lines will be evaporated in a 53,000 square foot evaporation pond (Exhibit 6-B, Section D-D). This pond will be constructed to contain in-pit liquids resulting from normally-occurring rainfall plus a single 24 hour 2.5 inch precipitation event. The evaporation pond will have 5 foot side walls and be equipped with a three foot thick clay liner possessing a permeability of not more than 1 \times 10-7 cm sec-1. The evaporation pond will service the disposal facility throughout the operational life of the site.

treatments. Annual cover crops may be planted in areas of frequent stockpile disturbance if necessary to control wind and water erosion. Obstructional berms will be permanently reclaimed to native grasses as soon as possible after completion.

6.2 Operation and Management

6.2.1 Waste Placement

Coal combustion ash will be loaded onto trucks and slightly wetted for dust control before transportation to the disposal site via the ash haul road. Haulage will take place daily during daylight hours; only in emergencies will ash haulage occur after nightfall. Spilled waste material on the haul road and at the site will be immediately cleaned-up and placed in the disposal trench. Ash waste will not be temporarily stored at the site prior to disposal.

Haul trucks will enter the trench by way of ramps located at the end of the trench with the highest elevation (Exhibit 6-B, Operational Schematic). Waste will be initially placed in each trench near the ramp and expanded to provide a surface for unloading activities. Vehicular traffic upon the disposal slot floor will be held to a minimum to reduce inadvertent liner damage. Dumped waste will be leveled with a front end loader and spread across the trench floor in lifts 5 to 8 feet thick. The active sump area will not be filled with waste. Ash will not be dumped from the pit highwall into the trench.

Because initial disposal activity will be conducted at an elevation below ground surface the waste will receive only moderate exposure to surface winds. Consequently, little fugitive dust is expected to be generated. As

the waste elevation increases, however, strong surface winds might produce increasing amounts of airborne nuisance particulates. Dust suppression measures will be implemented as required to control fugitive dust. These measures will include the selective placement of AFBC bottom ash (a relatively low dust emitting material) over other ash wastes or the thin spreading of earthen or other dust control material. A 2,500 gallon water spray truck is available for dust control applications over the ash haul road. Water spray will not be used for dust control over the disposed of waste.

Montana-Dakota personnel will perform all daily operational monitoring and disposal activities at the site. Facility points-of-contact are:

Station Superintendent - Duane Steen

Fuel and Grounds Supervisor - Darhl Bowers

Facility Telephone - (701) 663-9576

The Fuel and Grounds Supervisor (or his designee) at Heskett Station will have general supervision of the site and verify that procedures specified in this permit application are adhered to. The site will be monitored daily in conjunction with normal ash haulage activities. Weekly log entries will be made concerning the amount of ash hauled, waste-contaminated water transferences, and unusual operational occurrences such as waste spillages or failures in site reclamation. Corrective actions will also be noted.

6.2.2 Surface Water Management

Ground surface runoff waters will be prevented from entering the pit by either a positive slope away from the edge of the pit or the construction of diversionary trenches or berms. Uncontaminated ground surface runoff waters

will not be controlled at the site except in instances where erosion and/or sedimentation is occurring. Waste spillages at the site and on the haul road will be immediately cleaned-up after each incident; consequently no contaminated waters should be generated in these areas. The ash haul road will be graded to promote surface water run off away from the active disposal area (see Exhibit 6-B, Section b-b and Exhibit 6-C, Section b-b) and into the drainage ditch.

The in-pit sump will hold all meteoric-source precipitation falling within the trench (both waste contacting and non-contacting liquids) and infiltrated water gathered by the leachate collection line (Phase I only). Each collection sump will be sized to provide 100% retention of normal rainfall plus one 2.5 inch precipitation event occurring in a 24-hour period. The sumps will be equipped with an 18 inch compacted clay liner similar in design to the rest of the pit floor. When accumulated liquids approach 3 feet in depth (see Exhibit 6-B, Section X-X), the liquids will be transferred to the evaporation pond. It should be noted that restraints regarding weather, accessibility, equipment or personnel availability may occasionally change the 3 foot liquids volume transfer standard.

Liquid transfer to the evaporation pond will be performed through the use of a portable pump and an overland pipe constructed of PVC or similar material. Pumping activities will normally be conducted during periods of ash haulage and will be continually monitored for leakage during operation. Pumping will not be performed at night or during freezing conditions which could damage the pipe.

Minimal care should be required around the evaporation pond. Surface discharges will not be made from the pond. Growth of vegetation in the impoundment will be controlled through additions of herbicide or mechanical

cutting whenever damage to the clay liner is considered likely. The pond will be monitored monthly for evidence of deterioration and leakage. The ground-water monitoring plan provides for the installation of a water table elevation and quality monitoring well immediately downgradient of the impoundment. Samples of impounded liquids will be taken (if available) semi-annually in conjunction with the groundwater sampling program and analyzed for the same chemical parameters. Surface impoundment analytical data will be combined with the groundwater quality information and submitted to the NDSDH according to the schedule specified in Section 7.3

6.2.3 Contingencies and Potential Impacts

The proposed waste facility was sited and designed to reasonably ensure that groundwater will not intrude upon the waste. Two consecutive years of potentiometric monitoring has shown a relatively stable water table elevation with little apparent seasonal fluctuation. This general stability, even during the severe drought of 1988, might be partially attributable to constant upgradient recharge provided by surface impoundments on Amoco Refinery property to the south. Discussions with Amoco personnel has indicated there are no proposals to expand or otherwise modify this impoundment system.

The facility will be located over a marginal groundwater resource. Groundwater chemical characterizations (Exhibit 5-J) indicate it to be of comparable quality with the waste leachate (Exhibit 2-A). Furthermore, recent studies (referenced in Section 5.2.4) have shown that heavy metals which exist in the leachate (such as arsenic, cadmium, and lead) are effectively attenuated by clay and silt materials which naturally occur in abundance throughout the Heskett Site. The Cannonball Formation water at the Heskett Site is unsuitable for most domestic or agricultural purposes without prior

purification. Area residences rely upon other underlying aquifers such as the Ludlow for their domestic water supplies. Consequently, the proposed facility will not pose a threat to a desirable groundwater resource. Indeed, even major releases of Heskett ash leachate to the underlying groundwater might be expected to result in only minor deviations from normal background chemical makeup.

A number of simple remedial measures are available at the site should groundwater elevations rise to intrude upon the waste, thereby endangering an area resource. Because Rock Haven Creek on the west and north of the site. along with the small draw located to east, already provides natural points of surface discharge to a rising groundwater table, modification to these topographic depressions or the installation of a shallow subsurface drainage system in their vicinity would serve to allow groundwater discharge at a lower elevation. This would serve to permanently lessen the potentiometric level of the water table. Increasing the depth of the drainageway might be particularly appropriate due to its close proximity to the lowest point of waste placement (i.e. the eastern edges of Phases I and II). Another option includes the permanent installation of a subsurface drainage pipe or french drain five to eight feet below the southern edge of the last Phase II trench. Such a system would intercept the groundwater below and upgradient of the waste and divert flow laterally to a discharge point on the drainageway. This would hydraulically isolate the waste.

An in-pit leachate collection system will be constructed to detect and gather in-waste liquids that would occur during the operational life of the site. Significant leachate collections may extend the life of the gathering pipes (and evaporation pond) beyond the site closure date until the problem is remedied. The in-pit sump and evaporation pond will have compacted clay

liners to assure minimal rates of subsurface leachate migration. The evaporation pond will be monitored monthly to determine liquids volume and detect evidence of deterioration, erosion, seepage, or overtopping. The in-put collection sump will be similarly inspected weekly and after precipitation events. Should a sudden drop occur in the liquids level of the impoundment or groundwater quality monitoring indicate significant leakage is occurring, repair or replacement of the liner with a soil-based or admixed liner will be performed. Similarly, the size of in-pit collection sumps will be expanded in subsequent trench excavations should it become apparent that more retention volume is needed.

Provisions have been made which allow for visual and acoustical obstructions (earthen berms and tree shelter belts) between facility operations and residences to the south. Additional tree plants and berm construction (depending upon materials availability) may be emplaced around the facility perimeter at a future date. Shelter belts or berms will not be placed over waste disposal areas. Decisions regarding these features will be made after the facility becomes operational and their need at a specific location becomes apparent. Dust control measures (as described in Section 6.2.1) will be implemented until these features become permanently established.

6.3 Closure and Reclamation

6.3.1 Closure Methods

As each trench is brought to its final waste elevation, a 1 to 3 inch layer of earthen material will be applied to the waste if fugitive waste dust requires suppression. New trenches will be first constructed adjacent to the

disposal area intended for closure. Excavated materials from the new trench will be used to close the waste filled trench. Excess excavated material may be temporarily stockpiled in the area described in Exhibit 6-B or used in permanent berm construction. Similarly, new trenches providing inadequate volumes of earth for closure work will require withdrawal from stockpiled inventories.

A two-foot thick compacted clay cap will be constructed over the waste (Exhibit 6-C, Sections A-A and B-B). The cap will be developed from clay-rich spoil materials such as those documented in Exhibit 5-K. Earth moving equipment such as bulldozers, scrapers, graders, and compactors will emplace materials so that compaction of approximately 95% of maximum dry density and a permeability of 1 \times 10⁻⁷ cm sec⁻¹ or less is attained. If available materials cannot provide for a two-foot thickness of 1 \times 10⁻⁷ cm sec⁻¹ permeability, cap thickness will be increase commensurably and/or treated with an admixture to a point which affords equivalent moisture infiltration protection. Verification of adequate construction quality and permeability will be made by an independent registered professional engineer.

Uncompacted spoil will be immediately spread over the completed clay cap and shaped to prevent surface water ponding. Surface slopes will range from 4% to 10%. Spread depth will be adequate to create a total earthern material profile above the waste (i.e., clay cap, uncompacted spoil, and SPGM) of not less than eight feet.

SPGM will be spread over the spoil material at a uniform depth determined by material availability. The respread will be done in accordance with currently accepted practices and procedures which assure proper interlift adhesion. Compaction of materials will be held to a minimum.

The final Phase II trench closure (thus leading to final site closure) will include the removal of the waste haulage road surface and the evaporation pond. All waste-contaminated material will be placed with the waste in the final disposal trench. Disturbed areas will be shaped to the topography illustrated in the site plan of Exhibit 6-D and reclaimed. The leachate collection lines will be abondoned in-place and will not be monitored or maintained. Points of access to the leachate collection line will be sealed during final closure for purposes of safety. The drainageway will not be modified or restored to original contours during or after final closure of the site unless deemed necessary at the time.

6.3.2 Reclamation

SPGM will be sampled and tested to determine soil nutrient status.

Fertilizer application recommendations will be solicited from a soil testing laboratory and utilized in consideration of existing soil properties, topography, seed mix components, and practical experience.

The seedbed will be prepared in a fashion which would promote a stable, self-supporting prairie grassland. Rates for seed mixture will approximate:

<u>Species</u>	Rate (lb/acre)			
Western Wheatgrass Pubescent Wheatgrass	6.0 4.0			
Smooth Brome	2.0			

Seed implantation will be performed with a seed drill during the first favorable planting period; typically from April 15 through June 7, August 10 through September 15, or after October 20. A straw mulch or cover crop will be applied immediately after seeding to provide temporary erosion control. Reseeding or interseeding will be performed if grass fails to establish over

large areas. Bale dikes, excelsior mats, or other appropriate measures will be utilized for control of significant erosion features.

6.3.3 Post-Closure Surface Care

The Heskett Site will be incrementally reclaimed as individual disposal trenches are filled and closed. Post-closure surface care will continue until five years after final closure of the facility. Reclamation failures at the site would extend the surface care requirement period until such time as the deficiency is permanently corrected.

The post-closure maintenance will begin from the date of vegetation seeding. During the first year, each reclaimed area will be examined monthly and after storm events to:

- 1. Verify that final contours and drainages are maintained,
- 2. Ensure that healthy vegetative cover is established, and
- Maintain proper erosion control measures which may be in-place at the site.

Post-closure inspections will be performed quarterly for the remaining four years of the surface care period. Inspection results and corrective actions will be logged. These records will be summarized into an annual facility status report and forwarded to the NDSDH.

The reclaimed area will resemble a gently sloping hill supporting a typical grassland prairie. The growth of woody species (whose root system might penetrate the underlying clay cap) will be suppressed through cutting or chemical treatment. Montana-Dakota may eventually sell hayland or pasture rights if the integrity and plant growth productivity of the site can be maintained with minimal care. No haying or grazing activities will be allowed

for at least three years following initial vegetation establishment of each reclaimed increment.

Montana-Dakota intends to continue ownership of the site for the forseeable future. No plans to allow surface disturbance or agricultural utilization (except hayland or pasture usage) of the reclaimed area exist. The current industrial land use zoning classification will be retained.

EXHIBIT 6-A

EXISTING CONDITIONS AND AREA MAPS

EXHIBIT 6-B

PHASE I DEVELOPMENT

EXHIBIT 6-C

PHASE I CLOSURE - PHASE II DEVELOPMENT

EXHIBIT 6-D

FINAL CLOSURE

7.0 GROUNDWATER MONITORING

7.1 Operational Monitoring

Analysis of disposal site groundwater quality and potentiometric surfaces will focus upon the uppermost 15 feet of the Cannonball Formation saturated zone. Because facility expansion will eventually destroy most of the existing site instrumentation positioned for possible water quality monitoring purposes, a new series of monitoring wells will be installed prior to waste placement. Four new wells (3 downgradient, 1 upgradient) will be placed in the approximate areas described in Exhibit 6-B. These wells will be constructed similarly to existing site wells and fitted with a 20 foot screen, the lower 15 feet of which will be positioned below the existing water table. Each well will be lithologically logged during installation.

With the possible exception of infrequent potentiometric level determinations, all other wells existing at the site will not be relied upon for any monitoring functions. These deactivated wells will remain undisturbed until such time as their permanent closure is warrented by facility expansion. Permanently closed wells will be sealed their entire length with grout or other appropriate material in order to assure that groundwater communication between subsurface strata does not occur along the well casing.

Wells which monitor facility operations will be sampled quarterly for the first year to establish background chemical data. The first quarterly sample will be acquired before waste is placed in the facility. The sampling frequency will thereafter be reduced to a semi-annual basis throughout the remaining operational life of the facility.

Water quality samples will be collected and analyzed by personnel experienced in groundwater characterization protocols. Static water table

elevation measurements will be made in advance of any well disturbances.

Wells will be purged by pumping three to five well volumes (or until dry)

immediately prior to well sampling. Delays in sampling greater than 24 hours

will require re-purging.

All first-year background groundwater samples will be analyzed for water quality parameters specified in Table 7-1. This list of parameters will be reduced to a semi-annual groundwater quality characterization of Table 7-2 constituents subsequent to the completion of the first year collection of background data gathering.

7.2 Post-Closure Monitoring

Annual post-closure groundwater monitoring will continue for 30 years after final closure of the entire facility. Sampling for the first five years of the closure period will be performed on the same wells for the same chemical parameters as is in effect for operational monitoring program at the time of closure (i.e., Table 7-2 constituents).

If, after review of all accumulated operational and five years of post-closure data, no leachate contamination is statistically evident in the groundwater when compared to background levels, the suite of annually-monitored parameters will be reduced to:

pH Static Water Level

Specific Conductance Arsenic

Total Dissolved Solids Boron

Carbonate Selenium

Bicarbonate Calcium

Sod ium Lead

Sulfate Temperature

TABLE 7-1

Background Groundwater Quality Analysis Parameters

Alkalinity, total (as CaCO₃)

Arsenic (As)*

Barium (Ba)*

Bicarbonate (HCO₃)

Boron (B)*

Cadmium (Cd)*

Calcium (Ca)

Carbonate (CO₃)

Chloride (C1)

Chromium, total (Cr)*

Fluorine (F)

Hardness (as CaCO₃)

Iron (Fe)*

Lead (Pb)*

Magnesium (Mg)

Manganese (Mn)*

Mercury (Hg)*

Molybdenum (Mo)*

Nitrate (NO₃)

pH**

Potassium (K)*

Selenium (Se)*

Silver (Ag)*

Sodium (Na)

Specific Conductance**

Sulfate (SO₄)

Temperature**

Total Dissolved Solids (TDS)

*Analyses only for dissolved metal concentration
**Field determinations

Static water levels will be measured from top-of-pipe.

TABLE 7-2

Operational Groundwater Quality Analysis Parameters

Alkalinity, total (as CaCO₃)

Molybdenum (Mo)*

Arsenic (As)*

pH**

Bicarbonate (HCO₃)

Potassium (K)*

Boron (B)*

Selenium (Se)*

Cadmium (Cd)*

Sodium (Na)

Calcium (Ca)

Specific Conductance**

Carbonate (CO₃)

Sulfate (SO₄)

Hardness (as CaCO₃)

Temperature**

Lead (Pb)*

Total Dissolved Solids (TDS)

Magnesium (Mg)

*Analyses only for dissolved metal concentration

**Field determinations

Static water levels will be measured from top-of-pipe.

Characterization of these groundwater quality indicator parameters will continue for the remaining 25 year post-closure groundwater monitoring period.

7.3 Quality Assurance and Data Management

Montana-Dakota currently relies upon experienced independent contractors to acquire analytical and potentiometric groundwater information. This practice is expected to continue for the forseeable future. Minimum levels of performance for such contractors will include:

- Use of non-contaminating, non-aerating equipment for all monitoring activities. Equipment other than bailers or submersible diaphragm pumps for purging and sampling must be specifically approved by Montana-Dakota before use. Air-lift pumps may not be used in any circumstance.
- All samples must be conditioned, preserved, and analyzed according to methods and limitations prescribed in Methods for Chemical Analysis of Water and Wastes, EPA-600/4-79-020 (revised March 1983).
- Description of field sampling methods and analytical quality controls will be required of each contractor. Evidence of appropriate laboratory certification and participation in interlaboratory comparison will be requested. Brief resumes of involved personnel must also be provided.
- Cation/anion balances and replicate values for each set of data must be identified on the analysis report.

Montana-Dakota shall annually evaluate accumulated water table elevation and groundwater quality information gathered from site instrumentation by the contractor. Post-closure groundwater data obtained from wells surrounding

the adjacent Heskett ash waste pile (WS-series wells) will also be examined to determine their possible contribution to Heskett Site contamination monitoring. Data evaluation techniques will include chemical constituent comparisons between upgradient and downgradient wells at the same point in time and comparisons of individual wells to their historic backround concentrations. A variety of statistical tools will be examined for application against the data base. Goodness-of-fit testing will confirm or deny the existence of normally distributed data. Specific test procedures might include hypothesis testing (t-test), parametric analysis of variance (ANOVA), ANOVA's based upon ranks, and perhaps tolerance intervals. Significance will be established at the 0.05 confidence level.

Operational groundwater monitoring will typically be performed in the second and fourth calendar quarters. Annual post-closure groundwater monitoring will be performed during the second or third quarter. All groundwater sample analysis results, water table surface elevations, and other associated information will be forwarded to the North Dakota State Department of Health within 30 days of its receipt from the independent groundwater sampling contractor. Cumulative statistical data summaries (including descriptions of the statistical methods employed) will be forwarded to the Department annually as they are completed.

8.0 PERMITTING

Upon approval by the North Dakota State Department of Health of the proposed solid waste disposal facility but before the onset of actual disposal activities, a notarized affidavit shall be recorded in the tract system of the Morton County Registrar of Deeds. This affidavit shall specify that the SW1/4 of Section 10, Range 81 West, Township 139 North, has been permitted to receive solid waste for disposal. Another affidavit shall be similarly filed upon final closure of the site which provides information concerning waste types, location, construction, and management. Copies of both instruments shall be forwarded to the North Dakota State Department of Health within 30 days of recording.

Other requirements, as specified by the North Dakota State Department of Health and other regulatory authorities, will be complied with as they become evident.

Upon the beginning of normal operations of the proposed disposal facility all waste placement at the current disposal facility (i.e. the Heskett Ash Pile) will cease. The ash pile will then be closed according to the specifications described in the relevant Special Use Disposal Site permit application (submitted to the North Dakota State Department of Health on March 10, 1986: Solid Waste Permit issuance still pending).

APPLICATION FOR PERMIT TO CONSTRUCT/OPERATE A SPECIAL USE DISPOSAL SITE NORTH DAKOTA STATE DEPARTMENT OF HEALTH SFN 8376 (01/86)

NOTE: Please remd the instructions for details on information and documents required to support your application.

PERSON TO BE RESPONSIBLE FOR C Station Manager, He	APPLICATION DATE March 1, 1989				
ADDRESS OF APPLICANT 400 North Fourth Street, Bismarck, ND 58501					TELEPHONE NUMBER (701) 222-7900
NAME OF SITE Heskett Ash Site	Hesket	SS OF SITE ct Station, 2	TELEPHONE NUMBER D (701) 663-9576		
PROPERTY OWNER Montana-Dakota Utilities	ADDRESS OF PROPERTY OWNER 400 North Fourth St., Bismarck, ND 58501				TELEPHONE NUMBER (701) 222-7900
LEGAL DESCRIPTION OF SITE A Portion of the SW1/4		SECTION 10	TOWNSHIP 139N	RANGE 81W	COUNTY Morton
PRESENT ZONING CLASSIFICATION	OF SITE	DOES PRESENT ZO	ONING ALLOW THIS	PROPOSED USE?	EXPECTED LIFETIME OF SITE
Industrial		_x YES N	10		28YEARS

I hereby affirm all information in this application is true and accurate to the best of my knowledge and belief.

SIGNATURE OF APPLICANT

SEND COMPLETED APPLICATION TO:

NORTH DAKOTA STATE DEPARTMENT OF HEALTH
DIVISION OF HAZARDOUS WASTE MANAGEMENT AND SPECIAL STUDIES
1200 MISSOURI AVENUE, ROOM 302
BOX 5520
BISMARCK, ND 58502-5520

INSTRUCTIONS FOR COMPLETING AN APPLICATION FOR A PERMIT TO CONSTRUCT AND/OR OPERATE A SPECIAL USE DISPOSAL SITE

APPLICATION AND ALL ACCOMPANYING DOCUMENTS MUST BE SUBMITTED IN QUADRUPLICATE

These instructions are considered to be general guidelines only. More or less data may be required by the Department depending on the waste and on conditions at the specific disposal sites. The information required for a specific site will be determined by a preliminary site evaluation by the Department. This may eliminate the expense of investigations at some sites which are obviously unacceptable. After the required site investigation has been completed by the applicant, further work may be required as deemed necessary by the results of the initial investigation.

Permit applications must be prepared and compiled as one cohesive document that logically presents all information necessary to review a permit. Any modifications or information submitted to the Department subsequent to the initial permit application should be in a format that can be physically incorporated into the formal permit application. The Department reserves the right to reject or return a permit application if it is not complete, or if the information is not presented in an orderly and logical format.

The instructions below address the following required information:

- I. Waste Information
- II. Location Information
- III. General Geographic Setting
- IV. Site Specific Characteristics (Geology and Hydrology)
- V. Construction Plans and Specifications
- VI. Groundwater Monitoring
- VII. Operation and Management Methods
- VIII. Record Solid Waste Activity with County Registrar of Deeds
- IX. Closure
- I. WASTE INFORMATION: For each type of solid waste to be managed, specify (a) amount in tons per day or cubic yards per day, or gallons per day; (b) physical description; and (c) qualitative and quantitative chemical analyses.
- II. LOCATION INFORMATION: Show the facility location on a USGS 7 ½ minute quadrangle map (scale not less than 1:24,000). Also include a current map or aerial photograph of the area showing existing land use. Aerial

photographs are often available from the Agricultural Stabilization and Conservation Service (ASCS). The map or aerial photograph shall be of sufficient scale to show those man-made and natural features of the area, such as water courses, flood plains, dry runs, wells, roads, and other appropriate details and the general topography of the area.

This section should also address the zoning within a quarter mile of the proposed location and any proposed changes in zoning required for waste disposal activities. The Department may request additional information from the applicant and/or the local zoning authorities regarding the zoning requirements for the site.

- III. GENERAL GEOGRAPHIC SETTING: This narrative should be a general description of the site. It should include a general treatment of the geography, climate, soils, vegetation, geology, and groundwater to give an adequate background and foundation for effective presentation of the hydrogeology of the site and adjacent areas. The description should not be more elaborate than is necessary to accomplish this purpose.
- IV. SITE SPECIFIC CHARACTERISTICS: (Geology and Hydrology) This information shall be a detailed, integrated evaluation of the hydrogeologic conditions beneath and adjacent to the proposed site pertinent to the production and migration of refuse leachate, and to the capability for leachate containment and attenuation to acceptable quality before reaching a present or potential water source.

A qualitative and quantitative analysis of the effects of the emplacement of the refuse on the existing hydrologic regime must be addressed. Hydrogeologic data must be based on a systematic investigation utilizing data from borings, piezometers, water wells and other nearby water sources, the chemical characteristics of subsurface waters, and other available information.

After all pertinent information has been obtained, site investigation borings must be properly sealed or grouted in a manner that will prevent cross-contamination or interconnection of formations of strata.

A. TYPE AND EXTENT OF SUBSURFACE MATERIALS: A minimum of one boring is required for each ten (10) acres at the site. Regardless of minimum requirements, the degree of subsurface information obtained must be sufficiently comprehensive to allow the design hydrologist/geologist or engineer to make a detailed evaluation of the hydrologic and geologic properties of the subsurface materials, both at the site and laterally extrapolated, such that a reasonable estimate of the effects of these materials on the containment, migration, and attenuation of the leachate can be made. The site specific details must be incorporated into at least two or three cross-sections showing details on the site's geology, hydrology, and elevation. Any clay-rich soil to be used for compacted clay liners or cap must be accurately identified, located, and analyzed.

Borings used for the cross-sections must extend to a minimum depth of fifty (50) feet below the proposed elevation of the buried refuse, or if pertinent, a sufficient depth into bedrock to

determine its character and hydraulic characteristics. In-situ permeability tests may be necessary to determine the permeability of the formations surrounding and underlying the proposed facility. A lithologic and geophysical log may be required for each boring. The geophysical log may include a gamma-gamma and a gamma-density log.

The placement, construction and design of borings piezometer(s) and/or monitoring well(s) should be coordinated with an appropriate representative of the Department. The complete logs of each boring must be provided as well as the following information.

- 1. Date of boring
- 2. Location of boring
- Method of drilling including the circulation technique (air, air-mist, water, mud)
- 4. Method of sampling
- 5. Diameter of borehole
- 6. Elevation at surface of boring, referenced to mean sea level to the nearest 0.1 foot
- 7. For monitoring wells, the elevations of the screened interval
- 8. Depth and elevation of the water level in the borehole or piezometer
- 9. Method of piezometer and/or monitor well completion or method used to seal and abandon borehole, whichever is applicable
- B. MATERIAL CLASSIFICATION AND ANALYSIS: Material samples should be taken by split spoon or shelby tube at depths in the boring operation where the type of material encountered differs from that immediately overlying, or in homogeneous materials, at regular intervals. These samples and any samples of clay-rich soil to be used for clay liners must be classified, tested, and analyzed in a materials testing laboratory and the following data reported:
 - Textural classification (USDA System or Unified System) plotted on the appropriate textural classification.
 - 2. Particle size distribution curves of representative samples.
 - Coefficient of permeability based on field (preferred) and/or laboratory tests.
 - 4. Ion-exchange capacity of samples and ability to adsorb and "fix" heavy metals. Results should be reported in millequivalents per 100 grams of sample. Most fine textured materials will favor ion-exchange because of their mineralogy,

low permeability and large surface area. Sands and gravels are less effective and hence will permit less attenuation of leachate per unit of flow path, and will allow more rapid rates of travel.

C. HYDROLOGY: The hydrology of the site will dictate its ultimate suitability and the final design of the facility.

The design and operation, if soundly based on hydrogeologic principles, will incorporate one or more of the following: elevating the base of the disposal facility above any existing or potential zones of saturation; utilization of existing natural environment to contain and "treat" the leachate; modification of the natural environment to provide the desired hydrogeologic characteristics to either contain the leachate within the refuse, or to provide attenuation in the resulting hydrologic flow system and; isolate the refuse from the surrounding flow system by the use of a natural or artificially-installed liner, and thence collecting and treating the leachate by an engineered system.

Placement of refuse above the zone of saturation does not preclude all leachate production and resultant groundwater pollution, since precipitation during site operation as well as after site closure may generate leachate.

The hydrogeological factors which must be sufficiently considered include:

- The permeability of the subsurface materials beneath and surrounding the area to be filled with waste;
- The rate(s) and direction(s) of groundwater movement;
- 3. The spatial distribution of the potentiometric surface(s) at the time instrumentation is completed, as well as after the facility is constructed, including the water table and the potentiometric surfaces for aquifers in the vicinity of the site;
- 4. Any structural features which may affect the flow path for groundwater and/or leachate migration. Facilities proposed for areas underlain by significant lignite seams or for areas where lignite has been mined should include a structural contour map of the base of the lignite seam;
- 5. The effects of facility construction and the emplacement of the refuse on the existing hydrologic regimen, including consideration of flow-system changes as a result of site disruption, construction, or pumpage from present or potential water sources; and
- 6. The thickness, composition, and configuration of the final cover of the filled area, as well as the post-reclamation vegetation and its effect on surface water infiltration.

- V. CONSTRUCTION PLANS AND SPECIFICATIONS: Submit a detailed narrative report with the following:
 - A. A detailed topographic map of the existing site, (scale 1" = 200' or larger) using a contour interval of five (5) feet where the relief exceeds twenty (20) feet, and two (2) foot contour intervals where the relief is less than twenty (20) feet. The map should show all buildings, ponds, streams, ditches, utilities, roads, fences, location(s) of boreholes, and any other items of significance.
 - B. A second topographic map, matched to the scale of the above map, prepared to completely describe the final construction of the proposed site. This should include the construction of disposal areas of trenches; the development of control features for surface water run-off, run-on, and drainage; any installation for the collection and treatment of leachate; access roads; buildings; utilities; fencing; monitoring wells; topsoil and subsoil stockpiles; cover material stockpiles; liner and clay cap material stockpiles; and all other features of the developed facility.
 - C. A soil survey report with appropriate maps and a narrative. This section should describe the types of soils at the site and describe the thickness of the topsoil ("A" horizons) and the subsoil ("B" horizons). A description of how these horizons will be removed, handled, and stockpiled for later respreading during site reclamation must be included in detail. This stockpiled soil material (Suitable Plant Growth Material or SPGM) must be handled, stockpiled, and the piles revegetated in a manner that minimizes erosion and/or contamination of the material. The maps included in the construction plans should identify locations of SPGM stockpiles.
 - D. Submit a series of cross-sections or profiles (scale 1" = 200'or larger) of the developed site. These sections should number no less than three (3), but in any case must be adequate to define the three dimensional distribution of materials to a depth of fifty (50) feet below the proposed elevation of refuse.

These profiles should clearly indicate the constructed pits, the geologic strata or lithology surrounding and underlying the disposal facility, the placement of any required side and/or bottom liners, the placement of any surface water sumps, the placement and screened interval of appropriate monitoring wells, the levels of the water table, groundwater flow directions, the proposed sequence of placement and total compacted thickness of each lift of waste, thickness of cover material for each lift, and the slope of the completed landfill with final cover in place. These cross-sections should be in a format that allows permit reviewers to obtain a quick and concise view of the proposed facility.

E. The construction plans should address the Quality Control and Assurance Procedures to be used during site construction, liner

installation, groundwater monitoring, site operation, and site closure. The Department may require a routine report from the facility on the status of the operation and its construction (especially the liners) and its operation (especially surface water control and dust control). The description of the Quality Control Procedures for liner construction or any other appropriate construction (clay cap, etc.) should be signed by an independent registered engineer. A routine status report could be included with the quarterly groundwater monitoring report.

- VI. GROUNDWATER MONITORING: The design of a groundwater monitoring system and the parameters for water analysis should be based on an assessment of the waste analysis, the site's geology and hydrology, the plans for construction, and the facility's method of operation. Items that should be discussed include:
 - A. The water level in the boreholes immediately after boring completion and sufficient periodic measurements of the depth to water until stabilization has been attained.
 - B. The vertical and horizontal components of the hydraulic gradients; a contour map for each potentiometric surface (data for which may be based on local domestic and industrial wells, and on-site piezometers and boreholes).
 - C. The location of one or more up-gradient groundwater quality monitoring well nests and a minimum of two down-gradient groundwater quality monitoring piezometer nests to be located in the expected path(s) of the leachate migration. The location and construction of the piezometers should be in accordance with the hydrogeology of the site as determined by the exploratory program, subject to final approval by the Department.
 - D. All monitoring wells must be cased and must be installed in compliance with Chapter 43-35 of the North Dakota Century Code and in compliance with Chapter 33-18-01 of the North Dakota Administrative Code governing water well construction. Monitoring wells must be completed in a manner that maintains the integrity of the borehole and precludes cross-contamination or interconnection of aquifers or geologic strata. The casing must be screened with an appropriately sized factory slotted pipe and packed with clean sand or gravel to allow collection of groundwater samples. The annular space between the well casing and borehole must be properly sealed to prevent contamination of samples and the groundwater.

At the surface, all wells must have a proper apron to prevent surface water infiltration and a protective outer casing to prevent physical damage to the well. The outer casing should include a cap and lock.

The monitoring piezometer should be constructed of non-metallic material, with a two (2) inch or greater inside diameter. Such piezometers will aid in evaluation of the effectiveness of the proposed facility design, and provide an early warning of design malfunction so that timely remedial measures can be initiated.

E. Background analysis for the following chemical characteristics shall be mandatory for at least one groundwater sample taken from a piezometer installed in the expected flow path(s) of the leachate.

EPA standard procedure shall be used for obtaining, transporting, and analyzing samples. The results of the analysis shall be submitted to the Department before an operating permit can be issued.

CHEMICAL PARAMETERS FOR GROUNDWATER ANALYSIS

- Total Alkalinity (CACO₃)
- Arsenic (AS*)
- 3. Bicarbonate (HCO₂)
- 4. Cadmium (Cd) *
- 5. Calcium (Ca) *
- 6. Carbonate (CO₃)
- 7. Chloride (C1)
- 8. Total Chromium *
- 9. Fluoride (F-)
- 10. Hardness (as calcium carbonate)
- 11. Iron (Fe) *
- 12. Lead (pb) *
- 13. Magnesium (Mg) *
- 14. Manganese (Mn) *
- 15. Mercury (Hg) *
- 16. Nitrate (NO₃)
- 17. pH
- 18. Potassium (K) *
- 19. Sodium (Na) *
- 20. Specific Conductance**
- 21. Sulfate (SO_A)
- 22. Total Dissolved Solids
- 23. Selenium (Se) *
- 24. Barium (Ba) *
- 25. Silver (Ag) *
- 26. Molybdenum *
- * Analyzed for "dissolved" metals. (i.e. samples filtered through an 0.45u membrane filter.
- ** Reported in micromhos at 25 degrees C.

Additional parameters may be assigned by the Department. These parameters will be determined by the detailed chemical analysis of the waste.

All constituents reported in milligrams per liter (mg/l).

Periodic groundwater samples shall be collected and analyzed by the applicant, or his designated representative, to monitor for alterations in groundwater quality. The frequency of samples and parameters required for analysis will be specified by the Department.

- VII. OPERATION AND MANAGEMENT METHODS: The permit application must contain details on the facility's operation and maintenance. This should include in detail:
 - A Personnel
 - B Contingency and emergency plans
 - C Control of access to the site (fence, gates, signs, etc.)
 - D Roads (including maintenance)
 - E Confining disposal to as small an area as possible
 - F Dust control
 - G Spill prevention and cleanup
 - H Storage (if any)
 - I Source and thickness of cover
 - J Frequency of covering
 - K Methods of waste handling and haulage
 - L Leachate (including pit water) and surface water run-on/run-off control, handling, and disposal
 - M Recordkeeping
 - N Development Plans
 - O Quality Assurance and Quality Control
- VIII. RECORD OF SOLID WASTE DISPOSAL ACTIVITY WITH THE COUNTY REGISTER OF DEEDS: Prior to onset of disposal activities, the permittee shall record a notarized affidavit with the County Register of Deeds to place a notation in the County's tract system specifying that this solid waste management site, as specified in the legal description, is permitted to accept solid wastes for disposal.

This affidavit shall specify that another affidavit must be recorded upon the facility's final closure.

Upon closure, an additional affidavit shall be recorded, as above, specifying any final details regarding the types of wastes disposed at the site, as well as any final details regarding the site's location, construction, management, etc.

The Department must be provided with a copy of both affidavits certified by the County Register of Deeds in the county in which the disposal site is located, within thirty (30) days of their recorded dates.

IX. CLOSURE: A closure plan must be included which describes in detail the procedures to be followed and the materials and manpower to be used in accomplishing final closure of the disposal facility. Generally, closed sites should have an adequate slope to promote surface water run-off without causing active erosion of the final cover.

The plan should include whatever maps, cross-sections, diagrams, and narrative is necessary to detail such things as:

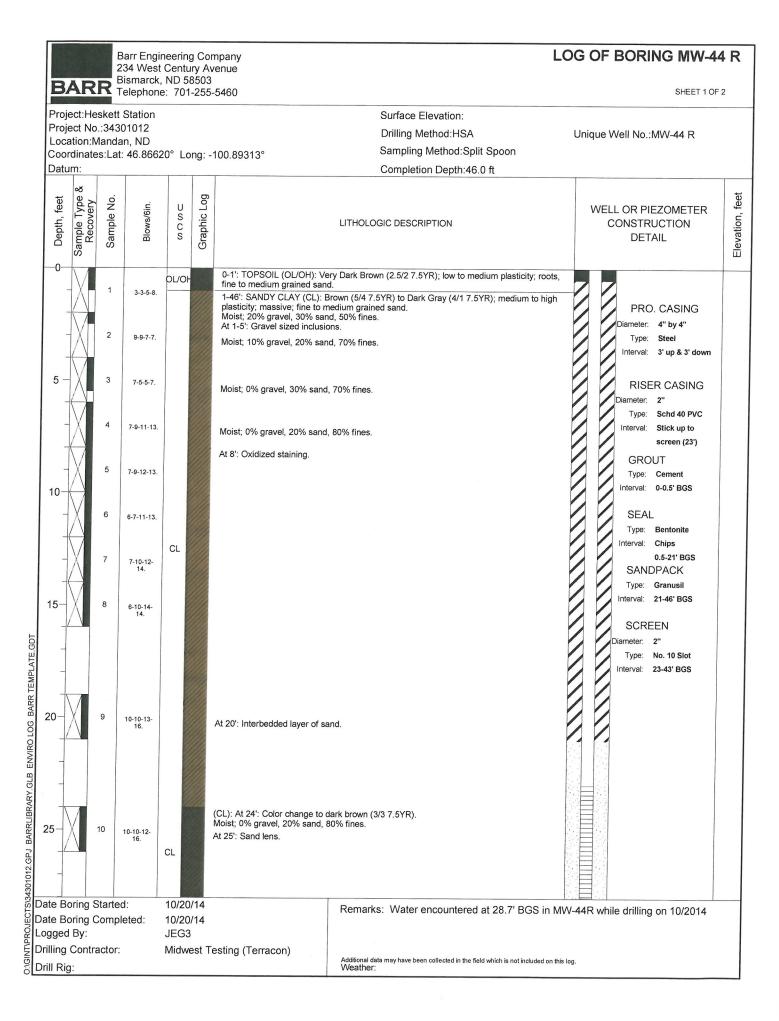
- A. Schedule or timetable of closure.
- B. Final elevation of disposed wastes.

- C. Equipment necessary to accomplish closure.
- D. Type, volume, and source of cover material.
- E. Construction and placement of clay and/or synthetic cap and any drainage layers.
- F. Final grading/contouring of the facility.
- G. Topsoil replacement.
- H. Seed, fertilizer, and irrigation necessary to establish cover.
- I. Surface water run-off.
- J. Schedule for post-closure groundwater monitoring.
- K. Maintenance of leachate control or collection system.
- L. A short description of the utilization and maintenance of the disposal area after closure. The closed site should be managed in a careful manner that will prevent deterioration of the desired plant community and the low permeability final cover. The closure plan should provide for routine inspection and maintenance of the closed site, including the replanting of vegetation and the replacement of any eroded final cover.

9.0 SUMMARY

A permanent coal combustion ash disposal facility will be constructed north of Mandan, ND adjacent to the R. M. Heskett power station. The disposal site will be incrementally developed to minimize impact upon the landscape and reduce potential for fugitive dust emissions and waste leachate generation. Disposal trenches will be bi-annually constructed and equipped with an in situ clay liner sloping towards an in-pit leachate collection system. Collected leachate will be evaporatively treated in a clay-lined surface impoundment.

Earthen berms and tree plantings will provide visual and acoustical obstructions between facility operations and adjacent dwellings to the south. Additional landscaping may be performed as needed. Filled trenches will be covered with a compacted clay cap along with uncompacted overburden and plant growth materials to a total depth of eight feet. Reclamation will be performed with each disposal trench closure and produce a gently sloping grassland.


The groundwater immediately beneath the site is of poor quality and marginally useful as a domestic or agricultural resource. All waste will be emplaced above the historic water table. Facility operations should not effect local groundwater flow. A monitoring program will be established to characterize deviations in groundwater hydrology and chemistry. Contingencies have been identified in the event of site characterization errors, incompatible facility design, or operational difficulties as outlined in this permit application.

10.0 REFERENCES

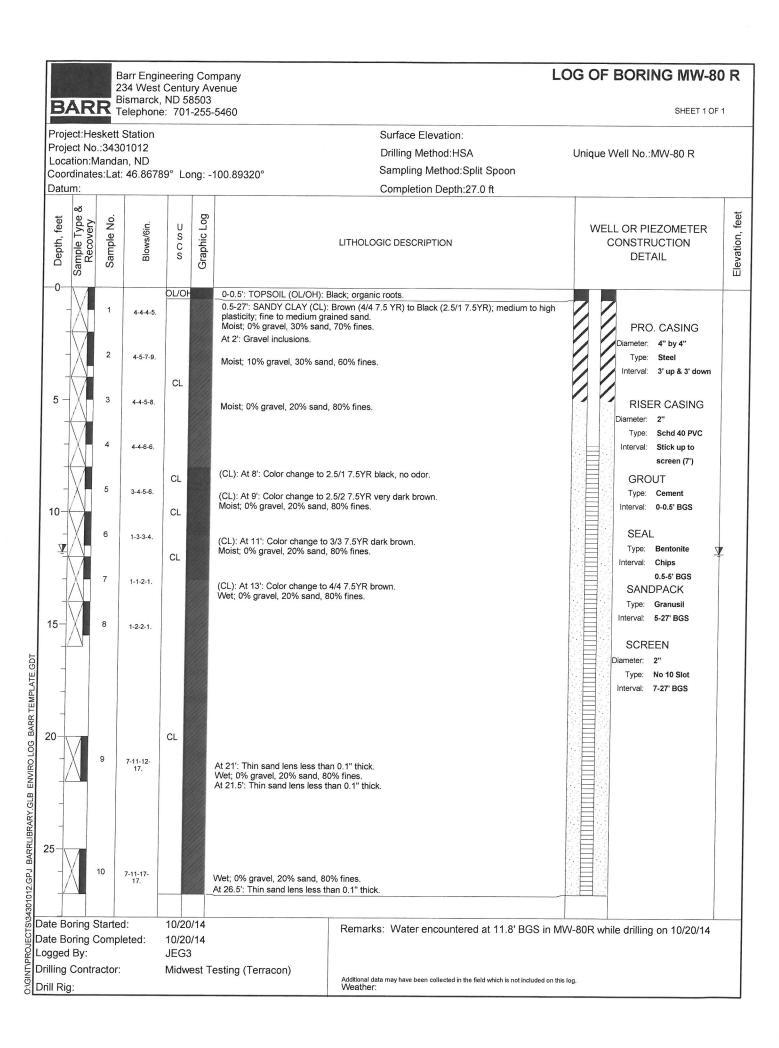
- Ackerman, D.J., 1977, Ground-water basic data for Morton County, North Dakota: North Dakota Geological Survey Bulletin 72, pt. II and North Dakota Water Commission County Ground-Water Studies 27, pt. 2, 528 p.
- Ackerman, D.J., 1980, Ground-water resources of Morton County, North Dakota: North Dakota Geological Survey Bulletin 72, pt. III and North Dakota Water Commission County Ground-Water Studies 27, pt. III, 51 p.
- Armstrong, C.A., and Schmid, R.W., 1986, Hydrogeologic Investigation of the Heskett Station Ash Pile for Montana-Dakota Utilities: Unpublished report to Montana-Dakota Utilities Company, Bismarck, North Dakota, 8 p.
- Beaver, F.W., 1986, The effect of fly ash and flue-gas desulfurization wastes on groundwater in a reclaimed lignite stripe mine disposal site: University of North Dakota Ph.D dissertation, p. 1-210.
- Beaver, F.W., 1987, Verbal communication: Manager of the Coal By-Products Utilization Laboratory, University of North Dakota, Grand Forks, ND.
- Bluemle, J.P., 1971, Geology of McLean County, North Dakota: North Dakota Geological Survey Bulletin 60, pt. I and North Dakota State Water Commission County Ground-Water Studies 19, pt 1, p. 16-20.
- Carlson, G.C., 1983, Geology of Morton County, North Dakota: North Dakota Geological Survey Bulletin 72, pt. I and North Dakota Water Commission County Ground-Water Studies 29, pt. 1, 37p.
- Cvancara, A.M., 1976, Geology of the Cannonball Formation (Paleocene) in the Williston Basin, with reference to uranium potential: North Dakota Geological Survey Report of Investigation 57, 22 p.
- Drever, J.I., 1982, The geochemistry of natural waters: Prentice-Hall Inc., Englewood Cliffs, NJ, 388 p.
- Edwards, J.M., and Ableiter, J.K., 1936, Soil survey of Morton County, North Dakota: U.S. Department of Agriculture, Soil Survey, Series 1936, no 28, 145 p.
- Freeze, R.A. and Cherry, J.A., 1979, Groundwater: Prentice-Hall Inc., Englewood Cliffs, NJ, 604 p.
- Groenewold, G.H., Hemish, L.A., Cherry, J.A., Rehm, B.W., Meyer, G.N., Clayton, L.S. and Winczewski, L.M., 1979, Geology and geohydrology of the Knife River Basin and adjacent areas of west-central North Dakota: North Dakota Geological Survey Report of Investigation 64,402 p.
- Groenewold, G.H., Cherry, J.A., Manz, O.E., Gullicks, H.A., Hassett, D.J. and Rehm, B.W., 1980, Potential effects on groundwater of fly ash and FGD waste disposal in lignite surface-mine pits in North Dakota: Proceedings of the Symposium on Flue Gas Desulfization, Houston, Texas, p. 657-693.

- Groenewold, G.H., Koob, G.J., McCarthy, B.W., and Peterson, W.M., 1983, Geological and geochemical controls on the chemical evolution of subsurface water in undisturbed and surface-mined landscapes on western North Dakota: North Dakota Geological Survey Report of Investigation 79, 151 p.
- Hassett, D.J. and Groenewold, G.H., 1986, Attenuation capacity of western North Dakota overburden sediments: North Dakota Mining and Mineral Resource Research Institute, Bulletin 86-04-MMRRI-01, 105 p.
- Jensen, R., 1984, Climate of North Dakota: North Dakota National Weather Service, North Dakota State University, Fargo, North Dakota, 45 p.
- Koob, R.D. and Groenewold, G.H., 1984, Alkaline buffering capacity of Northern Plains overburden materials: Final Technical Report, U.S. Department of Energy, DOE/FC/10120-1717.
- Kume, J., and Hansen, D.E., 1965, Geology and ground water resources of Burleigh County, North Dakota: North Dakota Geological Survey Bulletin 42, pt. I, and North Dakota Water Commission County Ground-Water Studies 3, pt. 2, p. 46.
- Patterson, D.D., Johnsgard, G.A., Sweeney, M.D., and Omodt, H.W., 1968, Soil survey report: North Dakota State University Agricultural Experiment Station, Fargo, ND, Bulletin No. 473, 150 p.
- U.S. Environmental Protection Agency, 1982, Handbook for sampling and sample preservation of water and waste water: U.S. EPA 600/4-82-029, Cincinnati, OH, p. 1-88.
- U.S. Environmental Protection Agency, 1979, Methods for chemical analysis of water and wastes: U.S. EPA 600/4-79-020, 3rd ed., Cincinnati, OH.
- U.S. Department of Commerce, 1973, Monthly normals of temperature, precipitation and heating and cooling days 1941-1970: U.S. Department of Commerce, Climatography of the United States, no 81 (North Dakota).

Appendix E 2014-2016 Boring Logs

		2	Barr Engii 34 West	Centi	ury Av	venue	LO	OG OF	BORING MW-44	R
BA	RI	3 T	sismarck, elephone	ND 5 e: 70	8503 1-255	-5460			SHEET 2 OF 2	2
Project Project Location	ct:Hes ct No. ion:M inates	kett :3430 anda	Station 01012 In, ND	(1)		·100.89313°	Surface Elevation: Drilling Method:HSA Sampling Method:Split Spoon Completion Depth:46.0 ft	Unique	Well No.:MW-44 R	
Depth, feet	Sample Type & Recovery	Sample No.	Blows/6in.	USCS	Graphic Log		LITHOLOGIC DESCRIPTION		LL OR PIEZOMETER CONSTRUCTION DETAIL	Flovetion foot
30-		11 12	8-12-14- 18. 8-13-16- 27.	CL		(CL): At 24': Color change to da Wet; 0% gravel, 20% sand, 80% At 30.5': Sand lens. (CL): At 32': Color change to da			PRO. CASING Diameter: 4" by 4" Type: Steel Interval: 3' up & 3' down RISER CASING Diameter: 2" Type: Schd 40 PVC Interval: Stick up to screen (23') GROUT Type: Cement Interval: 0-0.5' BGS SEAL Type: Bentonite Interval: Chips	<u> </u>
45-		114	14-18-27- 34.	√SC,		୍(SC): At 45.8': Clayey Sand (SC) greenish gray (4/10G Gley 2).), fine to medium grained, low to medium plasticity, dark		0.5-21' BGS SANDPACK Type: Granusil Interval: 21-46' BGS SCREEN Diameter: 2" Type: No. 10 Slot Interval: 23-43' BGS	
55-										
ate Bori ogged B	ng Contractor: Midwest Testing (Terracon) Additional data may have been collected in the field which is not included on the					nile drilling on 10/2014				

State of North Dakota


BOARD OF WATER WELL CONTRACTORS

900 E. BOULEVARD • BISMARCK, NORTH DAKOTA 58505

MONITORING WELL REPORT

State law requires that this report be filed with the State Board of Water Well Contractors within 30 days after completion or abandonment of the well.

1. WELL OWNER	Well head completion:
	24" above grade Other x
Name MDU-Heskett Station	If other, specify 4" x 4" x 5' steel cover
Address 2025 38 th Street	Was protective casing installed? ■ Yes □ No
Mandan, North Dakota	Was well disinfected upon completion? □ Yes ■ No
2. WELL LOCATION (MW-44R)	
Address (if in city) (see attached drawing)	5. WATER LEVEL
	Static water level 28.5 feet below surface
CountyMorton	If flowing: closed in pressure psi or ft. above land surface
<u>SE</u> ¼ <u>SE</u> ¼ <u>SW</u> ¼ Sec. <u>10</u> Twp. <u>139</u> N. Rge. <u>81</u> W.	6. WELL LOG Depth (Ft.)
Lat. <u>46.86620</u> Long.: <u>-100.89313</u>	
Altitude:	Formation From To
3. METHOD DRILLED	Topsoil 0 0.5
■ Auger Other	Sandy lean clay 0.5 5
4. WELL CONSTRUCTION	Sandy fat clay 5 46
Diameter of Hole 8 inches Depth 46 feet	, , , , , , , , , , , , , , , , , , , ,
Riser: ■ PVC □ Other	
■ Threaded □ Solvent □ Other	
Riser rating SDR Schedule40	
Diameter 2.0 inches	
From <u>+2</u> ft. to <u>23</u> ft.	
Was a well screen installed? ■ Yes □ No	
Material Schedule 40 PVC Diameter 2.0 inches	
Slot Size <u>#10</u> set from <u>23</u> feet to <u>43</u> feet	
Sand packed from21 ft to46 ft	(Use separate sheet if necessary)
Depth grouted from 1 ft to 21 ft	7. WAS THE HOLE PLUGGED OR ABANDONED?
Grouting Material	□ Yes ■ No
Bentonitex Other	If so, how?
If other explain:	
One foot concrete collar at surface	8. REMARKS
	3 steel bumpers installed around well head
	9. DATE COMPLETED 10-21-14
	10. CONTRACTOR CERTIFICATION
	This well was drilled under my jurisdiction and this report is true to the
	best of my knowledge. Midwest Testing Laboratory, Inc. 444
	P.O. Box 2084, Bismarck, ND 58502-2084
	Address
	1111114 10-22-14
	Signature Date

State of North Dakota

BOARD OF WATER WELL CONTRACTORS

900 E. BOULEVARD • BISMARCK, NORTH DAKOTA 58505

MONITORING WELL REPORT

State law requires that this report be filed with the State Board of Water Well Contractors within 30 days after completion or abandonment of the well

1. WELL OWNER	Well head completion:
	24" above grade Other x
Name MDU-Heskett Station	If other, specify 4" x 4" x 5' steel cover
Address 2025 38 th Street	Was protective casing installed? ■ Yes □ No
Mandan, North Dakota	Was well disinfected upon completion? □ Yes ■ No
2. WELL LOCATION (MW-80R)	
Address (if in city) <u>(see attached drawing)</u>	5. WATER LEVEL
	Static water level 12 feet below surface
CountyMorton	If flowing: closed in pressure psi or ft. above land surface
NE ¼ SE ¼ SW ¼ Sec. 10 Twp. 139 N. Rge. 81 W.	6. WELL LOG Depth (Ft.)
Lat. 46.86789 Long.: -100.89320	
Altitude:	Formation From To
3. METHOD DRILLED	Topsoil 0 0.5
■ Auger Other	Sandy lean clay 0.5 27
4. WELL CONSTRUCTION	
Diameter of Hole 8 inches Depth 27 feet	
Riser: ■ PVC □ Other	
■ Threaded □ Solvent □ Other	
Riser rating SDR Schedule40	
Diameter 2.0 inches	
From <u>+2.5</u> ft. to <u>7</u> ft.	
Was a well screen installed? ■ Yes □ No	
Material Schedule 40 PVC Diameter 2.0 inches	
Slot Size <u>#10</u> set from <u>7</u> feet to <u>27</u> feet	
Sand packed from 5 ft to 27 ft	(Use separate sheet if necessary)
Depth grouted from 1 ft to 5 ft	7. WAS THE HOLE PLUGGED OR ABANDONED?
Grouting Material	□ Yes ■ No
Bentonitex Other	If so, how?
If other explain:	
One foot concrete collar at surface	8. REMARKS
	3 steel bumpers installed around well head
	9. DATE COMPLETED 10-21-14
	10. CONTRACTOR CERTIFICATION
	This well was drilled under my jurisdiction and this report is true to the
	best of my knowledge. Midwest Testing Laboratory, Inc. 444
	Monitoring Well Contractor Certificate No.
	P.O. Box 2084, Bismarck, ND 58502-2084
	Address
	Mil stat 10-22-14
	Signature Date

LOG OF BORING MW-101 DRAFT

Unique Well No.:

SHEET 1 OF 3

Project:R.M. Haskett Station CCR Monitoring Network

Project No.:34300014.12

Location:Mandan, ND

Surface Elevation:1716.6 ft

Drilling Method:HSA

Sampling Method:SPT

			438844.9	919°	Long:	1868647.777° Sampling Method:SPT		
Datu	m:NA	D 83				Completion Depth:58.0 ft		
Depth, feet	Sample Type & Recovery	Sample No.	Blows/6in.	U S C S	Graphic Log	LITHOLOGIC DESCRIPTION	WELL OR PIEZOMETER CONSTRUCTION DETAIL	toot acitorial
-0-	\bigvee	1			17. 1	TOPSOIL: Brown (5/4 7.5YR).		
		'	4-4-4-6.			SANDY LEAN CLAY WITH GRAVEL (CL): fine to medium grained; Brown (5/3 7.5YR); moist; thinly laminated; some mottling; low plasticity; [Cannonball Formation].	PRO. CASING	17
						At 2': Start to see gravel inclusions.	Diameter: 4" Type: Steel pipe	
-	¶\\[2	4-6-6-7.				Interval: 3.5' ags - 1.5'	
=						At 4': Oxidized staining.	bgs DISED CASING	
5 -	X	3	7-9-14-16.			At 5': Oxidized staining.	RISER CASING Diameter: 2"	
-	$\langle \cdot \rangle$					Ğ	Type: PVC SCH 80 Interval: 2.98' ags - 34'	
	$ \bigvee $	4	8-9-12-15.				bgs	1
	$ /\rangle$		0 3 12 10.			At 7': Oxidized staining and white staining.	GROUT	
							Type: Neat cement Interval: 0 - 29' bgs	
-		5	10-15-21- 26.				SEAL	
10-	$\langle \cdot \rangle$						Type: Bentonite chips	,
-	+X	6	7-18-24- 27.	CL		At 11': Oxidized staining.	Interval: 29 - 32' bgs	
-	$\left\langle \cdot \right\rangle$						SANDPACK	1
-	$ \bigvee $	7	8-12-19-				Type: Silica 40-70 Interval: 32 - 56' bgs	
_	$ \triangle $		23.					
45		0					SCREEN Diameter: 2"; No.6 slot	
15-	$] \land$	8	8-14-18- 23.			At 15': Gypsum.	Type: PVC SCH 80 Interval: 34 - 54' bgs	
-						16-20': No recovery.	interval. 34 - 54 bgs	1
-	$ \cdot $							
-	- X							
-	1/\							
20-								
_	$ \bigvee $	9	7-10-13-			At 20.5': Gypsum.		
_	/		7-10-13- 15.			LEAN CLAY (CL): Dark Brown (3/2 7.5YR); oxidized staining, some mottling; medium to high plasticity; [Cannonball Formation].		1
-						At 22': Color change to Brown (4/2 7.5YR).		
-		10	7-9-13-15.	CL				
-	\forall					At 24': Interbedded sand, fine grained.		
-25 - Date	Borin	g Star	ted:	8/1	8/15	Pomarke: Holo cayod in from 56 59' has		
Date	Borin	g Con	pleted:	8/1	9/15	Remarks: Hole caved in from 56 - 58' bgs. DTW = 36.66' TOR on 9/23/2015 (elev. 1682.8'	87)	
	ed By na Co	: ntracto	or.	JE(Tei	G3 rracor			
Drill f	-					Additional data may have been collected in the field which is not included on Weather:	on this log.	

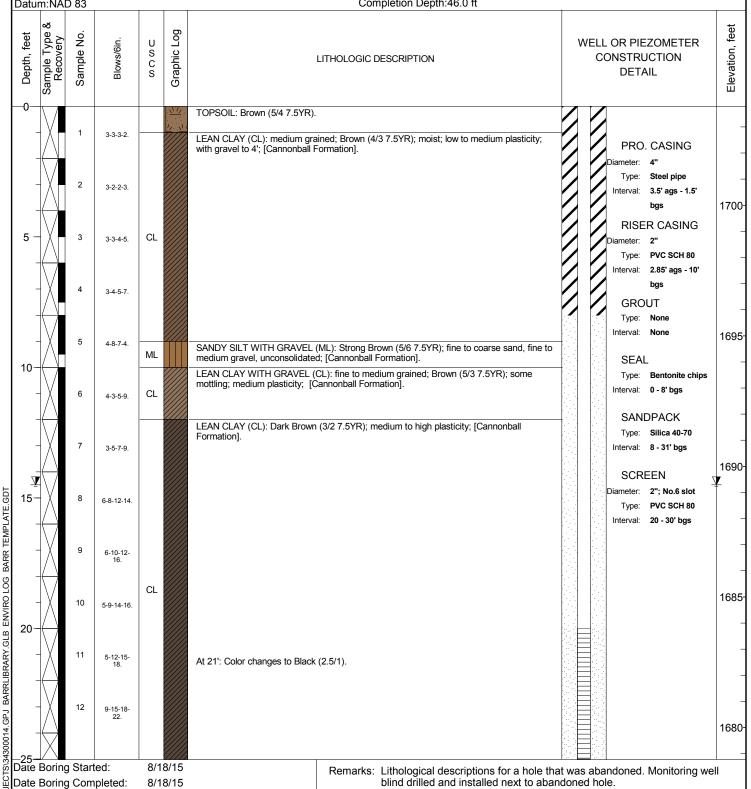
LOG OF BORING MW-101

BARR Millineapons, Mil 50 152 Telephone: 952-832-2600 SHEET 2 OF 3 Project:R.M. Haskett Station CCR Monitoring Network Surface Elevation:1716.6 ft Project No.:34300014.12 Drilling Method: HSA Unique Well No.: Location: Mandan, ND Sampling Method:SPT Coordinates:Lat: 438844.919° Long: 1868647.777° Datum:NAD 83 Completion Depth:58.0 ft feet Sample Type & Recovery Graphic Log feet Sample No WELL OR PIEZOMETER USCS Blows/6in Elevation, Depth, 1 LITHOLOGIC DESCRIPTION CONSTRUCTION **DETAIL** LEAN CLAY (CL): Dark Brown (3/2 7.5YR); oxidized staining, some mottling; medium to high plasticity; [Cannonball Formation]. (continued) At 25' and 25.5': Gypsum. PRO. CASING 1690 At 26.5': Gypsum. 12 8-11-15-19. iameter: 4" Type: Steel pipe Interval: 3.5' ags - 1.5' bgs 13 8-11-13-15. RISER CASING At 29.5': Gypsum. 30 meter: 2" CL Type: PVC SCH 80 14 6-11-14-17. 2.98' ags - 34' Interval: 1685⁻ bgs **GROUT** 15 8-13-17-22. Type: Neat cement At 33': Gypsum. Interval: 0 - 29' bgs 1 At 34.5': Gypsum. **SEAL** 35 8-14-19-21. Type: Bentonite chips At 35.5-36': Color change to Black (2.5/1 7.5YR), turns back to brown. Interval: 29 - 32' bgs FAT CLAY (CH): Black (2.5/1 7.5YR); very stiff; hight plasticity; wet at 43'; [Cannonball 1680· Formation]. **SANDPACK** 17 11-16-20-27 Type: Silica 40-70 Interval: 32 - 56' bgs At 38': Oxidized staining. 18 9-13-20-25. **SCREEN** Diameter: 2"; No.6 slot JECTS/34300014.GPJ BARRLIBRARY.GLB ENVIRO LOG BARR TEMPLATE.GDT 40 Type: PVC SCH 80 Interval: 34 - 54' bgs 19 7-14-23-26. At 41': Oxidized staining. 1675 9-16-23-45 1670 Date Boring Started: 8/18/15 Remarks: Hole caved in from 56 - 58' bgs. Date Boring Completed: 8/19/15 DTW = 36.66' TOR on 9/23/2015 (elev. 1682.87) M:\GINT\PRO. Logged By: JEG3 Drilling Contractor: Terracon Additional data may have been collected in the field which is not included on this log. Weather: Drill Rig: Rig mounted HSA

Barr Engineering Company 4300 MarketPointe Drive Suite 200 Minneapolis, MN 55435 Telephone: 952-832-2600

M:\GINT\PROJECTS\34300014.GPJ BARRLIBRARY.GLB ENVIRO LOG BARR TEMPLATE.GDT

LOG OF BORING MW-101 DRAFT


BARR Telephone: 952-832-2600 SHEET 3 OF 3 Project:R.M. Haskett Station CCR Monitoring Network Surface Elevation:1716.6 ft Project No.:34300014.12 Drilling Method: HSA Unique Well No.: Location:Mandan, ND Sampling Method:SPT Coordinates:Lat: 438844.919° Long: 1868647.777° Datum:NAD 83 Completion Depth:58.0 ft Elevation, feet Sample Type & Recovery Graphic Log Depth, feet Sample No. USCS WELL OR PIEZOMETER Blows/6in LITHOLOGIC DESCRIPTION CONSTRUCTION **DETAIL** -50 FAT CLAY (CH): Black (2.5/1 7.5YR); very stiff; hight plasticity; wet at 43'; [Cannonball Formation]. (continued) PRO. CASING 1665 Diameter: 4" Type: Steel pipe Interval: 3.5' ags - 1.5' bgs RISER CASING 55 Diameter: 2" Type: PVC SCH 80 Interval: 2.98' ags - 34' 1660· bgs **GROUT** Type: Neat cement End of boring 58.0 feet Interval: 0 - 29' bgs **SEAL** 60 Type: Bentonite chips Interval: 29 - 32' bgs SANDPACK Type: Silica 40-70 Interval: 32 - 56' bgs **SCREEN** Diameter: 2"; No.6 slot 65 Type: PVC SCH 80 Interval: 34 - 54' bgs 70 Date Boring Started: 8/18/15 Remarks: Hole caved in from 56 - 58' bgs. DTW = 36.66' TOR on 9/23/2015 (elev. 1682.87) Date Boring Completed: 8/19/15 Logged By: JEG3 **Drilling Contractor:** Terracon Additional data may have been collected in the field which is not included on this log. Weather: Drill Rig: Rig mounted HSA

LOG OF BORING MW-102

SHEET 1 OF 2

Project:R.M. Haskett Station CCR Monitoring Network Surface Elevation:1703.8 ft Project No.:34300014.12 Drilling Method: HSA Unique Well No.: Location: Mandan, ND Sampling Method:SPT Coordinates:Lat: 438161.145° Long: 1868782.871° Datum:NAD 83 Completion Depth:46.0 ft

Date Boring Started: Date Boring Completed:

Logged By:

Drill Rig:

8/18/15 JEG3 Drilling Contractor: Terracon

Rig mounted HSA

Remarks: Lithological descriptions for a hole that was abandoned. Monitoring well blind drilled and installed next to abandoned hole.

DTW = 17.09' TOR on 8/21/2015 (elev. 1689.51

Additional data may have been collected in the field which is not included on this log. Weather:

Barr Engineering Company 4300 MarketPointe Drive Suite 200 Minneapolis, MN 55435

M:\GINT\PROJECTS\34300014.GPJ BARRLIBRARY.GLB ENVIRO LOG BARR TEMPLATE.GDT

Drill Rig:

Rig mounted HSA

LOG OF BORING MW-102

BARR Millineapons, Mil 50 152 Telephone: 952-832-2600 SHEET 2 OF 2 Project:R.M. Haskett Station CCR Monitoring Network Surface Elevation:1703.8 ft Project No.:34300014.12 Drilling Method: HSA Unique Well No.: Location: Mandan, ND Sampling Method:SPT Coordinates:Lat: 438161.145° Long: 1868782.871° Datum:NAD 83 Completion Depth:46.0 ft Elevation, feet Sample Type & Recovery Graphic Log Depth, feet Sample No. USCS WELL OR PIEZOMETER Blows/6in LITHOLOGIC DESCRIPTION CONSTRUCTION **DETAIL** 9-14-19 LEAN CLAY (CL): Dark Brown (3/2 7.5YR); medium to high plasticity; [Cannonball Formation]. (continued) PRO. CASING 14 10-17-18-24. Diameter: 4" Type: Steel pipe Interval: 3.5' ags - 1.5' 1675 bgs 15 6-15-18-At 29': Gypsum. RISER CASING 30 Diameter: 2" Type: PVC SCH 80 16 7-14-18-22. Interval: 2.85' ags - 10' bgs **GROUT** 17 11-16-20-27. Type: None Interval: None At 33.5' and 34': Gypsum. 1670· CL **SEAL** 35 10-14-15-24 Type: Bentonite chips Interval: 0 - 8' bgs **SANDPACK** 19 13-19-25-35. Type: Silica 40-70 Interval: 8 - 31' bgs 1665⁻ 20 8-17-26-31. **SCREEN** Diameter: 2"; No.6 slot 40 Type: PVC SCH 80 Interval: 20 - 30' bgs 21 10-20-27-38. 22 13-20-27-37. 1660 SILTY SAND (SM): fine to medium grained; Dark Gray (4/1 7.5YR); wet; [Cannonball Formation1. 45 23 SM 15-27-27-32. End of boring 46.0 feet Date Boring Started: 8/18/15 Remarks: Lithological descriptions for a hole that was abandoned. Monitoring well Date Boring Completed: 8/18/15 blind drilled and installed next to abandoned hole. DTW = 17.09' TOR on 8/21/2015 (elev. 1689.51 Logged By: JEG3 Drilling Contractor: Terracon Additional data may have been collected in the field which is not included on this log. Weather:

Barr Engineering Company Minneapolis, MN 55435 BARR Millineapons, Mil 50 152 Telephone: 952-832-2600 Project No.:34300014.12 Location: Mandan, ND

JECTS/34300014.GPJ BARRLIBRARY.GLB ENVIRO LOG BARR TEMPLATE.GDT

LOG OF BORING MW-103


4300 MarketPointe Drive Suite 200 SHEET 1 OF 2 Project:R.M. Haskett Station CCR Monitoring Network Surface Elevation:1714.7 ft Drilling Method: HSA Unique Well No.: Sampling Method:SPT Coordinates:Lat: 437578.205° Long: 1869355.992° Datum:NAD 83 Completion Depth:44.0 ft feet Sample Type & Recovery Graphic Log feet Š WELL OR PIEZOMETER Blows/6in USCS Elevation, Sample ! Depth, LITHOLOGIC DESCRIPTION CONSTRUCTION **DETAIL** TOPSOIL (OL/OH): Brown (5/4 7.5YR). DL/OH 3-4-5-5 LEAN CLAY (CL): Very Dark Gray (3/1 7.5YR); moist; stiff; medium to high plasticity; PRO. CASING [Cannonball Formation]. iameter: 4" Type: Steel pipe 5-5-8-8 Interval: 3.5' ags - 1.5' bgs CL RISER CASING 1710 5-8-10-11 Type: PVC SCH 80 2.79' ags - 24' Interval: bgs 6-9-15-15. POORLY GRADED SAND WITH GRAVEL (SP): fine to coarse grained; Brown (5/4 **GROUT** 7.5YR); some oxidized staining, some mottling; [Cannonball Formation]. Type: Neat cement Interval: 0 - 19' bgs 5-6-5-4 SP **SEAL** 1705 10 Type: Bentonite chips Interval: 19 - 22' bgs 4-5-5-7 **SANDPACK** POORLY GRADED SAND WITH SILT (SP-SM): fine to medium grained; Brown (5/4 Type: Silica 40-70 7.5YR); [Cannonball Formation]. Interval: 22 - 44' bgs 2-2-2-3 SP-**SCREEN** SM 1700 Diameter: 2"; No.6 slot 15 3-3-3-3 Type: PVC SCH 80 Interval: 24 - 44' bas NO RECOVERY (16 - 20'). 1695 20 SANDY LEAN CLAY (CL): fine to medium grained; Light Brown (6/4 7.5YR); wet; some mottling and oxidized staining, cohesive; low to medium plasticity; [Cannonball Formation]. 3-3-5-5 CL 1690· Date Boring Started: 8/19/15 Remarks: DTW = 33.24' TOR on 8/20/2015 (elev. 1684.29) Date Boring Completed: 8/20/15 Logged By: JEG3 Drilling Contractor: Terracon Additional data may have been collected in the field which is not included on this log. Weather: Drill Rig: Rig mounted HSA

Barr Engineering Company 4300 MarketPointe Drive Suite 200 Minneapolis, MN 55435 Telephone: 952-832-2600

JECTS/34300014.GPJ BARRLIBRARY.GLB ENVIRO LOG BARR TEMPLATE.GDT

LOG OF BORING MW-103

BARR Millineapons, Mil 50 152 Telephone: 952-832-2600 SHEET 2 OF 2 Project:R.M. Haskett Station CCR Monitoring Network Surface Elevation:1714.7 ft Project No.:34300014.12 Drilling Method: HSA Unique Well No.: Location: Mandan, ND Sampling Method:SPT Coordinates:Lat: 437578.205° Long: 1869355.992° Datum:NAD 83 Completion Depth:44.0 ft Elevation, feet Sample Type & Recovery Graphic Log feet Sample No USCS WELL OR PIEZOMETER Blows/6in Depth, 1 LITHOLOGIC DESCRIPTION CONSTRUCTION **DETAIL** SANDY LEAN CLAY (CL): fine to medium grained; Light Brown (6/4 7.5YR); wet; some mottling and oxidized staining, cohesive; low to medium plasticity; [Cannonball Formation]. (continued) 2-2-4-4 PRO. CASING Diameter: 4" CL Type: Steel pipe Interval: 3.5' ags - 1.5' bgs RISER CASING 1685 30-Diameter: 2" SILTY SAND WITH GRAVEL (SM): wet; [Cannonball Formation]. SM Type: PVC SCH 80 10-10-7-9. LEAN CLAY (CL): Brown (4/4 7.5YR); moist; oxidized staining; medium to high plasticity; Interval: 2.79' ags - 24' [Cannonball Formation]. bgs **GROUT** At 32.5': Sand lens, color changes to Black (2.5/1 7.5YR). 12 8-15-17-22. Type: Neat cement Interval: 0 - 19' bgs At 33.5': Sand lens. At 34': Interbedded sand with oxidized staining. **SEAL** 1680-35 13 7-19-15-Type: Bentonite chips Interval: 19 - 22' bgs At 36.5': Sand lens. **SANDPACK** 11-16-21-50 for 5". At 37': Sand lens. CI Type: Silica 40-70 At 37.5': Color change to Gray (5/1 7.5YR). Interval: 22 - 44' bgs At 38-38.5': 6" thick layer of hard material. 15 50 for 2"`-. **SCREEN** 1675 Diameter: 2"; No.6 slot 40 Type: PVC SCH 80 Interval: 24 - 44' bas 16 12-17-22-30. At 42-42.5': Silt layer. 9-18-24-50. At 43.5-44': Silt layer. End of boring 44.0 feet 45 Date Boring Started: 8/19/15 Remarks: DTW = 33.24' TOR on 8/20/2015 (elev. 1684.29) Date Boring Completed: 8/20/15 Logged By: JEG3 Drilling Contractor: Terracon Additional data may have been collected in the field which is not included on this log. Weather: Drill Rig: Rig mounted HSA

JECTS/34300014.GPJ BARRLIBRARY.GLB ENVIRO LOG BARR TEMPLATE.GDT

LOG OF BORING MW-104 DRAFT

BARR MILITINE PROPERTY SERVICE PROPERTY SHEET 1 OF 2 Project:R.M. Haskett Station CCR Monitoring Network Surface Elevation: 1681.5 ft Project No.:34300014.12 Drilling Method: HSA Unique Well No.: Location: Mandan, ND Sampling Method:SPT Coordinates:Lat: 438853.542° Long: 1869832.72° Datum:NAD 83 Completion Depth:32.0 ft feet Sample Type & Recovery Graphic Log feet Š WELL OR PIEZOMETER Blows/6in USCS Elevation, Sample ! Depth, LITHOLOGIC DESCRIPTION CONSTRUCTION **DETAIL** TOPSOIL: Brown (5/4 7.5YR). LEAN CLAY WITH SAND (CL): fine to medium grained; Brown (5/4 7.5YR); moist; gravel; 4-5-5-5 medium plasticity; [Cannonball Formation]. 1680· PRO. CASING ameter 4" CL Type: Steel pipe 3-5-6-8 Interval: 3.5' ags - 1.5' bgs LEAN CLAY (CL): Brown (4/4 7.5YR); oxidized staining and mottling; medium to high plasticity; with gypsum throughout; [Cannonball Formation]. RISER CASING 5 3 3-7-9-10 Type: PVC SCH 80 3.06' ags - 9' Interval: 1675 bgs 5-7-9-10. **GROUT** Type: None Interval: None 5 5-9-9-10. **SEAL** 10₹ Type: Bentonite chips Interval: 0 - 7' bgs 5-7-9-10. CL 1670⁻ **SANDPACK** At 12': Heavily oxidized. Type: Silica 40-70 5-8-8-12. Interval: 7 - 32' bgs **SCREEN** Diameter: 2"; No.6 slot 15 8 5-9-11-15. At 15': Start seeing black staining. Type: PVC SCH 80 Interval: 9 - 29' bas 1665 6-9-11-13. At 17': Heavily oxidized. SILTY SAND (SM): Strong Brown (5/6 7.5YR); wet; [Cannonball Formation]. 10 4-7-16-19 At 19.5': Color change to Brown (5/4 7.5YR). 20 SM 5-16-22-26 At 21': Oxidized layer. 1660· FAT CLAY (CH): Dark Gray (4/1 7.5YR); moist; stiff; high plasticity; with interbedded sand layers below 27'; [Cannonball Formation]. 12 7-11-14-CH Date Boring Started: 8/20/15 Remarks: DTW = 13.25' TOR on 8/21/2015 (elev. 1671.26) Date Boring Completed: 8/20/15 Logged By: JEG3 Drilling Contractor: Terracon Additional data may have been collected in the field which is not included on this log. Weather: Drill Rig: Rig mounted HSA

Barr Engineering Company 4300 MarketPointe Drive Suite 200 Minneapolis, MN 55435 Telephone: 952-832-2600

M:\GINT\PROJECTS\34300014.GPJ BARRLIBRARY.GLB ENVIRO LOG BARR TEMPLATE.GDT

LOG OF BORING MW-104

BARR Millineapons, Mil 50 152 Telephone: 952-832-2600 SHEET 2 OF 2 Project:R.M. Haskett Station CCR Monitoring Network Surface Elevation: 1681.5 ft Project No.:34300014.12 Drilling Method: HSA Unique Well No.: Location:Mandan, ND Sampling Method:SPT Coordinates:Lat: 438853.542° Long: 1869832.72° Datum:NAD 83 Completion Depth:32.0 ft Elevation, feet Sample Type 8 Recovery Graphic Log Sample No. Depth, feet USCS WELL OR PIEZOMETER Blows/6in LITHOLOGIC DESCRIPTION CONSTRUCTION **DETAIL** 6-12-16 17. FAT CLAY (CH): Dark Gray (4/1 7.5YR); moist; stiff; high plasticity; with interbedded sand layers below 27'; [Cannonball Formation]. (continued) 1655· PRO. CASING 14 8-12-16-21. Diameter: 4" CH Type: Steel pipe Interval: 3.5' ags - 1.5' bgs 15 8-12-16-20. RISER CASING 30 Diameter: 2" Driller notes: sluff. Type: PVC SCH 80 16 Interval: 3.06' ags - 9' 1650bgs End of boring 32.0 feet **GROUT** Type: None Interval: None **SEAL** 35 Type: Bentonite chips Interval: 0 - 7' bgs SANDPACK Type: Silica 40-70 Interval: 7 - 32' bgs **SCREEN** Diameter: 2"; No.6 slot 40 Type: PVC SCH 80 Interval: 9 - 29' bgs 45 _50____ Date Boring Started: 8/20/15 Remarks: DTW = 13.25' TOR on 8/21/2015 (elev. 1671.26) Date Boring Completed: 8/20/15 Logged By: JEG3 **Drilling Contractor:** Terracon Additional data may have been collected in the field which is not included on this log. Weather: Drill Rig: Rig mounted HSA

JECTS/34300014.GPJ BARRLIBRARY.GLB ENVIRO LOG BARR TEMPLATE.GDT

LOG OF BORING MW-105

BARR Millineapons, Mil 50 152 Telephone: 952-832-2600 SHEET 1 OF 2 Project:R.M. Haskett Station CCR Monitoring Network Surface Elevation: 1686.0 ft Project No.:34300014.12 Drilling Method: HSA Unique Well No.: Location: Mandan, ND Sampling Method:SPT Coordinates:Lat: 438042.079° Long: 1870325.657° Datum:NAD 83 Completion Depth:30.0 ft feet Sample Type & Recovery Graphic Log feet Š USCS WELL OR PIEZOMETER Blows/6in Elevation, Sample ! Depth, LITHOLOGIC DESCRIPTION CONSTRUCTION **DETAIL** TOPSOIL: Brown (5/4 7.5YR). 1685⁻ 6-7-6-5 SANDY LEAN CLAY (CL): fine to medium grained; Brown (4/2 7.5YR); moist; gravel; PRO. CASING medium plasticity; [Cannonball Formation]. ameter: 4" Type: Steel pipe 5-5-5-6 Interval: 3.5' ags - 1.5' bgs CL RISER CASING 5 3 3-2-4-5 neter: 2" Type: PVC SCH 80 1680-3.16' ags - 10' Interval: bgs 4 2-2-2-3 **GROUT** Type: None LEAN CLAY (CL): Brown (4/2 7.5YR); soft; high plasticity; wet at 16'; [Cannonball Formation]. Interval: None 2-1-2-2. 10<u>⊣</u> **SEAL** Type: Bentonite chips At 10.5': Color change to Reddish-Yellow (6/6 7.5YR). Interval: 0 - 7' bgs 1675 2-1-2-1 **SANDPACK** Type: Silica 40-70 Interval: 7 - 30' bgs 2-1-1-3 **SCREEN** At 14.5-15.5': Gravel inclusions. Diameter: 2"; No.6 slot 15 CL 4-3-5-5 Type: PVC SCH 80 At 15.5': Color change to Brown (4/3 7.5YR). Interval: 10 - 30' bas 1670-7-9-11-13. At 18': Color change to Brown (5/3 7.5YR). 10 7-9-11-13 20 1665 11 7-9-13-15. POORLY GRADED SAND WITH SILT (SP-SM): medium to coarse grained; Brown (5/4 7.5YR); [Cannonball Formation]. 12 19-26-28-30. SP-SM Date Boring Started: 8/17/15 Remarks: DTW = 13.22' TOR on 8/21/2015 (elev. 1675.92) Date Boring Completed: 8/17/15 Logged By: JEG3 Drilling Contractor: Terracon Additional data may have been collected in the field which is not included on this log. Weather: Drill Rig: Rig mounted HSA

Barr Engineering Company 4300 MarketPointe Drive Suite 200 Minneapolis, MN 55435

M:\GINT\PROJECTS\34300014.GPJ BARRLIBRARY.GLB ENVIRO LOG BARR TEMPLATE.GDT

LOG OF BORING MW-105 DRAFT

BARR Millineapons, Mil 50 152 Telephone: 952-832-2600 SHEET 2 OF 2 Project:R.M. Haskett Station CCR Monitoring Network Surface Elevation: 1686.0 ft Project No.:34300014.12 Drilling Method: HSA Unique Well No.: Location: Mandan, ND Sampling Method:SPT Coordinates:Lat: 438042.079° Long: 1870325.657° Datum:NAD 83 Completion Depth:30.0 ft Elevation, feet Sample Type 8 Recovery Graphic Log Depth, feet Sample No. USCS WELL OR PIEZOMETER Blows/6in LITHOLOGIC DESCRIPTION CONSTRUCTION **DETAIL** FAT CLAY (CL): Dark Brown (3/4 7.5YR); high plasticity; sand lens at 26.5'; [Cannonball 1660· At 26': Color change to Gray (5/1 7.5YR). PRO. CASING 14 10-15-18-30. Diameter: 4" CL Type: Steel pipe Interval: 3.5' ags - 1.5' bgs 11-16-22-32. RISER CASING 30 Diameter: 2" End of boring 30.0 feet Type: PVC SCH 80 Interval: 3.16' ags - 10' bgs **GROUT** Type: None Interval: None **SEAL** 35 Type: Bentonite chips Interval: 0 - 7' bgs SANDPACK Type: Silica 40-70 Interval: 7 - 30' bgs **SCREEN** Diameter: 2"; No.6 slot 40 Type: PVC SCH 80 Interval: 10 - 30' bgs 45 _50____ Date Boring Started: 8/17/15 Remarks: DTW = 13.22' TOR on 8/21/2015 (elev. 1675.92) Date Boring Completed: 8/17/15 Logged By: JEG3 **Drilling Contractor:** Terracon Additional data may have been collected in the field which is not included on this log. Weather: Drill Rig: Rig mounted HSA

Alternative Source Demonstration: April 2018 Event

R.M. Heskett Station

Prepared for Montana-Dakota Utilities Co.

December 2018

Alternative Source Demonstration: April 2018 Event

R.M. Heskett Station

Prepared for Montana-Dakota Utilities Co.

December 2018

Alternative Source Demonstration April 2018 Event

December 2018

Contents

1.0	Introduction	1
2.0	April 2018 SSIs	2
3.0	Alternative Source Demonstration	
3.1	Fluoride at MW2-90	
3.3	1.1 Source Hypothesis #1: CCR Unit Release	3
3.3	1.2 Source Hypothesis #2: Natural Variation of Regional Groundwater Quality	4
3.2	Other ASDs	4
4.0	Conclusions	5
5.0	References	6

List of Figures

Figure 1 Site Layout and CCR Monitoring Network

Figure 2 Piper Plot

List of Attachments

Attachment 1 2011 Ash SPLP Laboratory Report

Certifications

I hereby certify that I, or my agent, have examined this written demonstration and attest that this Coal Combustion Residuals Facility Alternative Source Demonstration (ASD) is accurate and has been prepared in accordance with good engineering practice, including consideration of applicable industry standards and the requirements of 40 CFR §257.94. I further certify that this report was prepared by me or under my direct supervision and that I am a duly Licensed Professional Engineer under the laws of the state of North Dakota.

Revision	Date	Summary of Revisions
0	December 20, 2018	Initial Alternative Source Demonstration

THOMAS . RADUE PE 3632

DATE

12 / 20/8 - 5

Thomas J. Radue, P.E.

Barr Engineering Co.

ND Registration Number PE – 3632

1.0 Introduction

Montana-Dakota Utilities Co. (MDU) owns and operates R.M. Heskett Station (Site), a coal-fired generating station and a gas-fired turbine located in Mandan, North Dakota (Figure 1). One CCR (coal combustion residual) unit, as defined by 40 CFR 257.53, is located on the property. The CCR unit contains coal combustion by-products, asbestos wastes generated from construction activity associated with MDU-owned facilities, and ash derived from burning of tire-derived fuel (TDF) at the facility.

The CCR Rule (US EPA, 2015) §257.94(e)(2) allows for an alternative source demonstration (ASD) in the event of an identified statistically significant increase (SSI) in a downgradient monitoring well over background levels:

The owner or operator may demonstrate that a source other than the CCR unit caused the statistically significant increase over background levels for a constituent or that the statistically significant increase resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. The owner or operator must complete the written demonstration within 90 days of detecting a statistically significant increase over background levels to include obtaining a certification from a qualified professional engineer verifying the accuracy of the information in the report.

The purpose of this work is to evaluate the data collected as part of the April 2018 monitoring event, along with historical data, to demonstrate if the identified SSIs are the results of a source other than the CCR unit or due to natural variation in groundwater quality, an error in sampling, analysis, or statistical evaluation.

2.0 April 2018 SSIs

Sampling for the first detection monitoring event was conducted on April 2-5, 2018. Four potential SSIs over background were identified: chloride at MW-105, sulfate and total dissolved solids (TDS) at MW-104, and fluoride at MW2-90.

Two methods of evaluation were subsequently undertaken in an effort to review potential alternative sources for the SSIs. These include the following evaluations:

- Comparison with leaching tests of CCR materials;
- Comparison with regional (background) groundwater quality data.

A successful alternative source demonstration is discussed in Section 3.0.

3.0 Alternative Source Demonstration

Methods used to evaluate potential alternative sources for the SSIs (fluoride at MW2-90, chloride at MW-105; and sulfate and TDS at MW-104) over background from the April 2018 detection monitoring event are discussed below.

3.1 Fluoride at MW2-90

The fluoride concentration in the sample from MW2-90 was detected at 1.03 mg/L during the April 2018 sampling event. The interwell prediction limit derived from baseline sampling is 0.93 mg/L. Verification resampling was conducted on August 13, 2018 for fluoride at MW2-90 to verify the potential SSI. The fluoride concentration observed at the verification resampling event (1.03 mg/L) was equal to the April 2018 event (1.03 mg/L), which exceeds the prediction limit. Therefore, the fluoride SSI was verified.

Two hypotheses were tested to evaluate the potential source of the fluoride concentrations observed at MW2-90. The first hypothesis evaluated was the CCR Unit is the source of fluoride at MW2-90 due to a release of leachate. To accept this hypothesis, it would be assumed that groundwater chemistry at MW2-90 would appear to be geochemically similar to that of impacted water from the CCR unit. However, if the comparison of the two types of water samples indicate that they are geochemically dissimilar, this indicates that a source "other than the CCR unit" is responsible for the SSI. Therefore, major ion chemistry from the CCR monitoring locations (upgradient and downgradient) were compared to CCR ash Synthetic Precipitation Leaching Procedure (SPLP method; EPA Method 1312) data collected July 2011.

The second hypothesis evaluated was that fluoride concentrations observed at MW2-90 are consistent with regional (background) groundwater data. To test this hypothesis, results of verification sampling were compared to regional groundwater quality data from the Cannonball Formation and associated units to determine if natural variation is a potential alternative source for the fluoride concentrations observed at MW2-90.

3.1.1 Source Hypothesis #1: CCR Unit Release

In order to test this hypothesis, Piper diagrams were used to visually compare the CCR SPLP results and the measured groundwater quality at the Site (Figure 2). Piper diagrams are plots of major ion chemistry of water samples (calcium, magnesium, potassium, sodium, chloride, sulfate, and alkalinity) that are used to differentiate between water types and to identify potential mixing of water types. This method is a means to identify or "fingerprint" water samples by their common characteristics (major ions) to assess which types of water are similar or dissimilar to potential CCR sources or non-source water types (Hensel and Hirsch, 2002).

Downgradient water quality (and of particular interest, at MW2-90) is characterized as a Ca/Mg-SO₄ type water, whereas the ash SPLP results are Na-SO₄ type water. The major difference observed between the downgradient water quality (MW2-90) and the SPLP results is the dominant cation concentration (calcium and magnesium vs. sodium). Because water quality data from MW2-90 is clustered with the upgradient wells rather than near the SPLP results, it indicates that the water chemistry at MW2-90 is more similar to

upgradient groundwater than a potential release from the CCR unit. Therefore, we reject the hypothesis that the CCR Unit is the source of the fluoride observed at MW2-90.

3.1.2 Source Hypothesis #2: Natural Variation of Regional Groundwater Quality

This hypothesis was tested by comparing fluoride concentrations collected as part of several regional groundwater quality studies on the Cannonball Formation and associated units. A summary of the range of fluoride concentrations in the Cannonball Formation and associated units are included in the table below.

Reference	Fluoride Conc. Range	Formation/Units	Data Source Location
Ackerman, D.J., 1980. Ground-Water Resources of Morton County, North Dakota. North Dakota Geological Survey Bulletin 72, Part III. 51 p.	0.0 to 4.0 mg/L	Cannonball and Ludlow formations, undifferentiated	Morton County
Robinove, C.J., Langford, R.H., Brookhart, J.W., 1958. Saline-Water Resources of North Dakota. USGS Water-Supply Paper 1428, 72 p.	0.0 to 6.5 mg/L	Hell Creek formation, Cannonball member of Fort Union Formation, and upper part of Fort Union Formation	Throughout North Dakota
Crosby, O.A. and Klausing, R.L., 1984. Hydrology of Area 47, Northern Great Plains and Rocky Mountain Coal Provinces, North Dakota, South Dakota, and Montana. USGS Water-Resources Investigations Open-File Report 83-221, 93 p.	0.1 to 6.3 mg/L	Entire Fort Union Formation (includes Cannonball Formation)	Morton County

The Ackerman study provides summary statistics for the fluoride concentrations observed in Morton County. Forty-six samples were analyzed for fluoride; of those, 20 (or 43%) had concentrations greater than 1.3 mg/L (Ackerman, 1980). The fluoride concentrations observed at MW2-90 are within the range of values consistent with naturally-occurring concentrations of fluoride associated with the Cannonball Formation in Morton County. **Therefore, we accept the hypothesis that fluoride concentrations observed at MW2-90** are consistent with regional (background) groundwater data.

3.2 Other ASDs

Similar ASDs were documented for chloride at MW-105 and sulfate and TDS at MW-104 as part of the October 2017 ASD (Barr, 2018). Concentrations for these parameter-well pairs observed in April 2018 are similar to those observed in October 2017. The results of the ASD conducted in October 2017 are therefore valid for the April 2018 results. The previous ASD documented that each of the SSIs for these parameters can be explained by natural variability based on concentrations that were present at the Site before the landfill was constructed.

4.0 Conclusions

Four SSIs were identified from the April 2018 detection monitoring event. This report demonstrates that a "source other than the CCR unit" caused the SSIs, that the SSIs resulted from analytical error, or natural variation in groundwater quality, as allowed by §257.94(e)(2). The results of this alternative source demonstration are summarized in the table below.

Summary of SSIs and Alternative Sources

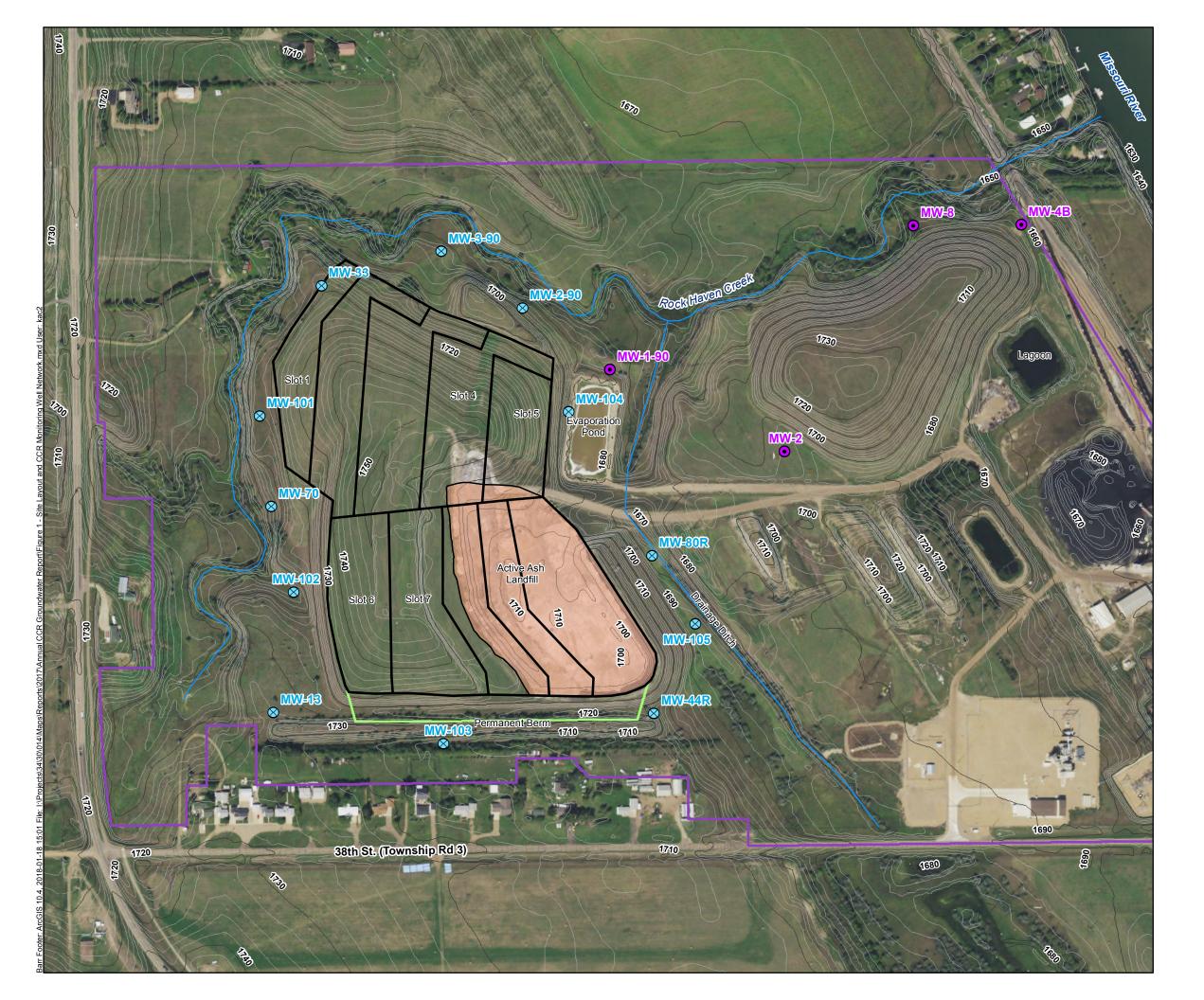
Well	Parameter	Report Section	Evidence for Alternative Source
MW2-90	Fluoride	3.1	Natural variability (geologic background)
MW-105	Chloride	3.2	Source other than CCR unit (water quality not consistent with samples from CCR unit, spatial trend inconsistent with hydraulic gradient), natural variability (pre-landfill values higher than current groundwater concentrations)
MW-104	Sulfate	3.2	Natural variability (pre-landfill values and geologic background)
MW-104	Total Dissolved Solids	3.2	Natural variability (pre-landfill values and geologic background)

Based on the foregoing, the alternative source demonstration presented herein meets the requirements of CCR Rule §257.94(e)(2).

5.0 References

Ackerman, D.J., 1980. Ground-Water Resources of Morton County, North Dakota. North Dakota Geological Survey Bulletin 72, Part III. 51 p.

Barr Engineering Co., 2018. Alternative Source Demonstration: October 2017 Event. R.M. Heskett Station. Prepared for Montana-Dakota Utilities Co. April 2018.


Crosby, O.A. and Klausing, R.L., 1984. Hydrology of Area 47, Northern Great Plains and Rocky Mountain Coal Provinces, North Dakota, South Dakota, and Montana. USGS Water-Resources Investigations Open-File Report 83-221, 93 p.

Hensel, D.R. and R. M. Hirsch, 2002. Statistical Methods in Water Resources Techniques of Water Resources Investigations, Book 4, chapter A3. U.S. Geological Survey. 522 pages.

Robinove, C.J., Langford, R.H., Brookhart, J.W., 1958. Saline-Water Resources of North Dakota. USGS Water-Supply Paper 1428, 72 p.

US EPA, 2015, Hazardous and Solid Waste Management Systems; Management of Coal Combustion Residuals From Electric Utility, CFR Parts 257 and 261, Federal Register, Vol. 80, No. 74, April 17, 2015.

Figures

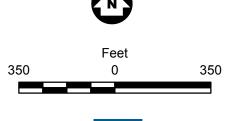
Monitoring Well Location
 Monitoring Well Location - Water Level Only

Existing Slot Boundaries

Streams

Property Line

Future Landfill Boundary


10ft Contours

2ft Contours

Active Portion of Landfill

Image Source: 2017 Statewide Imagery (ND GIS Hub)

CAD Data Source: Slot Linework.dwg

BARR

Figure 1

SITE LAYOUT AND CCR MONITORING WELL NETWORK R. M. Heskett Station

> Montana Dakota Utilities Mandan, North Dakota

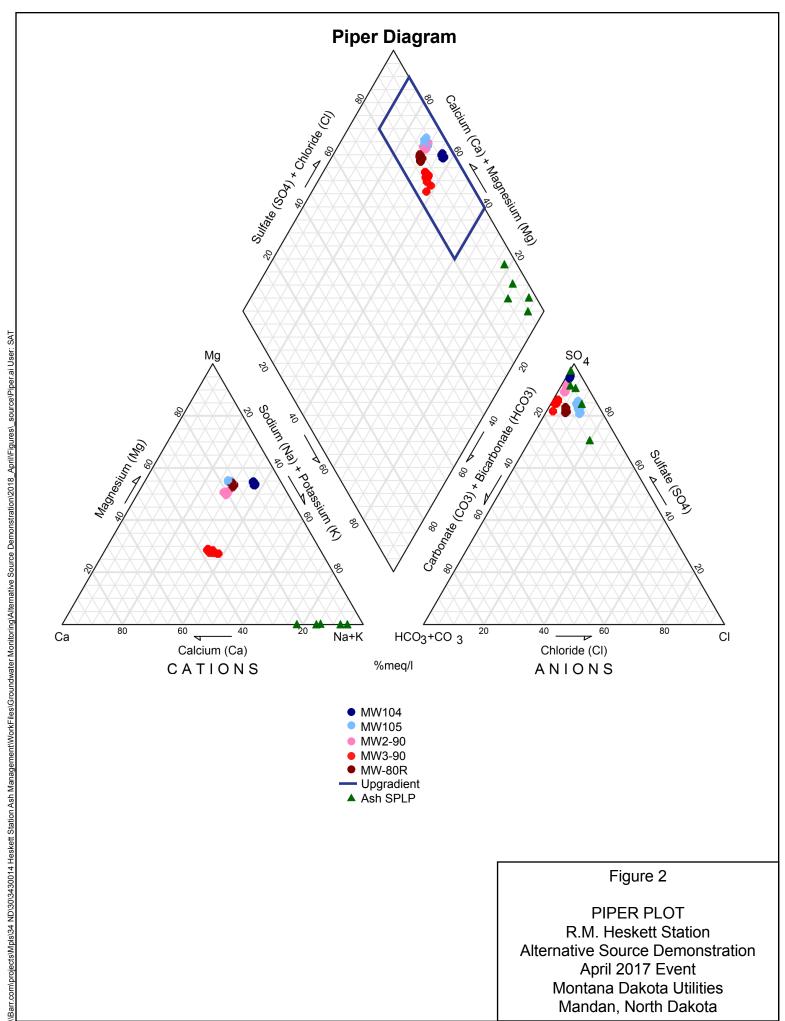


Figure 2

PIPER PLOT R.M. Heskett Station Alternative Source Demonstration April 2017 Event Montana Dakota Utilities Mandan, North Dakota

Attachment 1

2011 Ash SPLP Laboratory Report

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 51 West Lincoln Way ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

Page: 1 of 2

Report Date: 8 Sep 11 Lab Number: 11-M2450 Work Order #:81-818 Account #: 013479 Date Sampled:

Date Received: 28 Jun 11 9:00

PO #: 131460 OP

Duane Leingang Montana Dakota Utilities PO Box 40 Mandan ND 58554

Sample Description: Unit I Bottom Ash

Sample Site: MDU Heskett

	As Receive Result	ed	Method RL	Method Reference	Date Analyzed	Analyst
SPLP Extraction				1312	22 Jul 11	SS
рн	12.2	units	N/A	SM4500 H+ B	22 Jul 11 17:00	Claudette
Specific Conductance	8778	umhos/cm	N/A	SM2510-B	22 Jul 11 17:00	Claudette
Total Suspended Solids	3	mg/l	1	SM2540-D	22 Jul 11 14:00	CLB
Total Alkalinity	1120	mg/l CaCO3	4	SM2320-B	22 Jul 11 17:00	Claudette
Phenolphthalein Alk	1090	mg/l CaCO3	4	SM2320-B	22 Jul 11 17:00	Claudette
Bicarbonate	< 4	mg/l CaCO3	4	SM2320-B	22 Jul 11 17:00	Claudette
Carbonate	60	mg/l CaCO3	4	SM2320-B	22 Jul 11 17:00	
Hydroxide	1060	mg/l CaCO3	0	SM2320-B	22 Jul 11 17:00	
Tot Dis Solids (Summation)	4860	mg/l	NA	SM1030-F	3 Aug 11 8:40	Calculated
Total Hardness as CaCO3	524	mg/l	NA	SM2340-B	3 Aug 11 8:40	
Hardness in grains/gallon	30.7	gr/gal	NA	SM2340-B	3 Aug 11 8:40	
Cation Summation	74.3	meg/L	NA	SM1030-F	3 Aug 11 8:40	
Anion Summation	74.6	meq/L	NA	SM1030-F	28 Jul 11 14:30	
Percent Error	-0.24	뭄	NA	SM1030-F	3 Aug 11 8:40	
Sodium Adsorption Ratio	27.1		NA	USDA 20b	3 Aug 11 8:4) Calculated
Gross Alpha Radiation	Attached	pCi/l			22 Aug 11 2:03	3
Radon 222	Attached	<u> </u>			28 Jul 11 4:3	
Radium 226	Attached	pCi/l			22 Aug 11 22:2	
Radium 228	Attached	pCi/l			16 Aug 11 16:5	
Total Organic Carbon	0.7	mg/l	0.5	SM5310-C	1 Aug 11 8:0	
Fluoride	< 0.1	mg/l	0.10	SM4500-F-C	4 Aug 11 17:0	
Sulfate	2440	mg/l	5.00	ASTM D516-02	27 Jul 11 9:0	
Chloride	50.5	mg/l	1.0	SM4500-Cl-E	27 Jul 11 14:0	
Nitrate-Nitrite as N	0.21	mg/l	0.10	EPA 353.2	28 Jul 11 14:3	
Ammonia-Nitrogen as N	0.32	mg/l	0.10	EPA 350.1	28 Jul 11 10:4	
Phosphorus as P - Total	< 0.1	mg/l	0.10	EPA 365.1	28 Jul 11 13:0	
Mercury - Total	< 0.0002	mg/l	0.0002	EPA 245.1	28 Jul 11 8:0	
Chemical Oxygen Demand	< 5	mg/l	5.0	HACH 8000	1 Aug 11 8:3	•
Calcium - Total	210	mg/l	1.0	6010	3 Aug 11 8:4	-
Magnesium - Total	< 2.5	mg/l	1.0	6010	3 Aug 11 8:4	
Sodium - Total	1440	mg/l	1.0	6010	3 Aug 11 8:4	4
Potassium - Total	44.8	mg/l	1.0	6010	3 Aug 11 8:4	•
Aluminum - Total	< 0.5	mg/l	0.10	6010	2 Aug 11 9:3	4
Iron - Total	< 0.5	mg/l	0.10	6010	2 Aug 11 9:3	4
Strontium - Total	28.2	mg/l	0.10	6010	2 Aug 11 9:3	
Titanium - Total	< 0.5	mg/l	0.10	6010	2 Aug 11 9:3	4
Boron - Total	< 0.5	mg/l	0.10	6010	11 Aug 11 8:4	0 Stacy

RL = Method Reporting Limit

Elevated "Less Than Result" (<): @= Due to sample matrix != Due to sample quantity

= Due to sample concentration
+ = Due to extract volume

CERTIFICATION: MN LAB # 038-999-267

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 51 West Lincoln Way ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

Page:

2 of 2

Report Date: 8 Sep 11 Lab Number: 11-M2450 Work Order #:81-818 Account #: 013479

Date Sampled:

Date Received: 28 Jun 11 9:00

PO #: 131460 OP

Duane Leingang Montana Dakota Utilities PO Box 40 Mandan ND 58554

Sample Description: Unit I Bottom Ash

Sample Site: MDU Heskett

	As Receiv Result	ed	Method RL	Method Reference	Date Analyzed	Analyst
Antimony - Total	< 0.002	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Arsenic - Total	0.0044	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Barium - Total	0.1135	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Beryllium - Total	< 0.001	mg/l	0.0010	6020	25 Jul 11 16:18	Claudette
Cadmium - Total	0.00164	mg/l	0.00100	6020	25 Jul 11 16:18	Claudette
Chromium - Total	0.0065	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Cobalt - Total	< 0.002	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Copper - Total	0.0213	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Lead - Total	< 0.002	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Manganese - Total	0.0027	mg/l	0.0010	6020	25 Jul 11 16:18	Claudette
Molybdenum - Total	0.6860	mg/l	0.0020	6020	26 Jul 11 12:46	Claudette
Nickel - Total	0.0074	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Selenium - Total	0.0133	mg/l	0.0020	6020	26 Jul 11 9:46	Claudette
Silver - Total	< 0.001	mg/l	0.0010	6020	25 Jul 11 16:18	Claudette
Thallium - Total	< 0.002	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Tin - Total	< 0.05	mg/l	0.0500	6020	25 Jul 11 16:18	Claudette
Vanadium - Total	0.0189	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Zinc - Total	0.0151	mg/l	0.0100	6020	25 Jul 11 16:18	Claudette
Uranium	< 0.002	mg/l	0.002	6020	25 Jul 11 16:18	Claudette

All analyses were performed on the extract from Method 1312 (SPLP) with a modified solution to solids ratio of 4:1.

Approved by:

RL = Method Reporting Limit

= Due to sample concentration
+ = Due to extract volume

CERTIFICATION: MN LAB # 038-999-267

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 51 West Lincoln Way ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

Page:

1 of 2

Report Date: 8 Sep 11 Lab Number: 11-M2451 Work Order #:81-818 Account #: 013479

Date Sampled:

Date Received: 28 Jun 11 9:00

PO #: 131460 OP

Duane Leingang Montana Dakota Utilities PO Box 40 Mandan ND 58554

Sample Description: Unit II Sand Ash

Sample Site: MDU Heskett

	As Receive Result	ed	Method RL	Method Reference	Date Analyzed	Analyst
SPLP Extraction				1312	22 Jul 11	SS
рН	11.1	units	N/A	SM4500 H+ B	22 Jul 11 17:00	Claudette
Specific Conductance	20110	umhos/cm	N/A	SM2510-B	22 Jul 11 17:00	Claudette
Total Suspended Solids	21	mg/l	1	SM2540-D	22 Jul 11 14:00	CLB
Total Alkalinity	203	mg/l CaCO3	4	SM2320-B	22 Jul 11 17:00	Claudette
Phenolphthalein Alk	171	mg/l CaCO3	4	SM2320-B	22 Jul 11 17:00	Claudette
Bicarbonate	< 4	mg/l CaCO3	4	SM2320-B	22 Jul 11 17:00	Claudette
Carbonate	64	mg/l CaCO3	4	SM2320-B	22 Jul 11 17:00	Claudette
Hydroxide	139	mg/l CaCO3	0	SM2320-B	22 Jul 11 17:00	Claudette
Tot Dis Solids (Summation)	22500	mg/l	NA	SM1030-F	3 Aug 11 8:40	Calculated
Total Hardness as CaCO3	1200	mg/l	NA	SM2340-B	3 Aug 11 8:40	Calculated
Hardness in grains/gallon	70.2	gr/gal	NA	SM2340-B	3 Aug 11 8:40	Calculated
Cation Summation	318	meq/L	NA	SM1030-F	3 Aug 11 8:40	Calculated
Anion Summation	314	meq/L	NA	SM1030-F	28 Jul 11 14:30	Calculated
Percent Error	0.65	왕	NA	SM1030-F	3 Aug 11 8:40	Calculated
Sodium Adsorption Ratio	80.9		NA	USDA 20b	3 Aug 11 8:40	Calculated
Gross Alpha Radiation	Attached	pCi/l			22 Aug 11 2:03	
Radon 222	See Attacl	hed			28 Jul 11 4:37	
Radium 226	Attached	pCi/l			22 Aug 11 22:20	
Radium 228	Attached	pCi/l			16 Aug 11 16:50	
Total Organic Carbon	< 0.5	mg/l	0.5	SM5310-C	1 Aug 11 8:00	
Fluoride	< 0.1	mg/l	0.10	SM4500-F-C	4 Aug 11 17:00	CLB
Sulfate	14900	mg/l	5.00	ASTM D516-02	27 Jul 11 9:00	KMP
Chloride	2.0	mg/l	1.0	SM4500-C1-E	27 Jul 11 14:00	KMP
Nitrate-Nitrite as N	< 0.1	mg/l	0.10	EPA 353.2	28 Jul 11 14:30	KMP
Ammonia-Nitrogen as N	0.10	mg/l	0.10	EPA 350.1	28 Jul 11 10:45	KMP
Phosphorus as P - Total	< 0.1	mg/l	0.10	EPA 365.1	28 Jul 11 13:00	KMP
Mercury - Total	< 0.0002	mg/l	0.0002	EPA 245.1	28 Jul 11 8:00	Eric
Chemical Oxygen Demand	< 5	mg/l	5.0	HACH 8000	1 Aug 11 8:30	Wayne
Calcium - Total	481	mg/l	1.0	6010	3 Aug 11 8:40	Stacy
Magnesium - Total	< 5	mg/l	1.0	6010	3 Aug 11 8:40	Stacy
Sodium - Total	6500	mg/l	1.0	6010	3 Aug 11 8:40	Stacy
Potassium - Total	459	mg/l	1.0	6010	3 Aug 11 8:40	Stacy
Aluminum - Total	1.09	mg/l	0.10	6010	2 Aug 11 9:30	Stacy
Iron - Total	< 1	mg/1	0.10	6010	2 Aug 11 9:30	Stacy
Strontium - Total	66.0	mg/l	0.10	6010	2 Aug 11 9:30	Stacy
Titanium - Total	< 1	mg/l	0.10	6010	2 Aug 11 9:30	Stacy
Boron - Total	5.96	mg/l	0.10	6010	11 Aug 11 8:40	Stacy

RL = Method Reporting Limit

Elevated "Less Than Result" (<): @= Due to sample matrix != Due to sample quantity

= Due to sample concentration
+ = Due to extract volume

CERTIFICATION: MN LAB # 038-999-267

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 51 West Lincoln Way ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

Duane Leingang Montana Dakota Utilities

PO Box 40

Mandan ND 58554

Page: 2 of 2

Report Date: 8 Sep 11 Lab Number: 11-M2451 Work Order #:81-818 Account #: 013479

Date Sampled:

Date Received: 28 Jun 11 9:00

PO #: 131460 OP

Sample Description: Unit II Sand Ash

Sample Site: MDU Heskett

	As Received Result		Method RL	Method Reference	Date Analyzed	Analyst
	Result		ИЛ	Reference	zmary zea	THATYE
Antimony - Total	< 0.002	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Arsenic - Total	0.0822	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Barium - Total	0,0930	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Beryllium - Total	< 0.001	mg/l	0.0010	6020	25 Jul 11 16:18	Claudette
Cadmium - Total	0.00182	mg/l	0.00100	6020	25 Jul 11 16:18	Claudette
Chromium - Total	0.0244	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Cobalt - Total	< 0.002	mg/1	0.0020	6020	25 Jul 11 16:18	Claudette
Copper - Total	0.1108	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Lead - Total	< 0.002	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Manganese - Total	0.0052	mg/l	0.0010	6020	25 Jul 11 16:18	Claudette
Molybdenum - Total	0.1000	mg/l	0.0020	6020	26 Jul 11 12:46	Claudette
Nickel - Total	0.0136	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Selenium - Total	0.0937	mg/l	0.0020	6020	26 Jul 11 9:46	Claudette
Silver - Total	< 0.001	mg/l	0.0010	6020	25 Jul 11 16:18	Claudette
Thallium - Total	< 0.002	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Tin - Total	< 0.05	mg/l	0.0500	6020	25 Jul 11 16:18	Claudette
Vanadium - Total	0.3026	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Zinc - Total	0.0327	mg/l	0.0100	6020	25 Jul 11 16:18	Claudette
Uranium	< 0.002	mg/l	0.002	6020	25 Jul 11 16:18	Claudette

All analyses were performed on the extract from Method 1312 (SPLP) with a modified solution to solids ratio of 4:1.

Approved by:

RL = Method Reporting Limit

Elevated "Less Than Result" (<): @ = Due to sample matrix ! = Due to sample quantity

= Due to sample concentration
+ = Due to extract volume

CERTIFICATION: MN LAB # 038-999-267

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 51 West Lincoln Way ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mytl.com

Page: 1 of 2

Report Date: 8 Sep 11 Lab Number: 11-M2452 Work Order #:81-818 Account #: 013479 Date Sampled:

Date Received: 28 Jun 11 9:00

PO #: 131460 OP

Duane Leingang Montana Dakota Utilities PO Box 40 Mandan ND 58554

Sample Description: Unit I Fly Ash

Sample Site: MDU Heskett

	As Receive Result	ed	Method RL	Method Reference	Date Analyzed	Analyst
SPLP Extraction				1312	22 Jul 11	SS
рн	12.9	units	N/A	SM4500 H+ B	22 Jul 11 17:00	Claudette
Specific Conductance	50660	umhos/cm	N/A	SM2510-B	22 Jul 11 17:00	Claudette
Total Suspended Solids	30	mg/l	1	SM2540-D	22 Jul 11 14:00	CLB
Total Alkalinity	7020	mg/l CaCO3	4	SM2320-B	25 Jul 11 17:00	Claudette
Phenolphthalein Alk	6900	mg/l CaCO3	4	SM2320-B	25 Jul 11 17:00	
Bicarbonate	< 4	mg/l CaCO3	4	SM2320-B	25 Jul 11 17:00	Claudette
Carbonate	240	mg/l CaCO3	4	SM2320-B	25 Jul 11 17:00	
Hydroxide	6780	mg/l CaCO3	0	SM2320-B	25 Jul 11 17:00	
Tot Dis Solids (Summation)	42200	mg/l	NA	SM1030-F	3 Aug 11 8:40	
Total Hardness as CaCO3	1750	mg/l	NA	SM2340-B	3 Aug 11 8:40	
Hardness in grains/gallon	102	gr/gal	NA	SM2340-B	3 Aug 11 8:40	
Cation Summation	663	meg/L	NA	SM1030-F	3 Aug 11 8:40	
Anion Summation	613	meg/L	NA	SM1030-F	28 Jul 11 14:30	
Percent Error	3.99	8	NA	SM1030-F	3 Aug 11 8:40	
Sodium Adsorption Ratio	143		NA	USDA 20b	3 Aug 11 8:40	Calculated
Gross Alpha Radiation	Attached	pCi/l			22 Aug 11 2:03	
Radon 222	Attached	-			28 Jul 11 4:37	
Radium 226	Attached	pCi/l			22 Aug 11 22:20	
Radium 228	Attached	pCi/1			16 Aug 11 16:50	
Total Organic Carbon	1.5	mg/l	0.5	SM5310-C	1 Aug 11 8:00	
Fluoride	5.60	mg/l	0.10	SM4500-F-C	10 Aug 11 17:00	
Sulfate	22600	mg/l	5.00	ASTM D516-02	27 Jul 11 9:00	
Chloride	53.8	mg/l	1.0	SM4500-Cl-E	27 Jul 11 14:00	
Nitrate-Nitrite as N	0.68	mg/l	0.10	EPA 353.2	28 Jul 11 14:30	
Ammonia-Nitrogen as N	7.22	mg/l	0.10	EPA 350.1	28 Jul 11 10:45	
Phosphorus as P - Total	< 0.1	mg/l	0.10	EPA 365.1	28 Jul 11 13:00	
Mercury - Total	< 0.0002	mg/l	0.0002	EPA 245.1	28 Jul 11 8:00	Eric
Chemical Oxygen Demand	22.4	mg/1	5.0	HACH 8000	1 Aug 11 8:30	Wayne
Calcium - Total	700	mg/l	1.0	6010	3 Aug 11 8:40	Stacy
Magnesium - Total	< 25	mg/l	1.0	6010	3 Aug 11 8:40	Stacy
Sodium - Total	14100	mg/l	1.0	6010	3 Aug 11 8:40	Stacy
Potassium - Total	580	mg/l	1.0	6010	3 Aug 11 8:40	Stacy
Aluminum - Total	< 5	mg/l	0.10	6010	2 Aug 11 9:30	Stacy
Iron - Total	< 5	mg/l	0.10	6010	2 Aug 11 9:30	Stacy
Strontium - Total	59.5	mg/l	0.10	6010	2 Aug 11 9:30	Stacy
Titanium - Total	< 5	mg/l	0.10	6010	2 Aug 11 9:30	Stacy
Boron - Total	1.89	mg/l	0.10	6010	11 Aug 11 8:40	Stacy

RL = Method Reporting Limit

Elevated "Less Than Result" (<): @ = Due to sample matrix ! = Due to sample quantity

Due to sample concentration
+ Due to extract volume

CERTIFICATION: MN LAB # 038-999-267

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 51 West Lincoln Way ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

Page: 2 of 2

Report Date: 8 Sep 11 Lab Number: 11-M2452 Work Order #:81-818 Account #: 013479

Date Sampled:

Date Received: 28 Jun 11 9:00

PO #: 131460 OP

Duane Leingang Montana Dakota Utilities PO Box 40 Mandan ND 58554

Sample Description: Unit I Fly Ash

Sample Site: MDU Heskett

	As Receive Result	ed	Method RL	Method Reference	Date Analyzed	Analyst
Antimony - Total	< 0.002	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Arsenic - Total	0.1128	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Barium - Total	0.0906	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Beryllium - Total	< 0.001	mg/l	0.0010	6020	25 Jul 11 16:18	Claudette
Cadmium - Total	0.00244	mg/l	0.00100	6020	25 Jul 11 16:18	Claudette
Chromium - Total	0.0270	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Cobalt - Total	< 0.002	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Copper - Total	0.2934	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Lead - Total	0.0161	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Manganese - Total	0.0102	mg/l	0.0010	6020	25 Jul 11 16:18	Claudette
Molybdenum - Total	0.9246	mg/l	0.0020	6020	26 Jul 11 12:46	Claudette
Nickel - Total	0.0175	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Selenium - Total	0.1959	mg/l	0.0020	6020	26 Jul 11 9:46	Claudette
Silver - Total	< 0.001	mg/l	0.0010	6020	25 Jul 11 16:18	Claudette
Thallium - Total	< 0.002	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Tin - Total	< 0.05	mg/l	0.0500	6020	25 Jul 11 16:18	Claudette
Vanadium - Total	0.0158	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Zinc - Total	0.3984	mg/l	0.0100	6020	25 Jul 11 16:18	Claudette
Uranium	< 0.002	mg/l	0.002	6020	25 Jul 11 16:18	Claudette

All analyses were performed on the extract from Method 1312 (SPLP) with a modified solution to solids ratio of 4:1.

Approved by:

RL = Method Reporting Limit

Elevated "Less Than Result" (<): @ = Due to sample matrix $\frac{1}{2}$ = Due to sample quantity

= Due to sample concentration
+ = Due to extract volume

CERTIFICATION: MN LAB # 038-999-267

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 51 West Lincoln Way ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

Page:

1 of 2

Report Date: 8 Sep 11 Lab Number: 11-M2453 Work Order #:81-818 Account #: 013479

Date Sampled:

Date Received: 28 Jun 11 9:00

PO #: 131460 OP

Duane Leingang Montana Dakota Utilities PO Box 40 Mandan ND 58554

Sample Description: Unit II Fly Ash

Sample Site: MDU Heskett

	As Received Result		Method RL	Method Reference	Date Analyzed	Analyst
SPLP Extraction				1312	22 Jul 11	SS
рн	12.8	units	N/A	SM4500 H+ B	22 Jul 11 17:00	Claudette
Specific Conductance	27240	umhos/cm	N/A	SM2510-B	22 Jul 11 17:00	Claudette
Total Suspended Solids	13	mg/1	1	SM2540-D	22 Jul 11 14:00	CLB
Total Alkalinity	4570	mg/l CaCO3	4	SM2320-B	22 Jul 11 17:00	Claudette
Phenolphthalein Alk	4520	mg/l CaCO3	4	SM2320-B	22 Jul 11 17:00	Claudette
Bicarbonate	< 4	mg/l CaCO3	4	SM2320-B	22 Jul 11 17:00	Claudette
Carbonate	100	mg/l CaCO3	4	SM2320-B	22 Jul 11 17:00	Claudette
Hydroxide	4470	mg/l CaCO3	0	SM2320-B	22 Jul 11 17:00	Claudette
Tot Dis Solids (Summation)	16000	mg/l	NA	SM1030-F	3 Aug 11 8:40	Calculated
Total Hardness as CaCO3	1960	mg/l	NA	SM2340-B	3 Aug 11 8:40	Calculated
Hardness in grains/gallon	115	gr/gal	NA	SM2340-B	3 Aug 11 8:40	Calculated
Cation Summation	252	meq/L	NA	SM1030-F	9 Aug 11 9:09	Calculated
Anion Summation	247	meq/L	NA	SM1030-F	28 Jul 11 14:30	Calculated
Percent Error	1.00	8	NA	SM1030-F	9 Aug 11 9:09	Calculated
Sodium Adsorption Ratio	46.1		NA	USDA 20b	3 Aug 11 8:40	Calculated
Gross Alpha Radiation	Attached	pCi/l			22 Aug 11 2:03	
Radon 222	Attached				28 Jul 11 4:37	
Radium 226	Attached	pCi/l			22 Aug 11 22:20	
Radium 228	Attached	pCi/l			16 Aug 11 16:50	
Total Organic Carbon	1.6	mg/l	0.5	SM5310-C	1 Aug 11 8:00	Eric
Fluoride	3.60	mg/l	0.10	SM4500-F-C	4 Aug 11 17:00	CLB
Sulfate	7400	mg/l	5.00	ASTM D516-02	27 Jul 11 9:00	KMP
Chloride	66.0	mg/l	1.0	SM4500-C1-E	27 Jul 11 14:00	KMP
Nitrate-Nitrite as N	0.38	mg/1	0.10	EPA 353.2	28 Jul 11 14:30	KMP
Ammonia-Nitrogen as N	15.0	mg/l	0.10	EPA 350.1	28 Jul 11 10:45	KMP
Phosphorus as P - Total	< 0.1	mg/1	0.10	EPA 365.1	28 Jul 11 13:00	KMP
Mercury - Total	< 0.0002	mg/l	0.0002	EPA 245.1	28 Jul 11 8:00	Eric
Chemical Oxygen Demand	9.4	mg/l	5.0	HACH 8000	1 Aug 11 8:30	Wayne
Calcium - Total	785	mg/l	1.0	6010	3 Aug 11 8:40	Stacy
Magnesium - Total	< 5	mg/l	1.0	6010	3 Aug 11 8:40	Stacy
Sodium - Total	4720	mg/l	1.0	6010	3 Aug 11 8:40	Stacy
Potassium - Total	275	mg/l	1.0	6010	3 Aug 11 8:40	Stacy
Aluminum - Total	< 1	mg/1	0.10	6010	9 Aug 11 9:09	Stacy
Iron - Total	< 1	mg/l	0.10	6010	9 Aug 11 9:09	Stacy
Strontium - Total	85.0	mg/l	0.10	6010	9 Aug 11 9:09	Stacy
Titanium - Total	< 1	mg/1	0.10	6010	9 Aug 11 9:09	Stacy
Boron - Total	< 1	mg/l	0.10	6010	11 Aug 11 8:40	Stacy

RL = Method Reporting Limit

Elevated "Less Than Result" (<): @ = Due to sample matrix ! = Due to sample quantity

= Due to sample concentration + = Due to extract volume

CERTIFICATION: MN LAB # 038-999-267