

2019 Annual Groundwater Monitoring and Corrective Action Report

CCR Landfill

R.M. Heskett Station Mandan, North Dakota

Prepared for Montana-Dakota Utilities Co.

January 2020

4300 MarketPointe Drive, Suite 200 Minneapolis, MN 55435 952.832.2600 www.barr.com

2019 Annual Groundwater Monitoring and Corrective Action Report

CCR Landfill

R.M. Heskett Station Mandan, North Dakota

January 31, 2020

Table of Contents

1.0	In	troduction1
1.1		Purpose1
1.2		CCR Rule Requirements1
2.0	G	roundwater Monitoring Program3
2.1		Groundwater Monitoring System3
2.2		Actions Completed/Problems Encountered
2.3		Data and Collection Summary
2	2.3.1	October 2018 Detection Monitoring Event
2	2.3.2	April 2019 Detection Monitoring Event4
2	2.3.3	September 2019 Detection Monitoring Event4
2.4		Activities for Upcoming Year4
3.0	Re	eferences5

List of Tables

 Table 1
 CCR Rule Requirements and Compliance

List of Figures

Figure 1 Site Layout and CCR Monitoring Well Network

List of Appendices

- Appendix A Laboratory Reports and Field Sheets
- Appendix BAlternative Source Demonstration: October 2018 EventAlternative Source Demonstration: April 2019 Event

Acronyms

Acronym	Description
ASD	Alternative Source Demonstration
CCR	Coal Combustion Residuals
CFR	Code of Federal Regulations
MDU	Montana Dakota Utilities Co.
SSI	Statistically Significant Increase
TDS	Total dissolved solids

1.0 Introduction

Montana-Dakota Utilities Co. (MDU) owns and operates R.M. Heskett Station, a coal-fired generating station and a gas fired turbine located in Mandan, North Dakota (Figure 1). One CCR landfill, as defined by 40 CFR 257.53, is located on the property. Wastes contained in the CCR landfill primarily consist of coal combustion by-products, asbestos wastes generated from construction activity associated with MDU-owned facilities, and ash derived from the burning of tire-derived fuel at the facility.

This 2019 Annual Groundwater Monitoring and Corrective Action Report (Annual Report) describes the monitoring program and results for the CCR landfill at MDU's R.M. Heskett Station (Site).

1.1 Purpose

As stated in Section §257.90 (e), the Annual Report must:

- Document the status of groundwater monitoring and any corrective action programs for the CCR unit,
- Summarize key actions completed,
- Describe any problems encountered,
- Discuss actions to resolve the problems, and
- Project key activities for the upcoming year.

1.2 CCR Rule Requirements

Additional requirements for the Annual Report, as outlined in §257.90 (e) of the CCR Rule and this Site's compliance with the CCR Rule, are summarized in Table 1.

CCR Rule Reference	Content Required in Report	Location
§257.90(e)(1)	Monitoring System Figure: A map, aerial image, or diagram showing the CCR unit and all background (or upgradient) and downgradient monitoring wells, to include the well identification numbers, that are part of the groundwater monitoring program for the CCR unit;	Section 2.1 Groundwater Monitoring System; see Figure 1.
§257.90(e)(2)	Monitoring System Adjustments : Identification of any monitoring wells that were installed or decommissioned during the preceding year, along with a narrative description of why those actions were taken;	Section 2.1 Groundwater Monitoring System
§257.90(e)(3)	Data and Collection Summary : In addition to all the monitoring data obtained under §257.90 through §257.98, a summary including the number of groundwater samples that were collected, and whether the sample was required by the detection monitoring or assessment monitoring programs;	Section 2.3 Monitoring and Analytical Results
§257.90(e)(4)	Monitoring Program : A narrative discussion of any transition between monitoring programs (e.g. the date and circumstances for transitioning from detection monitoring to assessment monitoring in addition to identifying the constituent(s) detected at a statistically significant increase over background levels); and	Section 2.3 Monitoring and Analytical Results
§257.90(e)(5)	Other Information:Other information required, if applicable, to be included in the annual report as specified in §257.90 through §257.98Alternative Monitoring Frequency Demonstration (§257.94(d) and §257.95 (c)(3))-Appendix III Alternative Source Demonstration Report (§257.94(e)(2))-Assessment Monitoring Results and Discussion (§257.95(d)(3))-Appendix IV Alternative Source Demonstration Report (§257.95(g)(3)(ii))-Demonstration for Additional Time for Assessment or Corrective Measures (§257.96(a))	Section 2.3 Monitoring and Analytical Results

2.0 Groundwater Monitoring Program

This section documents the status of the groundwater monitoring and corrective action program for the CCR unit in 2019. The groundwater monitoring system is described in Section 2.1, key actions completed, and problems encountered are described in Section 2.2, the monitoring and analytical results are described in Section 2.3, and key activities planned for 2020 are described in Section 2.4.

2.1 Groundwater Monitoring System

The groundwater monitoring system is consistent with the Groundwater Monitoring System Certification (Barr, 2017a); no adjustments or changes were made to the groundwater monitoring system in 2019.

2.2 Actions Completed/Problems Encountered

The following actions were completed in 2019:

- **Detection Monitoring Sampling**: Groundwater samples were collected from each well in the groundwater monitoring system on April 1-2, 2019 and September 16-18, 2019; samples were analyzed for Appendix III constituents, per the detection monitoring program of the CCR Rule (257.94).
- **SSI Evaluation:** SSI evaluations were conducted in accordance with the Groundwater Statistical Method Selection Certification (Statistical Certification; Barr, 2017b) for the October 2018 and April 2019 detection monitoring events, both of which resulted in potential SSIs.
- **Verification Retesting:** Retesting was conducted, per the Statistical Certification (Barr, 2017b) on the potential SSIs for the April 2019 detection monitoring event (in August 2019). All SSIs were verified.
- Alternative Source Demonstration (ASD): ASDs were conducted on the SSIs for the October 2018 and April 2019 detection monitoring events. Both ASDs were able to demonstrate an alternative source, as allowed by the CCR rule (§257.94(e)(2)). More details are provided in Section 2.4.

2.3 Data and Collection Summary

2.3.1 October 2018 Detection Monitoring Event

As mentioned in the 2018 Annual Report, an SSI evaluation was to be conducted on the results of the October 2018 detection monitoring event. Four potential SSIs (fluoride at MW2-90, chloride at MW-105, and sulfate and TDS at MW-104) were identified. Field data sheets and analytical laboratory reports for detection monitoring sampling is included in Appendix A.

An Appendix III ASD was conducted on the verified SSIs and was able to successfully demonstrate that a natural variation in groundwater quality resulted in the SSIs, as allowed by §257.94(e)(4). The Alternative Source Demonstration: October 2018 Event Report is included in Appendix B.

2.3.2 April 2019 Detection Monitoring Event

Groundwater samples were collected from all 12 monitoring wells at the Site on April 1 and 2, 2019. Four potential SSIs (fluoride at MW2-90, chloride at MW-105, and sulfate and TDS at MW-104) were identified and subsequently verified through resampling on August 22, 2019. Field data sheets and analytical laboratory reports for detection monitoring sampling and verification resampling are included in Appendix A.

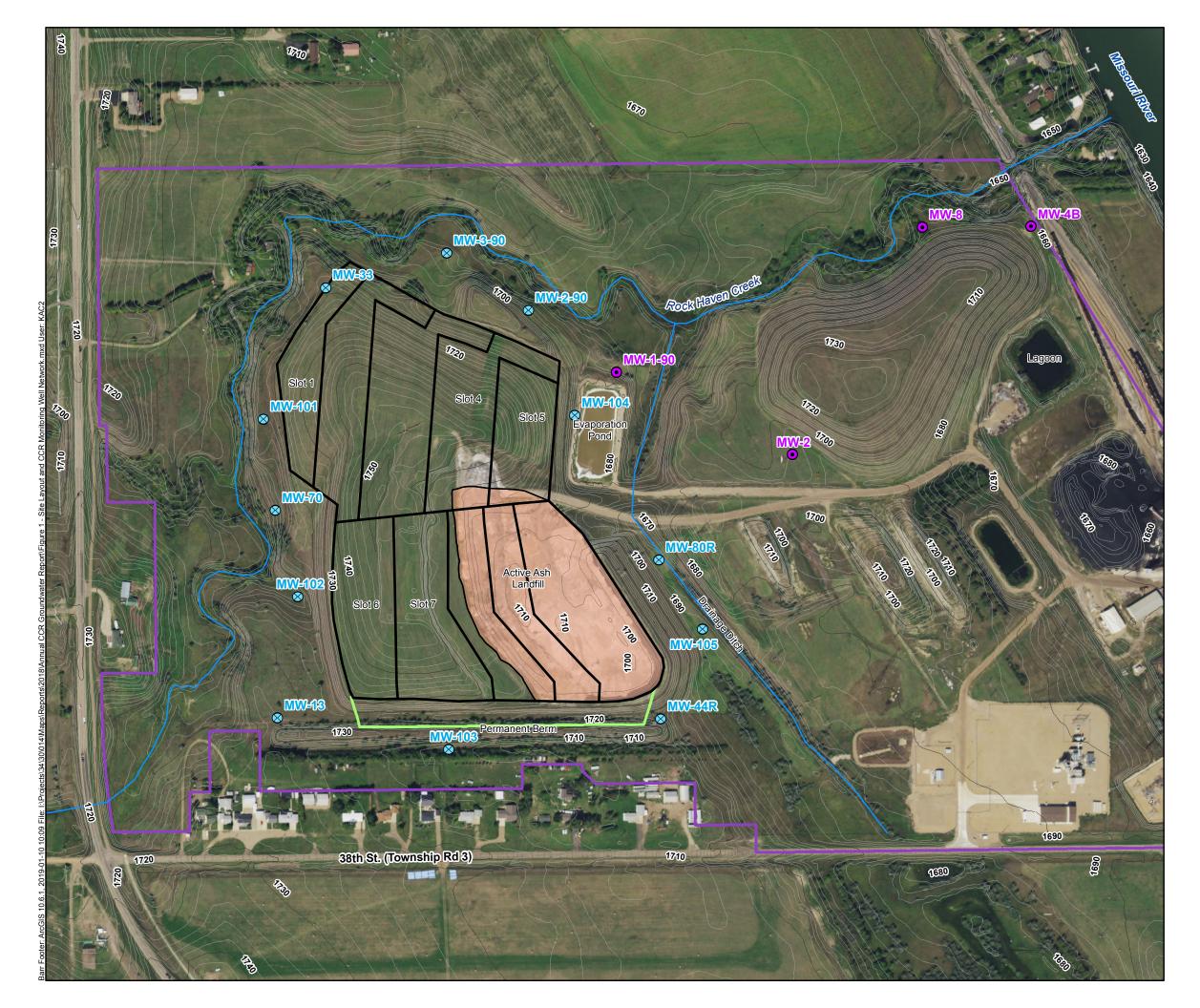
An Appendix III ASD was conducted on the verified SSIs and was able to successfully demonstrate that a natural variation in groundwater quality and/or "a source other than the CCR unit" resulted in the SSIs, as allowed by §257.94(e)(4). The Alternative Source Demonstration: April 2019 Event is included in Appendix B.

2.3.3 September 2019 Detection Monitoring Event

Groundwater samples were collected from all 12 monitoring wells at the Site on September 16, 17, and 18, 2019. Field data sheets and analytical laboratory reports for detection monitoring sampling are included in Appendix A.

2.4 Activities for Upcoming Year

The following key activities for analytical results and statistical evaluations are planned for 2020:


- Complete SSI evaluation for the September 2019 detection monitoring event in accordance with the Statistical Certification (Barr, 2017b).
- Evaluate analytical results from 2020 semi-annual detection monitoring events for SSIs according to the Statistical Certification (Barr, 2017b).

3.0 References

Barr Engineering Co. (Barr), 2017a, Groundwater Monitoring System Certification, October 2017.

Barr, 2017b, Statistical Method Selection Certification, October 2017.

Figure

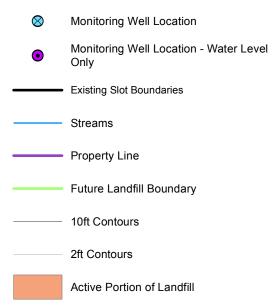


Image Source: 2017 Statewide Imagery (ND GIS Hub)

CAD Data Source: Slot Linework.dwg

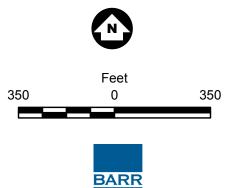


Figure 1

SITE LAYOUT AND CCR MONITORING WELL NETWORK R. M. Heskett Station 2019 CCR Groundwater Monitoring Report Montana Dakota Utilities Mandan, North Dakota

Appendix A

Laboratory Reports and Field Sheets

MVTI

MINNESOTA VALLEY TESTING LABORATORIES, INC.

1126 N. Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 E. Broadway Ave. ~ Bismarck, ND 58502 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Highway ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

MEMBER ACIL

Known

% Rec

Limits

_

-

-

-

-

_

-

-

-

....

-

_

-

-

-

-

_

Method

< 0.1

< 0.1

< 0.1

< 1

<1

<1

<1

< 1

< 1

< 0.1

< 0.1

-

-

< 5

< 5

< 10

Blank

Quality Control Report - CCR Lab IDs: 19-W567 to 19-W574 Project: MDU Heskett Work Order: 201982-0624 Matrix Matrix Matrix MSD/ MSD/ LCS LCS LCS Matrix MSD/ Matrix Spike Matrix Spike Spike Dup MSD MSD/ Dup Known Spike Rec % Rec % Rec Spike Spike Orig Spike Rec Dup RPD Orig Dup Rec Rec Analyte Amt % Limits Amt ID Result Result % Limits Result Result % RPD Limit (<) (%) Boron - Total mg/l 95 0.40 80-120 0.400 19-D943 0.24 0.66 105 75-125 0.66 0.63 97 4.7 20 100 0.40 80-120 2.00 19-W567 0.70 3.00 115 75-125 3.00 3.00 20 115 0.0 -2.00 19-W586 < 0.52.41 120 75-125 2.41 2.34 117 2.9 20 -Calcium - Total mg/l 20.0 102 80-120 2000 19M537a 1950 4100 108 75-125 4100 4140 110 20 1.0 _ 20.0 107 80-120 1000 19M539q 1820 2830 101 75-125 -2000 19M541q 2060 4140 104 75-125 500 19W571a 346 920 920 115 75-125 935 118 20 1.6 -500 19W587q 442 1040 120 75-125 1040 995 111 4.4 20 -Chloride mg/l 30.0 97 80-120 30.0 19-W593 <1 28.4 95 80-120 28.4 29.6 99 4.1 20 -30.0 97 80-120 -Fluoride mg/l 0.50 104 90-110 0.500 19-W568 0.98 1.45 94 80-120 1.45 1.46 96 0.7 20 -0.500 19-W583 < 0.1 0.52 104 80-120 0.52 0.52 104 0.0 20 pH units 7.1 7.1 0.0 20 ---_ _ ----_ -7.6 20 -----_ 7.6 0.0 ----_ Sulfate mg/l 100 96 80-120 1000 19-W583 370 1150 78 80-120 1150 1170 80 1.7 20 -100 100 80-120 100 19-W574 < 5 103 103 80-120 103 105 105 1.9 20 -

-

Page: 1 of 1

Samples were received in good condition on 1 Apr 2019 at 1529.

Temperature upon receipt at the Bismarck laboratory was 2.8°C. Samples were received on ice and evidence of cooling had begun.

-

All samples were properly preserved unless noted here and/or flagged on the individual analytical laboratory report.

With the exception of pH, all holding times were met.

Total Dissolved Solids mg/l

Approved methodology was followed for all sample analyses.

All acceptance criteria were met for calibration, method blanks, laboratory control samples, laboratory fortified matrix/duplicates unless noted here.

_

-

For some analytes, the reported results were elevated due to additional dilutions required to minimize the effects of sample matrix.

One sulfate matrix spike recovery was outside the acceptable limits. Recovery for the matrix spike duplicate was acceptable. RPD for the recoveries of the matrix spike duplicate and the matrix spike was within limits. No further action was taken.

-

_

-

31200

30800

_

1.3

20

Approved by: C. CMSO 6 May 19

Page: 1 of 8

CERTIFICATE of ANALYSIS - CCR

Samantha Davies Montana Dakota Utilities 5181 Southgate Dr Billings MT 59102 Report Date: 25 Apr 19 Lab Number: 19-W567 Work Order #: 82-0624 Account #: 002800 Date Sampled: 1 Apr 19 11:48 Date Received: 1 Apr 19 15:29 Sampled By: MVTL Field Services

Temp at Receipt: 2.8C ROI

Project Name: MDU Heskett Sample Description: 13

Event and Year: Spring 2019

	As Recei Result	ved	Method RL	Method Reference	Date Analyzed	Analyst
Metal Digestion				EPA 200.2	2 Apr 19	SVS
pH - Field	6.78	units	NA	SM 4500 H+ B	1 Apr 19 11:48	DJN
Hq	* 7.2	units	0.1	SM4500 H+ B	2 Apr 19 17:00	SVS
Temperature - Field	8.12	Degrees C	NA	SM 2550B	1 Apr 19 11:48	DJN
Conductivity - Field	10270	umhos/cm	1	EPA 120.1	1 Apr 19 11:48	DJN
Fluoride	0.98	mg/l	0.10	SM4500-F-C	2 Apr 19 17:00	SVS
Sulfate	6160	mg/l	5.00	ASTM D516-07	5 Apr 19 16:09	EMS
Chloride	64.6	mg/l	1.0	SM4500-C1-E	3 Apr 19 15:19	EMS
Total Dissolved Solids	10400	mg/l	10	I1750-85	4 Apr 19 9:15	SVS
Calcium - Total	408	mg/l	1.0	6010D	4 Apr 19 11:36	SZ
Boron - Total	0.70	mg/l	0.10	6010D	8 Apr 19 10:36	SZ

* Holding time exceeded

Approved by:

11 6 May A Claudette K. Canto

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

Page: 2 of 8

CERTIFICATE of ANALYSIS - CCR

Samantha Davies Montana Dakota Utilities 5181 Southgate Dr Billings MT 59102

Project Name: MDU Heskett Sample Description: Dup1

Event and Year: Spring 2019

Report Date: 25 Apr 19 Lab Number: 19-W568 Work Order #: 82-0624 Account #: 002800 Date Sampled: 1 Apr 19 Date Received: 1 Apr 19 15:29 Sampled By: MVTL Field Services

Temp at Receipt: 2.8C ROI

As Recei Result	As Received Result		Method Reference	Date Analyzed	Analyst
			EPA 200.2	2 Apr 19	SVS
* 7.2	units	0.1	SM4500 H+ B	2 Apr 19 17:00	SVS
0.98	mg/l	0.10	SM4500-F-C	2 Apr 19 17:00	SVS
6230	mg/l	5.00	ASTM D516-07	5 Apr 19 16:09	EMS
63.6	mg/l	1.0	SM4500-C1-E	3 Apr 19 15:19	EMS
10400	mg/l	10	I1750-85	4 Apr 19 9:15	SVS
410	mg/l	1.0	6010D	4 Apr 19 11:36	SZ
0.72	mg/l	0.10	6010D	8 Apr 19 10:36	SZ
	Result * 7.2 0.98 6230 63.6 10400 410	Result * 7.2 units 0.98 mg/l 6230 mg/l 63.6 mg/l 10400 mg/l 410 mg/l	Result RL * 7.2 units 0.1 0.98 mg/l 0.10 6230 mg/l 5.00 63.6 mg/l 1.0 10400 mg/l 10 410 mg/l 1.0	Result RL Reference * 7.2 units 0.1 SM4500 H+ B 0.98 mg/l 0.10 SM4500-F-C 6230 mg/l 5.00 ASTM D516-07 63.6 mg/l 1.0 SM4500-Cl-E 10400 mg/l 10 I1750-85 410 mg/l 1.0 6010D	Result RL Reference Analyzed * 7.2 units 0.1 SM4500 H+ B 2 Apr 19 * 7.2 units 0.1 SM4500 H+ B 2 Apr 19 17:00 0.98 mg/l 0.10 SM4500-F-C 2 Apr 19 17:00 6230 mg/l 5.00 ASTM D516-07 5 Apr 19 16:09 63.6 mg/l 1.0 SM4500-C1-E 3 Apr 19 15:19 10400 mg/l 10 I1750-85 4 Apr 19 9:15 410 mg/l 1.0 6010D 4 Apr 19 11:36

* Holding time exceeded

CC

Approved by:

6 Mar 19 Clauditte K. Cantle

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

CERTIFICATION: ND # ND-00016

Page: 3 of 8

CERTIFICATE of ANALYSIS - CCR

Samantha Davies Montana Dakota Utilities 5181 Southgate Dr Billings MT 59102

Project Name: MDU Heskett Sample Description: 102

Event and Year: Spring 2019

Report Date: 25 Apr 19 Lab Number: 19-W569 Work Order #: 82-0624 Account #: 002800 Date Sampled: 1 Apr 19 10:45 Date Received: 1 Apr 19 15:29 Sampled By: MVTL Field Services

Temp at Receipt: 2.8C ROI

	As Recei Result	lved	Method RL	Method Reference	Date Analyzed	Analyst
Metal Digestion				EPA 200.2	2 Apr 19	SVS
pH - Field	6.75	units	NA	SM 4500 H+ B	1 Apr 19 10:45	DJN
Hq	* 7.1	units	0.1	SM4500 H+ B	2 Apr 19 17:00	SVS
Temperature - Field	7.32	Degrees C	NA	SM 2550B	1 Apr 19 10:45	DJN
Conductivity - Field	9026	umhos/cm	1	EPA 120.1	1 Apr 19 10:45	DJN
Fluoride	0.18	mg/l	0.10	SM4500-F-C	2 Apr 19 17:00	SVS
Sulfate	4810	mg/l	5.00	ASTM D516-07	5 Apr 19 16:09	EMS
Chloride	5.0	mg/l	1.0	SM4500-Cl-E	3 Apr 19 15:19	EMS
Total Dissolved Solids	8190	mg/l	10	I1750-85	4 Apr 19 9:15	SVS
Calcium - Total	449	mg/l	1.0	6010D	4 Apr 19 11:36	SZ
Boron - Total	1.62	mg/l	0.10	6010D	8 Apr 19 10:36	SZ

* Holding time exceeded

Approved by:

6 May 19 Clauditte K. Cantle

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

CERTIFICATION: ND # ND-00016

Page: 4 of 8

CERTIFICATE of ANALYSIS - CCR

Samantha Davies Montana Dakota Utilities 5181 Southgate Dr Billings MT 59102

Project Name: MDU Heskett Sample Description: 70

Event and Year: Spring 2019

Report Date: 25 Apr 19 Lab Number: 19-W570 Work Order #: 82-0624 Account #: 002800 Date Sampled: 1 Apr 19 11:52 Date Received: 1 Apr 19 15:29 Sampled By: MVTL Field Services

Temp at Receipt: 2.8C ROI

	As Recei Result	.ved	Method RL	Method Reference	Date Analyzed	Analyst
Metal Digestion				EPA 200.2	2 Apr 19	SVS
pH - Field	6.91	units	NA	SM 4500 H+ B	1 Apr 19 11:52	DJN
Hq	* 7.3	units	0.1	SM4500 H+ B	2 Apr 19 17:00	SVS
Temperature - Field	7.67	Degrees C	NA	SM 2550B	1 Apr 19 11:52	DJN
Conductivity - Field	3951	umhos/cm	1	EPA 120.1	1 Apr 19 11:52	DJN
Fluoride	0.32	mg/l	0.10	SM4500-F-C	2 Apr 19 17:00	SVS
Sulfate	1830	mg/l	5.00	ASTM D516-07	5 Apr 19 16:09	EMS
Chloride	45.6	mg/l	1.0	SM4500-Cl-E	3 Apr 19 15:19	EMS
Total Dissolved Solids	3400	mg/l	10	I1750-85	4 Apr 19 9:15	SVS
Calcium - Total	338	mg/l	1.0	6010D	4 Apr 19 11:36	SZ
Boron - Total	0.64	mg/l	0.10	6010D	8 Apr 19 10:36	SZ

* Holding time exceeded

Approved by:

6 May 19 Clauditte K. Canto

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

CERTIFICATION: ND # ND-00016

Page: 5 of 8

CERTIFICATE of ANALYSIS - CCR

Samantha Davies Montana Dakota Utilities 5181 Southgate Dr Billings MT 59102

Project Name: MDU Heskett Sample Description: 101

Event and Year: Spring 2019

Report Date: 25 Apr 19 Lab Number: 19-W571 Work Order #: 82-0624 Account #: 002800 Date Sampled: 1 Apr 19 14:17 Date Received: 1 Apr 19 15:29 Sampled By: MVTL Field Services

Temp at Receipt: 2.8C ROI

	As Recei Result	ved	Method RL	Method Reference	Date Analyzed	Analyst
Metal Digestion				EPA 200.2	2 Apr 19	SVS
pH - Field	6.69	units	NA	SM 4500 H+ B	1 Apr 19 14:17	DJN
рH	* 7.1	units	0.1	SM4500 H+ B	2 Apr 19 17:00	SVS
Temperature - Field	7.74	Degrees C	NA	SM 2550B	1 Apr 19 14:17	DJN
Conductivity - Field	4785	umhos/cm	1	EPA 120.1	1 Apr 19 14:17	DJN
Fluoride	< 0.1	mg/l	0.10	SM4500-F-C	2 Apr 19 17:00	SVS
Sulfate	2850	mg/l	5.00	ASTM D516-07	11 Apr 19 8:30	EV
Chloride	16.0	mg/l	1.0	SM4500-Cl-E	3 Apr 19 15:19	EMS
Total Dissolved Solids	4400	mg/l	10	I1750-85	4 Apr 19 9:15	SVS
Calcium - Total	346	mg/l	1.0	6010D	4 Apr 19 11:36	SZ
Boron - Total	1.34	mg/l	0.10	6010D	8 Apr 19 10:36	SZ

* Holding time exceeded

Approved by:

6 May 19 Clauditte K. Canto

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

CERTIFICATION: ND # ND-00016

Page: 6 of 8

CERTIFICATE of ANALYSIS - CCR

Samantha Davies Montana Dakota Utilities 5181 Southgate Dr Billings MT 59102

Project Name: MDU Heskett Sample Description: 103

Event and Year: Spring 2019

Report Date: 25 Apr 19 Lab Number: 19-W572 Work Order #: 82-0624 Account #: 002800 Date Sampled: 1 Apr 19 14:25 Date Received: 1 Apr 19 15:29 Sampled By: MVTL Field Services

Temp at Receipt: 2.8C ROI

	As Receiv Result	ed	Method RL	Method Reference	Date Analyzed	Analyst
	Rebuite					1
Metal Digestion				EPA 200.2	2 Apr 19	SVS
pH - Field	6.48	units	NA	SM 4500 H+ B	1 Apr 19 14:25	DJN
Hq	* 7.1	units	0.1	SM4500 H+ B	2 Apr 19 17:00	SVS
Temperature - Field	7.95	Degrees C	NA	SM 2550B	1 Apr 19 14:25	DJN
Conductivity - Field	5198	umhos/cm	1	EPA 120.1	1 Apr 19 14:25	DJN
Fluoride	0.15	mg/l	0.10	SM4500-F-C	2 Apr 19 17:00	SVS
Sulfate	2930	mg/l	5.00	ASTM D516-07	11 Apr 19 8:30	EV
Chloride	142	mg/l	1.0	SM4500-Cl-E	3 Apr 19 15:19	EMS
Total Dissolved Solids	4860	mg/l	10	I1750-85	4 Apr 19 9:15	SVS
Calcium - Total	530	mg/l	1.0	6010D	4 Apr 19 12:36	SZ
Boron - Total	< 0.5 @	mg/l	0.10	6010D	8 Apr 19 10:36	SZ

* Holding time exceeded

Approved by:

6 May 19 Clauditte K. Canto

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

Page: 7 of 8

CERTIFICATE of ANALYSIS - CCR

Samantha Davies Montana Dakota Utilities 5181 Southgate Dr Billings MT 59102

Project Name: MDU Heskett Sample Description: 44R

Event and Year: Spring 2019

Report Date: 25 Apr 19 Lab Number: 19-W573 Work Order #: 82-0624 Account #: 002800 Date Sampled: 1 Apr 19 13:12 Date Received: 1 Apr 19 15:29 Sampled By: MVTL Field Services

Temp at Receipt: 2.8C ROI

	As Recei Result	ved	Method RL	Method Reference	Date Analyzed	Analyst
	Result		КШ	Reference	rmary loa	11101700
Metal Digestion				EPA 200.2	2 Apr 19	SVS
pH - Field	6.36	units	NA	SM 4500 H+ B	1 Apr 19 13:12	DJN
Hq	* 6.9	units	0.1	SM4500 H+ B	2 Apr 19 17:00	SVS
Temperature - Field	7.77	Degrees C	NA	SM 2550B	1 Apr 19 13:12	DJN
Conductivity - Field	9300	umhos/cm	1	EPA 120.1	1 Apr 19 13:12	DJN
Fluoride	0.67	mg/l	0.10	SM4500-F-C	2 Apr 19 17:00	SVS
Sulfate	6350	mg/l	5.00	ASTM D516-07	11 Apr 19 8:30	EV
Chloride	205	mg/l	1.0	SM4500-Cl-E	3 Apr 19 15:19	EMS
Total Dissolved Solids	10100	mg/l	10	I1750-85	4 Apr 19 9:15	SVS
Calcium - Total	436	mg/l	1.0	6010D	4 Apr 19 12:36	SZ
Boron - Total	0.82	mg/l	0.10	6010D	8 Apr 19 10:36	SZ

* Holding time exceeded

Approved by:

(L 6 May 19 Clauditte K. Cantop

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

CERTIFICATION: ND # ND-00016

Page: 8 of 8

CERTIFICATE of ANALYSIS - CCR

Samantha Davies Montana Dakota Utilities 5181 Southgate Dr Billings MT 59102 Report Date: 25 Apr 19 Lab Number: 19-W574 Work Order #: 82-0624 Account #: 002800 Date Sampled: 1 Apr 19 Date Received: 1 Apr 19 15:29 Sampled By: MVTL Field Services

Temp at Receipt: 2.8C ROI

Project Name: MDU Heskett Sample Description: FB1 Event and Year: Spring 2019

	As Recei Result	ved	Method RL	Method Reference	Date Analyzed	Analyst
Metal Digestion				EPA 200.2	2 Apr 19	SVS
рН	* 6.2	units	0.1	SM4500 H+ B	2 Apr 19 17:00	SVS
Fluoride	< 0.1	mg/l	0.10	SM4500-F-C	2 Apr 19 17:00	SVS
Sulfate	< 5	mg/l	5.00	ASTM D516-07	11 Apr 19 8:30	EV
Chloride	< 1	mg/l	1.0	SM4500-Cl-E	3 Apr 19 15:19	EMS
Total Dissolved Solids	< 10	mg/l	10	I1750-85	4 Apr 19 9:15	SVS
Calcium - Total	< 1	mg/l	1.0	6010D	4 Apr 19 12:36	SZ
Boron - Total	< 0.1	mg/l	0.10	6010D	8 Apr 19 10:36	SZ

* Holding time exceeded

CC Le May 19 Clauditte Approved by: K. Cantlo

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

The reporting limit was elevated for any analyte requiring a dilution as coded below: @ = Due to sample matrix # = Due to concentration of other analytes ! = Due to sample quantity + = Due to internal standard response CERTIFICATION: ND # ND-00016

Groundwater Assessment

2616 E. Broadway Ave, Bismarck, ND	2616 E.	Broadway	Ave,	Bismarck,	ND
------------------------------------	---------	----------	------	-----------	----

2616 E. Broadway Ave, Bis	smarck, ND						-	Sampling P	ersonal:	DAIC	-GNI4	SNAAG	
Phone: (701) 258-9	720						-				010 3		<u></u>
Weather Conditions:		Temp:	33 °F		Wind: J	Nest	@ 5		Precip	Sunn	y / Partly C	Cloudy //C	oudy
· · · · · · · · · · · · · · · · · · ·	Well Info					<u></u>		Sa	mpling I	nformatic	n		
Well Locked?	Yes	No				Purgir	ng Method:	Blac	lder				
Well Labeled?	des	No				Samplir	ng Method:	Blac	lder		Co	ntrol Settir	ngs
Casing Straight?	Xes	No				Dedicat	ed Equip?:	Jes	No		Purge:	5	sec.
Grout Seal Intact?	Yes	No	Not Visible			Duplicate	Sample?:	res	No		Recover:	55	sec.
Repairs Necessary:		~				Duplicate :	Sample ID:	Plue-	. /		PSI:	~	
Casing	Diameter:		2"					+ og					
Water Level Befo	ore Purge:	?(2.68	ft		P	Purge Date:	IAPR	19	Time Purgi	ing Began:	1005	am/pm
						Well P	urged Dry?	Yes	N O	Time P	urged Dry:	`	am/pm
						Sa	mple Date:	TAPRI	9	Time of	Sampling:	1148	(am)pm
Depth to Top	o of Pump:	5	32.08	ft				1/ /					\smile
Water Level Afte	er Sample:	•	31,46	ft		Bottle	1L Raw	500ml	. Nitric	500mL Nitr	ic (filtered)	250mL	Sulfuric
Measuremen	t Method:	Electric	Nater Level Indicate	or		List:	2	2	-	2		2	and the second
	•												-

Company:

Sample ID:

Event:

MDU Heskett

Spring 2019

3

٣

Field Measurements

Stabili	ization	Temp	Spec.		DO	ORP	Turbidity	Water	Pumping	mL	Description:
(3 cons	ecutive)	(°C)	Cond.	pН	(mg/L)	(mV)	(NTU)	Level (ft)	Rate	Removed	Clarity, Color, Odor, Ect.
SEQ #	Time		±5%	±0.1	±10%	±20 mV	±10%	0.25 ft	_ml/min		Clear, Slightly Turbid, Turbid
1	1008	7,72	10452	7,12	1245.1	-245.1	11,4	31,13	4 00	500	cler
2	1023	7.48	10460	10,6,78	1.97	-253,0	2,71	31,32	100	1500	clear
3	1028	7.87	10448	6.79	2001	-2458	1.92	31,39	100	500	ch
4	1033	7.69	10402	-6.3	2,20	-242,1	5.03	31.39	191)	500	char
5	1038	7,69	10316	2.88	2,39	-238.6	5,22	31,317	100	500	ih
6	INR	8103	10239	6.90	2142	-232,4	7,13	31,39	100	500	dr
7	1113	764	10248	6.87	2,48	-215,2	10 Re Cont	31,52	100	3000	elon
8	1138	8,20	10267	6.17	3148	-215,8	5,10	31,46	100	2500	ch
9	1143,	8:37	10269	6,17	3,50	-212,8	4.98	31,46	"/00	500	ch
10	1148	8112	10270	6.78	3,47	-21411	4,89	31.50	100	500	d
Stabilized:	Yes	No					Т	otal Volum	e Removed:	10,500	mL
	1.									1	

Field Datasheet

Groundwater Assessment

Company:	MDU Heskett	
Event:	Spring 2019	
Sample ID:	, 102,	
Sampling Personal:	Jenth	

Phone: (701) 258-9720

Weather Conditions:		Temp:	35 °F		Wind:	Ň	@ 5-10)	Precip	: Sun	ny / Partly C	loudy /Cl	oudy
V	Vell Info	ormation	<u></u>					Sa	Informatio	on			
Well Locked?	Yes	No				Purgi	ng Method:	Blac	lder				
Well Labeled?	Yes	No				Sampli	ng Method:	Blac	lder		Co	ntrol Settin	igs
Casing Straight?	Yes	No				Dedica	ted Equip?:	Yes	No		Purge:	5	sec.
Grout Seal Intact?	Yes	No	Not Visi	ible		Duplicate	e Sample?:	Yes	No		Recover:	55	sec.
Repairs Necessary:						Duplicate	Sample ID:	-			PSI:	20	
Casing I	Diameter:		2"										
Water Level Befo		1	8.58	ft		F	Purge Date:	1 Apr 19	}	Time Purg	ing Began:	1005	æm/pm
						Well P	urged Dry?	Yes	(NO)	Time F	Purged Dry:		am/pm
						Sa	ample Date:	1 April	9	Time o	f Sampling:	1045	@m/pm
Depth to Top	of Pump:	23	7.05	ft									
Water Level After			0.40	ft		Bottle	1L Raw	500ml	. Nitric	500mL Nit	ric (filtered)	250mL	Sulfuric
Measurement		Electric	Water Level Ind	dicator		List:							

Field Measurements

Stabili	ization	Temp	Spec.		DO	ORP	Turbidity	Water	Pumping	mL	Description:		
(3 cons	ecutive)	(°C)	Cond.	рН	(mg/L)	(mV)	(NTU)	Level (ft)	Rate	Removed	Clarity, Color, Odor, Ect.		
SEQ #	Time		±5%	±0.1	±10%	±20 mV	±10%	0.25 ft	ml/min		Clear, Slightly Turbid, Turbid		
1	1010	6.97	9746	6.91	2.95	-3.3	2.59	19,23	100,0	500.0	Clear		
2	1020	7.00	9835	6.86	2.71	-36.3	0.93	19,50	100.0	1000.0	Clear		
3	1030	7.19	9602	6.61	2,78	-36.6	0,78	19.82	100.0	1000.0	clus		
4	1035	7.05	9462	6,80	3.18			19,89	100,0	500.0	Clear		
5	1040	7.21	9291	6.78	3.42	-33.4	0.82	19.98	100.0	500.0	Clear		
6	1045	7.32	9026	6.75	3,22	-27.3	0.61	20,02	100.0	500.0	Clear		
7			1										
8													
9													
10													
Stabilized:	(Yes)	No		Total Volume Removed: 4000.0 mL									

Stabilized: /Yes)

Field Datasheet

Groundwater Assessment

Company:	MDU Heskett	
Event:	Spring 2019	
Sample ID:	70	
Sampling Personal:	Jerry May-	
	1 · · · · ·	

Phone: (701) 258-9720

Weather Conditions:		Temp:	35	°F	Wind:	N	<u>@</u> 5-10	2	Precip	: Suni	ny / Partly C	loudy /Ela	budy
	Well Info	rmation						Sa	mpling	Informatio	on		
Well Locked?	Ves	(No)				Purgir	ng Method:	Blad	der				
Well Labeled?	Yes?	No				Samplir	ng Method:	Blad	der		Co	ntrol Setting	gs
Casing Straight?	Yes	No				Dedicat	ed Equip?:	Yes	No		Purge:	5	sec.
Grout Seal Intact?	Yes	No	Not V	isible		Duplicate	Sample?:	Yes	No		Recover:	55	Sec.
Repairs Necessary:						Duplicate \$	Sample ID:		-		PSI:		
Casing	Diameter:		2"										
Water Level Bef	ore Purge:		21.05	ft		P	urge Date:	1 April	9	Time Purg	ing Began:	1117	@m/pm
						Well Pu	urged Dry?	Yes	No	Time F	Purged Dry:		am/pm
	1					Sa	mple Date:	1 Apr	19	Time of	f Sampling:	1152	@m/pm
Depth to Top	o of Pump:	-	32.71	ft									
Water Level After	er Sample:		22.25	ft		Bottle	1L Raw	500mL	Nitric	500mL Nit	ric (filtered)	250mL :	Sulfuric
Measuremer	nt Method:	Electric	Water Level	Indicator		List:							
				Field	Measure								
01.1.11.11.11.1	Tomp	Snoc	1		ORP	Turbidity	Water	Pumning	ml	1	Description:		

Stabili	ization	Temp	Spec.		DO	ORP	Turbidity	Water	Pumping	mL	Description:
(3 cons	ecutive)	(°C)	Cond.	рН	(mg/L)	(mV)	(NTU)	Level (ft)	Rate	Removed	Clarity, Color, Odor, Ect.
SEQ #	Time		±5%	±0.1	±10%	±20 mV	±10%	0.25 ft	ml/min		Clear, Slightly Turbid, Turbid
1	1122	6.77	3687	6.93	3.66	13.0	2.52	21,60	100,0	500.0	Cleer
2	1132	6.79	3952	6,92	3.81	37.9	0.86	21.86	100.0	1000.0	llear
3	1142	7.46	3948	6.92	4.34	60.4	0,66	22,23	100.0	1000.0	Clear
4	1147	7.29	3960	6.91	4.39	68,1	0.49	22.25	100.0	500.0	Clear
5	1152	7.67	3951	6.91	4.51	71.6	0.27	22,31	100,0	500.0	Clear
6											
7	_										
8											
9											
10											
Stabilized:	(Yes)	No					Т	otal Volume	e Removed:	3500,0	mL

Stabilized: /Yes/

Field Datasheet

Groundwater Assessment

Spring 2019
101 ,
Jorny by -

Phone: (701) 258-9720

Weather Conditions:		Temp:	35°F		Wind:	N	@ 5-1	0	Preci	o: Sunr	iy / Partly C	Cloudy / 🕬	oudy			
	Nell Info	rmation		•		Sampling Information										
Well Locked?	Yes	(No)				Purgi	ng Method:	Blac	lder							
Well Labeled?	Yes	No				Sampli	ng Method:	lethod: Bladder			Co	ontrol Settin	gs			
Casing Straight?	Yes	No				Dedicat	ted Equip?:	Yes	No		Purge:	S	sec.			
Grout Seal Intact?	Yes	No	Not Visi	ble		Duplicate	Sample?:	Yes	No		Recover:	55	sec.			
Repairs Necessary:						Duplicate	Sample ID:		-		PSI:	40				
Casing	Diameter:		2"													
Water Level Befo	re Purge:		36,60	ft		F	Purge Date:	(Ar)	19	Time Purg	ing Began:	1227	am/pm			
						Well P	urged Dry?	Yes	No	Time F	Purged Dry:		am/pm			
						Sa	mple Date:	IA,	-19	Time of	Sampling:	1417	am/pm			
Depth to Top	of Pump:	41	690	ft								•				
Water Level Afte	r Sample:		2,21	ft		Bottle	1L Raw	500ml	_ Nitric	500mL Nit	ric (filtered)	250mL	Sulfuric			
Measurement	Method:	Electric \	Nater Level Ind	licator]	List:										

Field Measurements

Stabili	zation	Temp	Spec.		DO	ORP	Turbidity	Water	Pumping	mL	Description:
(3 cons	ecutive)	(°C)	Cond.	рΗ	(mg/L)	(mV)	(NTU)	Level (ft)	Rate	Removed	Clarity, Color, Odor, Ect.
SEQ #	Time		±5%	±0.1	±10%	±20 mV	±10%	0.25 ft	ml/min		Clear, Slightly Turbid, Turbid
1	1232	7,68	4814	6.75	5.90	94.5	20.1	37.67	100,0	500.0	Clear
2	1242	7.87	4768	6.69	5,02	28.5	64.9	38.63	100.0	1000.0	Clark
3	1252	8.32	4761	6.69	5.22	21.1	30,5	39.25	100.0	1000.0	Clear
4	1202	8,02	4758	6.68	4,74	22.1	24.1	39,23	[00.0	1000.0	Clear
5	1222	8.01	4768	61.8	4.88	33.9	14.9	39,40	100.0	2000.0	clear
6	1342	1 B1	4770	6.67	5.11	35.6	9.04	39.62	100.0	2000,0	clear
7	1\$02	7.02	4777	6.69	5.39	32-3	7.06	39,60	100:0	2000,0	Clear
8	1407	7,75	4779	6.69	5.35	31,8	4.86	39.97	100.0	500.0	Cla
9	1412	7.83	4782	6166	5.39	27.5	4,72	40.06	100,0	500.0	Clea
10		7.74	4785	6.69	5.31	26.7	4.69	40.13	6,001	500.9	Che
Stabilized:	Yes/	No					Т	otal Volum	e Removed:	11,000,0	mL

Stabilized: Yes/ Total Volume Removed: 1,000,0 mL

.

Groundwater Assessment

Phone: (701) 258-9720

Weather Conditions:

	Company:		MDU Heskett							
	Event:		Spring 2019							
	Sample ID:		103							
	Sampling Perso	nal: //////	in Nissa	ńas						
		· · ·								
@5-10	[,] F	Precip:	Sunny / Rartly Cloudy	/ Cloudy						
	•									

	Well Info	ormatior	1	
Well Locked?	Yes	Nø		
Well Labeled?	Yes	No		
Casing Straight?	Yes	No		
Grout Seal Intact?	Yes	No	Not Visible	
Repairs Necessary:	-	$\overline{}$		
Casing	Diameter:		. 2"	
Water Level Bef	ore Purge:	32	44	ft
		· · ·	· -	
Depth to Top	o of Pump:	4	0.85	ft
Water Level After		30	1.33	ft
Measuremer	nt Method:	Electric	Water Level Indicato	r

34

Temp:

۰F

Wind: j	Nect	@5-10		Precip	ny / Rartly C	loudy / Clo	oudy	
	104		Sar	npling l	nformatio	on 🔪		
	Purgi	ng Method:	Blado	ler				
	Sampli	ing Method:	Blado	ler		Co	ntrol Setting	gs
	Dedica	ted Equip?:	Yes	No		Purge:	5	sec.
	Duplicate	e Sample?:	Yes	NO		Recover:	55	sec.
	Duplicate	Sample ID:				PSI:	-	
	F	Purge Date:	AJK	19	Time Purg	ing Began:	1340	am/pm
	Well P	Purged Dry?	Yes	No	Time F	Purged Dry:		am/pm
	Sa	ample Date:	1APR19		Time of	Sampling:	1425	am/pm
			17					
	Bottle	1L Raw	500mL	Nitric	500mL Nit	ric (filtered)	250mL \$	Sulfuric
	List:							

Field Measurements

Stabili	zation	Temp	Spec.		DO	ORP	Turbidity	Water	Pumping	mL	Description:
(3 cons	ecutive)	(°C)	Cond.	pH	(mg/L)	(mV)	(NTU)	Level (ft)	Rate	Removed	Clarity, Color, Odor, Ect.
SEQ #	Time		±5%	±0.1	±10%	±20 mV	±10%	0.25 ft	ml/min		Clear, Slightly Turbid, Turbid
1	1345	7,62	5066	6,60	5,44	-211,9	6,25	33,01	100	500	ca_
2	1405	\$08,02	5210	6.50	3.09	-208,4	3,25	33.56	100	2000	il
3	1415	8,07		6,50	3,10	-208,0	3,12	33.76	100	1000	Ch
4	1420	7.98	5199	6.49	2,91	-208,9	3.00	33,84	100	500	ch
5	1425	7,95	5198	6.48	2,95	-201,7	2,96	33.90	100	500	ch
6								-) / (
7											
8											
9	\frown										
10	$\langle \rangle$										
Stabilized:	Yes	No					Т	otal Volume	e Removed:	4500	mL

Groundwater Assessment

Company:	MDU Heskett
Event:	Spring 2019
Sample ID:	44R
Sampling Personal:	En NIE, Swan

Phone: (701) 258-9720

Weather Conditions:		Temp:	33 °F	V	Vind: <i>We</i>	ST	@ 5-10		Precip	Sunr	iy / Partly C	loudy 1/210	ıdy)
	Well Info	ormation						Sa	mpling l	nformatio	on	$(\bigcirc$	
Well Locked?	Yes	NO				Purg	ing Method:	Blad	der				
Well Labeled?	Yes	No				Sampl	ling Method:	Blad	der		Co	ntrol Settings	3
Casing Straight?	Yes	No				Dedica	ated Equip?:	Yes2	No		Purge:	5	sec.
Grout Seal Intact?	Yes	No	Not Visible			Duplicate	e Sample?:	Yes	NO		Recover:	55	sec.
Repairs Necessary:			L		D	uplicate	Sample ID:				PSI:	·····	
Casing	Diameter:		2"										
Water Level Bef		21	5,20	ft			Purge Date:	TAPR	19	Time Purg	ing Began:	12377	am/p/m
	Ű	£S	<u> </u>			Well F	Purged Dry?	Yes	NO	Time F	urged Dry:		_am/pm
						S	ample Date:	IAPR	9	Time of	Sampling:	1312	am/pm
Depth to Top	o of Pump:	35	-16	ft	-							,	
Water Level Afte	·····	- J	26,30	ft		Bottle	1L Raw	500mL	Nitric	500mL Niti	ric (filtered)	250mL S	ulfuric
Measuremen		Electric	Water Level Indicate	or		List:							
			Fi	eld Mea	asurem	ents							

Stabili	zation	Temp	Spec.		DO	ORP	Turbidity	Water	Pumping	mL	Description:
(3 cons	ecutive)	(°C)	Cond.	рH	(mg/L)	(mV)	(NTU)	Level (ft)	Rate	Removed	Clarity, Color, Odor, Ect.
SEQ #	Time		±5%	±0.1	±10%	±20 mV	±10%	0.25 ft	ml/min		Clear, Slightly Turbid, Turbid
1	1242	3.77	10528	6,41	3,90	-221.8	7144	26,28	\$ 100	500	- Ch_
2	1257	7,92		6.36	1,70	-253,	4,97	26,30	100	1500	clear
3	1302	7,91	9294	6,36	1,47	-252,7	2.89	26,30	100	500	ch
4	1307	7.94	9294	6.36	1.38	-258,5	2,17	26:30	100	500	dr
5	1312	7,11	9300	6,36	1.42	-259,0	2.72	26.30	100	500	ch
6		,									
7											
8											
9											
10	0										
Stabilized:	Yes	No	_				Т	otal Volume	e Removed:	3500	mL

Phone (701) 258-9720

Chain of Custody Record

Project Name	:		Event:						Wo	rk O	rder l	Number:			82- 0624	
	MDU Heskett			S	pring 2019										02-08-1	
Report To: Attn: Address: phone: email:	MDUCarbon Copy:Samantha DaviesAttn:5181 Southgate Dr.Address:Billings, MT 59102Address:406-896-4227Sample Information						Name of Sampler(s): Darren Nieswaag Jeremy Meyer									
	Sam	ple Informatio	on				E	Bott	le T	Гуре		F	ield Para	ameters	Analysis	
Lab Number	Sample ID	Date	Time	Sample Tuno		1 liter	500ml A.	500ml Ar	250 ml c.	Sulfuric		Temp (°C)		Ha	Analysis Required	
W567	13	IAPR19	1148	GW		X	Х	Х	Х			8,12	10270	6,78		
W 568	Dup1	IAPR19	~	GW		X	Х	Х	Х			~	-	-		
2569	102	1 APR 19	1045	GW		X	Х	Х	Х			7.32	9026	6,75		
W570	70	LAPR19	1152	GW		X	Х	Х	Х			7.67		6.91		
W571	101	LAPR19	1417	GW		X	х	X	x			7,74	4785	6,69	MDU List AA & MDU	
W572	103	IAPRIG	1425	GW		X	х	X	х			7,95	5198	6,48	Appendix 3	
W573	44R	1APR19	1312	GW		X	Х	X	X			7.77	1300	6.36		
W 574	FB1	IAPR 19	-	GW	2 2	X	Х	Х	Х			-	-	-		

Relinquished By:	化成功化验验的	Sa	ample Condition:
Name:	Date/Time	Location:	Temp (°C)
1 Alan No	1 <u>APR19</u> 1529	Log In Walk In #2	ROT 2,8 1 TM562-FIM588
2		and a	(TM805)

Rece	ived by:
2 Name:	Date/Time
TAIN	1 Apr 2019
	1529

MVTL

MINNESOTA VALLEY TESTING LABORATORIES, INC.

1126 N. Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 E. Broadway Ave. ~ Bismarck, ND 58502 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Highway ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

MEMBER ACIL

Quality Control Report - CCR

Lab IDs: 19-W586 to 19-W:	593	Pre	oject: MI	DU Hesk	ett		Work Oi	r der: 201	982-0648	8							
Analyte	LCS Spike Amt	LCS Rec %	LCS % Rec Limits	Matrix Spike Amt	Matrix Spike ID	Matrix Spike Orig Result	Matrix Spike Result	Matrix Spike Rec %	Matrix Spike % Rec Limits	MSD/ Dup Orig Result	MSD/ Dup Result	MSD Rec %	MSD/ Dup RPD	MSD/ Dup RPD Limit (<)	Known Rec (%)	Known % Rec Limits	Method Blank
Boron - Total mg/l	0.40 0.40 0.40 0.40	95 100 90 95	80-120 80-120 80-120 80-120	0.400 2.00 2.00 0.400	19-D943 19-W567 19-W586 19-W593	0.24 0.70 < 0.5 < 0.1	0.66 3.00 2.41 0.37	105 115 120 92	75-125 75-125 75-125 75-125 75-125	0.66 3.00 2.41 0.37	0.63 3.00 2.34 0.37	97 115 117 92	4.7 0.0 2.9 0.0	20 20 20 20	- - - - -	- - - - -	< 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1
Calcium - Total mg/l	20.0 20.0	107 104	80-120 80-120	500 500	19W587q 19W592q	442 328	1040 915	120 117	75-125 75-125	1040 915	995 930	111 120	4.4 1.6	20 20	- - -	- - -	< 1 < 1 < 1 < 1 < 1
Chloride mg/l	30.0 30.0	97 97	80-120 80-120	30.0	19-W593	< 1	28.4	95	80-120	28.4	29.6	99	4.1	20	-	-	< 1 < 1
Fluoride mg/l	0.50	104	90-110	0.500 0.500	19-W587 19-W590	0.13 0.55	0.64 0.94	102 78	80-120 80-120	0.64 0.94	0.64 0.94	102 78	0.0 0.0	20 20	-	-	< 0.1 < 0.1
pH units			-						- - -	7.5 7.3 7.6	7.6 7.3 7.7	-	1.3 0.0 1.3	20 20 20	-	- -	
Sulfate mg/l	100 100	100 102	80-120 80-120	100 100	19-W574 19-W593	< 5 < 5	103 100	103 100	80-120 80-120	103 100	105 102	105 102	1.9 2.0	20 20	-	-	< 5 < 5
Total Dissolved Solids mg/l	-	-	-	-	-	-	-	-	-	1120	1120	-	0.0	20	-	-	< 10

Samples were received in good condition on 3 Apr 2019 at 0800.

Temperature upon receipt at the Bismarck laboratory was 0.8°C. Samples were received on ice and evidence of cooling had begun.

All samples were properly preserved unless noted here and/or flagged on the individual analytical laboratory report.

With the exception of pH, all holding times were met.

Approved methodology was followed for all sample analyses.

All acceptance criteria were met for calibration, method blanks, laboratory control samples, laboratory fortified matrix/duplicates unless noted here.

- ٠ For some analytes, the reported results were elevated due to additional dilutions required to minimize the effects of sample matrix.
- The recoveries for one fluoride matrix spike/matrix spike duplicate were outside the acceptable limits. RPD for the recoveries was within limits. Poor recoveries were determined to be due to sample matrix. Data was ٠ accepted based on acceptable recovery of the LCS. No further action was taken.

Approved by: C. Canto

Page: 1 of 1

Page: 1 of 8

CERTIFICATE of ANALYSIS - CCR

Samantha Davies Montana Dakota Utilities 5181 Southgate Dr Billings MT 59102 Lab Number: 19-W586 Work Order #: 82-0648 Account #: 002800 Date Sampled: 2 Apr 19 12:58 Date Received: 3 Apr 19 8:00 Sampled By: MVTL Field Services

Report Date: 24 Apr 19

Project Name: MDU Heskett Sample Description: 33

Event and Year: Spring 2019

Temp at Receipt: 0.8C ROI

	As Receiv Result	ed	Method RL	Method Reference	Date Analyzed	Analyst
Metal Digestion				EPA 200.2	3 Apr 19	SVS
pH - Field	6.31	units	NA	SM 4500 H+ B	2 Apr 19 12:58	DJN
Hq	* 7.0	units	0.1	SM4500 H+ B	3 Apr 19 17:00	SVS
Temperature - Field	8.92	Degrees C	NA	SM 2550B	2 Apr 19 12:58	DJN
Conductivity - Field	5125	umhos/cm	1	EPA 120.1	2 Apr 19 12:58	DJN
Fluoride	0.23	mg/l	0.10	SM4500-F-C	3 Apr 19 17:00	SVS
Sulfate	3340	mg/l	5.00	ASTM D516-07	11 Apr 19 8:30	EV
Chloride	10.8	mg/l	1.0	SM4500-Cl-E	3 Apr 19 15:19	EMS
Total Dissolved Solids	5320	mg/l	10	I1750-85	5 Apr 19 11:23	SVS
Calcium - Total	440	mg/l	1.0	6010D	4 Apr 19 12:36	SZ
Boron - Total	< 0.5 @	mg/l	0.10	6010D	8 Apr 19 10:36	SZ

* Holding time exceeded

Approved by:

CC 6 May 10 Clauditte K. Canilo

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

CERTIFICATION: ND # ND-00016

Page: 2 of 8

CERTIFICATE of ANALYSIS - CCR

Samantha Davies Montana Dakota Utilities 5181 Southgate Dr Billings MT 59102 Report Date: 24 Apr 19 Lab Number: 19-W587 Work Order #: 82-0648 Account #: 002800 Date Sampled: 2 Apr 19 13:45 Date Received: 3 Apr 19 8:00 Sampled By: MVTL Field Services

Temp at Receipt: 0.8C ROI

Project Name: MDU Heskett Sample Description: 3-90

Event and Year: Spring 2019

	As Received Result		Method RL	Method Reference	Date Analyzed	Analyst
Metal Digestion				EPA 200.2	3 Apr 19	SVS
pH - Field	6.61	units	NA	SM 4500 H+ B	2 Apr 19 13:4	5 DJN
H	* 7.2	units	0.1	SM4500 H+ B	3 Apr 19 17:0	0 SVS
Temperature - Field	7.71	Degrees C	NA	SM 2550B	2 Apr 19 13:4	5 DJN
Conductivity - Field	4730	umhos/cm	1	EPA 120.1	2 Apr 19 13:4	5 DJN
Fluoride	0.13	mg/l	0.10	SM4500-F-C	3 Apr 19 17:0	0 SVS
Sulfate	2670	mg/l	5.00	ASTM D516-07	11 Apr 19 8:3	0 EV
Chloride	33.2	mg/l	1.0	SM4500-Cl-E	3 Apr 19 15:1	9 EMS
Total Dissolved Solids	4430	mg/l	10	I1750-85	5 Apr 19 11:2	3 SVS
Calcium - Total	442	mg/l	1.0	6010D	4 Apr 19 12:3	6 SZ
Boron - Total	0.19	mg/l	0.10	6010D	8 Apr 19 11:3	6 SZ

* Holding time exceeded

Approved by:

(C 6 May 19 Clauditte K. Cantop

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

CERTIFICATION: ND # ND-00016

Page: 3 of 8

CERTIFICATE of ANALYSIS - CCR

Samantha Davies Montana Dakota Utilities 5181 Southgate Dr Billings MT 59102

Project Name: MDU Heskett Sample Description: Dup2

Event and Year: Spring 2019

Report Date: 24 Apr 19 Lab Number: 19-W588 Work Order #: 82-0648 Account #: 002800 Date Sampled: 2 Apr 19 Date Received: 3 Apr 19 8:00 Sampled By: MVTL Field Services

Temp at Receipt: 0.8C ROI

As Received Result		Method RL	Method Reference	Date Analyzed	Analyst
2			EPA 200.2	3 Apr 19	SVS
* 7.3	units	0.1	SM4500 H+ B	3 Apr 19 17:00	SVS
0.13	mg/l	0.10	SM4500-F-C	3 Apr 19 17:00	SVS
2690	mg/l	5.00	ASTM D516-07	11 Apr 19 8:30	EV
33.3	mg/l	1.0	SM4500-Cl-E	3 Apr 19 15:19	EMS
4430	mg/l	10	I1750-85	5 Apr 19 11:23	SVS
426	mg/l	1.0	6010D	4 Apr 19 12:36	SZ
0.14	mg/l	0.10	6010D	8 Apr 19 11:36	SZ
	Result * 7.3 0.13 2690 33.3 4430 426	Result * 7.3 units 0.13 mg/l 2690 mg/l 33.3 mg/l 4430 mg/l 426 mg/l	Result RL * 7.3 units 0.1 0.13 mg/l 0.10 2690 mg/l 5.00 33.3 mg/l 1.0 4430 mg/l 10 426 mg/l 1.0	Result RL Reference * 7.3 units 0.1 SM4500 H+ B 0.13 mg/l 0.10 SM4500-F-C 2690 mg/l 5.00 ASTM D516-07 33.3 mg/l 1.0 SM4500-Cl-E 4430 mg/l 10 I1750-85 426 mg/l 1.0 6010D	Result RL Reference Analyzed * 7.3 units 0.1 SM4500 H+ B 3 Apr 19 * 7.3 units 0.1 SM4500 H+ B 3 Apr 19 17:00 0.13 mg/l 0.10 SM4500-F-C 3 Apr 19 17:00 2690 mg/l 5.00 ASTM D516-07 11 Apr 19 8:30 33.3 mg/l 1.0 SM4500-C1-E 3 Apr 19 15:19 4430 mg/l 10 11750-85 5 Apr 19 11:23 426 mg/l 1.0 6010D 4 Apr 19 12:36

* Holding time exceeded

Approved by:

10 6 Mry 19 Clauditte K. Canto

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

The reporting limit was elevated for any analyte requiring a dilution as coded below: @ = Due to sample matrix # = Due to concentration of other analytes ! = Due to sample quantity + = Due to internal standard response CERTIFICATION: ND # ND-00016

Page: 4 of 8

CERTIFICATE of ANALYSIS - CCR

Samantha Davies Montana Dakota Utilities 5181 Southqate Dr Billings MT 59102

Report Date: 24 Apr 19 Lab Number: 19-W589 Work Order #: 82-0648 Account #: 002800 Date Sampled: 2 Apr 19 15:00 Date Received: 3 Apr 19 8:00 Sampled By: MVTL Field Services

4 Apr 19 12:36

8 Apr 19 11:36

SZ

SZ

Project Name: MDU Heskett Sample Description: 2-90

Event and Year: Spring 2019

Temp at Receipt: 0.8C ROI Method Method Date As Received Analyzed Analyst Result RL Reference EPA 200.2 3 Apr 19 SVS Metal Digestion 2 Apr 19 15:00 DJN 6.76 NA SM 4500 H+ B units pH - Field SM4500 H+ B 3 Apr 19 17:00 SVS 7.5 units 0.1 2 Apr 19 15:00 DJN Temperature - Field 7.37 Degrees C NA SM 2550B umhos/cm EPA 120.1 2 Apr 19 15:00 DJN Conductivity - Field 7068 1 mg/l SM4500-F-C 3 Apr 19 17:00 SVS 0.10 1.02 ASTM D516-07 11 Apr 19 8:30 EV mg/l 5.00 4940 3 Apr 19 15:19 EMS SM4500-Cl-E 67.7 mg/l 1.0 5 Apr 19 11:23 7590 mg/l 10 I1750-85 SVS Total Dissolved Solids

1.0

0.10

6010D

6010D

* Holding time exceeded

pH

Fluoride

Chloride

Calcium - Total Boron - Total

Sulfate

Approved by:

6 May 19 Clauditte K. Canto

450

0.68

mg/l

mg/l

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

= Due to concentration of other analytes
+ = Due to internal standard response

CERTIFICATION: ND # ND-00016

Page: 5 of 8

CERTIFICATE of ANALYSIS - CCR

Samantha Davies Montana Dakota Utilities 5181 Southgate Dr Billings MT 59102

Project Name: MDU Heskett Sample Description: 104

Event and Year: Spring 2019

Report Date: 24 Apr 19 Lab Number: 19-W590 Work Order #: 82-0648 Account #: 002800 Date Sampled: 2 Apr 19 15:52 Date Received: 3 Apr 19 8:00 Sampled By: MVTL Field Services

Temp at Receipt: 0.8C ROI

	As Recei Result	ved	Method RL	Method Reference	Date Analyzed	Analyst
Metal Digestion				EPA 200.2	3 Apr 19	SVS
pH - Field	6.83	units	NA	SM 4500 H+ B	2 Apr 19 15:52	DJN
pH	* 7.5	units	0.1	SM4500 H+ B	3 Apr 19 17:00	SVS
Temperature - Field	7.90	Degrees C	NA	SM 2550B	2 Apr 19 15:52	DJN
Conductivity - Field	14209	umhos/cm	1	EPA 120.1	2 Apr 19 15:52	DJN
Fluoride	0.55	mg/l	0.10	SM4500-F-C	3 Apr 19 17:00	SVS
Sulfate	11100	mg/l	5.00	ASTM D516-07	11 Apr 19 8:48	EV
Chloride	87.6	mg/l	1.0	SM4500-Cl-E	3 Apr 19 15:19	EMS
Total Dissolved Solids	17700	mg/l	10	I1750-85	5 Apr 19 11:23	SVS
Calcium - Total	448	mg/l	1.0	6010D	4 Apr 19 12:36	SZ
Boron - Total	1.00	mg/l	0.10	6010D	8 Apr 19 11:36	SZ

* Holding time exceeded

Approved by:

Clauditte K. Cantop

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

Page: 6 of 8

CERTIFICATE of ANALYSIS - CCR

Samantha Davies Montana Dakota Utilities 5181 Southgate Dr Billings MT 59102

Project Name: MDU Heskett Sample Description: 80R

Event and Year: Spring 2019

Report Date: 24 Apr 19 Lab Number: 19-W591 Work Order #: 82-0648 Account #: 002800 Date Sampled: 2 Apr 19 16:10 Date Received: 3 Apr 19 8:00 Sampled By: MVTL Field Services

Temp at Receipt: 0.8C ROI

	As Received Result		Method RL	Method Reference	Date Analyzed	Analyst
Metal Digestion				EPA 200.2	3 Apr 19	SVS
pH - Field	7.01	units	NA	SM 4500 H+ B	2 Apr 19 16:10	DJN
pH	* 7.6	units	0.1	SM4500 H+ B	3 Apr 19 17:00	SVS
Temperature - Field	7.38	Degrees C	NA	SM 2550B	2 Apr 19 16:10	DJN
Conductivity - Field	5688	umhos/cm	1	EPA 120.1	2 Apr 19 16:10	DJN
Fluoride	0.27	mg/l	0.10	SM4500-F-C	3 Apr 19 17:00	SVS
Sulfate	3520	mg/l	5.00	ASTM D516-07	11 Apr 19 8:48	EV
Chloride	146	mg/l	1.0	SM4500-C1-E	3 Apr 19 15:19	EMS
Total Dissolved Solids	5820	mg/l	10	I1750-85	5 Apr 19 11:23	SVS
Calcium - Total	313	mg/l	1.0	6010D	4 Apr 19 12:36	SZ
Boron - Total	< 0.5 @	mg/l	0.10	6010D	8 Apr 19 11:36	SZ

* Holding time exceeded

Approved by:

(C 6 May 19 Clauditte K. Canto

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

CERTIFICATION: ND # ND-00016

7 of 8 Page:

١

CERTIFICATE of ANALYSIS - CCR

Samantha Davies Montana Dakota Utilities 5181 Southqate Dr Billings MT 59102

Project Name: MDU Heskett Sample Description: 105

Event and Year: Spring 2019

Report Date: 24 Apr 19 Lab Number: 19-W592 Work Order #: 82-0648 Account #: 002800 Date Sampled: 2 Apr 19 12:45 Date Received: 3 Apr 19 8:00 Sampled By: MVTL Field Services

Temp at Receipt: 0.8C ROI

	As Received Result		Method RL	Method Reference	Date Analyzed	Analyst
Metal Digestion				EPA 200.2	3 Apr 19	SVS
pH - Field	6.76	units	NA	SM 4500 H+ B	2 Apr 19 12:45	DJN
Hq	* 7.4	units	0.1	SM4500 H+ B	3 Apr 19 17:00	SVS
Temperature - Field	6.07	Degrees C	NA	SM 2550B	2 Apr 19 12:45	DJN
Conductivity - Field	6292	umhos/cm	1	EPA 120.1	2 Apr 19 12:45	DJN
Fluoride	0.27	mg/l	0.10	SM4500-F-C	3 Apr 19 17:00	SVS
Sulfate	4220	mg/l	5.00	ASTM D516-07	11 Apr 19 8:48	EV
Chloride	282	mg/l	1.0	SM4500-Cl-E	3 Apr 19 15:19	EMS
Total Dissolved Solids	6880	mg/l	10	I1750-85	5 Apr 19 11:23	SVS
Calcium - Total	328	mg/l	1.0	6010D	4 Apr 19 13:36	SZ
Boron - Total	< 0.5 @	mg/l	0.10	6010D	8 Apr 19 11:36	SZ

* Holding time exceeded

Approved by:

1C 6 May 19 Clauditte K. Cantlo

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

= Due to concentration of other analytes
+ = Due to internal standard response CERTIFICATION: ND # ND-00016

Page: 8 of 8

CERTIFICATE of ANALYSIS - CCR

Samantha Davies Montana Dakota Utilities 5181 Southgate Dr Billings MT 59102 Report Date: 24 Apr 19 Lab Number: 19-W593 Work Order #: 82-0648 Account #: 002800 Date Sampled: 2 Apr 19 Date Received: 3 Apr 19 8:00 Sampled By: MVTL Field Services

Temp at Receipt: 0.8C ROI

Project Name: MDU Heskett Sample Description: FB2

Event and Year: Spring 2019

As Received Method Method Date Analyst Result RL. Reference Analyzed SVS EPA 200.2 3 Apr 19 Metal Digestion SM4500 H+ B 3 Apr 19 17:00 SVS 7.6 units 0.1 рН mg/l 0.10 SM4500-F-C 3 Apr 19 17:00 SVS Fluoride < 0.1 11 Apr 19 8:48 EV ASTM D516-07 Sulfate < 5 mg/l 5.00 3 Apr 19 15:19 EMS < 1 mg/l 1.0 SM4500-Cl-E Chloride Total Dissolved Solids mg/l I1750-85 5 Apr 19 11:23 SVS < 10 10 1.0 6010D 4 Apr 19 13:36 SZ mg/l Calcium - Total < 1 8 Apr 19 11:36 SZ Boron - Total 0.10 6010D < 0.1 mg/l

* Holding time exceeded

Approved by:

6May 19 Claudette. K. Canto

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

CERTIFICATION: ND # ND-00016

Field Datasheet

Groundwater Assessment

MDU Heskett
Spring 2019
33
en Niesmaag

2616 E. Broadway Ave, Bismarck, ND

Phone: (701) 258-9720

					_					<u> </u>	
Weather Conditions:		Temp:	40 °F	Wind:	NW	@22	Precip	Sunr	ny / Partly C	loudy / Clou	ıdy
	Well Info	rmation					Sampling I	nformatio	on 🚬		
Well Locked?	Yes	No			Purg	ing Method:	Bladder				
Well Labeled?	Yes	No			Sampl	ling Method:	Bladder		Co	ntrol Settings	5
Casing Straight?	Hes	No			Dedica	ated Equip?:	Yes No		Purge:	5	sec.
Grout Seal Intact?	Yes	No	Not-Visible	•	Duplicate	e Sample?:	Yes No		Recover:	55	sec.
Repairs Necessary:					Duplicate	Sample ID:			PSI:		
Casing	Diameter:		2"						·····	<u> </u>	
Water Level Befo	ore Purge:	L	11.58 ft			Purge Date:	2APR19	Time Purg	ing Began:	178	am/pm
			1 11-0		Well F	Purged Dry?	Yes No	Time F	Purged Dry:	~~~~~	~am/p m
					. Si	ample Date:	2APR19	Time of	Sampling:	1258	am/pm
Depth to Top	of Pump:		ft				• · · · · · · · · · · · · · · · · · · ·			<u> </u>	
Water Level Afte	er Sample:	L	11,90 ft		Bottle	1L Raw	500mL Nitric	500mL Nit	ric (filtered)	250mL Si	ulfuric
Measuremen	t Method:	Electric	Water Level Indicator		List:						

Field Measurements

Stabili	zation	Temp	Spec.		DO	ORP	Turbidity	Water	Pumping	mL	Description:
(3 cons	ecutive)	(°C)	Cond.	рН	(mg/L)	(mV)	(NTU)	Level (ft)	Rate	Removed	Clarity, Color, Odor, Ect.
SEQ #	Time	· · · · ·	±5%	±0.1	±10%	±20 mV	±10%	0.25 ft	ml/min		Clear, Slightly Turbid, Turbid
1	11.53	8.317	5476	6.37	3,22	-43,4	251	41.82	100	500	Tribid
21213	+158	8,46	5267	6.31	2,04	-111.1	38.0	41.80	100	2000	der
3	1233	8,42	5166	6.78	1.98.	-124,0	10,2	41.84	1.00	2000	cle
4	1243	8143	5131	6,36	2104	-125,8.	3,93	41.92	100	1000.	d
5	1248	8165	5139	6,3	2.07	+27,3	3.45	41,92	100	500	a
6	1253	859	5136	631	2,10	-128.1	3.23	41,87	100	500	ch
7	1258	8,92		6,31	2,09	-127,3	3,20	41,89	100	500	d
8	1200										
9	-										
10											
Stabilized:	Yes	No					Т	otal Volume	e Removed:	7000	mL

2616 E. Broadway Ave, Bis Phone: (701) 258-97				Groundwater Assessment				MDU Heskett Spring 2019 3-90 1: Marrin Niesanag				
Weather Conditions:		Temp:	40 °F	Wind:	NW @ 22	– Preci	o: Sunny)I	Partly Cloudy / Clo	oudy			
	Well Info	ormation			,	Sampling	Information					
Well Locked?	Yes	No]	Purging Method:	Bladder						
Well Labeled?	Yes	No		1	Sampling Method:	Bladder		Control Setting	gs			
Casing Straight?	Yes	No	$\langle - \rangle$	1	Dedicated Equip?:	Yes No		Purge: 5	sec.			
Grout Seal Intact?	Yes	No	NotVisible		Duplicate Sample?:	Yes No	R	Recover: 55	sec.			
Repairs Necessary:					Duplicate Sample ID:	Jup-2		PSI: -				
	Diameter:		. 2"	1		~ 7						
Water Level Befo			177.96 f	t	Purge Date:	2APR19	Time Purging I	Began: 1320	am/pm			
					Well Purged Dry?	Yes No	Time Purge	ed Dry:	am/pm			
					Sample Date:	ZAPKIA	Time of Sar	mpling: 1345	am/pm			
Depth to Top	of Pump:	1	20,17 f	t								

Bottle

List:

1L Raw

500mL Nitric

500mL Nitric (filtered)

250mL Sulfuric

Field Measurements

ft

18:00

Electric Water Level Indicator

Stabili	zation	Temp	Spec.		DO	ORP	Turbidity	Water	Pumping	mL	Description:
(3 cons	ecutive)	(°C)	Cond.	pН	(mg/L)	(mV)	(NTU)	Level (ft)	Rate	Removed	Clarity, Color, Odor, Ect.
SEQ #	Time		±5%	±0.1	±10%	±20 mV	±10%	0.25 ft	ml/min		Clear, Slightly Turbid, Turbid
1	1325	7.70	4734	6.65	4,34	-111,7	8.05	18.00	100	500	ch
2	1330	7,74	4737	6,60	2,28	-153.8	2.49	18,00	100	500	Clean
3	1335	7.51	4738	6.59	2,30	-156,07	2.01	18,00	100	500	ch
4	1340	7.77	4749	6.61	2;22	-165,1	2.05	18,00	100	500	d
5	1345	7,71	4730	6161	2.28	-168,2	2118	18:00	100	502	ch
6					U						
7											
8											
9											
10											
Stabilized:	Yes/	No	-				Т	otal Volume	e Removed:	2500	mL ,

Comments:

Water Level After Sample:

Measurement Method:

2616 E. Broadway Ave, Bismarck, ND	Groundwa						Company: Event: Sample ID: Sampling Personal:	2-9 Darren	MDU H Spring O N TEGN	2019	
Phone: (701) 258-9720								Æ			
Weather Conditions:	Temp:	40 °F		Wind:	NN @	22	Precip		<u> </u>	loudy / Clou	lay
Well Inf	ormation						Sampling	nformatio	n		
Well Locked? Yes	Ko				Purging	Method:	Bladder				
Well Labeled? Xes?	No				Sampling	Method:	Bladder		Co	ntrol Settings	s
Casing Straight?	No				Dedicated	Equip?:	Ves No		Purge:	5	sec.
Grout Seal Intact? Yes	No	Not Visib	te		Duplicate Sa	ample?:	Yes No		Recover:	55	sec.
Repairs Necessary:					Duplicate Sar	mple ID:	\sim		PSI:		
Casing Diameter		2"									
Water Level Before Purges		20,43	ft		Purg	ge Date:	2APRIA	Time Purgi	ing Began:	1435	am/pm
					Well Purg	ed Dry?	Yes (No	Time P	urged Dry:		-ám/pm
					Samp	ole Date:	2 AP1 19	Time of	Sampling:	1500	am/pm
Depth to Top of Pump	2	2,35	ft				•				
Water Level After Sample	21	0,99	ft		Bottle 1	IL Raw	500mL Nitric	500mL Nitr	ic (filtered)	250mL S	ulfuric
Measurement Method:	Electric	Water Level Indi	cator		List:						

Field Measurements

Stabili	ization	Temp	Spec.		DO	ORP	Turbidity	Water	Pumping	mL	Description:
(3 cons	ecutive)	(°C)	Cond.	рΗ	(mg/L)	(mV)	(NTU)	Level (ft)	Rate	Removed	Clarity, Color, Odor, Ect.
SEQ #	Time		±5%	_ ±0.1	±10%	±20 mV	±10%	0.25 ft	ml/min		Clear, Slightly Turbid, Turbid
1	1440	7,24	7152	6,76	5,43	-101.6	1,87	20,78	100	500	ch
2	1445	7.49	7045	6, 73	3,90	-119,7	1.89	20,69	1,00	500	dr_
3	1450	7,36	7100	6.75	3,75	-1267	1.8	20, 0 Y	100	500	ch
4	1455	7,31	7033	6.76	3,70	-132,0	1,75	20,99	1.00	500	dr
5	1500	7,31	7068	6.76	3.62	-133,7	1, 83	20,99	200	500	d
6	,									-	
7											·
8	·										
9											
10	$\left[\left[\right] \right]$										
Stabilized:	Yes	No	~				Т	otal Volume	e Removed:	<u>7500</u>	mL
Comments										ν	

2616 E. Broedway Ave. Birm	2616 E. Broadway Ave, Bismarck, ND Field Da Groundwate							Company: Event: Sample ID Sampling I		1	MDU H Spring 04 Northan	g 2019	
Phone: (701) 258-9720						, , , , , , , , , , , , , , , , , , , ,		Sampling			< Corn		
Weather Conditions:		Temp	:Un °F		Wind:	NN	@ 2	2	Precip	: (⁄Sunr	y / Partly (Cloudy / Clo	udy
W	'ell Info	rmation						S	ampling I	nformatic	<u>ón</u>		
Well Locked?	Yes	Nø				Purgir	ng Method:	Bla	dder				
Well Labeled?	Xes	No				Samplir	ng Method:	Bla	dder		Co	ontrol Setting	s
Casing Straight?	Yes	No				Dedicat	ed Equip?:	Jes	No		Purge:	5	sec.
Grout Seal Intact?	Ves	No	Not Visibl	e		Duplicate	Sample?:	Yes	No		Recover:	55	sec.
Repairs Necessary:		~				Duplicate \$	Sample ID:	<u>د</u>			PSI:		
Casing Di	ameter:		2"							V			
Water Level Before	e Purge:		14,06	ft		P	urge Date:	ZAPR	19	Time Purg	ing Began:	1527	- am/pm
						Well Pu	urged Dry?	Yes	NO	Time P	urged Dry:		am/pm
			o. :			. Sa	mple Date:	ZAPK	19	Time of	Sampling:	1552	am/pm
Depth to Top o	f Pump:			ft					-				
Water Level After S	Sample:		4,38	ft		Bottle	1L Raw	500m	L Nitric	500mL Niti	ric (filtered)	250mL S	ulfuric
Measurement N	/lethod:	Electric	Water Level Indic	ator		List:							

Field Measurements

Stabili	zation	Temp	Spec.		DO	ORP	Turbidity	Water	Pumping	mL	Description:
(3 conse	ecutive)	(°C)	Cond.	pН	(mg/L)	(mV)	(NTU)	Level (ft)	Rate	Removed	Clarity, Color, Odor, Ect.
SEQ #	Time	a	±5%	±0.1	±10%	±20 mV	±10%	0.25 ft	ml/min		Clear, Slightly Turbid, Turbid
1	1532	RUR	14296	6.88	3.68	-121,8	1,34	14,39	100	500	Clein
2	1537	6104	14276	6184	2,02	-139.6	2,92	14:33	100	500	ce-
3	1542	8.00	14250	6,84	2,08	-190.9	0,88	14.33	100	500	du
4	1547	7,877	14189	6.83	2.03	-148,3	0,84	14.33	100	,500	d
5	1552	7,90	14209	6183	1,907	-1563	0,79	1433	100	500	ch-
6	462	2.							l	_	_
7											
8											
9											
10											
Stabilized:(<pre>/ Yes /</pre>	No					Т	otal Volume	e Removed:	2500	mL

.

Field Datasheet

Groundwater Assessment

	1. S.		
6 E Broadwa	v Ave Bismarck	ND	

Phone: (701) 258-9720

Company:	MDU Heskett
Event:	Spring 2019
Sample ID:	BOR.
Sampling Personal:	Jerry May-

Weather Conditions:		Temp:	30 °F		Wind:	\mathcal{N} (2 5-10	>	Precip	: Suni	ny / Partly	Cloudy / C	loudy
	Well Info	rmation						Sa	mpling	Informatio	on		
Well Locked?	Yes	NZ				Purgin	g Method:	Blad	der				
Well Labeled?	Yes	No				Samplin	g Method:	Blad	der		Co	ontrol Setti	ngs
Casing Straight?	Yes	No				Dedicate	d Equip?:	Ves	No]	Purge:	Ş	sec.
Grout Seal Intact?	Yes	No	Not Visible			Duplicate S	Sample?:	Yes	(No		Recover:	SS	sec.
Repairs Necessary:			· · · · · · · · · · · · · · · · · · ·			Duplicate S	ample ID:		-		PSI:	20	
Casing	Diameter:		2"										
Water Level Befo	ore Purge:		13.81	ft		Ρι	irge Date:	2-APr	رکم	Time Purg	ing Began:	1440	am/pm
						Well Pu	rged Dry?	Yes	No	Time F	Purged Dry:		am/pm
						San	ple Date:	2Ar	75	Time of	f Sampling:	1610	am/pm
Depth to Top	of Pump:	ł	9,30	ft				•					
Water Level After	er Sample:		14,21	ft		Bottle	1L Raw	500mL	Nitric	500mL Nit	ric (filtered)	250mL	Sulfuric
Measuremen	t Method:	Electric	Water Level Indicat	or		List:							

Field Measurements

Stabili	ization	Temp	Spec.	[DO	ORP	Turbidity	Water	Pumping	mL	Description:
(3 cons	ecutive)	(°C)	Cond.	pН	(mg/L)	(mV)	(NTU)	Level (ft)	Rate	Removed	Clarity, Color, Odor, Ect.
SEQ #	Time		±5%	±0.1	±10%	±20 mV	±10%	0.25 ft	ml/min		Clear, Slightly Turbid, Turbid
1	1445	7.27	5692	6.98	3,27	238.9	31.6	14,10	[00,0	500.0	Cles
2	1505	7.4B	5680	6.98	3.00	237.6	17.5	14,1.8	iao.o	Z000.0	Clea
3	1525	7.09	5690	6.98	2.77	234.7	11.4	14,18	100.0	7 <i>0</i> 00.D	Cles
4	RS 35	7.12		7:01	2.83	234.4		14,19	600.0	(000,0	Cles
5	1545	7.00	5687	7.01	3,00	2379	7.91	14,20	$l\omega_{,\mathfrak{D}}$	1000,0	Clea
6	1555	7.22	5691	7.00	2.89	238,7	5,32	14.20	100.0.	1200.0	Clear
7	1600	7.30	5696	7.01	2.91	235,9		14.20	100.0	500.0	Clear
8	1605	7.37	5689	7.01	3,07	235,2	4,79	14.21	100.0	500.0	Clear
9	1610	7.38	5688	7.01	3,15	235.4	4.75	14.21	(20.0	500.0	Clean
10											
Stabilized:	Yes	No		Total Volume Removed: 9000, 0 mL							

Stabilized: Xes,

Comments:

Total Volume Removed: 9000, 0 mL

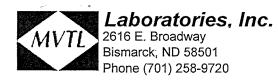
,

Field Datasheet

Groundwater Assessment

Company:	MDU Heskett	
Event:	Spring 2019	
Sample ID:	105.	
Sampling Personal:	Long they eg	

Phone: (701) 258-9720


oudy / Cloudy
trol Settings
S sec.
SS sec
20
1130 am?pm
am/pm
1245 am/pm
250mL Sulfuric
-

Field Measurements

Stabili	zation	Temp	Spec.		DO	ORP	Turbidity	Water	Pumping	mL	Description:
(3 cons	ecutive)	(°C)	Cond.	рΗ	(mg/L)	(mV)	(NTU)	Level (ft)	Rate	Removed	Clarity, Color, Odor, Ect.
SEQ #	Time		±5%	±0.1	±10%	±20 mV	±10%	0.25 ft	ml/min		Clear, Slightly, Turbid, Turbid
1	1135	6.25	4669	6.82	2.43	300.4	10.9	12.62	100.0	500.0	Clear
2	1145	6.10	4466	6.84	3,13	291.4	4,65	12.4B	(00.0	1000.0	Clear
3	1155	6.60	4463	6.84	मंग	281,2	8,29	12.56	100,0	1000,0	clear
4	1205	6.82	5217	6.79	2.77	269.2	3,58	12.55	100.0	100010	Clear
5	1215	6.64	5569	6.78	3,23	265,6	2.67	12.55	100.0	(000.0	Clear
6	1225	6.61	5927	6,72	3.49	264.8	2.98	12.55	100.0	0,000	Cles
7	1235	6.78	6109	6.77	3,48	264.0	2,98	12,52	0.00	(000.0	chr
8	1240	6.83	6204	6.76	3.57	265.1	3,04	12,56	(00,0	500.0	Clear
9	1245	6.07	6292	6.76	3,65	265,9	2.94	12.55	100.0	500.0	Cha
10				-							
Stabilized:	Yeş	No	Total Volume Removed: 75 00, 0 mL								

-

Stabilized: ∕Yeş∕ Total Volume Removed: <u>tSOO</u>, <u>D</u> mL

Chain of Custody Record

Project Name	:		Event:						W	ork (Orde	er N	umber:			82-0648
	MDU Heskett		Spring 2019											02 0010		
Report To: Attn: Address: phone: email:	MDU Samantha Davies 5181 Southgate Dr. Billings, MT 59102 406-896-4227		Carbon Copy: Attn: Address:				Name of Sampler(s): Darren Nieswaag Jeremy Meisco									
	Samp	le Informatio	n .					Bot	tle	Тур	е		Fi	eld Para	ameters	Analysis
Lab	Sample ID	Date	Time	Sample Tuno		1 liter		500ml	250 mil Nitric (filtered)	o mL Sulfurio			Temp (°C)	Spec. Cond	Ha	
-	33	2APR19	1		/					$\frac{1}{1}$	\vdash	\vdash	8.92		<u> </u>	Analysis Required
WS86 WS87	3-90	2APR19	1258 1345	GW GW		X X	X X		X X		$\left \right $		0,7 <u>2</u> 7,71	5125	6 11	
W588	Dup2	2APR19	-	GW		X	1		X		$\left \right $		<i>I</i> ; <i>l</i> (7730	6.61	
w 589	2-90	2 APRIG	1500	GW	· · · · · · · · · · · · · · · · · · ·	X	i	1	$\frac{1}{x}$				7.3-1	7068	6.76	
W590	104	2APR19	1552	GW		X	X	1	X			•	7,90	14209	6.83	MDU List AA & MDU
w Sal	80R	2APR19	1610	GW		X	x		x					5688	7.01	Appendix 3
WS92	105	2APR19	1245	GW		X	x	1	X						6.76	
W 593-	FB2	2APRIQ	~	GW		X	X	1	х							

Relinquished B	y:	Sa	mple Condition:	Received by:				
Name:	Date/Time	Location:	Temp (°C)	Name:	Date/Time			
1 ()	2APRI9	Log In	RUT 0.8		3 Apr 19			
Parlie	2 1657	Walk In #2	TM562/TM588	NBuchmann	OROD			
2			FM805					

Page: 1 of 1

Report Date: 12 Sep 19 Lab Number: 19-W3191 Work Order #: 82-2271 Account #: 002800 Date Sampled: 22 Aug 19 13:30 Date Received: 22 Aug 19 15:30 Sampled By: MVTL Field Services

Temp at Receipt: 3.3C ROI

Todd Peterson Montana-Dakota Utilities Co. 400 N 4th St Bismarck ND 58501

Project Name: MDU Heskett Sample Description: 104

Event and Year: August 2019

Method Method Date As Received Analyst Result RL Reference Analyzed SM 4500 H+ B 22 Aug 19 13:30 JSM 6.86 units NA pH - Field 22 Aug 19 13:30 SM 2550B JSM Temperature - Field 13.9 Degrees C NA 22 Aug 19 13:30 JSM Conductivity - Field EPA 120.1 14152 umhos/cm 1 ASTM D516-07 28 Aug 19 11:22 EV 11000 mg/l 5.00 Sulfate SVS I1750-85 27 Aug 19 10:44 Total Dissolved Solids mg/l 10 17300

Approved by:

CC 13506 Clauditte K. Canto

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

CERTIFICATION: ND # ND-00016

Page: 1 of 1

Report Date: 12 Sep 19 Lab Number: 19-W3192 Work Order #: 82-2271 Account #: 002800 Date Sampled: 22 Aug 19 12:52 Date Received: 22 Aug 19 15:30 Sampled By: MVTL Field Services

Temp at Receipt: 3.3C ROI

Todd Peterson Montana-Dakota Utilities Co. 400 N 4th St Bismarck ND 58501

Project Name: MDU Heskett Sample Description: 105

Event and Year: August 2019

	As Receiv Result	red	Method RL	Method Reference	Date Analyzed	Analyst
pH - Field Temperature - Field Conductivity - Field Chloride	6.70 16.9 5897 279	units Degrees C umhos/cm mg/l	NA NA 1 1.0	SM 4500 H+ B SM 2550B EPA 120.1 SM4500-Cl-E	22 Aug 19 12:52 22 Aug 19 12:52 22 Aug 19 12:52 22 Aug 19 12:52 27 Aug 19 11:03	JSM JSM

Approved by:

356019 Clauditte K. Cantle

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

= Due to concentration of other analytes
+ = Due to internal standard response

CERTIFICATION: ND # ND-00016

1 of 1 Page:

Report Date: 12 Sep 19 Lab Number: 19-W3193 Work Order #: 82-2271 Account #: 002800 Date Sampled: 22 Aug 19 14:10 Date Received: 22 Aug 19 15:30 Sampled By: MVTL Field Services

Temp at Receipt: 3.3C ROI

Todd Peterson Montana-Dakota Utilities Co. 400 N 4th St Bismarck ND 58501

Project Name: MDU Heskett Sample Description: 2-90

Event and Year: August 2019

	As Receiv Result	ed	Method RL	Method Reference	Date Analyzed	Analyst
pH - Field Temperature - Field Conductivity - Field Fluoride	6.93 11.9 7098 1.00	units Degrees C umhos/cm mg/l	NA NA 1 0.10	SM 4500 H+ B SM 2550B EPA 120.1 SM4500-F-C	22 Aug 19 14:10 22 Aug 19 14:10 22 Aug 19 14:10 22 Aug 19 14:10 30 Aug 19 17:00	JSM JSM

Approved by:

135019 Clauditte K. Canto

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

CERTIFICATION: ND # ND-00016

Field Datasheet

Groundwater Assessment

Company:	MDU Heskett
Event:	August 2019
Sample ID:	104
Sampling Personal:	Jeren Kayan

2616 E. Broadway Ave, Bismarck, ND

Phone: (701) 258-9720

Weather Conditions:		Temp:	75 °F	Wind:	Л	1@5-10		Precip	: Suni	ny / C artly C	Cloudy / Clo	udy
v	Vell Info	rmation					Sa	mpling l	nformatio	on	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
Well Locked?	Yes	(Niộ			Purg	ing Method:	Blad	der				
Well Labeled?	Yes	No			Sampl	ing Method:	Blad	der		Co	ntrol Setting	js
Casing Straight?	Yes	No			Dedica	ted Equip?:	Yes	No		Purge:	5	sec.
Grout Seal Intact?	Yes	No	Not Visible		Duplicate	e Sample?:	Yes			Recover:	Š5	sec.
Repairs Necessary:					Duplicate	Sample ID:	<			PSI:	10	
Casing E	Diameter:		2"									
Water Level Befor	re Purge:	i	4.04	ft	I	Purge Date:	22Aug	19	Time Purg	ing Began:	1305	am/m
					Well F	urged Dry?	Yes	No	Time F	Purged Dry:	<u>~</u>	am/pm
					Sa	ample Date:	22 Aug	19	Time of	f Sampling:	1330	am/pm
Depth to Top	of Pump:	22	.20	ft			0					
Water Level After	Sample:	12	135	ft	Bottle	1L Raw						
Measurement	Method:	Electric	Nater Level Indicato	or	List:							
			Fie	eld Measur	ements							

Stabili	zation	Temp	Spec.		DO	ORP	Turbidity	Water	Pumping	mL	Description:
(3 cons	ecutive)	(°C)	Cond.	рН	(mg/L)	(mV)	(NTU)	Level (ft)	Rate	Removed	Clarity, Color, Odor, Ect.
SEQ #	Time		±5%	±0.1	±10%	±20 mV	±10%	0.25 ft	ml/min		Clear, Slightly Turbid, Turbid
1	1310	14.47	14170	6.93	10.63	199.6	3.52	14.24	100.0	500.0	Clear
2	1315	13.78	14264	LBB	10,9B	200.5	2.24	14.35	100.0	500.0	Cles
3	1320	14.27	14135	6.87	11.27	200.8	2.06	14.29	[00.0	500.0	Clien
4	1325	13.61	14246	6.B7	11,6Z	202-1	1.98	14.32	100.0	500.0	Clear
5	1330	13.89	14 ISZ	6.86	11.51	202.6	1.91	14,33	(ω, \mathfrak{d})	500,0	Clezi
6											· · · · · · · · · · · · · · · · · · ·
7											
8											
9											
10											
Stabilized:	(Yes)	No	Total Volume Removed:25లు.ం mL								

Groundwater Assessment

Company:	MDU Heskett
Event:	August 2019
Sample ID:	105 ,
Sampling Personal:	Jerenny Nem er
	1

2616 E. Broadway Ave, Bismarck, ND

MVT

Phone: (701) 258-9720

Weather Conditions:		Temp:	75 °F	Wind: 2	0	@ 5-10)	Precip	: Suni	ny / Cartly (Cloudy / Clo	udy
V	Nell Info	rmation					Sampling Information					
Well Locked?	Yes	No			Purgi	ing Method:	Blac	lder				
Well Labeled?	Kes)	No			Sampli	ing Method:	Blac	lder		Co	ontrol Setting	IS
Casing Straight?	Yes	No			Dedica	ted Equip?:	(Yes)	No]	Purge:	5	sec.
Grout Seal Intact?	Ves	No	Not Visible		Duplicate	e Sample?:	Yes	NO.]	Recover:	55	sec.
Repairs Necessary:					Duplicate	Sample ID:	,	-]	PSI:	10	
Casing [Diameter:		2"						-			
Water Level Befo	re Purge:		12.96 ft		F	Purge Date:	22Ag1	9	Time Purg	ing Began:	1132	@ît/pm
					Well P	urged Dry?	Yes	NO	Time F	urged Dry:		am/pm
					Sa	ample Date:	ZZAG	19	Time of	Sampling:	1252	ampm
Depth to Top	of Pump:	2	.1.24 ft									
Water Level After	Sample:	l	3,19' ft		Bottle	1L Raw						
Measurement	Method:	Electric V	Nater Level Indicator		List:							

Field weasurements

Stabili	ization	Temp	Spec.		DO	ORP	Turbidity	Water	Pumping	mL	Description:
(3 cons	ecutive)	(°C)	Cond.	рН	(mg/L)	(mV)	(NTU)	Level (ft)	Rate	Removed	Clarity, Color, Odor, Ect.
SEQ #	Time		±5%	±0.1	±10%	±20 mV	±10%	0.25 ft	ml/min		Clear, Slightly Turbid, Turbid
1	1137	12.1B	4042	6.77	4.59	246.1	8.72	13.31	100.0	500,0	Clean
2	1207	15:06	4928	6,74	6.35	Z06.7	3.72	13.15	100.0	3000.0	Clear
3	1217	16.74	5316	6.72	6.99	202-3	2.88	13,18	100.0	1.000.0	Clean
4	1227	18.51	5566	6.71	B.49	197.3	2,71	13,18	100,0	1000.0	clean
5	1237	21.00	5714	6.70	10.0B	189.4	2.21	13.16	j00. O	1000.0	Clear
6	1242	17.72	5822	6,70	8.94	189_7	2.66	13,17	100.0	500.0	Clear
7	1247	(7.03	5830	6,70	8.77	188.6	2,57	13,17	100.0	500.0	Clea
8	1252	16.89	5897	6.70	8,82	189.0	2,55	13,18	j00.0	5000	Clear
9											
10	\sim										
Stabilized:	(Yes)	No	Total Volume Removed: 🖉 🕫 🗘 🖉 mL								

Field Datasheet

Groundwater Assessment

Company:	MDU Heskett
Event:	August 2019
Sample ID:	290 1
Sampling Personal:	Jeren Elen-

٦

											~ ~	<u> </u>	
Weather Conditions:		Temp	: 75°	°F ~	HWind:	- NY	@ 5-17	9	Precip	: Suni	ny / Partly (Cloudy / Cl	oudy
	Well Info	ormation			_			S	ampling	npling Information			
Well Locked?	Yes	No				Purgi	ng Method:	Bla	dder				
Well Labeled?	¥es?	No				Sampli	ng Method:	Bla	dder		Co	ontrol Settin	igs
Casing Straight?	Yes	No				Dedica	ted Equip?:	Yes	No	1	Purge:	5	sec
Grout Seal Intact?	Yes	No	Not Vi	sible		Duplicate	Sample?:	Yes	Ne		Recover:	55	sec
Repairs Necessary:						Duplicate	Sample ID:	·		1	PSI:		
Casing	Diameter:		2"										
Water Level Bef	ore Purge:	2	1.55	ft		F	Purge Date:	ZZAG	19	Time Purg	ing Began:	1345	am/p n
						Well P	urged Dry?	Yes	NO	Time P	urged Dry:		am/pr
						Sa	mple Date:	22Ag	19	Time of	Sampling:	1410	am/su
Depth to Top	o of Pump:	Z	Z.3Z	ft					-				
Water Level After	er Sample:	2	2,00	ft		Bottle	1L Raw		a de la constante de				
Measuremen	t Method:	Electric	Water Level II	ndicator		List:							

Field Measurements

Stabil	ization	Temp	Spec.		DO	ORP	Turbidity	Water	Pumping	mL	Description:
(3 cons	secutive)	(°C)	Cond.	рН	(mg/L)	(mV)	(NTU)	Level (ft)	Rate	Removed	Clarity, Color, Odor, Ect.
SEQ #	Time		±5%	±0.1	±10%	±20 mV	±10%	0.25 ft	ml/min		Clear, Slightly Turbid, Turbid
1	1350	12.21	7193	6.92	12.37	209.2	0,50	21,95	100.0	500.0	Clear
2	1355	12.30	7112	6,89	13,07	Z04.8	1,59	21.98	(00,0	500.0	Clear
3	1400	11.72	7132	6.91	13.03	799.7	1.55	22.01	100,0	500.0	Clear
4	1405	12.47	7093	6.92	13.08	180.0	1.43	21.98	100.0	500.0	Clear
5	1410	11,90	7098	6.93	13.18	175.3	1.39	21.9B	(00.0	522.0	Clia
6										200.0	
7											
8											
9											
10											
tabilized:	Yes	No				L	T ₁	otal Volume	e Removed:	2500.0	mL

Laboratories, Inc. 2616 E. Broadway Bismarck, ND 58501

Phone (701) 258-9720

Chain of Custody Record

Project Name			Event:			Work Order Number:				0.0
	MDU Heskett			Α	ugust 2019					82- 2271
Report To: Attn: Address: phone: email:	MDU Samantha Davies 5181 Southgate Dr. Billings, MT 59102 406-896-4227		Carbon Co Attn: Address:	ору:		Name of Sar	npler(s): NM			
Sample Informat			on Bottl			tle Type Field Paramete				Analysis
Lab Number	Sample ID	Date	Time	Sample Tunc	500mL Mitric	250 mL Sulfuric Mitric	Temp (°C)	Spec. Cond.	Hd	Analysis Required
43191	104	22 Aug 19	1330	GW	X		13,89	14152	6.86	sulfate+TDS
W319 2	105	ZZ Avgig	1252	GW	X		16.89	5897	6,70	chloride
W3193	2-90	22 Ay19	1410	GW	X		11.90	7098	6.93	fluoride

Relinguished By:	· · · · · · · · · · · · · · · · · · ·	Sar	nple Condition:		Received by:		
Name	Date/Time	Location:	Temp (°C)		Name:	Date/Time	
1	22A-519 1530	Log la Walk In #2	TM562 / TM588	N	Bichmann	22 Ang 19 @ 1530	
2							

October 4, 2019

Montana Dakota Utilities Attn: Abbie Krebsbach 400 N. 4th St. Bismarck, ND 58501

RE: Groundwater Sampling Event - MDU Heskett Ash Site

Dear Ms. Krebsbach:

From September 16-18, 2019, MVTL Laboratories' Field Services division collected groundwater samples at the MDU Heskett site near Mandan, ND for the Heskett Coal Combustion Rule.

All wells were located and were found to be in generally good condition. The wells for CCR were purged and sampled using a dedicated bladder pump and BARR's SOP for low flow purging and sampling. Sampling was also collected for the NDDH list of analysis. The samples collected were, placed on ice and transported back to the MVTL laboratory in Bismarck, ND for analysis. The field data report for the sampling event accompanies this letter.

Thank you for your trust and support of our services. If you have any questions, please call me at (701)391-4900.

Sincerely,

Jeremy Meyer MVTL Field Services

Page: 1 of 8

Amended PO# 5Nov2019 - CCR

Abbie Krebsbach Montana Dakota Utilities 400 N 4th Bismarck ND 58501

Project Name: MDU Heskett

Sample Description: 13

Event and Year: Fall 2019

Report Date: 9 Oct 19 Lab Number: 19-W3728 Work Order #: 82-2611 Account #: 002800 Date Sampled: 16 Sep 19 9:45 Date Received: 17 Sep 19 16:00 Sampled By: MVTL Field Services

PO #: 175103

Temp at Receipt: 3.2C

	As Receiv Result	ved	Method RL	Method Reference	Date Analyzed	Analyst
pH - Field	6.95	units	NA	SM 4500 H+ B	16 Sep 19 9:45	JSM
pH	* 7.8	units	0.1	SM4500 H+ B	25 Sep 19 7:40	CC
Temperature - Field Conductivity - Field	10.9 10184	Degrees C umhos/cm	NA 1	SM 2550B EPA 120.1	16 Sep 19 9:45 16 Sep 19 9:45	JSM JSM
Fluoride	1.01	mg/l	0.10	SM4500-F-C	25 Sep 19 7:40	
Sulfate	6380	mg/l	5.00	ASTM D516-07	25 Sep 19 8:53	
Chloride	65.3	mg/l	1.0	SM4500-Cl-E	19 Sep 19 11:19	
Total Dissolved Solids	10200	mg/l	10	I1750-85	20 Sep 19 16:19	
Calcium - Total	431	mg/l	1.0	6010D	20 Sep 19 16:21	
Boron - Total	0.54	mg/l	0.10	6010D	24 Sep 19 10:54	

* Holding time exceeded

Approved by:

CC. Claudite K. Canrep 11 NOV19

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

CERTIFICATION: ND # ND-00016

Page: 2 of 8

Amended PO# 5Nov2019 - CCR

Abbie Krebsbach Montana Dakota Utilities 400 N 4th Bismarck ND 58501

Project Name: MDU Heskett

Sample Description: Dup1

Event and Year: Fall 2019

Report Date: 9 Oct 19 Lab Number: 19-W3729 Work Order #: 82-2611 Account #: 002800 Date Sampled: 16 Sep 19 Date Received: 17 Sep 19 16:00 Sampled By: MVTL Field Services

PO #: 175103

Temp at Receipt: 3.2C

	As Recei Result	ved	Method RL	Method Reference	Date Analyzed	Analyst
рН	* 7.8	units	0.1	SM4500 H+ B	25 Sep 19 7	:40 CC
Fluoride	1.01	mg/l	0.10	SM4500-F-C	25 Sep 19 7	
Sulfate	6400	mg/l	5.00	ASTM D516-07	25 Sep 19 8	:53 EV
Chloride	64.7	mg/l	1.0	SM4500-Cl-E	19 Sep 19 11	:19 EV
Total Dissolved Solids	10200	mg/l	10	I1750-85	20 Sep 19 16	:19 CC
Calcium - Total	404	mg/l	1.0	6010D	20 Sep 19 16	:21 SZ
Boron - Total	0.54	mg/l	0.10	6010D	24 Sep 19 10	:54 SZ
Boron - Total	0.54	mg/ I	0.10	00100		

* Holding time exceeded

Approved by:

1C 11 NOV19 Clauditte K. Cantle

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

CERTIFICATION: ND # ND-00016

Page: 3 of 8

Amended PO# 5Nov2019 - CCR

Abbie Krebsbach Montana Dakota Utilities 400 N 4th Bismarck ND 58501

Project Name: MDU Heskett

Sample Description: 102

Event and Year: Fall 2019

Report Date: 9 Oct 19 Lab Number: 19-W3730 Work Order #: 82-2611 Account #: 002800 Date Sampled: 16 Sep 19 11:30 Date Received: 17 Sep 19 16:00 Sampled By: MVTL Field Services

PO #: 175103

Temp at Receipt: 3.2C

	As Recei Result	ved	Method RL	Method Reference	Date Analyzed	Analyst
pH - Field	6.74	units	NA	SM 4500 H+ B	16 Sep 19 11:30	
Hq	* 7.6	units	0.1	SM4500 H+ B	25 Sep 19 7:40	
Temperature - Field	13.6	Degrees C	NA	SM 2550B	16 Sep 19 11:30	JSM
Conductivity - Field	8680	umhos/cm	1	EPA 120.1	16 Sep 19 11:30	JSM
Fluoride	0.17	mg/l	0.10	SM4500-F-C	25 Sep 19 7:40	CC
Sulfate	5390	mg/l	5.00	ASTM D516-07	25 Sep 19 9:10	EV
Chloride	4.2	mg/l	1.0	SM4500-C1-E	19 Sep 19 11:19	EV
Total Dissolved Solids	7930	mg/l	10	I1750-85	20 Sep 19 16:19	CC
Calcium - Total	471	mg/l	1.0	6010D	20 Sep 19 16:21	SZ
Boron - Total	1.16	mg/l	0.10	6010D	24 Sep 19 11:54	SZ

* Holding time exceeded

Approved by:

11 NUV19 Clauditte K. Canrep

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

CC

CERTIFICATION: ND # ND-00016

Page: 4 of 8

Amended PO# 5Nov2019 - CCR

Abbie Krebsbach Montana Dakota Utilities 400 N 4th Bismarck ND 58501

Project Name: MDU Heskett

Sample Description: 70

Event and Year: Fall 2019

Report Date: 9 Oct 19 Lab Number: 19-W3731 Work Order #: 82-2611 Account #: 002800 Date Sampled: 16 Sep 19 12:54 Date Received: 17 Sep 19 16:00 Sampled By: MVTL Field Services

PO #: 175103

Temp at Receipt: 3.2C

	As Recei Result	ved	Method RL	Method Reference	Date Analyzed	Analyst
pH - Field	6.96	units	NA	SM 4500 H+ B	16 Sep 19 12:54	JSM
PH	* 7.8	units	0.1	SM4500 H+ B	25 Sep 19 7:40	CC
Temperature - Field	14.7	Degrees C	NA	SM 2550B	16 Sep 19 12:54	JSM
Conductivity - Field	4317	umhos/cm	1	EPA 120.1	16 Sep 19 12:54	JSM
Fluoride	0.34	mg/l	0.10	SM4500-F-C	25 Sep 19 7:40	CC
Sulfate	2390	mg/l	5.00	ASTM D516-07	25 Sep 19 9:10	EV
Chloride	44.4	mg/l	1.0	SM4500-Cl-E	19 Sep 19 11:19	EV
Total Dissolved Solids	3770	mg/l	10	I1750-85	20 Sep 19 16:19	CC
Calcium - Total	406	mg/l	1.0	6010D	20 Sep 19 16:21	SZ
Boron - Total	0.45	mg/l	0.10	6010D	24 Sep 19 11:54	SZ

* Holding time exceeded

Approved by:

((_____ Clauditte 11 NUV19 K. Canto

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

CERTIFICATION: ND # ND-00016

Page: 5 of 8

Amended PO# 5Nov2019 - CCR

Abbie Krebsbach Montana Dakota Utilities 400 N 4th Bismarck ND 58501

Project Name: MDU Heskett

Sample Description: 101

Event and Year: Fall 2019

Report Date: 9 Oct 19 Lab Number: 19-W3732 Work Order #: 82-2611 Account #: 002800 Date Sampled: 16 Sep 19 14:44 Date Received: 17 Sep 19 16:00 Sampled By: MVTL Field Services

PO #: 175103

Temp at Receipt: 3.2C

	As Receiv Result	ved	Method RL	Method Reference	Date Analyzed	Analyst
pH - Field pH Temperature - Field Conductivity - Field Fluoride Sulfate Chloride	6.66 * 7.8 13.5 4855 < 0.1 2870 14.8	units units Degrees C umhos/cm mg/l mg/l mg/l	NA 0.1 NA 1 0.10 5.00 1.0	SM 4500 H+ B SM4500 H+ B SM 2550B EPA 120.1 SM4500-F-C ASTM D516-07 SM4500-C1-E	16 Sep 19 14:44 25 Sep 19 7:40 16 Sep 19 14:44 16 Sep 19 14:44 25 Sep 19 7:40 25 Sep 19 9:10 19 Sep 19 11:19	CC JSM JSM CC EV EV
Total Dissolved Solids Calcium – Total Boron – Total	4360 383 0.97	mg/l mg/l mg/l	10 1.0 0.10	I1750-85 6010D 6010D	20 Sep 19 16:19 20 Sep 19 16:21 24 Sep 19 11:54	SZ

* Holding time exceeded

Approved by:

10 Claudite K. Canrep 11NUV19

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

CERTIFICATION: ND # ND-00016

Page: 6 of 8

Amended PO# 5Nov2019 - CCR

Abbie Krebsbach Montana Dakota Utilities 400 N 4th Bismarck ND 58501

Project Name: MDU Heskett

Sample Description: 103

Event and Year: Fall 2019

Report Date: 9 Oct 19 Lab Number: 19-W3733 Work Order #: 82-2611 Account #: 002800 Date Sampled: 16 Sep 19 15:55 Date Received: 17 Sep 19 16:00 Sampled By: MVTL Field Services

PO #: 175103

Temp at Receipt: 3.2C

	As Receiv Result	ed	Method RL	Method Reference	Date Analyzed	Analyst
pH - Field	6.62	units	NA	SM 4500 H+ B	16 Sep 19 15:55	JSM
H	* 7.6	units	0.1	SM4500 H+ B	25 Sep 19 7:40	CC
Temperature - Field	12.0	Degrees C	NA	SM 2550B	16 Sep 19 15:55	JSM
Conductivity - Field	5185	umhos/cm	1	EPA 120.1	16 Sep 19 15:55	JSM
Fluoride	0.13	mg/l	0.10	SM4500-F-C	25 Sep 19 7:40	CC
Sulfate	2960	mg/l	5.00	ASTM D516-07	25 Sep 19 9:10	EV
Chloride	140	mg/l	1.0	SM4500-Cl-E	19 Sep 19 11:19	EV
Total Dissolved Solids	4820	mg/l	10	I1750-85	20 Sep 19 16:19	CC
Calcium - Total	560	mg/l	1.0	6010D	20 Sep 19 16:21	SZ
Boron - Total	< 0.5 @	mg/l	0.10	6010D	24 Sep 19 11:54	SZ

* Holding time exceeded

Approved by:

11 NEVIA Claudite K. Canrep

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

The reporting limit was elevated for any analyte requiring a dilution as coded below: @ = Due to sample matrix # = Due to concentration of other analytes ! = Due to sample quantity + = Due to internal standard response CERTIFICATION: ND # ND-00016

0

CERTIFICATION. ND # ND 00010

Page: 7 of 8

Amended PO# 5Nov2019 - CCR

Abbie Krebsbach Montana Dakota Utilities 400 N 4th Bismarck ND 58501

Project Name: MDU Heskett

Sample Description: 44R

Event and Year: Fall 2019

Report Date: 9 Oct 19 Lab Number: 19-W3734 Work Order #: 82-2611 Account #: 002800 Date Sampled: 17 Sep 19 9:17 Date Received: 17 Sep 19 16:00 Sampled By: MVTL Field Services

PO #: 175103

Temp at Receipt: 3.2C

	As Receiv Result	ed	Method RL	Method Reference	Date Analyzed	Analyst
pH - Field	6.52	units	NA	SM 4500 H+ B	17 Sep 19 9:17	
рН	* 7.4	units	0.1	SM4500 H+ B	25 Sep 19 7:40	
Temperature - Field	17.3	Degrees C	NA	SM 2550B	17 Sep 19 9:17	JSM
Conductivity - Field	9196	umhos/cm	1	EPA 120.1	17 Sep 19 9:17	JSM
Fluoride	0.68	mg/l	0.10	SM4500-F-C	25 Sep 19 7:40	CC
Sulfate	5920	mg/l	5.00	ASTM D516-07	25 Sep 19 9:10	EV
Chloride	217	mg/l	1.0	SM4500-Cl-E	19 Sep 19 11:19	EV
Total Dissolved Solids	10100	mg/l	10	I1750-85	20 Sep 19 16:19	CC
Calcium - Total	464	mg/l	1.0	6010D	20 Sep 19 16:21	SZ
Boron - Total	< 0.5 @	mg/l	0.10	6010D	24 Sep 19 11:54	SZ

* Holding time exceeded

Approved by:

11 11 NOV19 Claudite K. Canrep

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

CERTIFICATION: ND # ND-00016

Page: 8 of 8

Amended PO# 5Nov2019 - CCR

Abbie Krebsbach Montana Dakota Utilities 400 N 4th Bismarck ND 58501

Project Name: MDU Heskett

Sample Description: FB1

Event and Year: Fall 2019

Report Date: 9 Oct 19 Lab Number: 19-W3735 Work Order #: 82-2611 Account #: 002800 Date Sampled: 17 Sep 19 Date Received: 17 Sep 19 16:00 Sampled By: MVTL Field Services

PO #: 175103

Temp at Receipt: 3.2C

	As Receiv Result	ved	Method RL	Method Reference	Date Analyzed	Analyst
рн	* 6.2	units	0.1	SM4500 H+ B		0 CC 0 CC
Fluoride	< 0.1 < 5	mg/l mg/l	0.10 5.00	SM4500-F-C ASTM D516-07	25 Sep 19 7:4 25 Sep 19 9:1	
Sulfate Chloride	< 1	mg/l	1.0	SM4500-Cl-E	19 Sep 19 11:1	9 EV
Total Dissolved Solids	< 10	mg/l	10	I1750-85	20 Sep 19 16:1 20 Sep 19 16:2	
Calcium - Total Boron - Total	< 1 < 0.1	mg/l mg/l	1.0 0.10	6010D 6010D	24 Sep 19 11:5	

* Holding time exceeded

Approved by:

11 NUV19 Claudite K. Canrep

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

CERTIFICATION: ND # ND-00016

MVTL

MINNESOTA VALLEY TESTING LABORATORIES, INC.

1126 N. Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 E. Broadway Ave. ~ Bismarck, ND 58502 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Highway ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

MEMBER ACIL

Page: 1 of 1

Quality Control Report – Amended 7 Nov 19

Lab IDs: 19-W3728 to 19-W	73735	Pr	oject: MI	DU Hesk	ett		Work Or	der: 201	982-261	1							
Analyte	LCS Spike Amt	LCS Rec %	LCS % Rec Limits	Matrix Spike Amt	Matrix Spike ID	Matrix Spike Orig Result	Matrix Spike Result	Matrix Spike Rec %	Matrix Spike % Rec Limits	MSD/ Dup Orig Result	MSD/ Dup Result	MSD Rec %	MSD/ Dup RPD	MSD/ Dup RPD Limit (<)	Known Rec (%)	Known % Rec Limits	Method Blank
Boron - Total mg/l	0.40 0.40	95 98	80-120 80-120	2.00 2.00	19-W3728 19-W3743	0.54 < 0.5	2.30 2.22	88 111	75-125 75-125	2.30 2.22	2.29 2.24	88 112	0.4 0.9	20 20	- - -	- - -	< 0.1 < 0.1 < 0.1 < 0.1
Calcium - Total mg/l	20.0	116	80-120	500	19W3732q	383	955	114	75-125	955	950	113	0.5	20	-	-	< 1 < 1
Chloride mg/l	30.0 30.0	90 91	80-120 80-120	30.0	19-W3735	< 1	25.3	84	80-120	25.3	25.3	84	0.0	20	-	-	< 1 < 1
Fluoride mg/l	0.50	108	90-110	0.500	19-W3727Q	0.68	1.23	110	80-120	1.23	1.24	112	0.7	20	-	-	< 0.1 < 0.1
pH units	-	-	-	-	-	_	-	-	-	7.8	7.8	-	0.0	20	-	_	-
Sulfate mg/l	100 100	100 101	80-120 80-120	100 100	19-W3725 19-W3735	< 5 < 5	96.9 106	97 106	80-120 80-120	96.9 106	101 106	101 106	4.1 0.0	20 20	-	-	< 5 < 5
Total Dissolved Solids mg/l				- - -	- - -	- - -			- -	4360 7150 < 10	4480 7200 < 10		2.7 0.7 0.0	20 20 *	- - -	-	< 10 < 10

Samples were received in good condition on 17 Sep 2019 at 1600.

Temperature upon receipt at the Bismarck laboratory was 3.2°C.

Samples were received on ice and evidence of cooling had begun.

All samples were properly preserved unless noted here and/or flagged on the individual analytical laboratory report.

With the exception of pH, all holding times were met.

Approved methodology was followed for all sample analyses.

All acceptance criteria were met for calibration, method blanks, laboratory control samples, laboratory fortified matrix/duplicates unless noted here.

For some analytes, the reported results were elevated due to additional dilutions required to minimize the effects of sample matrix. •

Reporting

- Per email from Todd Peterson, MDU, sample data package was amended to revise Purchase Order number on reports. .
- Per email from Barr, field summary report was amended to correct date sampled for MW44R.
- Per email from Terri Olson, Barr, dated 6 Nov 2019, the CCR data package was split into Appendix III and Appendix IV parameters. .

Approved by: C. Cantel 11 Nov 19

Claudette Carroll

From: Sent: To: Cc: Subject: Terri A. Olson <TOlson@barr.com> Wednesday, November 6, 2019 12:41 PM Claudette Carroll Stephanie A. Theriault RE: Re: MDU Heskett reports

Hi Claudette,

Regarding the 3rd bullet, we don't receive a CCR report for this one so you can take it off your list of things to do; however, we do need the other two reports split into Appendix III and Appendix IV parameters. For fluoride that is in both lists, please report with Appendix III.

Thank-you,

Terri A. Olson Senior Data Quality Specialist Minneapolis, MN office: 952.842.3578 <u>TOlson@barr.com</u> www.barr.com

resourceful. naturally.

This e-mail message (including attachments, forwards, and replies) is correspondence transmitted between Barr Engineering Co. and its clients and related parties in the course of business, and is intended solely for use by the addressees. This transmission contains information which may be confidential and proprietary. If you are not the addressee, note that any disclosure, copying, distribution, or use of the contents of this message (or any attachments, replies, or forwards) is prohibited. If you have received this transmission in error, please destroy it and notify us at 952-832-2600.

If you no longer wish to receive marketing e-mails from Barr, respond to <u>communications@barr.com</u> and we will be happy to honor your request.

From: Terri A. Olson

Sent: Friday, November 1, 2019 10:08 AM To: 'ccarroll@mvtl.com' <ccarroll@mvtl.com> Subject: Re: MDU Heskett reports

Hi Claudette,

Reviewed MDU Heskett reports and had the following questions/comments

- 201982-2611
 - MW44R in the Field Data Report has a sample date of 09/16/19 but raw field data and COC list 09/17/19
 please revise,
- 201982-2625
 - There is a QC page (page 9 of the report) that isn't applicable for CCR (includes dissolved parameters).
 - Case narrative for report has nitrate + nitrite as N comment but isn't applicable to CCR work.
- 201982-2626
 - This report is the state versions for MW1-90. Haven't see a CCR report yet?

Thank-you,

resourceful, naturally,

This e-mail message (including attachments, forwards, and replies) is correspondence transmitted between Barr Engineering Co. and its clients and related parties in the course of business, and is intended solely for use by the addressees. This transmission contains information which may be confidential and proprietary. If you are not the addressee, note that any disclosure, copying, distribution, or use of the contents of this message (or any attachments, replies, or forwards) is prohibited. If you have received this transmission in error, please destroy it and notify us at 952-832-2600.

If you no longer wish to receive marketing e-mails from Barr, respond to <u>communications@barr.com</u> and we will be happy to honor your request.

Claudette Carroll

From: Sent: To: Cc: Subject: Attachments: Peterson, Todd <Todd.Peterson@mdu.com> Friday, November 1, 2019 10:32 AM Claudette Carroll Dihle, Mark RE: Lab invoice and report 201982-2626 MDU ND.pdf; 201982-2611 MDU CCR.pdf

Claudette,

These lab analyses should both have the PO 175103 listed on them. I have the paper copies and can revise them on my end, but can you change the PO number on your copies and resend the corrected PDF analyses.

Thank you!

Todd.

From: Claudette Carroll <ccarroll@mvtl.com> Sent: Thursday, October 31, 2019 1:29 PM To: Dihle, Mark <Mark.Dihle@mdu.com> Cc: Peterson, Todd <Todd.Peterson@mdu.com> Subject: RE: Lab invoice and report

** WARNING: EXTERNAL SENDER. NEVER click links or open attachments without positive sender verification of purpose. DO NOT provide your user ID or password on sites or forms linked from this email. **

Hi Mark,

Looks like the work was done at MDU Heskett. Attached are the data packages. Let me know if we need to rebill/re-invoice with the correct PO.

Happy Halloween to you as well! Claudette

Minnesota Valley Testing Laboratories, Inc. Providing Analylical Excellence Since 1961

<u>ccarroll@mvtl.com</u> 701-258-9720 2616 E. Broadway Ave/Bismarck, ND 58501

From: Dihle, Mark <<u>Mark.Dihle@mdu.com</u>> Sent: Thursday, October 31, 2019 8:46 AM To: Claudette Carroll <<u>ccarroll@mvtl.com</u>> Cc: Peterson, Todd <<u>Todd.Peterson@mdu.com</u>> Subject: Lab invoice and report Good Morning!

Todd and I are trying to figure out this invoice, it appears to have the wrong PO attached to it. Please send along the analysis that the invoice is associated with and have a Happy Halloween!

Thanks!

****Confidentiality Statement****

Privileged/Confidential Information may be contained in this message. If you are not the addressee indicated in this message (or responsible for the delivery of the message to such person), you may not copy or deliver this message to anyone. In such case, you should destroy this message without copying it or further reading, and notify me by telephone.

Claudette Carroll

From:	Terri A. Olson <tolson@barr.com></tolson@barr.com>
Sent:	Friday, November 1, 2019 10:08 AM
То:	Claudette Carroll
Subject:	Re: MDU Heskett reports

Hi Claudette,

Reviewed MDU Heskett reports and had the following questions/comments

- 201982-2611
 - MW44R in the Field Data Report has a sample date of 09/16/19 but raw field data and COC list 09/17/19

 please revise,
- 201982-2625
 - There is a QC page (page 9 of the report) that isn't applicable for CCR (includes dissolved parameters).
 - Case narrative for report has nitrate + nitrite as N comment but isn't applicable to CCR work.
- 201982-2626
 - This report is the state versions for MW1-90. Haven't see a CCR report yet?

Thank-you,

.

Terri A. Olson Senior Data Quality Specialist Minneapolis, MN office: 952.842.3578 <u>TOlson@barr.com</u> www.barr.com

resourceful. naturally.

BARR

This e-mail message (including attachments, forwards, and replies) is correspondence transmitted between Barr Engineering Co. and its clients and related parties in the course of business, and is intended solely for use by the addressees. This transmission contains information which may be confidential and proprietary. If you are not the addressee, note that any disclosure, copying, distribution, or use of the contents of this message (or any attachments, replies, or forwards) is prohibited. If you have received this transmission in error, please destroy it and notify us at 952-832-2600.

If you no longer wish to receive marketing e-mails from Barr, respond to <u>communications@barr.com</u> and we will be happy to honor your request.

MVTL Laboratories Inc.

2616 E. Broadway Bismarck, ND 58501 Phone (701) 258-9720

MDU - Heskett

Groundwater Sampling MDU 400 N. 4th St. Bismarck, ND 58501

FIELD DATA REPORT - AMENDED 7 NOV 19

82-2626

WO#

82-2625

82-2611

		START		TIME	WATER	WATER			F	IELD RI	EADING	S	
SAMPLE ID	PURGE DATE	PURGE TIME	SAMPLE DATE	OF SAMPLE	LEVEL START (FT)	LEVEL END (FT)	VOLUME REMOVED (mL)	SAMPLE METHOD	TEMP (°C)	EC	pН	Turb. NTU	SAMPLE APPEARANCE OR COMMENT
2-90	18-Sep-19	9:31	18-Sep-19	9:56	21.30	21.73	2500.0	Bladder	12.49	7006	6.99	0.98	clear
3-90	18-Sep-19	8:25	18-Sep-19	8:55	18.46	18.60	3000.0	Bladder	9.43	4473	6.92	1.78	clear
13	16-Sep-19	8:30	16-Sep-19	9:45	30.11	30.72	7500.0	Bladder	10.93	10184	6.95	3.19	clear
33	17-Sep-19	13:18	17-Sep-19	15:13	41.59	42.15	11500.0	Bladder	13.01	5128	6.51	4.38	clear
70	16-Sep-19	12:04	16-Sep-19	12:54	20.80	22.40	5000.0	Bladder	14.68	4317	6.96	0.47	clear
80R	17-Sep-19	11:45	17-Sep-19	12:35	14.35	14.62	5000.0	Bladder	13.09	5723	7.00	1.09	clear
44R	17-Sep-19	8:27	17-Sep-19	9:17	26.34	26.40	5000.0	Bladder	17.32	9196	6.52	0.98	clear
101	16-Sep-19	13:24	16-Sep-19	14:44	36.57	40.70	8000.0	Bladder	13.49	4855	6.66	3.93	clear
102	16-Sep-19	10:40	16-Sep-19	11:30	17.42	19.70	5000.0	Bladder	13.63	8680	6.74	1.19	clear
103	16-Sep-19	15:15	16-Sep-19	15:55	31.65	33.21	4000.0	Bladder	11.98	5185	6.62	0.59	clear
104	18-Sep-19	11:16	18-Sep-19	11:46	13.78	14.06	3000.0	Bladder	13.77	14025	6.97	0.89	clear
105	17-Sep-19	10:01	17-Sep-19	11:21	12.62	12.94	8000.0	Bladder	12.47	6913	6.70	2.32	clear
1-90	18-Sep-19	10:25	18-Sep-19	10:50	11.22	11.42	2500.0	Bladder	12.54	9739	6.87	0.50	clear
				na =	Not Applica	able NR =	Not Recorded						

MVTL Laboratories Inc.

2616 E. Broadway Bismarck, ND 58501 Phone (701) 258-9720

WO# 82-2626 82-2611 82-2625

MDU - Heskett

Groundwater Sampling MDU 400 N. 4th St. Bismarck, ND 58501

FIELD DATA REPORT

		START		TIME	WATER	WATER			F	TELD R	EADING	S	
SAMPLE	PURGE	PURGE	SAMPLE	OF	LEVEL	LEVEL	VOLUME	SAMPLE					SAMPLE
D	DATE	TIME	DATE	SAMPLE	START	END	REMOVED	METHOD	TEMP	EC	pH	Turb.	APPEARANCE
and a sub-					(FT)	(FT)	(mL)		(°C)	provide a star	and shares and the state of the state	NTU	OR COMMENT
2-90	18-Sep-19	9:31	18-Sep-19	9:56	21.30	21.73	2500.0	Bladder	12.49	7006	6.99	0.98	clear
3-90	18-Sep-19	8:25	18-Sep-19	8:55	18.46	18.60	3000.0	Bladder	9.43	4473	6.92	1.78	clear
13	16-Sep-19	8:30	16-Sep-19	9:45	30.11	30.72	7500.0	Bladder	10.93	10184	6.95	3.19	clear
33	17-Sep-19	13:18	17-Sep-19	15:13	41.59	42.15	11500.0	Bladder	13.01	5128	6.51	4.38	clear
70	16-Sep-19	12:04	16-Sep-19	12:54	20.80	22.40	5000.0	Bladder	14.68	43.17	6.96	0.47	clear
80R	17-Sep-19	11:45	17-Sep-19	12:35	14.35	14.62	5000.0	Bladder	13.09	5723	7.00	1.09	clear
44R	16-Sep-19	8:27	16-Sep-19	9:17	26.34	26.40	5000.0	Bladder	17.32	9196	6.52	0.98	clear
101	16-Sep-19	13:24	16-Sep-19	14:44	36.57	40.70	8000.0	Bladder	13.49	4855	6.66	3.93	clear
102	16-Sep-19	10:40	16-Sep-19	11:30	17.42	19.70	5000.0	Bladder	13.63	8680	6.74	1.19	clear
103	16-Sep-19	15:15	16-Sep-19	15:55	31.65	33.21	4000.0	Bladder	11.98	5185	6.62	0.59	clear
104	18-Sep-19	11:16	18-Sep-19	11:46	13.78	14.06	3000.0	Bladder	13.77	14025	6.97	0.89	clear
105	17-Sep-19	10:01	17-Sep-19	11:21	12.62	12.94	8000.0	Bladder	12.47	6913	6.70	2.32	clear
1-90	18-Sep-19	10:25	18-Sep-19	10:50	11.22	11.42	2500.0	Bladder	12.54	9739	6.87	0.50	clear
				na =	Not Applica	ible $NR = 1$	Not Recorded						

Groundwater Assessment

Company:	MDU Heskett	
Event:	Fall 2019	
Sample ID:	. 13	
Sampling Personal:	Jery Mayor	

Phone: (701) 258-9720

Weather Conditions:		Temp:	65°F	Wind:	N	@ 5-1	0	Precip	o: Sun	ny / Rartly C	Cloudy / Cl	oudy	
I	Well Info	rmation	-			Sampling Information							
Well Locked?	Yes	(NO)			Purgin	g Method:	Blac	lder					
Well Labeled?	(es)	No			Samplin	g Method:	Blac	lder		Co	ntrol Settir	igs	
Casing Straight?	(Yes)	No			Dedicate	d Equip?:	Yes	No		Purge:	5	sec.	
Grout Seal Intact?	Yes	(No)	Not Visible		Duplicate :	Sample?:	Tes	No		Recover:	55	sec.	
Repairs Necessary:					Duplicate S	ample ID:	Dup	[PSI:	30		
Casing	Diameter:		2"				L						
Water Level Befo	ore Purge:	30	9, EL	ft	Pu	urge Date:	16 Sept	-19	Time Purg	ing Began:	0830	am/pm	
					Well Pu	rged Dry?	Yes	(No)	Time F	Purged Dry:		am/pm	
					San	nple Date:	16 Sept	19	Time o	f Sampling:	0945	@m/pm	
Depth to Top	of Pump:			ft			t t	,					
Water Level Afte	r Sample:	्र	0,72	ft	Bottle	1L Raw	500mL	Nitric	500mL Nit	ric (filtered)	250mL	Sulfuric	
Measurement	t Method:		Vater Level Indicate	or	List:								

Field Measurements

Stabi	lization	Temp	Spec.		DO	ORP	Turbidity	Water	Pumping	mL	Description:
(3 cons	secutive)	(°C)	Cond.	pН	(mg/L)	(mV)	(NTU)	Level (ft)	Rate	Removed	Clarity, Color, Odor, Ect.
SEQ #	Time	·	±5%	±0.1	±10%	±20 mV	±10%	0.25 ft	ml/min		Clear, Slightly Turbid, Turbid
1	0835	10,56	10282	6.55	9.92	198.7	3.47	30.41	100.0	500,0	Clear
2	0905	10.32	10146	6.94	7.79	169.6	5.12	30,70	100,0	3000.0	Clear
3	0925	10.85	10/56	6.94	8.11	166.2	3.74	30,68	100,0	2000.0	Clear
4	09135	10.96	10159	6.95	9.35	167.9	3.39	30,65	100.0	1000.0	Clean
5	0940	11.14	10142	6,96	9,26	163.5		30.67	100.0	500.0	Clear
6	0945	10.93	10184	6.95	9,41	160.3	3,19	30.71	100.0	500.0	Clear
7											
8											
9											
10										<u> </u>	<u> </u>
Stabilized	Yes	No					Т	otal Volume	e Removed:	7500.0	mL.

÷."

Groundwater Assessment

Company:	MDU Heskett
Event:	Fall 2019
Sample ID:	. 102
Sampling Personal:	Jerry play-

Phone: (701) 258-9720

Weather Conditions:		Temp: 70 °F Wind: 🟌				\mathcal{N}	@ 5-10	2	Preci	o: Sùn	ny.≱Partly C	loudy / Clo	budy
	Well Info	rmation	-					Sa	Informati	on			
Well Locked?	Yes	No				Purgi	ng Method:	Blad	der				
Well Labeled?	Yes	No				Samplii	ng Method:	Blad	der		Co	ntrol Setting	gs
Casing Straight?	Yes	No				Dedicat	ted Equip?:	(Yes	No		Purge:	5	sec.
Grout Seal Intact?	Yes	No	Not Visible			Duplicate	Sample?:	Yes	Ø		Recover:	55	sec.
Repairs Necessary:						Duplicate	Sample ID:	~~~~~			PSI:	20	
Casing	Diameter:		2"										
Water Level Bef	ore Purge:	- 1	7.42	ft		F	Purge Date:	16 Sept	-19		ging Began:	<u>1040</u>	(am)pm
						Well P	urged Dry?	Yes	(No)	Time F	Purged Dry:	······	am/pm
						Sa	mple Date:	16 Sept	19	Time o	f Sampling:	1130	am/pm
Depth to Top	o of Pump:			ft				1					
Water Level After	er Sample:		9,70	ft		Bottle	1L Raw	500mL	Nitric	500mL Nit	tric (filtered)	250mL :	Sulfuric
Measuremen	t Method:	Electric	Water Level Indicat	tor		List:							

Field Measurements

Stabili	ization	Temp	Spec.		DO	ORP	Turbidity	Water	Pumping	mL	Description:	
(3 cons	(3 consecutive)		Cond.	pН	(mg/L)	(mV)	(NTU)	Level (ft)	Rate	Removed	Clarity, Color, Odor, Ect.	
SEQ #	Time	(°C)	±5%	±0.1	±10%	±20 mV	±10%	0.25 ft	ml/min		Clear, Slightly Turbid, Turbid	
1	1045	12.61	8781	6.91	1.75	-721.3	1.13	18,07	100.0	500.0	Clear	
2	1015	12.34	9059	6.78	4.94	-82,1	0.66	19.13	100.0	3000.0	Cles	
3	1120	12.55	8866	6.75	5.95	-73,2	1.03	19.45	100.0	500.0	Clien	
4	1125	13.54	8728		6.07	-67.9		19.46	100.0	500.0	Cles	
5	1130	13,63	8680	6,74	6.12	-65.6	1.19	19,51	100.0	500.0	clan	
6												
7												
8												
9												
10												
Stabilized:	(Yes/	No	Total Volume Removed: <u>5000, 0</u> mL									

Stabilized: (Yes

MVTL			Field Datasheet Groundwater Assessment								
2616 E. Broadway Ave, Bi	smarck, ND										
Phone: (701) 258-9	720										
Weather Conditions:		Temp:	7.5°F	Wind:	N@ 5-10						
	Well Info	rmation									
Well Locked?	Yes	NO			Purging Method:						
Well Labeled?	Yes	No			Sampling Method:						
Casing Straight?	Yes	No			Dedicated Equip?:						

2" 20, BO

72.40

Electric Water Level Indicator

Not Visible

ft

ft

ft

aaat		Company:		MDU Heskett Fall 2019						
neet		Event:								
nent		Sample ID:		70,						
		Sampling P	ersonal:	Jen Mayer						
N	@ 5-12	Precip: Sunny Partly Cloudy Cloud								
		Sa	mpling I	nfor	natio	on				
Purgi	ng Method:	Blad	der							
Sampli	ng Method:	Blad			Control Settings					
Dedicat	ed Equip?:	Yes	No]		Purge:	5	sec.		
Duplicate	Sample?:	Yes	(SP)			Recover:	55	sec.		
Duplicate	Sample ID:					PSI:	20			
F	Purge Date:	16 Sept	- 19	Time	e Purg	ing Began:	1204	am/pm		
Well P	urged Dry?	Yes	No	ר	Time Purged Dry:		~ 	am/pm		
Sa	mple Date:	: 16 Sept 19		Time of Sampling: 1254 am						
		i								
Bottle	1L Raw	500mL	. Nitric	500mL Nitric (filtered) 250mL Sulfuric						
List:										

Field Measurements

Stabili	zation	Temp	Spec.		DO	ORP	Turbidity	Water	Pumping	mL	Description:	
(3 cons	(3 consecutive)		Cond.	pН	(mg/L)	(mV)	(NTU)	Level (ft)	Rate	Removed	Clarity, Color, Odor, Ect.	
SEQ #	Time		±5%	±0.1	±10%	±20 mV	±10%	0.25 ft	ml/min		Clear, Slightly Turbid, Turbid	
1	1209	14.17	4311	6.93	6.4B	52.B	0.34	21,4B	100.0	500.0	Clesr	
2	1239	13.63	4335	6.96	4.4B	51.3	117	22,24	100.0	3000.0	Clean	
3	1244		4347	6.96	4,89	52.0	0.36	22.30	1000	500.0	Class	
4	1249	12.78	4303	6.96	4,98	53,3	0.42	22,32	5.001	500.0	Clas	
5	1254	14.68	4317	6,96	5.06	54.5	0,47	22.40	100.0	500.0	Clen	
6												
7												
8												
9												
10											<u> </u>	
Stabilized:	Tes	No	Total Volume Removed: 5000.0 mL									

Stabilized: (Yes)

Grout Seal Intact?

Repairs Necessary:

Yes

Casing Diameter:

Water Level Before Purge:

Depth to Top of Pump:

Measurement Method:

Water Level After Sample:

No

Field Datasheet

Groundwater Assessment

Company:	MDU Heskett	
Event:	Fall 2019	
Sample ID:	101 ,	
Sampling Personal:	Jen elign	

Phone: (701) 258-9720

Weather Conditions:		Temp:	7S°F		Wind:	N.	0@ 5-10	>	Precip	: Suni)) / Partly C	loudy / Clo	udy
N	Well Info	rmation						Sa	mpling	Information			
Well Locked?	Yes	No				Purgi	ng Method:	Blad	der				
Well Labeled?	(es	No				Sampli	ng Method:	Blad	der		Co	ntrol Setting	s
Casing Straight?	Yes	No				Dedica	ted Equip?:	(Yes)	No		Purge:	5	sec.
Grout Seal Intact?	(Yes)	No	Not Visit	ole		Duplicate	e Sample?:	Yes	MÒ		Recover:	55	sec.
Repairs Necessary:						Duplicate	Sample ID:		-		PSI:	35	
Casing	Diameter:		2"									-	
Water Level Befo	ore Purge:		36,57	ft		F	Purge Date:	16 Sept	19	Time Purg	ing Began:	1324	am/pm
						Well P	urged Dry?	Yes	Nõ	Time F	ourged Dry:	-	am/pm
• • • •						Sa	ample Date:	16 See	of 19	Time of	f Sampling:	1444	am/om
Depth to Top	of Pump:			ft				t				`	
Water Level After Sample:		•	40.70	ft		Bottle	1L Raw	500mL	Nitric	500mL Nit	ric (filtered)	250mL S	ulfuric
Measurement Method:		Electric	Water Level Indi	cator		List:							

Field Measurements

Stabilization		Temp	Spec.		DO	ORP	Turbidity	Water	Pumping	mL	Description:
(3 cons	(3 consecutive)		Cond.	рН	(mg/L)	(mV)	(NTU)	Level (ft)	Rate	Removed	Clarity, Color, Odor, Ect.
SEQ #	Time		±5%	±0.1	±10%	±20 mV	±10%	0.25 ft	ml/min		Clear, Slightly Turbid, Turbid
1	1329	14.37	4874	6.80	11.96	15.2	9,70	37.4B	100.0	5000	Clear
2	1359	13.34	4832	6.67	3,84 -	-16,6	9.05	39.49	100.0	3000.0	Clean
3	1429	13.64	4841	6,60	4.65	-4.7	4.20	40.13	100.0	30000	Clear
4	1434	13.37	4845		4.77	-10.6	4,06	40.26	100.0	500.0	Cleon
5	1939	13,91	4840	6,66	4.91	-11.1	3,89	40,37	100.0	500.0	Clear
6	1444	13,49	4855	6,66	5.11	-12.7	3.93	40,41	100.0	500.0	Clear
7											8
8					:						
9											
10											
Stabilized:	Stabilized: (Yes) No Total Volume Removed: BODD.0 mL										
Commonto											

Field Datasheet

Groundwater Assessment

Company:	MDU Heskett	
Event:	Fall 2019	
Sample ID:	,103 ,	
Sampling Personal:	Jen byer	

Phone: (701) 258-9720

Weather Conditions:		Temp:	₿O°F	Wind:	N	@ 5-0	0	Precip	: Sum	yPPartly C	loudy / Clo	udy
N	Well Info	rmation			Sampling Information							
Well Locked?	Yes	NO]	Purgi	ng Method:	Bla	dder				
Well Labeled?	Yes	No			Sampli	ng Method:	Bla	dder		Cor	ntrol Setting	s
Casing Straight?	(res)	,No			Dedica	ted Equip?:	Yes	No		Purge:	5	sec.
Grout Seal Intact?	Tes	No	Not Visible		Duplicate	Sample?:	Yes	No		Recover:	55	sec.
Repairs Necessary:					Duplicate	Sample ID:		-		PSI:	30	
Casing	Diameter:		2"								-	
Water Level Befo	re Purge:		3 <i>1.65</i> f	t	F	Purge Date:	16 Sept	-19	Time Purg	ing Began:	1515	am/pm
					Well P	urged Dry?	Yes	No	Time F	urged Dry:		am/pm
					Sa	mple Date:	16 Ser	F19	Time of	Sampling:	1555	am/pm
Depth to Top	of Pump:		f	t			001					
Water Level Afte	r Sample:		33,21 f	t	Bottle	1L Raw	500m	L Nitric	500mL Nit	ric (filtered)	250mL S	ulfuric
Measurement	Method:	Electric \	Nater Level Indicator]	List:							

Field Measurements

Stabili	ization	Temp	Spec.		DO	ORP	Turbidity	Water	Pumping	mL	Description:
(3 cons	ecutive)	(°C)	Cond.	pН	(mg/L)	(mV)	(NTU)	Level (ft)	Rate	Removed	Clarity, Color, Odor, Ect.
SEQ #	Time		±5%	±0.1	±10%	±20 mV	±10%	0.25 ft	ml/min		Clear, Slightly Turbid, Turbid
1	1520	13.61	5112	6.65	5,87	107.5	1.06	32,22	(00.D	500.0	Clear
2	1540	11.79	5184	6.66	3.68	110.4	0.41	32,80	100.0	2000.0	Cles
3	K45	12.09	5179	6.63	3,75	116.9	0.40	32.93	100.0	500.0	Clear
4	1550	12.54	5164	6.62	3.87	119.8	0,56	32,94	[00,D	50.0	Clear
5	1555	11.98	Sibs	6,62	3,92	120.4	0,59	33,02	100.0	500	Clea
6											
7											
8											
9											
10	0										
Stabilized:	Yes	No	Total Volume Removed: <u>4000,0</u> mL								

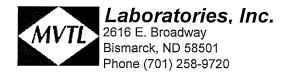
Comments:

Field Datasheet

Groundwater Assessment

Company:	MDU Heskett
Event:	, Fall 2019
Sample ID:	44 R
Sampling Personal:	Jeng oberga

Phone: (701) 258-9720


Weather Conditions:		Temp:	65 °F	Wind:	A_)	@ 5-1	0	Preci	o: Sun	y / Partly C	loudy / Clo	udy
١	Nell Info	rmation			Sampling Information							
Well Locked?	Yes	ND]	Purgi	ng Method:	Blac	lder				
Well Labeled?	Yes	No			Sampli	ng Method:	Blac	lder		Co	ntrol Setting	S
Casing Straight?	(es	No			Dedicat	ted Equip?:	E S	No		Purge:	S	sec.
Grout Seal Intact?	Yes	No	Not Visible		Duplicate	Sample?:	Yes	No		Recover:	55	sec.
Repairs Necessary:	\sim				Duplicate	Sample ID:		~		PSI:	30	
Casing I	Diameter:		2"									
Water Level Befo	re Purge:		26,34 f	t	F	Purge Date:	17Sept	-19	Time Purg	ing Began:	0827	@m/pm
					Well P	urged Dry?	Yes	No	Time F	urged Dry:		am/pm
				1	Sa	mple Date:	(7Sert	-19	Time of	Sampling:	0917	(am)pm
Depth to Top	of Pump:		f	t			ı					
Water Level After	r Sample:	¢	26,40 f	t	Bottle	1L Raw	500mL	. Nitric	500mL Niti	ric (filtered)	250mL S	ulfuric
Measurement	Method:	Electric	Nater Level Indicator]	List:							

Field Measurements

Stabi	lization	Temp	Spec.		DO	ORP	Turbidity	Water	Pumping	mL	Description:
(3 con	secutive)	(°C)	Cond.	рН	(mg/L)	(mV)	(NTU)	Level (ft)	Rate	Removed	Clarity, Color, Odor, Ect.
SEQ #	Time		±5%	±0.1	±10% ±20 mV		±10%	0.25 ft	ml/min		Clear, Slightly Turbid, Turbid
1	A832	13.37	9155	6.49	8.67	198.9	1.26	26.42	100.0	500.0	Clean
2	0902	17.29	9176	6.51	7.85	172.7	1.66	26.38	100.0	<i>300</i> 0.D	Cles
3	0907	17.87	9147	6.52	7.92	170.6	0.93	26.39	100.0	500.0	Clear
4	0912	19-16	9172	6.52	8,04	169.1	0.69	26.4D	100.0	500.0	Clear
5	12917	17.32	9196	6.52	8117	169.2	0.98	2638	[00.0	50070	Clear
6											
7											
8											
9											
10	_										
Stabilized: Total Volume Removed: 5000.0 mL											

Stabilized: Yes No

Total Volume Removed: <u>Sadu a</u>mL

Chain of Custody Record

Project Name			Event:						W	ork	Ord	er N	lumber:			
	MDU Heskett				Fall 2019											82-261)
Report To: Attn: Address: phone: email:	MDU Abbie Krebsbach 400 N. 4th St. Bismarck, ND 58501 701-222-7844		Carbon C Attn: Address:	Address:			Name of Sampler(s): Jeremy Mayer Bottle Type Field Parameters					12				
	Samp	ole Informatio	on					Bot	tle	Тур	e		Fi	eld Para	ameters	Analysis
Lab Number	Sample ID	Date	Time	Sample Tuno		1 lifer	500.001	500ml Nitric	2RO Nitric (filterach		 		Temp (°C)	Spec.	Ha	Analysis Required
W3728	13	16 Sept 19	0945	GW		X	<u> </u>	X	X		ļ	<u> </u>	10.93	10184	6.95	
W3729	Dup1	16 Sept 19		GW		<u> </u>	<u> </u>	X	X				~			
W3730	102	16 Sept 19	[130	GW		<u> </u>	X	X	<u> x</u>				(3,63	8680	6.74	
W3731	70	16 Sept 19	1254	GW		<u> </u>	X	X	X				14.68	4317	6,96	
W3732	101	16 Sept 19	1444	GW		X	X	X	X				13.49	4855	6.66	MDU List AA & MDU
W3733	103	16 Sept 19	1555	GW		X	X	X	X				11.98	5185	6.62	List C
W3734	44R	17 Sept 19	0917	GW		X	Х	X	Х				17.32	9196	6.52]
W3735	FB1	17 Sept 19		GW		X	x	X	X							
																1

Relinquished By:	Sa	ample Condition:	Rece	ived by:
Name: // Date/Tin	e Location:	بن Temp (°C)) Name:	_Date/Time
1 $1754t^{1}$	LogIn	15 D 3.2	Trio Alb	17 Sept 2019
1600	Walk In #2	TM562/TM588	- May a -	1600
2				

Page: 1 of 8

Amended 22Oct19 (Cation/Anion Sum) - CCR

Abbie Krebsbach Montana Dakota Utilities 400 N 4th Bismarck ND 58501

Project Name: MDU Heskett

Sample Description: 33

Event and Year: Fall 2019

Report Date: 15 Oct 19 Lab Number: 19-W3743 Work Order #: 82-2625 Account #: 002800 Date Sampled: 17 Sep 19 15:13 Date Received: 18 Sep 19 12:50 Sampled By: MVTL Field Services

PO #: 174855 OP

Temp at Receipt: 5.5C

	As Receive Result	d	Method RL	Method Reference	Date Analyzed	Analyst
pH - Field pH Temperature - Field Conductivity - Field Fluoride Sulfate Chloride Total Dissolved Solids Calcium - Total Boron - Total	6.51 7.2 13.0 5128 0.24 3340 10.2 5100 476 < 0.5 @	units Units Degrees C umhos/cm mg/l mg/l mg/l mg/l mg/l mg/l	NA 0.1 NA 1 0.10 5.00 1.0 1.0 1.0 0.10	SM 4500 H+ B SM4500 H+ B SM 2550B EPA 120.1 SM4500-F-C ASTM D516-07 SM4500-C1-E I1750-85 6010D 6010D	17Sep1915:1326Sep196:4517Sep1915:1317Sep1915:1326Sep196:4525Sep199:1019Sep1911:1920Sep1916:1927Sep1912:0224Sep1911:54	EV EV CC SZ

* Holding time exceeded

Approved by:

CC NUVIA Clauditte K. Canto

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

The reporting limit was elevated for any analyte requiring a dilution as coded below: @ = Due to sample matrix # = Due to concentration of other analytes ! = Due to sample quantity + = Due to internal standard response

CERTIFICATION: ND # ND-00016

Page: 2 of 8

Amended 220ct19 (Cation/Anion Sum) - CCR

Abbie Krebsbach Montana Dakota Utilities 400 N 4th Bismarck ND 58501 Report Date: 15 Oct 19 Lab Number: 19-W3744 Work Order #: 82-2625 Account #: 002800 Date Sampled: 18 Sep 19 8:55 Date Received: 18 Sep 19 12:50 Sampled By: MVTL Field Services

Project Name: MDU Heskett

Sample Description: 3-90

Event and Year: Fall 2019

Temp at Receipt: 5.5C

PO #: 174855 OP

	As Recei Result	ved	Method RL	Method Reference	Date Analyzed	Analyst
pH - Field pH Temperature - Field Conductivity - Field Fluoride Sulfate Chloride	6.92 * 7.5 9.43 4473 0.12 2410 31.2	units units Degrees C umhos/cm mg/l mg/l mg/l	NA 0.1 NA 1. 0.10 5.00 1.0	SM 4500 H+ B SM4500 H+ B SM 2550B EPA 120.1 SM4500-F-C ASTM D516-07 SM4500-CL-E	18 Sep 19 8:55 26 Sep 19 6:49 18 Sep 19 8:55 18 Sep 19 8:55 26 Sep 19 6:49 25 Sep 19 9:10 19 Sep 19 11:12	CC JSM JSM CC EV
Total Dissolved Solids Calcium - Total Boron - Total	4000 464 0.12	mg/l mg/l mg/l mg/l	10 1.0 0.10	11750-85 6010D 6010D	20 Sep 19 16:19 27 Sep 19 12:02 24 Sep 19 11:54	2 SZ

* Holding time exceeded

Approved by:

10 Clauditte 11 N(1/19 K. Cantle

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

The reporting limit was elevated for any analyte requiring a dilution as coded below: @ = Due to sample matrix # = Due to concentration of other analytes ! = Due to sample quantity + = Due to internal standard response CERTIFICATION: ND # ND-00016

Page: 3 of 8

Amended 22Oct19 (Cation/Anion Sum) - CCR

Abbie Krebsbach Montana Dakota Utilities 400 N 4th Bismarck ND 58501 Report Date: 15 Oct 19 Lab Number: 19-W3745 Work Order #: 82-2625 Account #: 002800 Date Sampled: 18 Sep 19 Date Received: 18 Sep 19 12:50 Sampled By: MVTL Field Services

Project Name: MDU Heskett

Sample Description: Dup2

Event and Year: Fall 2019

Temp at Receipt: 5.5C

PO #: 174855 OP

	As Received Result		Method RL	Method Reference	Date Analyzed	Analyst
На	* 7.5	units	0.1	SM4500 H+ B	27 Sep 19 17:00	CC
Fluoride	0.14	mg/l	0.10	SM4500-F-C	27 Sep 19 17:00	CC
Sulfate	2500	mg/l	5.00	ASTM D516-07	25 Sep 19 9:28	EV
Chloride	30.9	mg/l	1.0	SM4500-Cl-E	19 Sep 19 11:19	EV
Total Dissolved Solids	3970	mg/l	10	I1750-85	20 Sep 19 16:19	CC
Calcium - Total	446	mg/l	1.0	6010D	27 Sep 19 12:02	SZ
Boron - Total	0.11	mg/l	0.10	6010D	24 Sep 19 11:54	SZ

* Holding time exceeded

Approved by:

11 NW19 Clauditte K. Canto

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

CERTIFICATION: ND # ND-00016

Page: 4 of 8

Amended 22Oct19 (Cation/Anion Sum) - CCR

Abbie Krebsbach Montana Dakota Utilities 400 N 4th Bismarck ND 58501

Report Date: 15 Oct 19 Lab Number: 19-W3746 Work Order #: 82-2625 Account #: 002800 Date Sampled: 18 Sep 19 9:56 Date Received: 18 Sep 19 12:50 Sampled By: MVTL Field Services

Project Name: MDU Heskett

Sample Description: 2-90

Event and Year: Fall 2019

Temp at Receipt: 5.5C

PO #: 174855 OP

	As Receive Result	ed	Method RL	Method Reference	Date Analyzed	Analyst
pH - Field pH Temperature - Field Conductivity - Field Fluoride Sulfate Chloride	6.99 * 7.5 12.5 7006 1.03 4770 68.7	units units Degrees C umhos/cm mg/l mg/l mg/l	NA 0.1 NA 1 0.10 5.00 1.0	SM 4500 H+ B SM4500 H+ B SM 2550B EPA 120.1 SM4500-F-C ASTM D516-07 SM4500-C1-E	18 Sep 19 9:56 27 Sep 19 17:00 18 Sep 19 9:56 18 Sep 19 9:56 27 Sep 19 17:00 25 Sep 19 17:00 25 Sep 19 9:28 19 Sep 19 11:19	CC JSM JSM CC EV EV
Total Dissolved Solids Calcium - Total Boron - Total	7400 494 < 0.5 @	mg/l mg/l mg/l	10 1.0 0.10	I1750-85 6010D 6010D	20 Sep 19 16:19 27 Sep 19 12:02 24 Sep 19 11:54	SZ

* Holding time exceeded

Approved by:

(NN 19 Clauditte K. Cantle

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

CERTIFICATION: ND # ND-00016

Page: 5 of 8

Amended 220ct19 (Cation/Anion Sum) - CCR

Abbie Krebsbach Montana Dakota Utilities 400 N 4th Bismarck ND 58501

Project Name: MDU Heskett

Sample Description: 104

Event and Year: Fall 2019

Report Date: 15 Oct 19 Lab Number: 19-W3747 Work Order #: 82-2625 Account #: 002800 Date Sampled: 18 Sep 19 11:46 Date Received: 18 Sep 19 12:50 Sampled By: MVTL Field Services

PO #: 174855 OP

Temp at Receipt: 5.5C

	As Receiv Result	ved	Method RL	Method Reference	Date Analyzed	Analyst
pH - Field	6.97	units	NA	SM 4500 H+ B	18 Sep 19 11:46	JSM
pH	* 7.6	units	0.1	SM4500 H+ B	26 Sep 19 6:45	CC
Temperature - Field	13.8	Degrees C	NA	SM 2550B	18 Sep 19 11:46	JSM
Conductivity - Field	14025	umhos/cm	1	EPA 120.1	18 Sep 19 11:46	JSM
Fluoride	0.54	mg/l	0.10	SM4500-F-C	26 Sep 19 6:45	CC
Sulfate	11300	mg/l	5.00	ASTM D516-07	25 Sep 19 9:28	EV
Chloride	84.9	mg/l	1.0	SM4500-Cl-E	19 Sep 19 11:19	EV
Total Dissolved Solids	17200	mg/l	10	I1750-85	20 Sep 19 16:19	CC
Calcium - Total	466	mg/l	1.0	6010D	27 Sep 19 12:02	SZ
Boron - Total	0.82	mg/l	0.10	6010D	24 Sep 19 12:54	SZ

* Holding time exceeded

Approved by:

a 11NUV19 Clauditte K. Canto

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

CERTIFICATION: ND # ND-00016

Page: 6 of 8

Amended 220ct19 (Cation/Anion Sum) - CCR

Abbie Krebsbach Montana Dakota Utilities 400 N 4th Bismarck ND 58501 Report Date: 15 Oct 19 Lab Number: 19-W3748 Work Order #: 82-2625 Account #: 002800 Date Sampled: 17 Sep 19 12:35 Date Received: 18 Sep 19 12:50 Sampled By: MVTL Field Services

Project Name: MDU Heskett

Sample Description: 80R

Event and Year: Fall 2019

Temp at Receipt: 5.5C

PO #: 174855 OP

	As Received Result	l	Method RL	Method Reference	Date Analyzed	Analyst
pH - Field pH Temperature - Field Conductivity - Field Fluoride Sulfate Chloride Total Dissolved Solids Calcium - Total	* 7.7 13.1 5723 0.26 3350 146 5480	units units Degrees C umhos/cm mg/1 mg/1 mg/1 mg/1 mg/1	NA 0.1 NA 1 0.10 5.00 1.0 10 1.0	SM 4500 H+ B SM4500 H+ B SM 2550B EPA 120.1 SM4500-F-C ASTM D516-07 SM4500-C1-E I1750-85 6010D	17 Sep 19 12:35 26 Sep 19 6:45 17 Sep 19 12:35 17 Sep 19 12:35 26 Sep 19 6:45 25 Sep 19 9:28 19 Sep 19 11:19 20 Sep 19 16:19 27 Sep 19 12:02	CC JSM JSM CC EV EV CC SZ
Boron - Total	< 0.5 @	mg/l	0.10	6010D	24 Sep 19 12:54	SZ

* Holding time exceeded

Approved by:

(NOV19 Clauditte K. Canrep

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

The reporting limit was elevated for any analyte requiring a dilution as coded below: @ = Due to sample matrix # = Due to concentration of other analytes ! = Due to sample quantity + = Due to internal standard response CERTIFICATION: ND # ND-00016

Page: 7 of 8

Amended 22Oct19 (Cation/Anion Sum) - CCR

Abbie Krebsbach Montana Dakota Utilities 400 N 4th Bismarck ND 58501 Report Date: 15 Oct 19 Lab Number: 19-W3749 Work Order #: 82-2625 Account #: 002800 Date Sampled: 17 Sep 19 11:21 Date Received: 18 Sep 19 12:50 Sampled By: MVTL Field Services

Project Name: MDU Heskett

Sample Description: 105

Event and Year: Fall 2019

Temp at Receipt: 5.5C

PO #: 174855 OP

	As Receiv Result	ed	Method RL	Method Reference	Date Analyzed	Analyst
pH - Field	6.70	units	NA	SM 4500 H+ B	17 Sep 19 11:21	
рН	* 7.5	units	0.1	SM4500 H+ B	26 Sep 19 6:45	
Temperature - Field	12.5	Degrees C	NA	SM 2550B	17 Sep 19 11:21	JSM
Conductivity - Field	6913	umhos/cm	1	EPA 120.1	17 Sep 19 11:21	JSM
Fluoride	0.26	mg/l	0.10	SM4500-F-C	26 Sep 19 6:45	CC
Sulfate	4600	mg/l	5.00	ASTM D516-07	25 Sep 19 9:28	EV
Chloride	290	mg/l	1.0	SM4500-Cl-E	19 Sep 19 11:19	EV
Total Dissolved Solids	7150	mg/l	10	I1750-85	20 Sep 19 16:19	CC
Calcium - Total	400	mg/l	1.0	6010D	27 Sep 19 12:02	SZ
Boron - Total	< 0.5 @	mg/l	0.10	6010D	24 Sep 19 12:54	SZ

* Holding time exceeded

Approved by:

Clauditte ICNN19 K. Cantle

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

Page: 8 of 8

Amended 22Oct19 (Cation/Anion Sum) - CCR

Abbie Krebsbach Montana Dakota Utilities 400 N 4th Bismarck ND 58501 Report Date: 15 Oct 19 Lab Number: 19-W3750 Work Order #: 82-2625 Account #: 002800 Date Sampled: 18 Sep 19 Date Received: 18 Sep 19 12:50 Sampled By: MVTL Field Services

Project Name: MDU Heskett

Sample Description: FB2

Event and Year: Fall 2019

Temp at Receipt: 5.5C

PO #: 174855 OP

	As Recei Result	ved	Method RL	Method Reference	Date Analyzed	Analyst
рН	* 6.3	units	0.1	SM4500 H+ B	26 Sep 19 6:4	5 CC
Fluoride	< 0.1	mg/l	0.10	SM4500-F-C	26 Sep 19 6:49	5 CC
Sulfate	< 5	mg/l	5.00	ASTM D516-07	25 Sep 19 9:28	B EV
Chloride	< 1	mg/l	1.0	SM4500-Cl-E	19 Sep 19 11:19) EV
Total Dissolved Solids	< 10	mg/l	10	I1750-85	20 Sep 19 16:1) CC
Calcium - Total	< 1	mg/l	1.0	6010D	27 Sep 19 13:03	2 SZ
Boron - Total	< 0.1	mg/l	0.10	6010D	24 Sep 19 12:54	SZ

* Holding time exceeded

Approved by:

11 NOV 19 Clauditte K. Canto

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

CERTIFICATION: ND # ND-00016

MVTL

MINNESOTA VALLEY TESTING LABORATORIES, INC.

1126 N. Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 E. Broadway Ave. ~ Bismarck, ND 58502 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Highway ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

MEMBER ACIL

Page: 1 of 1

Quality Control Report – Amended 7 Nov 19

Lab IDs: 19-W3743 to 19-V	v 3750	Pr	oject: MI	DU Heske	ett		Work Or	rder: 201	982-262	5							
Analyte	LCS Spike Amt	LCS Rec %	LCS % Rec Limits	Matrix Spike Amt	Matrix Spike ID	Matrix Spike Orig Result	Matrix Spike Result	Matrix Spike Rec %	Matrix Spike % Rec Limits	MSD/ Dup Orig Result	MSD/ Dup Result	MSD Rec %	MSD/ Dup RPD	MSD/ Dup RPD Limit (<)	Known Rec (%)	Known % Rec Limits	Method Blank
Boron - Total mg/l	0.40 0.40	98 100	80-120 80-120	2.00 0.400	19-W3743 19-W3750	< 0.5 < 0.1	2.22 0.35	111 88	75-125 75-125	2.22 0.35	2.24 0.35	112 88	0.9 0.0	20 20			< 0.1 < 0.1 < 0.1 < 0.1
Calcium - Total mg/l	20.0 20.0 20.0	113 110 114	80-120 80-120 80-120	500 100	19W3744q 19W3816q	464 130	1030 229	113 99	75-125 75-125	1030 229	1000 229	107 99	3.0 0.0	20 20	- - - -	- - - -	<1 <1 <1 <1 <1 <1
Chloride mg/l	30.0 30.0	90 91	80-120 80-120	30.0	19-W3735	< 1	25.3	84	80-120	25.3	25.3	84	0.0	20	-	-	< 1 < 1
Fluoride mg/l	0.50 0.50	102 110	90-110 90-110	0.500 0.500	19-W3744 19-W3746	0.12 1.03	0.63 1.45	102 84	80-120 80-120	0.63 1.45	0.63 1.47	102 88	0.0	20 20		- - -	< 0.1 < 0.1 < 0.1 < 0.1
pH units				- - -	- - -					7.5 7.5 7.6 7.5	7.5 7.5 7.4 7.5	-	0.0 0.0 2.7 0.0	20 20 20 20 20		- - -	-
Sulfate mg/l	100 100	101 100	80-120 80-120	100 100	19-W3735 19-W3750	< 5 < 5	106 107	106 107	80-120 80-120	106 107	106 108	106 108	0.0 0.9	20 20	-	-	< 5 < 5
Total Dissolved Solids mg/l				- -		-	-	- - -		4360 7150 < 10	4480 7200 < 10		2.7 0.7 0.0	20 20 *	- - -	- - -	< 10 < 10

Samples were received in good condition on 18 Sep 2019 at 1250. Temperature upon receipt at the Bismarck laboratory was 5.5°C. Samples were received on ice and evidence of cooling had begun.

All samples were properly preserved unless noted here and/or flagged on the individual analytical laboratory report. With the exception of pH, all holding times were met

Approved methodology was followed for all sample analyses.

All acceptance criteria were met for calibration, method blanks, laboratory control samples, laboratory fortified matrix/duplicates unless noted here.

For some analytes, the reported results were elevated due to additional dilutions required to minimize the effects of sample matrix.

Reporting

Per email from Barr, data package was rescanned to remove extraneous/not applicable QC page. In addition, QC report was modified to remove flag/comment for nitrate+nitrite since it was not part of the CCR data
package.

• Per email from Terri Olson, Barr, dated 6 Nov 2019, the CCR data package was split into Appendix III and Appendix IV parameters.

C. Canto 11 NOV19 Approved by: ____

Claudette Carroll

From: Sent: To: Cc: Subject: Terri A. Olson <TOlson@barr.com> Wednesday, November 6, 2019 12:41 PM Claudette Carroll Stephanie A. Theriault RE: Re: MDU Heskett reports

Hi Claudette,

Regarding the 3rd bullet, we don't receive a CCR report for this one so you can take it off your list of things to do; however, we do need the other two reports split into Appendix III and Appendix IV parameters. For fluoride that is in both lists, please report with Appendix III.

Thank-you,

Terri A. Olson Senior Data Quality Specialist Minneapolis, MN office: 952.842.3578 <u>TOlson@barr.com</u> www.barr.com

This e-mail message (including attachments, forwards, and replies) is correspondence transmitted between Barr Engineering Co. and its clients and related parties in the course of business, and is intended solely for use by the addressees. This transmission contains information which may be confidential and proprietary. If you are not the addressee, note that any disclosure, copying, distribution, or use of the contents of this message (or any attachments, replies, or forwards) is prohibited. If you have received this transmission in error, please destroy it and notify us at 952-832-2600.

If you no longer wish to receive marketing e-mails from Barr, respond to <u>communications@barr.com</u> and we will be happy to honor your request.

From: Terri A. Olson Sent: Friday, November 1, 2019 10:08 AM To: 'ccarroll@mvtl.com' <ccarroll@mvtl.com> Subject: Re: MDU Heskett reports

The second se

Hi Claudette,

Reviewed MDU Heskett reports and had the following questions/comments

- 201982-2611
 - MW44R in the Field Data Report has a sample date of 09/16/19 but raw field data and COC list 09/17/19
 please revise,
- 201982-2625
 - There is a QC page (page 9 of the report) that isn't applicable for CCR (includes dissolved parameters).
 - Case narrative for report has nitrate + nitrite as N comment but isn't applicable to CCR work.
- 201982-2626
 - o This report is the state versions for MW1-90. Haven't see a CCR report yet?

Thank-you,

resourceful, naturally,

This e-mail message (including attachments, forwards, and replies) is correspondence transmitted between Barr Engineering Co. and its clients and related parties in the course of business, and is intended solely for use by the addressees. This transmission contains information which may be confidential and proprietary. If you are not the addressee, note that any disclosure, copying, distribution, or use of the contents of this message (or any attachments, replies, or forwards) is prohibited. If you have received this transmission in error, please destroy it and notify us at 952-832-2600.

If you no longer wish to receive marketing e-mails from Barr, respond to <u>communications@barr.com</u> and we will be happy to honor your request.

Claudette Carroll

From:Terri A. Olson <TOlson@barr.com>Sent:Friday, November 1, 2019 10:08 AMTo:Claudette CarrollSubject:Re: MDU Heskett reports

Hi Claudette,

Reviewed MDU Heskett reports and had the following questions/comments

= ARE

- 201982-2611
 - MW44R in the Field Data Report has a sample date of 09/16/19 but raw field data and COC list 09/17/19

 please revise,
- 201982-2625
 - There is a QC page (page 9 of the report) that isn't applicable for CCR (includes dissolved parameters).
 - Case narrative for report has nitrate + nitrite as N comment but isn't applicable to CCR work.
- 201982-2626
 - This report is the state versions for MW1-90. Haven't see a CCR report yet?

Thank-you,

Terri A. Olson Senior Data Quality Specialist Minneapolis, MN office: 952.842.3578 <u>TOlson@barr.com</u> <u>www.barr.com</u>

resourceful. naturally.

This e-mail message (including attachments, forwards, and replies) is correspondence transmitted between Barr Engineering Co. and its clients and related parties in the course of business, and is intended solely for use by the addressees. This transmission contains information which may be confidential and proprietary. If you are not the addressee, note that any disclosure, copying, distribution, or use of the contents of this message (or any attachments, replies, or forwards) is prohibited. If you have received this transmission in error, please destroy it and notify us at 952-832-2600.

If you no longer wish to receive marketing e-mails from Barr, respond to <u>communications@barr.com</u> and we will be happy to honor your request.

Company:	MDU Heskett
Event:	Fall 2019
Sample ID:	33
Sampling Personal:	Jerry May -

Phone: (701) 258-9720

Weather Conditions:		Temp:	£D°F	Wind:	<u> </u>	@ 5-11	2	Precip	: Sunr	y)/ Partly C	loudy / Clo	udy
	Well Info	rmation					Sa	mpling	nformatio	n		
Well Locked?	Yes	No			Purgii	ng Method:	Blad	der	,			
Well Labeled?	(Yes)	No			Samplii	ng Method:	Blad	der		Cor	ntrol Setting	s
Casing Straight?	(Yes)	No			Dedicat	ed Equip?:	(Yes)	No		Purge:	<u> </u>	sec.
Grout Seal Intact?	Yes	No	Not Visible		Duplicate	Sample?:	Yes	No		Recover:	25	sec.
Repairs Necessary:	-				Duplicate	Sample ID:				PSI:	40	
Casing	Diameter:		2"									
Water Level Bef	ore Purge:	<u>ک</u>	11.59 ft		F	Purge Date:	(7Sept	19	Time Purg		131B	am/on
			,		Well P	urged Dry?	Yes	(No)	Time P	urged Dry:	· <u> </u>	am/pm
					Sa	mple Date:	17 Sept	19	Time of	Sampling:	<u>1513</u>	am/pm
Depth to Top	o of Pump:	~	ft				· · · ·					
Water Level After	er Sample:	4	2,15 ft		Bottle	1L Raw	500mL	Nitric	500mL Niti	ric (filtered)	250mL S	Sulfuric
Measuremer	nt Method:	Electric V	Nater Level Indicator		List:							
			· · ·									

Field Measurements

Stabiliz	zation	Temp	Spec.	[DO	ORP	Turbidity	Water	Pumping	mL	Description:
(3 conse	ecutive)	(°C)	Cond.	pН	(mg/L)	(mV)	(NTU)	Level (ft)	Rate	Removed	Clarity, Color, Odor, Ect.
SEQ #	Time		±5%	±0.1	±10%	±20 mV	±10%	0.25 ft	ml/min		Clear, Slightly Turbid, Turbid
1	1323	13.71	5542	6.66	7.82	-44.0	159.0	41.96	100.0	5,00,0	Clear Slighthy Turkid
2	1923	12.47		6.50	7.00	2/29	7.01	41.95	160.0	B000.0	Cles
3	1443	12.62	5120	6.53	7.33	4.3	5.06	42.15	100.0	2000.0	Clean
4	1503	12.54	5147		7.34	11.7	4.59	42.21	100,0	2000.0	Clear
5	1508	12.59	5131	6.51	7.46	12.1	4,42	41.92	100.0	500.0	Clear
6	1513	13,01	5128	6.51	7.57	13,5	4,38	42.05	100.0	500.0	Cles
7									·		
8											
9	L									· · ·	
10											
Stabilized:	Yes	No					Т	otal Volume	e Removed:	11.500.0	mL

omments: 17Seif17 pomp was not operating when attempted to iniciate purge. 1315 remained pomp & fined of check balls. Pomp is opporational Comments:

Company:	MDU Heskett
Event:	Fall 2019
Sample ID:	3-90
Sampling Personal:	Jerry Play

2616 E. Broadway Ave, Bismarck, ND

Λ

Phone: (701) 258-9720

Weather Conditions:		Temp:	60°F	Wind:	N	@ 5-12	>	Precip:	Sunr	ny / Partly C	loudy(Cl	oùdy)
	Well Info	rmation					Sam	npling I	nformatio	on		
Well Locked?	Yes	(Ng]	Purgi	ng Method:	Bladd	er				
Well Labeled?	YES	No			Sampli	ng Method:	Bladd	er			ntrol Settir	<u> </u>
Casing Straight?	Yes	No			Dedicat	ed Equip?:	<u>(Tes</u>	No	-	Purge:	5	sec.
Grout Seal Intact?	Yes	No	Not Visible]	Duplicate	Sample?:	(Yes	No		Recover:	<u></u>	sec.
Repairs Necessary:					Duplicate	Sample ID:	Die	2		PSI:	72	
	Diameter:		2"					-			000 Z	
Water Level Bef		1	6,46 ft		F	Purge Date:	18 Sept			ing Began:	0825	affn/pm
Trato: 2010/201				1	Well P	urged Dry?	Yes	NO	Time F	urged Dry:		am/pm
				-	Sa	mple Date:	18 Sept 1	9	Time of	Sampling:	0855	(am/pm
Depth to Top	n of Pump		f								-	
			18.60 ft	-	Bottle	1L Raw	500mL N	Nitric	500mL Nit	ric (filtered)	250mL	Sulfuric
Water Level After				·	List:					······································		
Measuremer	nt Method:	Electric	Water Level Indicator	1		L						

Field Measurements

					1 1010	in out a. t					
Stabil	ization	Temp	Spec.		DO	ORP	Turbidity	Water	Pumping	mL	Description:
	secutive)	(°C)	Cond.	pН	(mg/L)	(mV)	(NTU)	Level (ft)	Rate	Removed	Clarity, Color, Odor, Ect.
SEQ #	Time		±5%	±0.1	±10%	±20 mV	±10%	0.25 ft	ml/min		Clear, Slightly Turbid, Turbid
	0830	9.85	4548	6.87	5:34	-20.1	3,70	18.68	10000	500.0	Clear
1				6.91	5.69	-28.1	1.44	18,61	100.0	1000.0	Clear
2	0850	110	4494			-			· · · · · · · · · · · · · · · · · · ·	5000	Clear
3	0845	9.57	4481	6.92	7.39	-18,7	1.81	18.58	100.0	500.0	
4	0850	9,47	4478	6.92	6,98	-11.8	1.76	1B.65	100.0		Clear
5	0855	9.43	4473	6,92	6.77	- 4.9	1.78	18,61	100.0	500.0	Clear
6											
7											
8											
9											
10								l			-
Stabilized	Yès	No					Т	otal Volum	e Removed:	3000.0	mL

Stabilized: (Yes

Company:	MDU Heskett
Event:	Fall 2019
Sample ID:	2-90
Sampling Personal:	Jen iley

Weather Conditions:		Temp:	70 °F		Wind:	K	0@ 5-1	D	Precip	: Sunr	ıy / Partly (Cloudy / Clo	oudy
	Well Info	rmation						Sa	nformatio	on			
Well Locked?	Yes	(NO)				Purgi	ing Method:	Blac	der				
Well Labeled?	(Yes)	No			۹.	Sampli	ing Method:	Blac	der		Co	ontrol Setting	gs
Casing Straight?	Yes	No				Dedica	ted Equip?:	Yês	No		Purge:	5	sec.
Grout Seal Intact?	Yes	No	Not Visi	ble		Duplicate	e Sample?:	Yes	NO		Recover:	22	sec.
Repairs Necessary:				e		Duplicate	Sample ID:		-		PSI:	50	
	Diameter:		2"										
Water Level Bef			21.30	ft		I	Purge Date:	18 Seit	-19	Time Purg	ing Began:	0931	@m/pm
						Well F	vurged Dry?	Yes	No	Time P	urged Dry:		am/pm
							ample Date:	18 Sept	19	Time of	Sampling:	0956	@m/pm
Depth to Top	o of Pump:	٣		ft									
Water Level After		- 2	-1.73	ft		Bottle	1L Raw	500ml	. Nitric	500mL Niti	ic (filtered)	250mL \$	Sulfuric
Measuremen			Water Level Inc	licator		List:							
Ivieasuremen	it ivietnod:	Electric	water Level Inc	licator									

Field Measurements

Stabil	lization	Temp	Spec.		DO	ORP	Turbidity	Water	Pumping	mL	Description:
	secutive)	(°C)	Cond.	pН	(mg/L)	(mV)	(NTU)	Level (ft)	Rate	Removed	Clarity, Color, Odor, Ect.
SEQ #	Time	<u>_</u>	±5%	±0.1	±10%	±20 mV	±10%	0.25 ft	ml/min		Clear, Slightly Turbid, Turbid
1	0936	12.34	7044	7.05	10,10	80.0	0,83	21.60	100.0	500.0	Clean
2	0941	11.47	7094	16,98	7.63	101.7	0.90	21.72	100.0	5000	Clear
3	0946	12.42	7036	6.99	7.35	108,7		21.64	100.0	500.0	Clean
4	0951	11,74	7064	6.98	7.05	115.2	1.04	21,70	(00.0	500.0	Cluss
5	0956	12.49	7006	6.99	6.96	120.0	0.98	21.64	100.0	50.0	Cles
6											-
7											
8											
9											
10											
tabilized	Yes	No					Т	otal Volum	e Removed:	2500.0	mL

Stabilized: Yes

Company:	MDU Heskett
Event:	Fall 2019
Sample ID:	104 ,
Sampling Personal:	Jerry May-

Weather Conditions:		Temp:	70°F	Wind:	N	@ 5-10	>	Precip	: Suni	ny / Rartly C	Cloudy/ C	loudy
······································	Well Info	rmation					Sa	nformatio	on			
Well Locked?	Yes	No			Purgi	ng Method:	Blad	der				
Well Labeled?	Ves	No			Sampli	ng Method:	Blad	der]	Co	ontrol Setti	ngs
Casing Straight?	Yes	No			Dedicat	ted Equip?:	tes	No]	Purge:		sec.
Grout Seal Intact?	(es)	No	Not Visible		Duplicate	Sample?:	Yes	NO]	Recover:	22	sec.
Repairs Necessary:					Duplicate	Sample ID:		-		PSI:	20	
	Diameter:		2"						_			
Water Level Befo	ore Purge:		3.7B	ft	F	Purge Date:	18 Sept	19	Time Purg	ing Began:	1116	Gam/pm
	¥		<u> </u>		Well P	urged Dry?	Yes	No	Time F	Purged Dry:		am/pm
					Sa	ample Date:	18 Sept	-19	Time of	f Sampling:	1146	and/pm
Depth to Top	o of Pump:	a		ft						-		
Water Level After			14.06	ft	Bottle	1L Raw	500mL	Nitric	500mL Nit	ric (filtered)	250mL	Sulfuric
Measuremen		Electric	Water Level Indicator		List:						-	

Field Measurements

Stabili	zation	Temp	Spec.		DO	ORP	Turbidity	Water	Pumping	mL	Description:
(3 cons	ecutive)	(°C)	Cond.	pН	(mg/L)	(mV)	(NTU)	Level (ft)	Rate	Removed	Clarity, Color, Odor, Ect.
SEQ #	Time		±5%	±0.1	±10%	±20 mV	±10%	0.25 ft	ml/min		Clear, Slightly Turbid, Turbid
1	1121	15.06	13977	7.02	6,29	133.7	2.55	14.08	100.0	500.0	Clean
2	1126	13171	14027	6.96	5.64	141.7	219	14.15	(00.0	500.0	Cles
3	1131	14,14	14043	6.95	5:08	144,6	1.63	14,05	100.0	500.0	Clear
4	1136	13,67	1402(6.95	4.70	1483	0,77	14.06	100.0	5000	Clia
5	1141	14.35	14044	6,94	4.98	151.0	0.85	14.04	100,00	500.0	Clar
6	1146	13.77	14025	6.97	5.05	153.1	0.89	14.05	100.0	500.0	clea
7											
8											
9											
10											
Stabilized:	(Yes)	No					Т	otal Volume	e Removed:"	3000,0	mL

MDU Heskett	
Fall 2019	
BOR	
Jerry iby-	

4

Weather Conditions:		Temp:	7S°F	Wind:	N	@ 5-10		Precip	: Sunr	y Partly C	Cloudy / Clo	udy
N	Well Info	rmation					Sai	npling l	nformatio	on		
Well Locked?	Yes	Na	· · ·		Purgi	ng Method:	Blade	der				
Well Labeled?	Xes)	No			Sampli	ng Method:	Blade	der		Co	ontrol Setting	S
Casing Straight?	Yes	No			Dedicat	ted Equip?:	(Tes)	No		Purge:		sec.
Grout Seal Intact?	Yes	No	Not Visible		Duplicate	Sample?:	Yes	No>		Recover:		sec.
Repairs Necessary:				1	Duplicate	Sample ID:				PSI:	20	
	Diameter:		2"									
Water Level Befo	ore Purge:		14.35 ft		F	Purge Date:	17 Sept	19		ing Began:	1145	an /pm
					Well P	urged Dry?	Yes	(No)	Time P	urged Dry:		am/pm
				-	Sa	mple Date:	17 Sept	19	Time of	Sampling:	1235	am/pm
Depth to Top	of Pump:		ft							<u>.</u>		
Water Level Afte			14.62 ft		Bottle	1L Raw	500mL	Nitric	500mL Niti	ric (filtered)	250mL S	Sulfuric
Measurement	t Method:		Vater Level Indicator		List:							
W			Field	Measure	ments							

rielu Measurements

Stabili	zation	Temp	Spec.		DO	ORP	Turbidity	Water	Pumping	mL	Description:
	ecutive)	(°C)	Cond.	pН	(mg/L)	(mV)	(NTU)	Level (ft)	Rate	Removed	Clarity, Color, Odor, Ect.
SEQ #	Time	<u> </u>	±5%	±0.1	±10%	±20 mV	±10%	0.25 ft	ml/min		Clear, Slightly Turbid, Turbid
1	1150	13,58	5760	7.04	6.01	161.D	2.27	14,51	0.0	5000	Clea
2	1220	13.41		697	6.59	184.4	1.11	14,63	100.0	3000.0	Clean
3	1225		5724	7.00	6.72	153,7	1.17	14.65	100.0	500.0	Cless
4	1230	13.69		7.00	6.88	153.2	1,25	14.61	100.0	500.0	Cles
5	1235	13.09	5723	7.00	6.97	153.1	1.09	14.61	(00.0	5000	clea
6											
7											
8											· · · · · · · · · · · · · · · · · · ·
9											
10											
Stabilized:	(Yes)	No					Т	otal Volum	e Removed:	5000.0	mL

Stabilized: (Yes)

Company:	MDU Heskett
Event:	Fall 2019
Sample ID:	105
Sampling Personal:	Jen May-

Weather Conditions:		Temp:	70 °F		Wind:	\mathcal{N}	@	5-1	0	Precip): Suni	ny / Rartly C	Joudy / C	loudy
	Well Info	rmation							Sa	mpling	Informatio	on		
Well Locked?	Yes	NO)				Purgi	ng Me	ethod:	Blad	der				
Well Labeled?	Yês	No				Samplii	ng Me	ethod:	Blad	der		Co	ontrol Setti	ngs
Casing Straight?	Yes	No				Dedicat	ed Ed	quip?:	Ves	No		Purge:	5	sec.
Grout Seal Intact?	(Yes)	No	Not Visible			Duplicate	Sam	ple?:	Yes	Nø		Recover:	55	sec.
Repairs Necessary:						Duplicate	Samp	ole ID:				PSI:	20	
Casing	Diameter:		2"											
Water Level Befo	ore Purge:	12	.62	ft		F	urge	Date:	17 Sept	19	Time Purg	ing Began:	1001	am/pm
						Well P	urged	d Dry?	Yes	(No)	Time F	Purged Dry:	·	am/pm
						Sa	mple	Date:	(7SpA	<i>†1</i> 9	Time of	f Sampling:	1121	∕am∕pm
Depth to Top	of Pump:	<u> </u>		ft					۰ľ					
Water Level Afte	r Sample:		12.94	ft		Bottle	1L	Raw	500mL	Nitric	500mL Nit	ric (filtered)	250mL	. Sulfuric
Measurement	t Method:	Electric V	Vater Level Indica	tor		List:								

Field Measurements

	Stabiliz	ation	Temp	Spec.		DO	ORP	Turbidity	Water	Pumping	mL	Description:
((3 conse	cutive)	(°C)	Cond.	рН	(mg/L)	(mV)	(NTU)	Level (ft)	Rate	Removed	Clarity, Color, Odor, Ect.
SE	Q#	Time		±5%	±0.1	±10%	±20 mV	±10%	0.25 ft	ml/min		Clear, Slightly Turbid, Turbid
	1	1006	12.82	3834	6.85	7.79	144.3	5,07	12.62	100.0	500.0	Clear
	2	1036	11.87	5612	6.77	4.85	130.2	2.24	12.90	100.0	3000.0	Clear
	3	1046	11.88	6131	6.75	4.99	123.7	2,63	13.00	100.0	1000.0	Clear
4	4	1056	12,40	6399	6.72	5.84	133.4	2,57	12,82	iw.0	[000.0	Clea
	5	1106	12,22	6659	6,72	5,98	136,3	2,55	12.91	100.0	(000.0	Clear
(6	1/11	12,42	6820	6.71	6.17	137.8	2.36	12.84	100.00	500,0	Clear
7	7	1116	12.12	6865	6.71	6,54	138.1	2.49	12.92	100.0	500.0	Clear
8	8	1121	12.47	6913	6.70	6:32	138.1	2,32	12.90	100.0	502.0	Clear
9	9											
1	0										·	
Stabi	ilized:	Yeş	No			•		Т	otal Volume	e Removed:	<u>Baoo.O</u>	mL

Stabilized: /Yèş

Laboratories, Inc. 2616 E. Broadway Bismarck, ND 58501 Phone (701) 258-9720

Chain of Custody Record

Project Name	:							Worl	k Ord	ler N	lumber:			82- 2625		
	MDU Heskett				Fall 2019										02-2623	
Report To: Attn: Address: phone: email:	MDU Abbie Krebsbach 400 N. 4th St. Bismarck, ND 58501 701-222-7844		Carbon C Attn: Address:	ору:			Name of Sampler(s):									
	Sam	ple Informatic	n		В	ott	le Ty	/pe		Fi	eld Para	ameters	Analysi	s		
Lab Number	Sample ID	Date	Time	Sample Type		1 liter	500mL Nitri-	500mL Mit.	250 mL Sulfuric			Temp (°C)	1	Hd	Analysis Require	d
w 3743	33	17Sept19	1513	GW		<u> X</u>		X	X			13,01		6.51	-	
w3744	3-90	18 Sept19	0855	GW		<u> </u>	X	<u>x</u>	<u> </u>			9,43	4473	6.92	-	
W3745	Dup2	18 Septig	<u> </u>	GW		<u> </u>	X	<u>X</u>	X						-	
W3746	2-90	18 Sept 19	0956	GW		X	Х	Х	x			12,49	7006	6,99	_	
W3747	104	18 Sept 19	1146	GW		X	Х	Х	X			13,77	14025	6.97		MDU
w3748	80R	17Sect 19	1235	GW		X	X	Х	x			13,09	5723	7.00	List C	
W3749	105	1750,419	1(21	GW		X	X	Х	X			12,47	6913	6,70		
w3750	FB2	AB Sept19		GW		X	Х	Х	X			·				
															4	

JB18Seat 190

Relinquished By:		San	nple Condition:	Rece	eived by:
, Name: 🏿	Date/Time	Location:	Temp (°C)	Name:	Date/Time
1 CM	185er + 19	√ og In	Ports.5	Thin Sta	18 Sept 2019
	1250	Walk In #2	(TM562/) TM588	Lun -	1250
ð					

Appendix B

Alternative Source Demonstration Reports

Alternative Source Demonstration: October 2018 Event

R.M. Heskett Station

Prepared for Montana-Dakota Utilities Co.

April 2019

Alternative Source Demonstration: October 2018 Event

R.M. Heskett Station

Prepared for Montana-Dakota Utilities Co.

April 2019

4300 MarketPointe Drive, Suite 200 Minneapolis, MN 55435 952.832.2600 www.barr.com

Alternative Source Demonstration October 2018 Event

April 2019

Contents

1.0	In	troduction	1		
2.0	0	ctober 2018 SSIs	2		
3.0	A	Iternative Source Demonstration	3		
3.1		Source Hypothesis #1: CCR Unit Release	3		
3.2		Source Hypothesis #2: Natural Variations of Pre-Landfill or Regional Groundwater Quality	4		
3	8.2.1	Chloride at MW-105	4		
3	8.2.2				
3	8.2.3	Fluoride at MW2-90	5		
4.0	С	onclusions	7		
5.0) References				

List of Tables

- Table 1
 Detection Monitoring Results for Potential SSI Well-Parameter Pairs
- Table 2Fluoride Concentrations in Morton County, North Dakota
- Table 3
 Summary of SSIs and Alternative Sources

List of Figures

- Figure 1 Site Layout and CCR Monitoring Network
- Figure 2 Piper Plot
- Figure 3 Trend Analysis of Sulfate at MW-104
- Figure 4 Trend Analysis of TDS at MW-104
- Figure 5 Sulfate Concentrations
- Figure 6 TDS Concentrations

List of Appendices

- Appendix A Ash SPLP Laboratory Report (2011)
- Appendix B Aerial Photo (March 30, 1988)
- Appendix C Heskett Station Permit Application (March 1989)
- Appendix D 2014 and 2016 Boring Logs

Certifications

I hereby certify that I, or my agent, have examined this written demonstration and attest that this Coal Combustion Residuals Facility Alternative Source Demonstration (ASD) is accurate and has been prepared in accordance with good engineering practice, including consideration of applicable industry standards and the requirements of 40 CFR §257.94. I further certify that this report was prepared by me or under my direct supervision and that I am a duly Licensed Professional Engineer under the laws of the state of North Dakota.

Revision Dat	te	Summary of Revisions
0 April 24	, 2019 Initial Alternative	Source Demonstration

Thomas J. Radue, P.E. Barr Engineering Co. ND Registration Number PE – 3632

1.0 Introduction

Montana-Dakota Utilities Co. (MDU) owns and operates R.M. Heskett Station (Site), a coal-fired generating station and a gas-fired turbine located in Mandan, North Dakota (Figure 1). One CCR (coal combustion residual) unit, as defined by 40 CFR 257.53, is located on the property. The CCR unit contains coal combustion by-products, asbestos wastes generated from construction activity associated with MDU-owned facilities, and ash derived from burning of tire-derived fuel (TDF) at the facility.

The CCR Rule (US EPA, 2015) §257.94(e)(2) allows for an alternative source demonstration (ASD) in the event of an identified statistically significant increase (SSI) in a water quality parameter in a downgradient monitoring well over background levels:

The owner or operator may demonstrate that a source other than the CCR unit caused the statistically significant increase over background levels for a constituent or that the statistically significant increase resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. The owner or operator must complete the written demonstration within 90 days of detecting a statistically significant increase over background levels to include obtaining a certification from a qualified professional engineer verifying the accuracy of the information in the report.

The purpose of this work is to evaluate the data collected as part of the October 2018 monitoring event, along with historical data, to demonstrate if the proposed SSIs are the results of a "source other than the CCR unit" or due to natural variation in groundwater quality, an error in sampling, analysis, or statistical evaluation.

2.0 October 2018 SSIs

Sampling for the second detection monitoring event in 2018 was conducted on October 1-4, 2018. Four potential SSIs over background were identified: chloride at MW-105, sulfate and total dissolved solids (TDS) at MW-104, and fluoride at MW-2-90.

Several characteristics of the CCR unit site geology, groundwater monitoring well locations, and historic groundwater quality data prompted consideration of potential alternative sources for the potential SSIs, including:

- Elevated water quality parameters in pre-landfill groundwater monitoring data; and
- Site-specific geologic conditions.

Three methods of evaluation were subsequently undertaken in an effort to review potential alternative sources for the SSIs. These include the following evaluations:

- Comparison with leaching tests of on-site CCR materials;
- Comparison with groundwater quality collected at the site prior to construction of the CCR unit; and
- Comparison with regional (background) groundwater quality data.

A successful alternative source demonstration is discussed in Section 3.0.

3.0 Alternative Source Demonstration

Methods used to evaluate potential alternative sources as the basis for water quality parameter concentrations over background from the October 2018 detection monitoring event are discussed below. Concentrations for potential SSIs observed in October 2018 are similar to those observed in prior detection monitoring events (Table 1).

		Interwell	Detection Monitoring Results			
Well	Parameter	Prediction Limit (mg/L)	October 2017 (mg/L)	April 2018 (mg/L)	October 2018 (mg/L)	
MW-105	Chloride	271	346	333	384	
MW-104	Sulfate	6,770	10,200	10,700	11,000	
MW-104	Total Dissolved Solids	9,970	15,400	17,400	18,000	
MW-2-90	Fluoride	0.93	0.93	1.03	1.00	

Bolded values indicate concentrations exceed the associated interwell predication limits.

Successful demonstrations of alternative sources have previously been documented for the four potential SSIs. The associated ASD Reports (Barr, 2018a and Barr, 2018b) documented that each of the SSIs could be explained by natural groundwater quality variability based on concentrations that were either present at the Site before the landfill was constructed and/or consistent with regional groundwater quality data. The purpose of this ASD Report is to validate the results of prior findings with the October 2018 data. For each potential SSI, two hypotheses regarding the potential source of the SSI are assessed: 1) a release of leachate from the CCR unit is the source of one or more of the potential SSIs or 2) natural variations of pre-landfill or regional groundwater quality is the source of one or more of the potential SSIs.

3.1 Source Hypothesis #1: CCR Unit Release

To accept the hypothesis that a release of leachate from the CCR unit is the source of one or more of the potential SSIs, it would be assumed that groundwater chemistry at one or more of the potentially impacted wells (MW-2-90, MW-104, and MW-105) would be geochemically similar to that of impacted water from the CCR unit. However, if they are geochemically dissimilar, this indicates that a source "other than the CCR unit" is responsible for the potential SSI. Therefore, major ion chemistry from the CCR monitoring locations (upgradient and downgradient) were compared to CCR ash Synthetic Precipitation Leaching Procedure (SPLP method; EPA Method 1312) data collected July 2011 (Appendix A).

In order to test this hypothesis, Piper diagrams were used to visually compare the CCR SPLP results (Appendix A) and the measured groundwater quality at the Site (Figure 2). Piper diagrams are plots of major ion chemistry of water samples (calcium, magnesium, potassium, sodium, chloride, sulfate, and alkalinity) that are used to differentiate between water types and to identify potential mixing of water types. This method is a means to identify or "fingerprint" water samples by their common characteristics (major ions) to assess which types of water are similar or dissimilar to potential source water types (Hensel and Hirsch, 2002).

Downgradient water quality (including the potential SSI parameter-well pairs) is characterized as a Ca/Mg-SO₄ type water, whereas the ash SPLP results are Na-SO₄ type water. The major difference observed between the downgradient water quality and the SPLP results is the dominant cation concentration (calcium and magnesium vs. sodium). Because water quality data from SSI well-parameter pairs are clustered within the upgradient wells rather than near the SPLP results, it indicates that the water chemistry at those locations are more similar to upgradient groundwater than a potential release from the CCR unit. **Therefore, we reject the hypothesis that the CCR unit is the source of the fluoride observed at MW-2-90, sulfate and TDS observed at MW-104, and chloride at MW-105.**

3.2 Source Hypothesis #2: Natural Variations of Pre-Landfill or Regional Groundwater Quality

Since Source Hypothesis #1 (CCR Unit Release) was rejected as a potential source of the SSIs, natural variations of pre-landfill conditions and/or regional groundwater quality were evaluated for each of the potential SSIs.

The second hypothesis evaluated is that concentrations of fluoride at MW-2-90, sulfate and TDS at MW-104, and chloride at MW-105 are consistent with historical (pre-landfill) or regional (background) groundwater data. To test this hypothesis, results of October 2018 Detection Monitoring were compared to pre-landfill data and/or regional groundwater quality data from the Cannonball Formation and associated units to determine if natural variation is a potential alternative source for the SSIs.

3.2.1 Chloride at MW-105

Groundwater samples collected in 1986 (prior to construction of the CCR unit; an aerial photograph from March 30, 1988 shows the area of the CCR unit, which appears to be undisturbed (Appendix B)) were included in the 1989 Special Use Disposal Site Permit Application (Permit Application; MDU, 1989; Appendix C). Pre-landfill chloride concentrations collected from groundwater at the Site were measured as high as 558 mg/L (Well 44, 1986), indicating that high chloride concentrations pre-date construction of the CCR unit. Additionally, the North Dakota State Water Commission conducted a groundwater study in Morton County (Ackerman, 1980); 45 wells screened in the Cannonball and Ludlow Formations were sampled for various parameters including chloride. Chloride concentrations ranged from 0 to 500 mg/L (37% of which had concentrations greater than 250 mg/L).

Historic data shows that concentrations of chloride in groundwater at the site measured prior to the construction of the CCR unit (558 mg/L) as well as regional groundwater quality data (0-500 mg/L) are consistent with and/or higher than chloride measured at MW-105 in October 2018 (384 mg/L). This supports the hypothesis that the SSI for chloride at MW-105 is due to a "source other than the CCR unit." **Therefore, we accept the hypothesis that chloride concentrations observed at MW-105 are consistent with regional (background) groundwater data.**

3.2.2 Sulfate and TDS at MW-104

Analyses of groundwater samples collected prior to construction of the CCR unit included in the Permit Application (Appendix C) notes that high sulfate and TDS was observed at the Site. Maximum sulfate and TDS concentrations reported in 1986 were 11,632 mg/L and 14,917 mg/L, respectively, in Well 60 (approximately 700 feet southwest of MW-104), with similar concentrations observed two years later. Sulfate and TDS concentrations reported in October 2018 (11,000 mg/L and 18,000 mg/L, respectively,) at MW-104 are within range of historically observed concentrations. A trend analysis was conducted on sulfate and TDS concentrations at MW-104 (Figures 3 and 4, respectively) and no statistically significant increasing trend was observed. Figures 5 and 6 show the range of sulfate and TDS concentrations, respectively, across the Site, including recent and historical monitoring well data.

The mineralogy of the underlying geology may yield an explanation for the elevated sulfate concentrations (which leads to elevated TDS concentrations). The dominant lithology observed at the Site is unconsolidated silt in a clay matrix with interspersed fine to medium-grained sand (10% to 30%). Small gypsum crystals are documented discontinuously throughout the upper 30 feet of the surface materials, which have been presumed to be the result of diagenetic processes which occur above the water table during alternating wetting and drying cycles (Groenewold et al, 1983). Gypsum is a hydrated calcium sulfate mineral that can be a source of high sulfate concentrations in groundwater. Dissolution of gypsum will occur until equilibrium concentrations are attained in the groundwater or until all the minerals are consumed.

The boring log for MW-104 (Appendix C) notes gypsum present throughout the upper layer of the screened interval. Boring logs for other CCR wells and pre-landfill wells note gypsum occurrences across the Site (Appendix C (Exhibit 5-E) and Appendix D). The water level and screened interval in MW-104 are within the gypsum-bearing unit. In other wells with lower sulfate and TDS concentrations, the water levels and/or screened units are below the documented gypsum occurrences. As groundwater fluctuates and surface water infiltration occurs, periodic dissolution of gypsum into the water column may occur, resulting in elevated sulfate concentrations (and therefore elevated TDS, too).

Based on presence of gypsum in native subsurface deposits and documentation of elevated sulfate and TDS in pre-landfill groundwater, the hypothesis that the SSI for sulfate and TDS at MW-104 is due to a "source other than the CCR unit." is supported. **Therefore, we accept the hypothesis that for SSIs of sulfate and TDS at MW-104 are consistent with regional (background) groundwater data.**

3.2.3 Fluoride at MW2-90

This hypothesis was tested by comparing fluoride concentrations collected as part of several regional groundwater quality studies on the Cannonball Formation and associated units. A summary of the range of fluoride concentrations in the Cannonball Formation and associated units are included in the table below.

Reference	Fluoride Conc. Range	Formation/Units	Data Source Location
Ackerman, D.J., 1980. Ground-Water Resources of Morton County, North Dakota. North Dakota Geological Survey Bulletin 72, Part III. 51 p.	0.0 to 4.0 mg/L	Cannonball and Ludlow formations, undifferentiated	Morton County
Crosby, O.A. and Klausing, R.L., 1984. Hydrology of Area 47, Northern Great Plains and Rocky Mountain Coal Provinces, North Dakota, South Dakota, and Montana. USGS Water-Resources Investigations Open-File Report 83-221, 93 p.	0.1 to 6.3 mg/L	Entire Fort Union Formation (includes Cannonball Formation)	Morton County

Table 2. Fluoride Concentrations in Morton County, North Dakota

The Ackerman study provides summary statistics for the fluoride concentrations observed in Morton County. Forty-six samples were analyzed for fluoride; of those, 20 (or 43%) had concentrations greater than 1.3 mg/L (Ackerman, 1980). The fluoride concentrations observed at MW-2-90 are within the range of values consistent with naturally-occurring concentrations of fluoride associated with the Cannonball Formation in Morton County. **Therefore, we accept the hypothesis that fluoride concentrations observed at MW-2-90 are consistent with regional (background) groundwater data**.

4.0 Conclusions

Four SSIs were identified from the October 2018 detection monitoring event. This report demonstrates that a "source other than the CCR unit" caused the potential SSIs (natural variation in regional and/or prelandfill groundwater quality), as allowed by §257.94(e)(2). The results of this alternative source demonstration are summarized in the table below.

Well	Parameter	Report Section	Evidence for Alternative Source
MW-105	Chloride	3.2.1	Natural variability (pre-landfill values and geologic background)
MW-104	Sulfate	3.2.2	Natural variability (pre-landfill values and geologic background)
MW-104	Total Dissolved Solids	3.2.2	Natural variability (pre-landfill values and geologic background)
MW-2-90	Fluoride	3.2.3	Natural variability (pre-landfill values and geologic background)

Based on the foregoing, the alternative source demonstration presented herein meets the requirements of CCR Rule §257.94(e)(2).

5.0 References

Ackerman, D.J., 1980. Ground-Water Resources of Morton County, North Dakota. North Dakota Geological Survey Bulletin 72, Part III. 51 p.

Barr Engineering Co., 2018a. Alternative Source Demonstration: October 2017 Event. R.M. Heskett Station. Prepared for Montana-Dakota Utilities Co. April 2018.

Barr Engineering Co., 2018b. Alternative Source Demonstration: April 2018 Event. R.M. Heskett Station. Prepared for Montana-Dakota Utilities Co. December 2018.

Crosby, O.A. and Klausing, R.L., 1984. Hydrology of Area 47, Northern Great Plains and Rocky Mountain Coal Provinces, North Dakota, South Dakota, and Montana. USGS Water-Resources Investigations Open-File Report 83-221, 93 p.

Groenewold, G.H., Koob, G.J., McCarthy, B.W., and Peterson, W.M., 1983, Geologic and Geochemical Controls on the Chemical Evolution of Subsurface Water in Undisturbed and Surface-Mined Landscapes on Western North Dakota, North Dakota Geological Survey Report of Investigation 79, 151 p.


Hensel, D.R. and R. M. Hirsch, 2002. Statistical Methods in Water Resources Techniques of Water Resources Investigations, Book 4, chapter A3. U.S. Geological Survey. 522 pages.

Lindholm, R., 1983. Bivalve Associations of Cannonball Formation (Paleocene, Danian) of North Dakota. AAPG Bulletin, Volume 67, Issue 8, P1347. Meeting abstract available at: <u>http://archives.datapages.com/data/bulletns/1982-83/data/pg/0067/0008/1300/1347a.htm</u>

Montana-Dakota Utilities Co. (MDU), 1989, R.M. Heskett Station Special Use Disposal Site Permit Application. Submitted to North Dakota State Department of Health, March 1, 1989.

US EPA, 2015, Hazardous and Solid Waste Management Systems; Management of Coal Combustion Residuals From Electric Utility, CFR Parts 257 and 261, Federal Register, Vol. 80, No. 74, April 17, 2015.

Figures

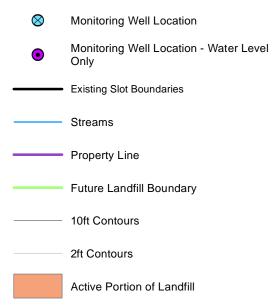


Image Source: 2017 Statewide Imagery (ND GIS Hub)

CAD Data Source: Slot Linework.dwg

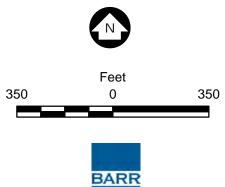
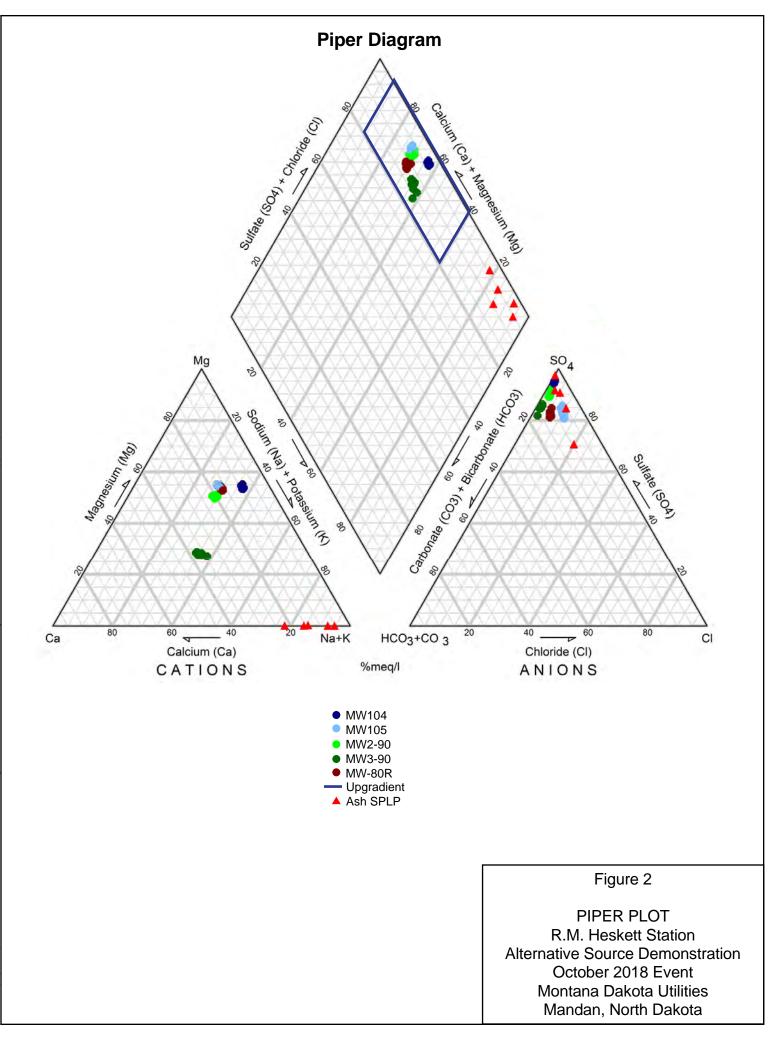
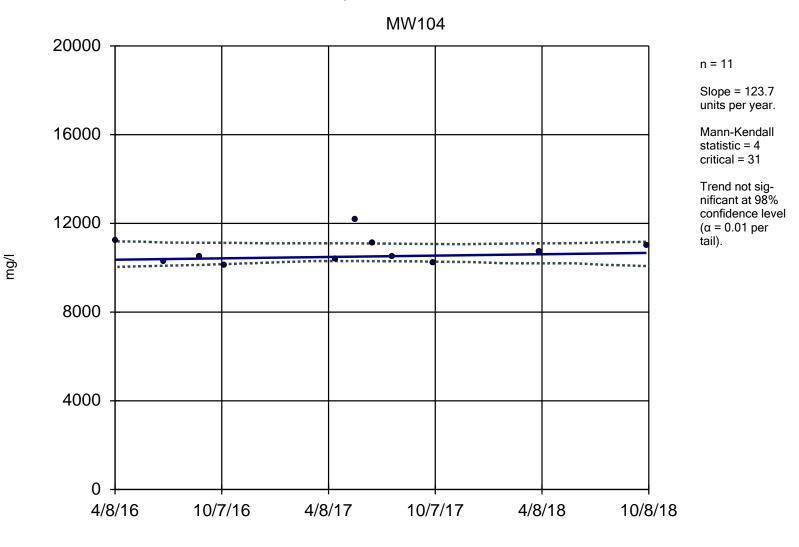
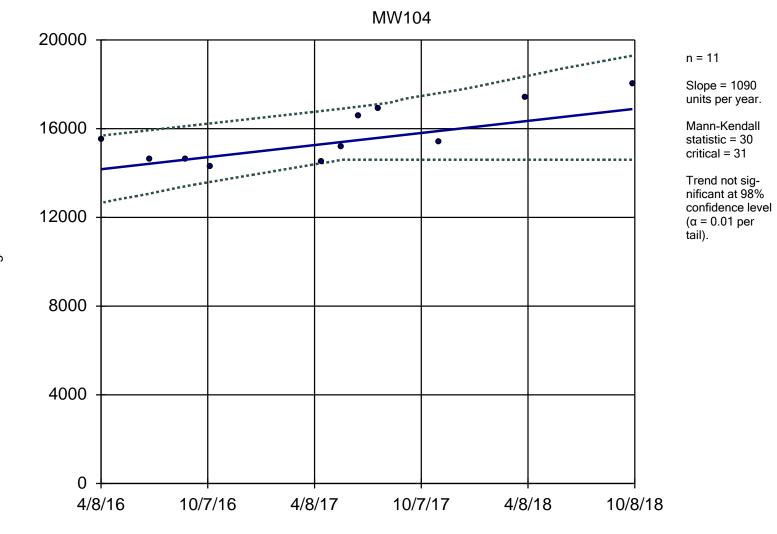
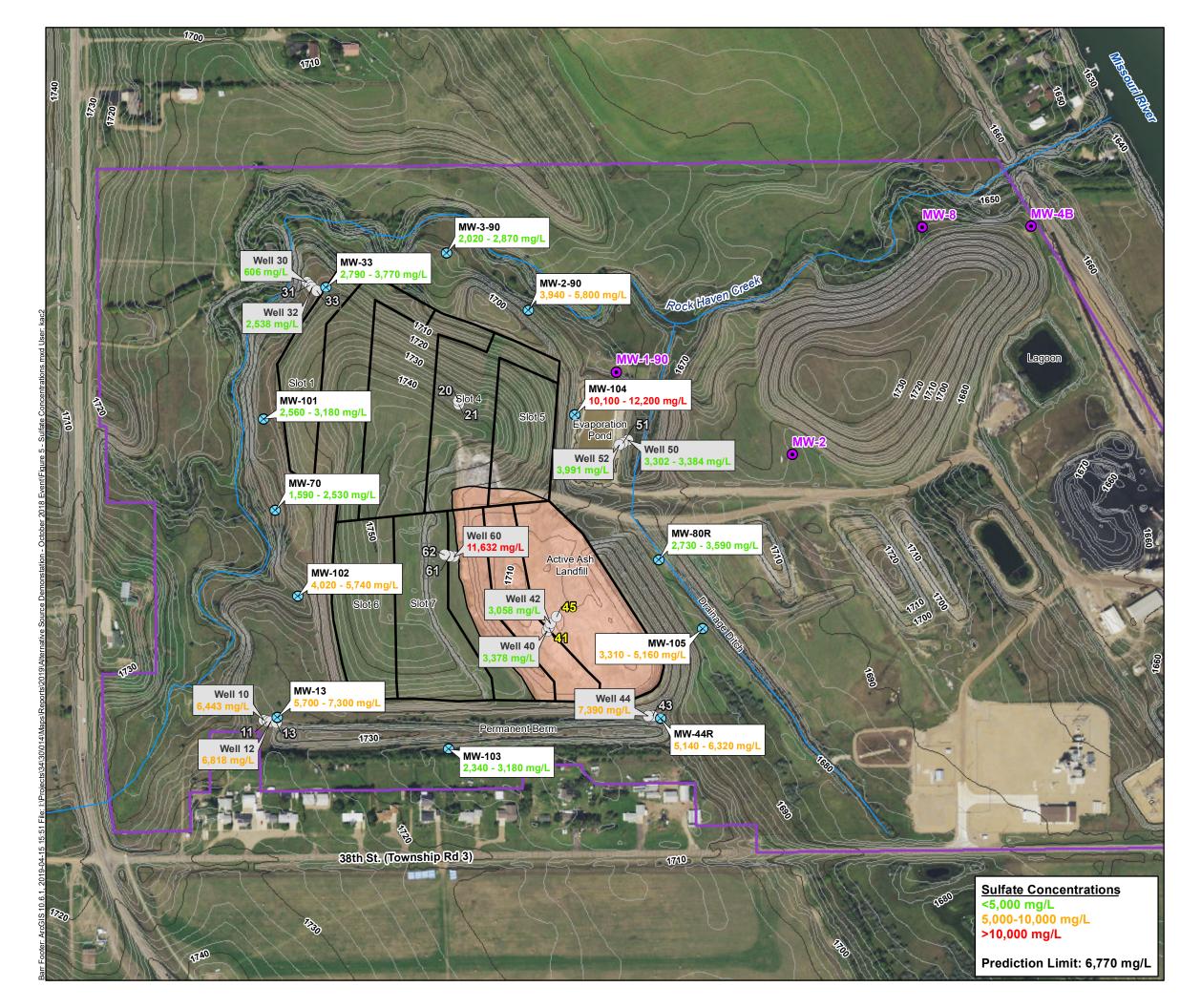




Figure 1

SITE LAYOUT AND CCR MONITORING WELL NETWORK R. M. Heskett Station


> Montana Dakota Utilities Mandan, North Dakota

Sen's Slope and 95% Confidence Band


Constituent: Sulfate, as SO4 Analysis Run 4/15/2019 2:25 PM Heskett Station Client: Barr Engineering Company Data: Heskett_SanitasAppIII_Oct2018

Sen's Slope and 95% Confidence Band

Constituent: Solids, total dissolved Analysis Run 4/15/2019 2:25 PM Heskett Station Client: Barr Engineering Company Data: Heskett_SanitasAppIII_Oct2018

mg/l

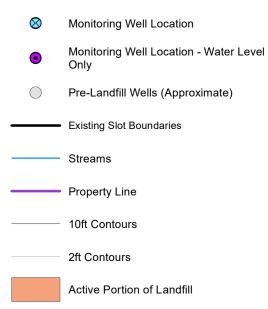


Image Source: 2017 Statewide Imagery (ND GIS Hub)

CAD Data Source: Slot Linework.dwg Pre-Landfill well concentrations are from 9/11/1986, 11/21/1986 (MDU, 1989), and CCR Rule monitoring well concentrations are from 2016-2018.

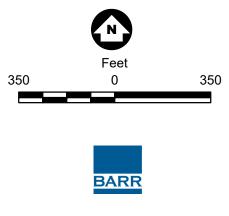
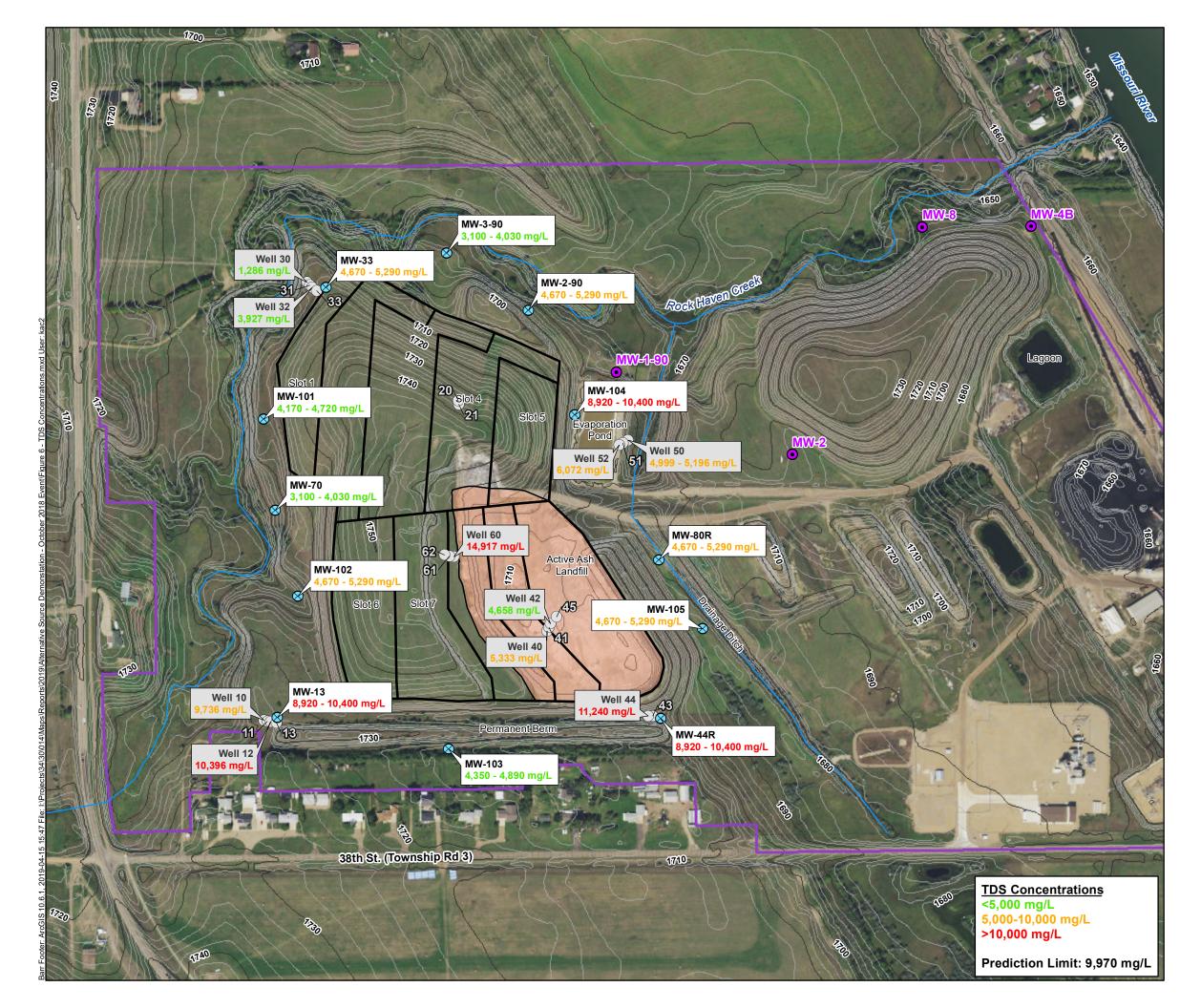



Figure 5

SULFATE CONCENTRATIONS R. M. Heskett Station Alternative Source Demonstration: October 2018 Event Montana Dakota Utilities Mandan, North Dakota

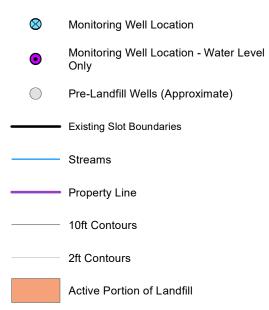


Image Source: 2017 Statewide Imagery (ND GIS Hub)

CAD Data Source: Slot Linework.dwg Pre-Landfill well concentrations are from 9/11/1986, 11/21/1986 (MDU, 1989), and CCR Rule monitoring well concentrations are from 2016-2018.

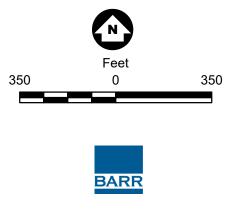


Figure 6

TDS CONCENTRATIONS R. M. Heskett Station Alternative Source Demonstration: October 2018 Event Montana Dakota Utilities Mandan, North Dakota

Appendix A

Ash SPLP Laboratory Report (2011)

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 51 West Lincoln Way ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

Page: 1 of 2

Report Date: 8 Sep 11 Lab Number: 11-M2450 Work Order #:81-818 Account #: 013479 Date Sampled: Date Received: 28 Jun 11 9:00 PO #: 131460 OP

Duane Leingang Montana Dakota Utilities PO Box 40 Mandan ND 58554

Sample Description: Unit I Bottom Ash Sample Site: MDU Heskett

	As Receive Result	ed	Method RL	Method Reference	Date Analyzed	Analyst
SPLP Extraction				1312	22 Jul 11	SS
рН	12.2	units	N/A	SM4500 H+ B	22 Jul 11 17:00	
Specific Conductance	8778	umhos/cm	N/A	SM2510-B	22 Jul 11 17:00	
Total Suspended Solids	3	mg/l	1	SM2540-D	22 Jul 11 14:00	
Total Alkalinity	1120	mg/l CaCO3	4	SM2320-B	22 Jul 11 17:00	
Phenolphthalein Alk	1090	mg/l CaCO3	4	SM2320-B	22 Jul 11 17:00	
Bicarbonate	< 4	mg/l CaCO3	4	SM2320-B	22 Jul 11 17:00	
Carbonate	60	mg/l CaCO3	4	SM2320-B	22 Jul 11 17:0	
Hydroxide	1060	mg/l CaCO3	0	SM2320-B	22 Jul 11 17:00	
Tot Dis Solids (Summation)	4860	mg/l	NA	SM1030-F	3 Aug 11 8:4	2
Total Hardness as CaCO3	524	mg/l	NA	SM2340-B	3 Aug 11 8:4	
Hardness in grains/gallon	30.7	gr/gal	NA	SM2340-B	3 Aug 11 8:4	
Cation Summation	74.3	meg/L	NA	SM1030-F	3 Aug 11 8:4	
Anion Summation	74.6	meq/L	NA	SM1030-F	28 Jul 11 14:3	
Percent Error	-0.24	8	NA	SM1030-F	3 Aug 11 8:4	
Sodium Adsorption Ratio	27.1		NA	USDA 20b	3 Aug 11 8:4	
Gross Alpha Radiation	Attached	pCi/l			22 Aug 11 2:0	
Radon 222	Attached				28 Jul 11 4:3	
Radium 226	Attached	pCi/l			22 Aug 11 22:2	
Radium 228	Attached	pCi/l			16 Aug 11 16:5	
Total Organic Carbon	0.7	mg/l	0.5	SM5310-C	1 Aug 11 8:0	
Fluoride	< 0.1	mg/l	0.10	SM4500-F-C	4 Aug 11 17:0	
Sulfate	2440	mg/l	5.00	ASTM D516-02	27 Jul 11 9:0	
Chloride	50.5	mg/l	1.0	SM4500-Cl-E	27 Jul 11 14:0	
Nitrate-Nitrite as N	0.21	mg/l	0.10	EPA 353.2	28 Jul 11 14:3	
Ammonia-Nitrogen as N	0.32	mg/l	0.10	EPA 350.1	28 Jul 11 10:4	
Phosphorus as P - Total	< 0.1	mg/l	0.10	EPA 365.1	28 Jul 11 13:0	
Mercury - Total	< 0.0002	mg/l	0.0002	EPA 245.1	28 Jul 11 8:0	
Chemical Oxygen Demand	< 5	mg/l	5.0	HACH 8000	1 Aug 11 8:3	· · · · · · · · · · · · · · · · · · ·
Calcium - Total	210	mg/l	1.0	6010	3 Aug 11 8:4	-
Magnesium - Total	< 2.5	mg/l	1.0	6010	3 Aug 11 8:4	
Sodium - Total	1440	mg/l	1.0	6010	3 Aug 11 8:4	4
Potassium - Total	44.8	mg/l	1.0	6010	3 Aug 11 8:4	
Aluminum - Total	< 0.5	mg/l	0.10	6010	2 Aug 11 9:3	-
Iron - Total	< 0.5	mg/l	0.10	6010	2 Aug 11 9:3	-
Strontium - Total	28.2	mg/l	0.10	6010	2 Aug 11 9:3	-
Titanium - Total	< 0.5	mg/l	0.10	6010	2 Aug 11 9:3	4
Boron - Total	< 0,5	mg/l	0.10	6010	11 Aug 11 8:4	0 Stacy

RL = Method Reporting Limit

Elevated "Less Than Result" (<): @ = Due to sample matrix ! = Due to sample quantity # = Due to sample concentration

CERTIFICATION: MN LAB # 038-999-267 ND # ND-00016

+ = Due to extract volume

MVTL guarantees the accuracy of the analysis done on the sample submitted for testing. It is not possible for MVTL to guarantee that a test result obtained on a particular sample will be the same on any other sample unless all conditions affecting the sample are the same, including sampling by MVTL. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 51 West Lincoln Way ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

Page: 2 of 2

Report Date: 8 Sep 11 Lab Number: 11-M2450 Work Order #:81-818 Account #: 013479 Date Sampled: Date Received: 28 Jun 11 9:00 PO #: 131460 OP

Duane Leingang Montana Dakota Utilities PO Box 40 Mandan ND 58554

Sample Description: Unit I Bottom Ash Sample Site: MDU Heskett

	As Receive Result	ed	Method RL	Method Reference	Date Analyzed	Analyst
Antimony - Total	< 0.002	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Arsenic - Total	0.0044	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Barium - Total	0.1135	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Beryllium - Total	< 0.001	mg/l	0.0010	6020	25 Jul 11 16:18	Claudette
Cadmium - Total	0.00164	mg/l	0.00100	6020	25 Jul 11 16:18	Claudette
Chromium - Total	0.0065	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Cobalt - Total	< 0.002	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Copper - Total	0.0213	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Lead - Total	< 0.002	mg/l	0.0020	6020	25 Jul 11 16:18	
Manganese - Total	0.0027	mg/l	0.0010	6020	25 Jul 11 16:18	
Molybdenum - Total	0.6860	mg/l	0.0020	6020	26 Jul 11 12:46	7.
Nickel - Total	0.0074	mg/l	0.0020	6020	25 Jul 11 16:18	
Selenium - Total	0.0133	mg/l	0.0020	6020	26 Jul 11 9:46	Claudette
Silver - Total	< 0.001	mg/l	0.0010	6020	25 Jul 11 16:18	Claudette
Thallium - Total	< 0.002	mg/1	0.0020	6020	25 Jul 11 16:18	Claudette
Tin - Total	< 0.05	mg/l	0.0500	6020	25 Jul 11 16:18	Claudette
Vanadium - Total	0.0189	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Zinc - Total	0.0151	mg/l	0.0100	6020	25 Jul 11 16:18	Claudette
Uranium	< 0.002	mg/l	0.002	6020	25 Jul 11 16:18	Claudette

All analyses were performed on the extract from Method 1312 (SPLP) with a modified solution to solids ratio of 4:1.

A Tander Approved by:

RL = Method Reporting Limit

CERTIFICATION: MN LAB # 038-999-267

Elevated "Less Than Result" (<): @ = Due to sample matrix | = Due to sample quantity

= Due to sample concentration
+ = Due to extract volume

MVTL guarantees the accuracy of the analysis done on the sample submitted for testing. It is not possible for MVTL to guarantee that a test result obtained on a particular sample will be the same on any other sample unless all conditions affecting the sample are the same, including sampling by MVTL. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

ND # ND-00016

l

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 51 West Lincoln Way ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

Page: 1 of 2

Report Date: 8 Sep 11 Lab Number: 11-M2451 Work Order #:81-818 Account #: 013479 Date Sampled: Date Received: 28 Jun 11 9:00 PO #: 131460 OP

Duane Leingang Montana Dakota Utilities PO Box 40 Mandan ND 58554

Sample Description: Unit II Sand Ash Sample Site: MDU Heskett

	As Receiv Result	ed	Method RL	Method Reference	Date Analyzed	Analyst
SPLP Extraction				1312	22 Jul 11	SS
рн	11.1	units	N/A	SM4500 H+ B	22 Jul 11 17:00	Claudette
Specific Conductance	20110	umhos/cm	N/A	SM2510-B	22 Jul 11 17:00	Claudette
Total Suspended Solids	21	mg/l	1	SM2540-D	22 Jul 11 14:00	CLB
Total Alkalinity	203	mg/l CaCO3	4	SM2320-B	22 Jul 11 17:00	Claudette
Phenolphthalein Alk	171	mg/l CaCO3	4	SM2320-B	22 Jul 11 17:00	Claudette
Bicarbonate	< 4	mg/l CaCO3	4	SM2320-B	22 Jul 11 17:00	Claudette
Carbonate	64	mg/l CaCO3	4	SM2320-B	22 Jul 11 17:00	Claudette
Hydroxide	139	mg/l CaCO3	0	SM2320-B	22 Jul 11 17:00	Claudette
Tot Dis Solids (Summation)	22500	mg/l	NA	SM1030-F	3 Aug 11 8:40	Calculated
Total Hardness as CaCO3	1200	mg/l	NA	SM2340-B	3 Aug 11 8:40	Calculated
Hardness in grains/gallon	70.2	gr/gal	NA	SM2340-B	3 Aug 11 8:40	Calculated
Cation Summation	318	meg/L	NA	SM1030-F	3 Aug 11 8:40	Calculated
Anion Summation	314	meg/L	NA	SM1030-F	28 Jul 11 14:30	Calculated
Percent Error	0.65	8	NA	SM1030-F	3 Aug 11 8:40	Calculated
Sodium Adsorption Ratio	80.9		NA	USDA 20b	3 Aug 11 8:40	Calculated
Gross Alpha Radiation	Attached	pCi/l			22 Aug 11 2:03	
Radon 222	See Attac	hed			28 Jul 11 4:37	
Radium 226	Attached	pCi/l			22 Aug 11 22:20	
Radium 228	Attached	pCi/l			16 Aug 11 16:50	
Total Organic Carbon	< 0.5	mg/l	0.5	SM5310-C	1 Aug 11 8:00	Eric
Fluoride	< 0.1	mg/l	0.10	SM4500-F-C	4 Aug 11 17:00	CLB
Sulfate	14900	mg/l	5.00	ASTM D516-02	27 Jul 11 9:00	KMP
Chloride	2.0	mg/l	1.0	SM4500-Cl-E	27 Jul 11 14:00	KMP
Nitrate-Nitrite as N	< 0.1	mg/l	0.10	EPA 353.2	28 Jul 11 14:30	KMP
Ammonia-Nitrogen as N	0.10	mg/l	0.10	EPA 350.1	28 Jul 11 10:45	KMP
Phosphorus as P - Total	< 0.1	mg/l	0.10	EPA 365.1	28 Jul 11 13:00	KMP
Mercury - Total	< 0.0002	mg/l	0.0002	EPA 245.1	28 Jul 11 8:00	Eric
Chemical Oxygen Demand	< 5	mg/l	5.0	HACH 8000	1 Aug 11 8:30	Wayne
Calcium - Total	481	mg/l	1.0	6010	3 Aug 11 8:40	Stacy
Magnesium - Total	< 5	mg/l	1.0	6010	3 Aug 11 8:40	Stacy
Sodium - Total	6500	mg/l	1.0	6010	3 Aug 11 8:40	Stacy
Potassium - Total	459	mg/l	1.0	6010	3 Aug 11 8:40	Stacy
Aluminum - Total	1.09	mg/l	0.10	6010	2 Aug 11 9:30	Stacy
Iron - Total	< 1	mg/l	0.10	6010	2 Aug 11 9:30	Stacy
Strontium - Total	66.0	mg/l	0.10	6010	2 Aug 11 9:30	Stacy
Titanium - Total	< 1	mg/l	0.10	6010	2 Aug 11 9:30	Stacy
Boron - Total	5.96	mg/l	0.10	6010	11 Aug 11 8:40	Stacy

RL = Method Reporting Limit

Elevated "Less Than Result" (<): \circledast = Due to sample matrix ! = Due to sample quantity # = Due to sample concentration
+ = Due to extract volume

CERTIFICATION: MN LAB # 038-999-267 ND # ND-00016

MVTL guarantees the accuracy of the analysis done on the sample submitted for testing. It is not possible for MVTL to guarantee that a test result obtained on a particular sample will be the same on any other sample unless all conditions affecting the sample are the same, including sampling by MVTL. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

I.

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 51 West Lincoln Way ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

Page: 2 of 2

Report Date: 8 Sep 11 Lab Number: 11-M2451 Work Order #:81-818 Account #: 013479 Date Sampled: Date Received: 28 Jun 11 9:00 PO #: 131460 OP

Duane Leingang Montana Dakota Utilities PO Box 40 Mandan ND 58554

.

Sample Description: Unit II Sand Ash Sample Site: MDU Heskett

	As Receive Result	ed	Method RL	Method Reference	Date Analyzed	Analyst
Antimony - Total	< 0.002	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Arsenic - Total	0.0822	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Barium - Total	0.0930	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Beryllium - Total	< 0.001	mg/l	0.0010	6020	25 Jul 11 16:18	Claudette
Cadmium - Total	0.00182	mg/l	0.00100	6020	25 Jul 11 16:18	Claudette
Chromium - Total	0.0244	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Cobalt - Total	< 0.002	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Copper - Total	0.1108	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Lead - Total	< 0.002	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Manganese - Total	0.0052	mg/l	0.0010	6020	25 Jul 11 16:18	Claudette
Molybdenum - Total	0.1000	mg/l	0.0020	6020	26 Jul 11 12:46	Claudette
Nickel - Total	0.0136	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Selenium - Total	0.0937	mg/l	0.0020	6020	26 Jul 11 9:46	Claudette
Silver - Total	< 0.001	mg/l	0.0010	6020	25 Jul 11 16:18	Claudette
Thallium - Total	< 0.002	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Tin - Total	< 0.05	mg/l	0.0500	6020	25 Jul 11 16:18	Claudette
Vanadium - Total	0.3026	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Zinc - Total	0.0327	mg/l	0.0100	6020	25 Jul 11 16:18	Claudette
Uranium	< 0.002	mg/l	0.002	6020	25 Jul 11 16:18	Claudette

All analyses were performed on the extract from Method 1312 (SPLP) with a modified solution to solids ratio of 4:1.

Tonde Approved by:

RL = Method Reporting Limit

CERTIFICATION: MN LAB # 038-999-267

Elevated "Less Than Result" (<): @ = Due to sample matrix ! = Due to sample quantity ND # ND-00016

= Due to sample concentration + = Due to extract volume

MVTL guarantees the accuracy of the analysis done on the sample submitted for testing. It is not possible for MVTL to guarantee that a test result obtained on a particular sample will be the same on any other sample unless all conditions affecting the sample are the same, including sampling by MVTL. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

1

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 51 West Lincoln Way ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

Page: 1 of 2

Report Date: 8 Sep 11 Lab Number: 11-M2452 Work Order #:81-818 Account #: 013479 Date Sampled: Date Received: 28 Jun 11 9:00 PO #: 131460 OP

Duane Leingang Montana Dakota Utilities PO Box 40 Mandan ND 58554

Sample Description: Unit I Fly Ash Sample Site: MDU Heskett

	As Receive Result	ed	Method RL	Method Reference	Date Analyzed	Analyst
SPLP Extraction				1312	22 Jul 11	SS
pH	12.9	units	N/A	SM4500 H+ B	22 Jul 11 17:00	Claudette
Specific Conductance	50660	umhos/cm	N/A	SM2510-B	22 Jul 11 17:00	Claudette
Total Suspended Solids	30	mg/l	1	SM2540-D	22 Jul 11 14:00	CLB
Total Alkalinity	7020	mg/l CaCO3	4	SM2320-B	25 Jul 11 17:00	Claudette
Phenolphthalein Alk	6900	mg/l CaCO3	4	SM2320-B	25 Jul 11 17:00	Claudette
Bicarbonate	< 4	mg/l CaCO3	4	SM2320-B	25 Jul 11 17:00	Claudette
Carbonate	240	mg/l CaCO3	4	SM2320-B	25 Jul 11 17:00	Claudette
Hydroxide	6780	mg/l CaCO3	0	SM2320-B	25 Jul 11 17:00	Claudette
Tot Dis Solids (Summation)	42200	mg/l	NA	SM1030-F	3 Aug 11 8:40	Calculated
Total Hardness as CaCO3	1750	mg/l	NA	SM2340-B	3 Aug 11 8:40	Calculated
Hardness in grains/gallon	102	gr/gal	NA	SM2340-B	3 Aug 11 8:40	Calculated
Cation Summation	663	meq/L	NA	SM1030-F	3 Aug 11 8:40	Calculated
Anion Summation	613	meq/L	NA	SM1030-F	28 Jul 11 14:30	Calculated
Percent Error	3,99	8	NA	SM1030-F	3 Aug 11 8:40	Calculated
Sodium Adsorption Ratio	143		NA	USDA 20b	3 Aug 11 8:40	Calculated
Gross Alpha Radiation	Attached	pCi/l			22 Aug 11 2:03	
Radon 222	Attached				28 Jul 11 4:37	
Radium 226	Attached	pCi/l			22 Aug 11 22:20	
Radium 228	Attached	pCi/l			16 Aug 11 16:50	D. J.
Total Organic Carbon	1.5	mg/l	0.5	SM5310-C	1 Aug 11 8:00	
Fluoride	5.60	mg/l	0.10	SM4500-F-C	10 Aug 11 17:00	CLB
Sulfate	22600	mg/l	5.00	ASTM D516-02	27 Jul 11 9:00	KMP
Chloride	53.8	mg/l	1.0	SM4500-Cl-E	27 Jul 11 14:00	KMP
Nitrate-Nitrite as N	0.68	mg/l	0.10	EPA 353.2	28 Jul 11 14:30	KMP
Ammonia-Nitrogen as N	7.22	mg/l	0.10	EPA 350.1	28 Jul 11 10:45	KMP
Phosphorus as P - Total	< 0.1	mg/l	0.10	EPA 365.1	28 Jul 11 13:00	KMP
Mercury - Total	< 0.0002	mg/l	0.0002	EPA 245.1	28 Jul 11 8:00	
Chemical Oxygen Demand	22.4	mg/l	5.0	HACH 8000	1 Aug 11 8:30	-
Calcium - Total	700	mg/l	1.0	6010	3 Aug 11 8:40	
Magnesium - Total	< 25	mg/l	1.0	6010	3 Aug 11 8:40	Stacy
Sodium - Total	14100	mg/l	1.0	6010	3 Aug 11 8:40	
Potassium - Total	580	mg/l	1.0	6010	3 Aug 11 8:40	-
Aluminum - Total	< 5	mg/l	0.10	6010	2 Aug 11 9:30	Stacy
Iron - Total	< 5	mg/l	0.10	6010	2 Aug 11 9:30	-
Strontium - Total	59.5	mg/l	0.10	6010	2 Aug 11 9:30	-
Titanium - Total	< 5	mg/l	0.10	6010	2 Aug 11 9:30	
Boron - Total	1.89	mg/l	0.10	6010	11 Aug 11 8:40	Stacy

RL = Method Reporting Limit

Elevated "Less Than Result" (<): @ = Due to sample matrix ! = Due to sample quantity

= Due to sample concentration
+ = Due to extract volume

CERTIFICATION: MN LAB # 038-999-267 ND # ND-00016

MVTL guarantees the accuracy of the analysis done on the sample submitted for testing. It is not possible for MVTL to guarantee that a test result obtained on a particular sample will be the same on any other sample unless all conditions affecting the sample are the same, including sampling by MVTLi As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 51 West Lincoln Way ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

Page: 2 of 2

Report Date: 8 Sep 11 Lab Number: 11-M2452 Work Order #:81-818 Account #: 013479 Date Sampled: Date Received: 28 Jun 11 9:00 PO #: 131460 OP

Duane Leingang Montana Dakota Utilities PO Box 40 Mandan ND 58554

Sample Description: Unit I Fly Ash Sample Site: MDU Heskett

	As Receiv Result	ed	Method RL	Method Reference	Date Analyzed	Analyst
Antimony - Total	< 0.002	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Arsenic - Total	0.1128	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Barium - Total	0.0906	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Beryllium - Total	< 0.001	mg/l	0.0010	6020	25 Jul 11 16:18	Claudette
Cadmium - Total	0.00244	mg/l	0.00100	6020	25 Jul 11 16:18	Claudette
Chromium - Total	0.0270	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Cobalt - Total	< 0.002	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Copper - Total	0.2934	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Lead - Total	0.0161	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Manganese - Total	0.0102	mg/l	0.0010	6020	25 Jul 11 16:18	Claudette
Molybdenum - Total	0,9246	mg/l	0.0020	6020	26 Jul 11 12:46	
Nickel - Total	0.0175	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Selenium - Total	0.1959	mg/l	0.0020	6020	26 Jul 11 9:46	Claudette
Silver - Total	< 0.001	mg/l	0.0010	6020	25 Jul 11 16:18	Claudette
Thallium - Total	< 0.002	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Tin - Total	< 0.05	mg/l	0.0500	6020	25 Jul 11 16:18	Claudette
Vanadium - Total	0.0158	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Zinc - Total	0.3984	mg/l	0.0100	6020	25 Jul 11 16:18	Claudette
Uranium	< 0.002	mg/l	0.002	6020	25 Jul 11 16:18	Claudette

All analyses were performed on the extract from Method 1312 (SPLP) with a modified solution to solids ratio of 4:1.

Approved by:

Torda

RL = Method Reporting Limit

CERTIFICATION: MN LAB # 038-999-267

Elevated "Less Than Result" (c): @ = Due to sample matrix $\frac{1}{2}$ = Due to sample quantity

ND # ND-00016

= Due to sample concentration
+ = Due to extract volume

MVTL guarantees the accuracy of the analysis done on the sample submitted for testing. It is not possible for MVTL to guarantee that a test result obtained on a particular sample will be the same on any other sample unless all conditions affecting the sample are the same, including sampling by MVTL. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 51 West Lincoln Way ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

1 of 2 Page:

Report Date: 8 Sep 11 Lab Number: 11-M2453 Work Order #:81-818 Account #: 013479 Date Sampled: Date Received: 28 Jun 11 9:00 PO #: 131460 OP

Duane Leingang Montana Dakota Utilities PO Box 40 Mandan ND 58554

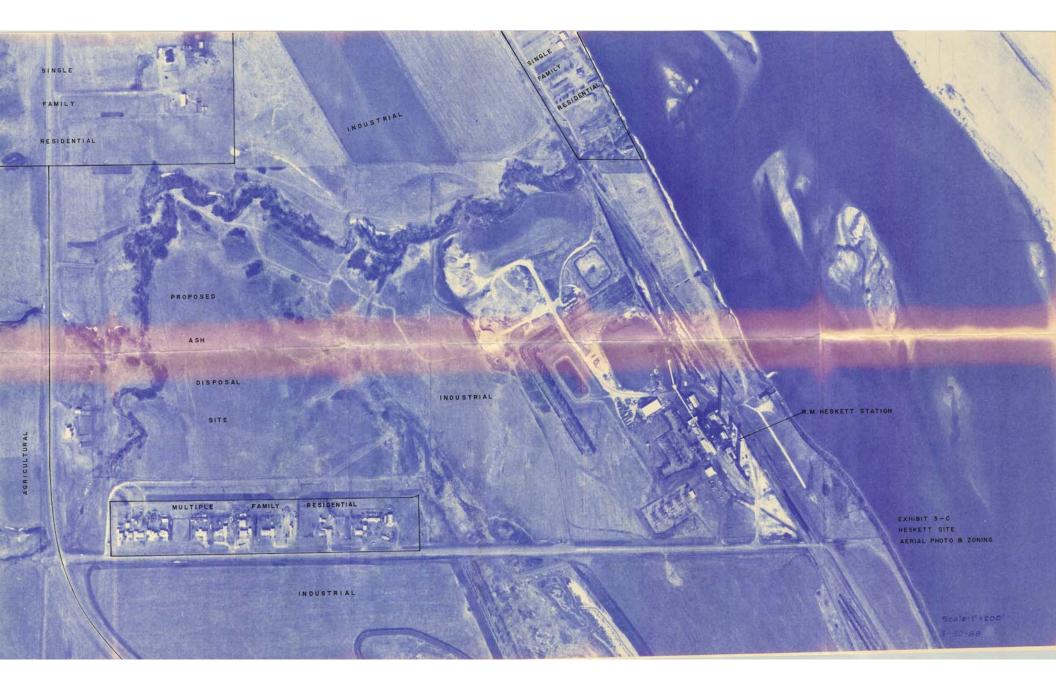
Sample Description: Unit II Fly Ash Sample Site: MDU Heskett

	As Receivo Result	ed	Method RL	Method Reference	Date Analyzed	Analyst
SPLP Extraction				1312	22 Jul 11	SS
рн	12.8	units	N/A	SM4500 H+ B	22 Jul 11 17:00	Claudette
Specific Conductance	27240	umhos/cm	N/A	SM2510-B	22 Jul 11 17:00	Claudette
Total Suspended Solids	13	mg/l	1	SM2540-D	22 Jul 11 14:00	CLB
Total Alkalinity	4570	mg/l CaCO3	4	SM2320-B	22 Jul 11 17:00	Claudette
Phenolphthalein Alk	4520	mg/l CaCO3	4	SM2320-B	22 Jul 11 17:00	Claudette
Bicarbonate	< 4	mg/l CaCO3	4	SM2320-B	22 Jul 11 17:00	Claudette
Carbonate	100	mg/l CaCO3	4	SM2320-B	22 Jul 11 17:00	Claudette
Hydroxide	4470	mg/l CaCO3	0	SM2320-B	22 Jul 11 17:00	Claudette
Tot Dis Solids (Summation)	16000	mg/l	NA	SM1030-F	3 Aug 11 8:40	Calculated
Total Hardness as CaCO3	1960	mg/l	NA	SM2340-B	3 Aug 11 8:40	Calculated
Hardness in grains/gallon	115	gr/gal	NA	SM2340-B	3 Aug 11 8:40	Calculated
Cation Summation	252	meg/L	NA	SM1030-F	9 Aug 11 9:09	Calculated
Anion Summation	247	meq/L	NA	SM1030-F	28 Jul 11 14:30	Calculated
Percent Error	1.00	do	NA	SM1030-F	9 Aug 11 9:09	Calculated
Sodium Adsorption Ratio	46.1		NA	USDA 20b	3 Aug 11 8:40	Calculated
Gross Alpha Radiation	Attached	pCi/l			22 Aug 11 2:03	
Radon 222	Attached				28 Jul 11 4:37	
Radium 226	Attached	pCi/l			22 Aug 11 22:20	
Radium 228	Attached	pCi/l			16 Aug 11 16:50	
Total Organic Carbon	1.6	mg/l	0.5	SM5310-C	1 Aug 11 8:00	Eric
Fluoride	3.60	mg/l	0.10	SM4500-F-C	4 Aug 11 17:00	CLB
Sulfate	7400	mg/l	5.00	ASTM D516-02	27 Jul 11 9:00	KMP
Chloride	66.0	mg/l	1.0	SM4500-Cl-E	27 Jul 11 14:00	KMP
Nitrate-Nitrite as N	0.38	mg/l	0.10	EPA 353.2	28 Jul 11 14:30	KMP
Ammonia-Nitrogen as N	15.0	mg/l	0.10	EPA 350.1	28 Jul 11 10:45	KMP
Phosphorus as P - Total	< 0.1	mg/l	0.10	EPA 365.1	28 Jul 11 13:00	KMP
Mercury - Total	< 0.0002	mg/l	0.0002	EPA 245.1	28 Jul 11 8:00	Eric
Chemical Oxygen Demand	9.4	mg/l	5.0	HACH 8000	1 Aug 11 8:30	Wayne
Calcium - Total	785	mg/l	1.0	6010	3 Aug 11 8:40	Stacy
Magnesium - Total	< 5	mg/l	1.0	6010	3 Aug 11 8:40	Stacy
Sodium - Total	4720	mg/l	1.0	6010	3 Aug 11 8:40	Stacy
Potassium - Total	275	mg/l	1.0	6010	3 Aug 11 8:40	Stacy
Aluminum - Total	< 1	mg/l	0.10	6010	9 Aug 11 9:09	Stacy
Iron - Total	< 1	mg/l	0.10	6010	9 Aug 11 9:09	Stacy
Strontium - Total	85.0	mg/l	0.10	6010	9 Aug 11 9:09	Stacy
Titanium - Total	< 1	mg/l	0.10	6010	9 Aug 11 9:09	Stacy
Boron - Total	< 1	mg/l	0.10	6010	11 Aug 11 8:40	Stacy

RL = Method Reporting Limit

CERTIFICATION: MN LAB # 038-999-267

Elevated "Less Than Result" (<): @ = Due to sample matrix ! = Due to sample quantity


ND # ND-00016

= Due to sample concentration + = Due to extract volume

MVTL guarantees the accuracy of the analysis done on the sample submitted for testing. It is not possible for MVTL to guarantee that a test result obtained on a particular sample will be the same on any other sample unless all conditions affecting the sample are the same, including sampling by MVTL. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

Appendix B

Aerial Photo (March 30, 1988)

Appendix C

Heskett Station Permit Application (March 1989)

R. M. HESKETT STATION

SPECIAL USE DISPOSAL SITE

PERMIT APPLICATION

Montana-Dakota Utilities Co. 400 North 4th Street Bismarck, ND 58501

March 1, 1989

, h

TABLE	0F	CON	TE	NT	S
-------	----	-----	----	----	---

		Page
1.0	INTRODUCTION	1 - 1
2.0	WASTE INFORMATION	
	2.1 Sources of Waste	2 - 1
	2.2 Amounts of Waste Produced	2 - 1
	2.3 Description of Waste	2 - 3
3.0	PROPOSED SPECIAL USE DISPOSAL SITE	
	3.1 Site Location	3 - 1
	3.2 Land Use and Zoning	3 - 1
4.0	AREA DESCRIPTION	
	4.1 Geographical Setting	4 - 1
	4.2 Regional Geology	4 - 1
	4.3 Regional Groundwater	4 - 2
	4.4 Climate	4 - 3
	4.5 Regional Soils	4 - 3
	4.6 Vegetation	4 - 4
5.0	SITE SPECIFIC CHARACTERISTICS	
	5.1 Site Investigation Methods	
	5.1.1 Site Selection Criteria	5 - 1
	5.1.2 Subsurface Borings	5 - 2
	5.1.3 Monitoring Well Construction	5 - 3
	5.1.4 Groundwater Monitoring	5 - 4
	5.2 Site Investigation Results	
	5.2.1 Geology	5 - 4
	5.2.2 Geohydrology	5 - 7
	5.2.3 Hydrogeochemistry	5 - 12
	5.2.4 Chemical Attenuation of Leachate in Soil	5 - 15

ń.

6.0	FACILITY CONSTRUCTION, OPERATION AND CLOSURE	
	6.1 Site Preparation and Construction	
	6.1.1 Access and Preconstruction	6 - 1
	6.1.2 Facility Construction	6 - 2
	6.1.3 Excavated Materials	6 - 5
	6.2 Operation and Management	
	6.2.1 Waste Placement	6 - 6
	6.2.2 Surface Water Management	6 - 7
	6.2.3 Contingencies and Potential Impacts	6 - 9
	6.3 Closure and Reclamation	
	6.3.1 Closure Methods	6 - 11
	6.3.2 Reclamation	6 - 13
	6.3.3 Post-Closure Surface Care	6 - 14
7.0	GROUNDWATER MONITORING	
	7.1 Operational Monitoring	7 - 1
	7.2 Post-Closure Monitoring	7 - 2
	7.3 Quality Assurance and Data Management	7 - 5
8.0	PERMITTING	8 - 1
9.0	SUMMARY	9 - 1
10.0	REFERENCES	10 - 1

Page

.

1)

LIST OF TABLES

n -

		Page
Table 2-1	Annual Ash Generation	2 - 2
Table 5-1	Hydraulic Conductivities and Cation Exchange Capacities	5 - 9
Table 5-2	Single Well Response Tests	5 - 11
Table 7-1	Background Groundwater Quality Analysis Parameters	7 - 3
Table 7-2	Operational Groundwater Quality Analysis Parameters	7 - 4

LIST OF EXHIBITS

		Page
Exhibit 2-A	Waste Leachate Extraction Analyses	2 - 5
Exhibit 3-A	Study Review Area and Final Sites	3 - 3
Exhibit 3-B	Site Plat/Well Sitings	3 - 4
Exhibit 3-C	Aerial Photo and Zoning	3 - 5
Exhibit 4-A	Regional Geologic Formations	4 - 6
Exhibit 5-A	Topography and Borehole/Cross-Section Locations	5 - 19
Exhibit 5-B	Geohydrologic Cross-Section (A-H)	5 - 20
Exhibit 5-C	Well Completion Reports	5 - 21
Exhibit 5-D	Geophysical Logs	5 - 22
Exhibit 5-E	Lithologic Logs	5 - 23
Exhibit 5-F	Site Soils Classification Map	5 - 24
Exhibit 5-G	Water Level Data	5 - 25
Exhibit 5-H	Water Table Elevation Contour Map	5 - 26
Exhibit 5-I	Site Hydrographs	5 - 27
Exhibit 5-J	Groundwater Chemical Analysis	5 - 28
Exhibit 5-K	Hydraulic Conductivities, Cation Exchange	
	Capacities, and Particle Size Analyses	5 - 29
Exhibit 6-A	Existing Conditions and Area Maps	6 - 16
Exhibit 6-B	Phase I Development	6 - 16
Exhibit 6-C	Phase I Closure - Phase II Development	6 - 17
Exhibit 6-D	Final Closure	6 - 17

۷

1.0 INTRODUCTION

This application describes hydrogeologic, constructional, and operational details relevant to the procurement of a Solid Waste Disposal Permit from the State of North Dakota. The characterization data and design specifications contained within this application are based upon results obtained from a 1986 investigation which focused upon selecting a waste disposal site that would be suitable for long-term disposal of coal combustion ash generated at the R.M. Heskett Station. The specific objective was to locate a site that would require minimal engineering design and allow the use of in-situ materials for leachate containment and chemical attenuation. Several localities were considered with one site being selected for a highly detailed geohydrologic evaluation. The proposed ash disposal site is located approximately one-quarter mile west of Heskett Station and 2 miles north of Mandan, ND.

A total of 27 monitoring wells were installed in and around the site. The monitoring of well water levels over a two year period has indicated the presence of a static water table (generally 30-40 feet below the ground surface) which flows in a north-northeasterly direction. Potentiometric levels indicated a substantial downward component of groundwater flow over the entire proposed disposal site.

During the operational phase of ash disposal primary objectives will include the minimization of fugitive dust production and preservation of the area landscape by continual reclamation of ash-filled "trenches". Frequent coverage of the trenches with low permeability earthen materials, in conjunction with in-pit water collection devices and an evaporative liquids treatment system, is expected to reduce highly mineralized leachate generation and its degradation potential to the poor-quality groundwater resource beneath

the facility. The suitability of the disposal setting is further assured by the placement of waste above the historic water table and the construction of a surface water drainage system adjacent to the site. Contingencies have also been identified which would hinder unanticipated increases in water table elevation.

2.1 Sources of Waste

Montana-Dakota Utilities Co. currently operates two lignite-fired electrical generation units at its R. M. Heskett Station. Unit #1, operational since 1954, utilizes a spreader stoker-type steam generator in the production of up to 20,000 Kw/hr of electrical energy. Unit #2 became functional in 1963 with a boiler similar in design to Unit #1. In early 1987, Unit #2 was converted to an atmospheric fluidized bed combustor capable of supporting a turbine capacity of 73,000 Kw/hr. Units #1 and #2 have an anticipated remaining operational life of 20 years and 30 years, respectively. Both units produce fly ash and bottom ash as the mineral residue of lignite combustion.

2.2 Amounts of Waste Produced

Annual ash generation rates from Heskett Station are estimated in Table 2.1. The proposed disposal facility is designed to accomodate the combustion wastes that will be generated throughout the remaining operational life of Unit #1 (175,000 tons or 1.5×10^5 cy) and Unit #2 (1,569,000 tons or 1.4×10^6 cy).

TABLE 2-1

Annual Ash Generation from Units 1 and 2 at R. M. Heskett Station

	F	LY ASH	BOTTOM ASH		SAND 1	
	Tons	Cubic Yards	Tons	Cubic Yards	Tons	Cubic Yards
Unit 1	4035	4000	4737	3500		
Unit 2	25877	25500	10569	7800	15854	11800
Total	29912	29500	15306	11300	15854	11800
Percent (by weig	49 ght)		25		26	
Estimated total weight of ash (with sand) 61,070 tons Estimated total volume of ash (with sand) 52,600 cubic yards						

 $\frac{1}{1}$ Sand is only used within the fluidized bed of Unit #2.

2.3 Description of Waste

All lignite combustion waste produced at Heskett Station will be deposited within the disposal facility in a nonsegregated manner. The combined ash-types differ in color from a light brown to gray-black. Waste texture can vary from a fine, flour-like powder to a distinctly granular consistency. The fluidized bed combustor for Unit #2 utilizes significant amounts of inert sand as a bed matrix. During combustion this sand becomes coated and interspersed with bottom ash slag. Bed sand will be disposed of with the fly ash/bottom ash mixture. The fluidized bed material is visually obvious in the ash mixture due to its uniform granular appearance.

An analysis was performed on the leachate of representative samples of each type of ash waste intended for disposal at the proposed facility. Fly ash and bottom ash samples were collected from Unit #1 ash hoppers during normal operations. Unit #2 fly ash and bottom ash samples were obtained during a "test burn" of Beulah lignite in a scale model fluidized bed steam generation system.

Leachate was extracted from each ash sample using EPA Extraction Procedure Method 1310 (EP Toxicity Test) without pH adjustments (no acetic acid additions). Exhibit 2-A present results of the analytical analysis for both fly ash and bottom ash types. (Because Unit #2 fly ash and bottom ash were collected from a test burn, an EP Toxicity Test was later performed to characterize operational ash samples - these results also appear in Exhibit 2-A.)

The pH of all ash leachates appeared quite alkaline in nature. Fly ashes from Units #1 and #2 contained more alkali than their respective bottom

ashes. Leachate pH was considered an important factor in judging site suitability in that it controls the release of trace elements which are locked in the lattice structures of various mineral phases of lignite combustion residue (Groenewold et al., 1980). Sulfate and sodium concentrations were also higher in the fly ashes when compared to those of the bottom ashes.

Leachate from all ash samples, except Unit #1 bottom ash, contained detectable levels of arsenic, cadmium and lead. Selenium was detected only in the fly ash of both units. Fluoride, iron, magnesium, chloride and boron occurred in both the fly and bottom ash leachate at very low concentrations. Nitrates and other analyzed trace elements were near or below laboratory detection limits.

EXHIBIT 2-A

WASTE LEACHATE EXTRACTION ANALYSES

PHONE (507) 354-8517 Report To:

P.O. BOX 249, CENTER & GERMAN STREETS, NEW ULM, MINNESOTA 56073-0249

07	Montana Dakota Utilities 400 North 4th Street	Date: November 11, 1986
	Bismarck, ND 58501	Work Order # CS-2251
	Attn: John Verwey	Date Received: 9-25-86

Sample Identification: Coarse Ash Hopper, Precipitation Hopper Comp. Unit =1 Unit #I Bottom Ash 7/4 Ash Coarse Precipitation Analyses Ash Hopper Hopper Comp, Total Alkalinity as CaCO3..mg/l.. 414 1.472 Bicarbonate as CaCO3...mo/l.... 161 150 Calcium.....mg/l....... 77.5 95.0 Carbonate as CaCO3 ...mg/1..... 253 1.323 Chloride.....mg/l...... 19.0 23.0 Fluoride.....mg/l..... 0.11 0.22 Hardness as CaCO3...mg/1..... 194 238 Iron.....mo/l...... 0.2 0.2 Manganese....mg/l.... < 0.01 0.01 Magnesium....mg/l...... 0.1 0.1 Nitrate.....mg/1..... < 1.0 < 1.0 11.5 12.6 Potassium....mg/l..... 15.0100 Sodium.....mg/l.... 380 2,200 Specific Conductance micromhos/cm 2,544 15,001 900 6.550 Total Dissolved Solids...mg/l.... 1,357 10,389 Boron.....mg/1..... 0.91 EP TOX Extraction EY acid added.

As a Mulual Protection to Clients, the Public and Ourselves, All Reports if el Submitted as the Confidential Property of Clients and Authorization For Publication of Statements, Conclusions of Extracts From or Reporting Our Reports is Reserved Pending Our Writen Approva

PHONE (50") 354-8517

P.O. BOX 249, CENTER & GERMAN STREETS, NEW ULM, MINNESOTA 56073-0249

Report To:Montana Dakota UtilitiesDate:November 11, 1986400 North 4th Street
Bismarck, ND 58501Work Order # C5-2251Attn:John VerweyDate Received: 9-25-86

Sample Identification: Coarse Ash Hopper, Precipitation Hopper Comp.

		Bottem As	L 71y AsL Precipitation
	Analvses		Hopper Comp.
	Arsenicmg/l	< 0.002	0.070
	Bariummg/l	< 0.5	< 0.5
5	Cadmiummg/l	< 0.01	0.02
	Chromiymmg/l	< 0.05	< 0.05
	Leadmg/l	< 0.10	0.40
	Mercurymg/l	< 0.002	< 0.002
	Seleniummg/l	< 0.003	0.003
	Silvermg/l	< 0.05	< 0.05
	Molybdenummg/l	< 0.50	< 0.50

EP-TOX Extraction no acid added

EΥ

As a Mutual Protection to Clients, the Public and Ourserves, All Reports are Submitted as the Confidential Property of Clients and Authorization. For Publication of Statements, Conclusions of Extracts, From or Reparding, Our Reports is Reserved Pending, Our Written Approval.

PHONE (507) 354-8517 Report To:

P.O. BOX 249, CENTER & GE	RMAN STREET	TS, NEW ULM, MI	NNESOTA 56073-0249
Montana Dakota Utilities	Date:	November	11 1004
400 North 4th Street		 Complete States (2011) 	T 7 8 T 100
Bismarck, ND 58501	Work D	rdor # Co	

Work Order # CS-2251

Attn: John Verwey

Date Received: 9-25-86

Sample Identification: Bed Ash, Bag House Unit #2 Bottom Ash

Unit #2 - Fly Ash

Anelvses -----

Bed Ash

Bao House

	Total Alkalinity as CaCO3mg/l		173		578
	Bicarbonate as CaCO3mg/l		69.0		80.5
	Calciummg/l		570		105
	Carbonate as CaCO3mg/l		103.5		517.5
)	Chloridemg/l		5.0		21.0
	Fluoridemg/l	\leq	0.10		0.27
	Hardness as CaCOJmg/l		1,429		263
	Ironmg/l		0.2		O. 1
	Manganesemg/l	<	0.01	<	0.01
	Magnesiummg/l		1.4		0.1
	Nitratemg/l	<	1.0	<	1.0
	рН		10.7		11.7
	Potassiummg/l		40.0		100
	Sodiummg/l		1,200		2,350
	Specific Conductance micromhos/cm		7,066		10,870
	Sulfatemg/l		4,300		6,160
	Total Dissolved Solidsmg/l		5,774		8,324
	Boronmg/l		.20	./ .	1.7A
EP	TOX Extraction		anno	Koto	Lecky
10 0	reid added BY		yound		

As a Mutual Protection to Clients, the Public and Ourselves. At Reports are submitted as the Confidential Property of Clients and Authorization. For Publication of Statements, Conclusions or Extracts, From or Regardle, Gur Reports is Reserved Pending, Our Written Approval.

PHONE (50") 354-8517

P.O. BOX 249, CENTER & GERMAN STREETS, NEW ULM, MINNESOTA 56073-0249

Report To: Montana Dakota Utilities 400 North 4th Street Bismarck. ND 58501

Attn: John Verwey

Date: November 11, 1986 Work Order # CS-2251 Date Received: 9-25-86

Secole Identification: Bed Ash. Bag House

Unit #2 Bottom Ash

Bed Ash

- Fly Ash

Bag House

Analyses

Arsenicmg/l	0.155	0.045
Bariummg/l.ev	< 0.5	< 0.5
Cadmiummg/l	0.02	0.03
Chromiummg/l	< 0.05	< 0.05
Leadmg/l	0,35	0.25
Mercury	< 0.002	< 0.002
Seleniummg/l	< 0.003	0.004
Silvermg/l	< 0.05	< 0.05
Molybdenummg/l	< 0.50	< 0.50

EP TOR Extraction no acid added

prome Kotelec BY---

MINNESOTA VALLEY and - Withing LABORATORIES, Inc.

PHONE (507) 354-8517

10 Brede

P.O. BOX 249, CENTER & GERMAN STREETS, NEW ULM, MINNESOTA 56073-0249

Report To: Montana Dakato Utilities Co. Attn: Gene Brown P.O. Box 40 Mandan, ND 58554

Malace in

Date: November 18, 1987

Work Order # 12-2237

Date Received: 9-29-87

Sample Identification: EPA Toxicity

Unit # 2 Gottom all

Analysis	4	638
Arsenicmg/L		0.004
Bariummg/L	<	0.1
Cadmiummg/L	<	0.05
Chromiummg/L	alaite Streets	Q.14
Leadmg/L	<	0.100
Mercurymg/L		E000.0
Seleniummg/L	<	E00.0
Silvermg/L	$\frac{1}{2}$	0.04

al and weather

David A Diamon

MVTL guarantees the accuracy of the analysis done on the sample substitue? (a testing, it is not possible for MVTL to guarantee that a test result obtained on a particular sample will be the same on any other sample unless all conditions affecting the sample are the same, including sampling by MVTL. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

ENERGY LABORATORIES, INC.

P.O. BOX 30916 + 1107 SOUTH BROADWAY + BILLINGS, MT 59107-0916 + PHONE (406) 252-6325

LABORATORY REPORT

To:

(1)

Lab No.: 87-7859 Date: 7/24/87 pjf

Mineral Specialities Address: P.O. Box 1563 Billings, Montana 59103 ATTN: Jerry Vollmer

EP TOXICITY ANALYSIS - Fly Ash . thit 2

Heskett Plant, North Dakota Submitted 6/26/87

Extraction and analysis performed according to SW-846, Test Methods for Evaluating Solid Waste.

CONSTITUENT

mg/l in extract

Arsenic	<0.5
Barium	<10
Cadmium	<0.1
Chromium	<0.5
Lead	<0.5
Mercury	
Selenium	
Silver	<0.5

Post-it [®] Fax Note 7671	Date 413 # of pages
To alan Welte	From Andrea
Co./Dept.	Co.
Phone #	Phone #
Fax #	Fax #

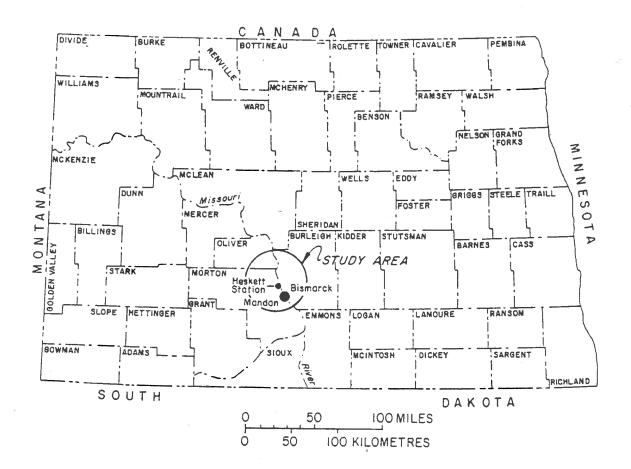
3.1 Site Location

The R. M. Heskett Station is located in Morton County approximately two miles north of Mandan, ND. Disposal facility siting began by reviewing existing published geologic and hydrologic data to preliminarily identify potential sites within a 20 mile radius of Heskett Station. Five candidate sites were chosen and field evaluated. Two sites were determined as meriting further characterization and were comparatively examined in detail (Exhibit 3-A). Hydrologic, lithologic, aesthetic, economic, land use, and safety considerations indicated that the Heskett Site would prove best suited for the proposed disposal facility.

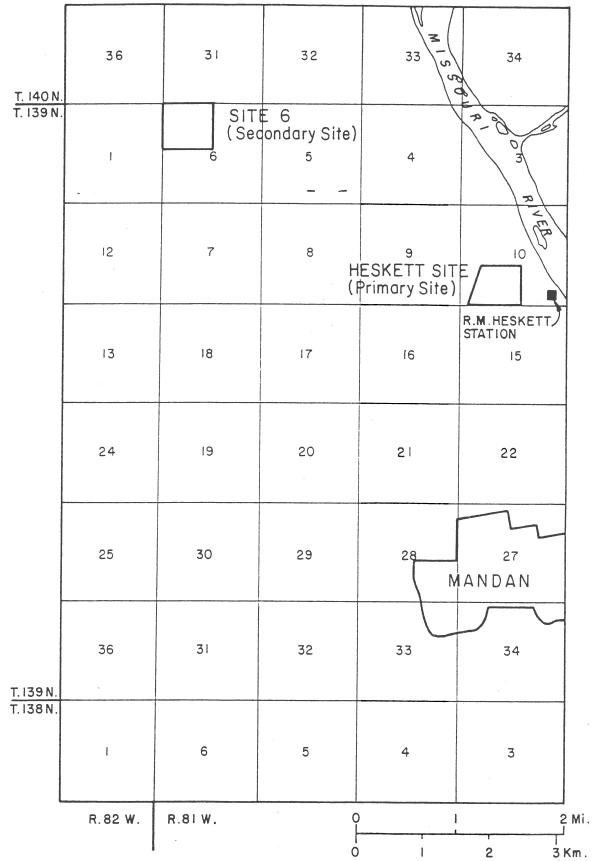
The Heskett Site is located east of Highway No. 1806 and approximately one-half mile west of Heskett Station. The site covers 47 acres of the SW1/4 of Section 10, Range 81 West, Township 139 North and is bound on the west and north by Rock Haven Creek, east by Heskett Station and the existing ash storage pile, and on the south by 43rd Street Northeast. Industrial property belonging to the Amoco Oil Refinery lies directly to the south of 43rd Street Northeast. Scattered residential housing lies adjacent to the north, west, and south of Heskett Site.

3.2 Land Use and Zoning

Heskett Site is currently owned by Montana-Dakota Utilities Co. and holds an industrial zoning designation. A plat of the site appears in Exhibit 3-B along with monitoring well location/elevation information. An examination


of Exhibits 3-B and 3-C indicates area land use to be primarily of an industrial and agricultural nature. The site itself is native grassland previously used for grazing livestock. Flat farmlands extend to the north while hilly pasture predominates to the west of Highway No. 1806. Level cropland and wildlife sanctuary exists on Amoco Refinery property south of 43rd Street Northeast.

Several family dwellings exist to the south and west of the Heskett Site. Other dwellings are scattered singly and in groups throughout the surrounding area. Because of the close proximity of some residences to the proposed facility, certain features will be incorporated into the design which will preserve the landscape by presenting line-of-site obstructions from the south and, if needed, west and north.


EXHIBIT 3-A

STUDY REVIEW AREA AND FINAL SITES

Study Review Area

Study Area - Final Sites

EXHIBIT 3-B

SITE PLAT/WELL SITINGS

EXHIBIT 3-C

AERIAL PHOTO AND ZONING

4.1 Geographical Setting

The disposal area is located entirely within the Missouri Plateau of the Great Plains Physiographic Province. Characterized by plains and gently sloping hills, the landscape is interrupted by isolated tablelands and river valleys entrenched 200 to 400 feet (Ackerman, 1980). Surface altitudes generally increase towards the west.

The Heskett site is a relatively flat area bounded on the west and north by an ephemeral stream (Rock Haven Creek) which supports a small shrub/ woodlands community. Rock Haven Creek drains a small hilly area of approximately 2.4 square miles to the west of the site. Discharge is made directly into the Missouri River. No surface water flow gauging has ever been done at Rock Haven Creek. The North Dakota State Water Commission estimated annual flow of at least 50 acre-feet for every 80 years out of 100. One hundred acre feet of flow can be expected for 50 years out of 100.

4.2 Regional Geology

The Tertiary Cannonball Formation underlies the entire Heskett site and lies stratigraphically under several other regional formations (Exhibit 4-A). The Cannonball Formation crops out over a large portion of eastern Morton County. The bluffs along the Missouri River north of Mandan near Heskett Station are resultant from these outcrops.

The Cannonball Formation is characterized by deposits of sand, silt and clay. The beds within this formation are generally unconsolidated and tend to weather rapidly. Some of the sand units are partially cemented and are resistant to erosion. The resistant units often form benches along eroded

drainages (Carlson, 1983). Cvancara (1976) points out another characteristic of the Cannonball Formation; lack of persistent lithostratigraphic units or beds. The units are often truncated because most bedding within this formation is lenticular.

The Cretaceous and Tertiary rocks in this portion of North Dakota generally dip toward the center of the Williston Basin. Reported dips of the Cannonball Formation in the Bismarck-Mandan area are generally less than 1° and trend toward the northwest. Local irregularities in dip direction and magnitude are common in the Cannonball Formation. These minor variations are caused by small synclines and anticlines which are superimposed on the larger structure of the basin (Kume and Hansen, 1965). These small anomalies may often be responsible for local irregularities in groundwater flow direction and magnitude.

4.3 Regional Groundwater

The Cannonball Formation interfingers with its continental equivalent, the Ludlow Formation. The two formations are contemporary with deposition of the Cannonball occurring in a marine environment and deposition of the Ludlow occurring in a fresh water environment.

Aquifers within these formations are generally found in fine grained sandstones. Such units range from 5 to 129 feet thick and contain from 5 to 40 percent silt and clay. Lateral extensiveness is typically lacking. Core samples from these aquifers possess hydraulic conductivities ranging 2.9 X 10^{-3} cm sec⁻¹ to 1.5 X 10^{-5} cm sec⁻¹ (Ackerman, 1980). General groundwater movement is to the east or northeast with major discharge areas occurring in the valleys of the Missouri River, Heart River, and Big Muddy Creek.

Ackerman (1980) further states that the Cannonball and Ludlow Formation aquifers maybe in hydraulic connection with adjacent glacial drift aquifers. Area groundwater is generally of a sodium bicarbonate or sodium bicarbonatesulfate type. Such waters are usually of poor quality for domestic usage because of high sulfate concentrations and excessive levels of total dissolved solids.

4.4 Climate

The climate of the Heskett site is semiarid with widely ranging seasonal temperatures. Summer temperatures may exceed $100^{\circ}F$ (38°C) while winter temperatures may drop below $-40^{\circ}F$ ($-40^{\circ}C$). The mean average annual temperature at Mandan, ND is $41.4^{\circ}F$ ($5.2^{\circ}C$) with average annual precipitation being 16.8 inches (42.6 cm). Approximately 60 percent of the annual precipitation (10 inches) occurs as rain during a four month period beginning in April and extending through July (U.S. Department of Commerce, 1973).

There are on the average about 125 frost-free days in this region of North Dakota. The mean depth of frost penetration is 4.5 feet (1.4 m). Extremely cold winters may occasionally allow frost to penetrate up to a depth of 7.0 feet (2.1 m) (Jensen, 1984).

The prevailing wind in the Bismarck-Mandan area is from the westnorthwest with a mean velocity of 10 mph (16.1 km/hr). Winds are generally stronger in the spring and early summer as opposed to the fall and winter (Jensen, 1984).

4.5 Regional Soils

Regional near-surface materials are soils which have developed from climatic and biotic interactions with poorly consolidated sand, silt, and clay

of the Upper Cretaceous and Tertiary Formations. Glacial till appears preserved on some upland surfaces and lowland alluviums (Carlson, 1983).

Area hills have moderately steep slopes and typically have well entrenched dendritic drainageways. Patterson, et al. (1968) stated that the Bainville and Morton soil series dominate the smoothly rounded hills west of the proposed site. These soils appear on slopes of 2 to 30 percent and are well to excessively drained. Both soils, being derived from weathered mediumtextured beds of the Tertiary period, tend to be loamy with high water holding capacities and somewhat limited permeabilities. Morton soils comprise 35 to 50 percent of the immediate area and are often used for cropland. Bainville soils cover 40 to 55 percent of area acreage and, being susceptible to water erosion hazards, are commonly used for pasturage.

Adjacent to the Heskett site lies the floodplain of the Missouri River. Alluvial Havre soils overlay medium-textured sediments and dominate 60 to 85 percent of the nearly level floodplain. Havre soils, with their moderate permeability and high water-holding capacities, are extensively utilized for croplands and pasturage. Well-drained Banks and Lohmiller soils each comprise 5 to 15 percent of the slightly elevated ridges and flats associated with the Missouri River floodplain (Patterson, et al., 1968).

4.6 Vegetation

The principle natural vegetative community in the study area is the mixed-grass prairie dominated by short grasses. Edwards and Ableiter (1936) stated that the smooth heavy soils of the uplands support substantial growths of western wheatgrass (<u>Agropyron smithii</u>) and needlegrass (<u>Stipa comata</u>). Little bluestem (Andropogon scoparius) commonly grows on exposed knobs and

steep slopes. Sedges, weeds, and cattails are typical of the poorly drained areas.

Natural forests are confined to bottomlands and along large streams and drainageways. Steep-sided gullies, especially those with northern exposures, contain ash (Fraxinus lanceolata), elm (Ulmus americana), aspen (Populus tremuloides), and oak (Quercus macrocarpa). The Missouri River floodplain contains significant natural stands of cottonwood trees (Populus deltoides). Also present are occasional occurrences of thicket-type woody vegetative communities dominated by buffaloberry (Shepherdia argentea). Such thickets are common in or near "woody draws" and bottomlands but seldom cover large surface expanses.

EXHIBIT 4-A

REGIONAL GEOLOGIC FORMATIONS

Regional Geologic Formations

ERA	SYSTEM	FORMATION OR GROUP		THICKNESS (FEET)	LITHOLOGY
CENOZOIC	QUATERNARY	ALLUVIUM		0-30	SILT, SAND AND GRAVEL
		COLEHARBOR		0-300	TILL, GRAVEL AND SAND
	TERTIARY	FORT UNION GROUP	GOLDEN VALLEY	0-60	SILT, CLAY AND SANDSTONE
			SENTINEL BUTTE	0-700	SILT, CLAY, SAND AND LIGNITE
			BULLION CREEK	0-500	SILT, CLAY, SAND AND LIGNITE
			SLOPE	0-60	SILT, CLAY, SAND AND LIGNITE
			CANNONBALL	0-300	SILT, CLAY AND SAND
			LUDLOW	0-200	SILT, CLAY, SAND AND LIGNITE

5.1 Site Investigation Methods

5.1.1 Site Selection Criteria

A primary concern involved the location and development of a site which would have near-surface (upper 30 feet) in-situ materials possessing characteristics similar to those of clay liner material. Relatively level near-surface sediments characterized by high clay and silt content were considered desirable. Because such materials typically transmit groundwater at slow rates, the migration of leachate into usable subsurface water supplies would be severely hindered. Another consideration was the chemical attenuation capabilities of the subsurface geologic materials. Clay and silt have been reported to generally have higher chemical attenuation capabilities than do other sediments, thereby making their presence desirable for many waste disposal settings. (Drever, 1982).

Selection of potential site areas larger than 1 square mile were based solely upon existing available data. A database was constructed which included published information from county geologic and groundwater investigative reports, soil survey reports, and water well drilling reports submitted to the North Dakota State Water Commission (NDSWC) by private contractors. Topographic maps and county zoning maps were also reviewed.

Five candidate sites were selected based upon geologic, geomorphic, and hydrologic data evaluations. Limited surficial investigations (including soil borings) were then conducted at each of the five sites. The position of the water table was very important in defining an acceptable site. Only those

sites with water tables more than 25 feet below a relatively level ground surface were considered.

Selection of two final sites were based on lithology, transport distance, road limitations, topography, and apparent depth to groundwater. Boreholes were drilled at each of the sites (maximum drilled depth was 120 feet) and lithologic/hydrologic/geophysical information recorded. Review of this information indicated that the final candidate sites had very similar geologic and hydrologic characteristics. Economics of site development, local zoning conditions, land use, transportation safety, facility access, and operational monitoring factors strongly suggested that the Heskett site was the most suitable disposal facility location.

5.1.2 Subsurface Borings

Boreholes were drilled by either a Portadrill 524 or a Denver-Gardner Heavy Duty 1000. All borings were air drilled (without the addition of drilling fluids) to reduce contaminations to groundwater. Drilling conditions for each bore hole are presented in Exhibit 5-C. Samples were collected at 5-foot intervals or at occurrences of lithologic change.

A total of 27 observation wells were installed at the Heskett site with twelve of the boreholes developed into water table monitoring wells and 15 developed as piezometers. The location of the various observation wells are shown in Exhibit 5-A. Additional information on area hydrogeochemistry was obtained from 9 wells (identified in this report as monitoring wells WS1, WS1A, WS1B, WS2, WS3, WS3A, WS4, WS4A, and WS4B) that were installed during a previous groundwater investigation which was conducted around the ash waste pile immediately east of the proposed facility (Armstrong and Schmid, 1986).

The observation wells were installed in nests of 2 to 4 single wells screened at differing elevations. Nine separate piezometer nests were installed over the Heskett study area. The deepest well in each nest was geophysically and lithologically logged (Exhibits 5-D and 5-E, respectively). A typical nest contained one water table monitoring well and two piezometers screened at different elevations.

5.1.3 Monitoring Well Construction

Monitoring wells were constructed of two-inch schedule 40 PVC pipe with screened lengths of either 4 or 20 feet. The 20-foot screened sections were installed to monitor the elevation of the water table and for water quality sampling. The 4-foot screened sections were primarily installed to monitor hydraulic head. A factory slotted size of 1 X .020 inches was used for all well screens.

A filter sand pack was placed around the screened portion of each well after the pipe was lowered into the bore hole. Washed quartz sand was packed with the use of packing poles to a height of two feet above the top of the screened interval. Before sampling was conducted each well was developed twice by backwash and mechanical surge methods.

After the sand pack was complete, sealing grout was slurried down the annulus between the bore hole and the PVC pipe. The grout seal was continued to the land surface where a two-foot diameter grout pad was constructed around each monitoring well. The monitoring wells were capped with threaded male PVC cap adapters and assigned unique well numbers.

The water level measuring reference point for the wells was the top of the PVC well pipe. Well locations and elevations can be seen on Exhibits 3-B and 5-A. Well construction data are presented in Exhibit 5-C.

5.1.4 Groundwater Monitoring

Water levels were monitored periodically during and after the course of the formal characterization study. Water level information, as determined with an electric-contact gauge tape, appears in Exhibit 5-G.

Each well was purged prior to sampling by removing at least 3 well volumes of standing water or until dry, which ever occurred first. The wells were purged with either a stainless steel and teflon mechanical two-inch submersible pump or a 1.25 inch hand bailer. All well groundwater samples were collected with a hand bailer in accordance with the Environmental Protection Agency's publication 600/4-82-029, "Handbook for Sampling and Sample Preservation of Water and Waste Water" (US EPA, 1982). Immediately after the samples were collected field pH, specific conductance and temperature were measured and recorded.

Samples were collected and preserved for major ion analysis and for trace element determinations. Other samples were collected from select wells for oil, grease, and phenol analyses. Site characterization study samples (collected in 1986) were transported to the University of North Dakota's Mining and Mineral Resources Research Institute's Fuels Analysis Laboratory for chemical analysis. Additional follow-up sampling and chemical analysis was performed in 1988 by Minnesota Valley Testing Labs of Bismarck, ND.

5.2 Site Investigation Results

5.2.1 Geology

Lithologic and geophysical logs of the wells drilled at this site indicated that at least the upper most 100 feet of subsurface material lies

within the Cannonball Formation. Consequently, the proposed Heskett waste disposal facility would be constructed completely within the Cannonball Formation. The Ludlow Formation may appear subsurface of the Heskett site study area below an elevation of 1605 feet above mean sea level (MSL). However, only the deepest bore holes penetrated to this elevation and geophysical logs from these wells do not provide any indication of contact between the two formations.

An existing topographic reference map (with well locations and crosssection locations) is provided in Exhibit 5-A. A series of eight geohydrologic cross-sections of the proposed Heskett disposal site are provided in Exhibit 5-B. Each cross-section includes topography (exaggerated 10 times), dominant lithologies, observation well locations, potentiometric levels and water table position as of October, 1986.

The Heskett Site consists of unconsolidated silt and clay with lesser amounts of very fine to medium-grained sand (lithologic log, Exhibit 5-E). The sand is generally found interspersed in a matrix of silt and clay; however, it sometimes occurs as distinct lenses which range in depth from 0.5 inches to 1 foot. The thin sand lenses are not horizontally persistent. Small gypsum crystals occur throughout the upper 30 feet of the site. These gypsum crystals are presumed to be the result of diagenetic processes which occur above the water table during alternate wetting and drying cycles (Groenewold et al., 1983).

The dominant lithology of the site is silt which commonly occurs in a clay-rich matrix. Above an elevation of 1695 feet MSL the clayey-silt is generally brownish-tan in color with grain coatings and mottling of iron-oxides. Below this elevation the color changes to steel-gray with the iron

compounds existing in the reduced state. The reduced/oxidized boundary is well defined over the site by the color change described above and corresponds with the elevation of the water table.

The uppermost indurated unit encounter beneath the proposed disposal area is a siltstone bed occurring between the elevations of 1625 feet and 1635 feet MSL. This is the most laterally continuous and persistent unit found at the Heskett site.

A thin veneer of till is present in small patches throughout the Heskett study area. This till, along with all glacial material in North Dakota, has been grouped within the Coleharbor Formation (Bluemle, 1971). The till of the Heskett study area is less than 2 feet thick and is of a pebbleloam nature. Other evidence of glaciation includes the presence of several large boulders, less than 3 feet in diameter, which were derived from the Canadian Shield.

The glacial sediments indicate that glacial ice covered the study area during the Pleistocene Epoch. Horizontal sheet fracturing may have developed within the surficial bedrock formations, including the Cannonball Formation, as this glacial ice ablated. The fracturing of these sediments might promote secondary porosity and be responsible for the relatively large groundwater flow volumes encountered within the silts and clays beneath the Heskett site study area.

The soils across the proposed Heskett ash disposal area (Exhibit 5-F) are generally well developed. Edwards and Ableiter (1936) classified upland soils of the site as Hall series silt-loam. The soil is very silty with abundant clay and minor amounts of fine-grained sand. Internal drainage is generally good and surface drainage is sufficient. Most site soils are

approximately 1 foot thick with the upper 6 to 8 inches appearing very dark due to abundant organic matter. The soil becomes lighter in color 8 inches below the soil surface. All soils at the Heskett site are calcareous and freely effervesces with dilute hydrochloric acid.

5.2.2 Geohydrology

Exhibit 5-H illustrates the water table elevation contour of the Heskett site as of October 16, 1986. Because periodic well measurements over two years indicated relatively static potentiometric levels, the described elevation of the water table is considered representative. Water levels of all of the Heskett Site wells are given in Exhibit 5-G. Hydrographs of select piezometer nests appear in Exhibit 5-I.

The shallow groundwater beneath the proposed facility is flowing generally towards the northeast. Local variations do exist and can be attributed to the heterogeneous nature of the lithologies of the Cannonball Formation along with the undulating surface topography of the site. Surface topography appears to exert the most profound effect on groundwater flow with water table elevation mimicking the surface topography. As the groundwater approaches Rock Haven Creek it begins to take a more easterly path following the down-cut gradient of this creek into the Missouri River.

The groundwater flow beneath the base of a small draw, which extends to the north and slightly west from the south-central border of Section 10 to its intersection with the Rock Haven Creek, is nearly directly north. This groundater flow is strongly influenced by the surficial topography which also dips toward the north. Industrial surface water holding ponds located on Amoco

refinery property south of the proposed site occasionally provides surface discharge into this draw. Running and ponded water resultant from these discharges as well as area ground surface runoff are frequently evident on MDU property just north of 43rd Street Northeast.

Morton County often experiences a drop in the elevation of the water table during the winter months due to a lack of recharge (Groenewold, et at., 1979 and 1983). Hydrographs (Exhibit 5-I) developed from two years of accumulated site potentiometric data indicate little apparent seasonal effect. An overall potentiometric level drop can be noted during the drought year of 1988. The data also indicated that the groundwater is flowing strongly downward. Thus, it can be expected that water will not be entering the proposed disposal pit from beneath the site.

Six subsurface lithologic intervals were sampled from in and near the proposed ash disposal site and laboratory tested to determine certain physical/ chemical properties. Table 5-1 summarizes the results of cation exchange capacity and hydraulic conductivity testing for these samples (See Exhibit 5-K for greater detail). Data obtained from such lab permeability testing should be considered representative only of the point of sampling. Samples are often modified, in terms of hydraulic conductivity, during well drilling and sample collection. Minor subsurface fracturing might not be preserved in the laboratory. However, these data are useful in estimating flow rates through interstices in the subsurface geologic media and in situations where in-situ sediments will be modified by compaction to reduce secondary permeability.

Single-well response tests performed on select Heskett site wells (wells 11, 20, 31, 41 and 43) show greater in-situ permeabilities than the falling-head lab permeabilities of wells screened in the same sediments.

TABLE 5-1

Well Number Sample Depth (ft) Type of Sample	60 20-40 Bag	WS2 29-30 Core	WS2 61-62 Core
Permeability K @ 20°C (cm/sec) K @ 20°C (ft/min)	2.0 X 10-7 4.0 X 10-7	2.7 X 10-9 5.4 X 10-9	3.6 X 10 ⁻⁸ 7.1 X 10 ⁻⁸
Cation Exchange Cap. (meq/100 grams)		92.2	12.0
Well Number Sample Depth (ft) Type of Sample	WS1 20-21 Core	WS1 25-26 Core	WS1 30-31 Core
Permeability K @ 20°C (cm/sec) K @ 20°C (ft/min)	2.6 X 10 ⁻⁸ 5.2 X 10 ⁻⁸	1.5 X 10 ⁻⁸ 2.9 X 10 ⁻⁸	1.7 X 10 ⁻⁸ 3.4 X 10 ⁻⁸
Cation Exchange Cap. (meq/100 grams)	71.8	12.3	74.2

Hydraulic Conductivities and Cation Exchange Capacities

WS - Refers to wells installed and sampled during a previous groundwater investigation around the coal ash waste pile at Heskett Station. This study was conducted by Water Supply, Incorporated. These slug tests provide estimates of permeability over the screened 4-foot interval. Results, which appear in Table 5-2, show that wells 11 and 31 have the lowest permeabilities of the wells tested with values on the order of $K = 10^{-5}$ cm sec⁻¹. Higher conductivities were encountered in wells 20, 41 and 43 with values approximating $K = 10^{-4}$ cm sec⁻¹.

TABLE 5-2

Single Well Response Tests

Well	Permeability	Screen Depth (MSL)
11	$3.78 \times 10^{-5} \text{ cm sec}^{-1}$	1642.81 - 1646.81
20	6.57 X 10 ⁻⁴ cm sec ⁻¹	1627.48 - 1631.48
31	$2.84 \times 10^{-5} \text{ cm sec}^{-1}$	1635.58 - 1639.58
41	4.12 X 10^{-4} cm sec ⁻¹	1626.77 - 1630.77
43	5.07 X 10^{-4} cm sec ⁻¹	1650.14 - 1654.14

Reference: Freeze, R. A., and Cherry, J. A., 1979., Groundwater: Chapter 8.5, pgs. 339-342, Prentice-Hall Inc., Englewood Cliffs, NJ.

5.2.3 Hydrogeochemistry

Results of the site groundwater characterizations are shown in Exhibit 5-J. Analysis of samples collected in 1986 from wells 10-70 were conducted by the Mining and Mineral Resources Research Institute's Fuels Analysis Laboratory at the University of North Dakota. Supplemental sampling was conducted in 1988 by Minnesota Valley Testing Labs of Bismarck, ND. All samples were analyzed in accordance with EPA publication 600/4-79-020, "Methods for Chemical Analysis of Water and Wastes" (U.S. EPA, 1979).

The quality of the shallow (less than 120 feet below the land surface) groundwater at the proposed Heskett disposal site was found to be quite poor. Similar groundwater quality has been reported in other shallow wells within the Cannonball Formation (Ackerman, 1977 and 1980). Large quantities of salts and soluble mineral phases were deposited along with the sediments of the Cannonball. These materials dissociate as undersaturated interstitial groundwater flows through the formation. The ultimate quality of the water depends on the solubility of the geologic media and saturation condition of the groundwater which flows through it. Soluble constituents of the shallow groundwater at the Heskett site, as is characteristic of other Cannonball Formation wells, are high or very high relative to water in other aquifers in the area. Without pretreatment such groundwater is generally considered to be unfit for consumption by humans and livestock. Most of the local domestic wells tap either the underlying Hell Creek or the Fox Hills aquifers which possess waters with qualities far superior to that of the Cannonball.

An examination of the 1986 data appearing in Exhibit 5-J shows that the specific conductance and pH of wells sampled at the Heskett site are within the range of what has been reported as characteristic of the Cannonball Formation. Well 70 is located upgradient from known industrial influences and

can be considered representative of background groundwater quality at the site. Chemical analyses indicate that water within wells 60 and 70 have the highest specific conductance of all monitored wells.

Total dissolved solids (TDS) concentrations show the shallow groundwater at the Heskett site to be highly mineralized, ranging from 1,286 mg/L in well 30 to 14,917 mg/L in well 60. Wells screened within the Cannonball Formation commonly have TDS concentrations ranging from 1,000 to 3,000 mg/L (Ackerman, 1980).

Wells finished within the Cannonball Formation typically have sodium concentrations ranging from 500 mg/L to 1000 mg/L (Ackerman, 1977 and 1980). Sodium levels of wells 10, 12, 55 and 70 were well above these levels. Sulfate concentrations were highest in wells 44, 55, 60 and 70 with observed maximum occurring in well 60 (11,632 mg/L). Sodium, TDS and sulfate concentrations indicated that extremely saline pockets of groundwater exist at the southwestern (near wells 70, 10-13, and 60-62) and east-central (near wells 55 and 56) borders of the Heskett study area.

Chloride, potassium, iron, and fluoride concentrations were generally within the expected range of concentrations for wells finished within the Cannonball Formation. However, potassium was slightly elevated in wells 44 and 60 where it reached concentrations of 51 mg/L and 41 mg/L, respectively.

Nitrate concentrations were found to be erratic over the Heskett site. Wells 55 and 60 contain the highest nitrate levels with 154 mg/L and 170 mg/L, respectively. The drinking water standard (provided in Exhibit 5-J for reference purposes) for nitrate (NO_3^-) is currently set at 45 mg/L. The elevated nitrate concentrations in wells 50, 52, 55 and 60 would tend to indicate contamination from biological sources. Domestic sewage drainfields are known to exist near the center of the south border of the proposed disposal site in the vicinity of wells 43 and 44. It is believed that these sources contribute at least a portion of the observed elevated nitrate concentrations.

Selenium is a common naturally-occurring element in sediments, especially in shale and clay (Freeze and Cherry, 1979). Wells 55 and 60 had the highest concentrations with 0.368 mg/L and 0.195 mg/L, respectively. The levels observed in these two wells are above levels common to groundwater systems which contain shale and dissolved selenium. Indeed, these levels approach 100 times the concentration observed in groundwater taken elsewhere from the Cannonball Formation (Ackerman, 1977).

Molybdenum was detected at reduced concentrations in wells 10, 32, 54 and 70. Water Supply Incorporated (WS), in their previous groundwater investigation concerning the currently operational Heskett ash pile, noted concentrations of molybdenum in well WS4 similar to those observed in this study in wells 10, 54 and 70. Well WS4 was at the time noted for increasing molybdenum levels with the greatest concentration reaching 0.11 mg/L on September 11, 1985 (Armstrong and Schmid, 1986). Further groundwater monitoring has shown that after this finding molybdenum levels then dropped below analytical detection limits. Minimum detection levels have only occasionally been exceeded in the ensuing years. With this study's addition

of background monitoring wells upgradient from the current ash pile it can be determined that concentrations of molybdenum in well WS4 were within the background range of groundwater at the Heskett site. The elevated molybdenum concentrations as noted by W.S. are therefore not believed caused by the migration of leachate from the existing ash pile.

The 1988 groundwater data characterized only the uppermost zone of saturation near the proposed site. Its review indicated that the same general relationship between water quality and heavy metal parameters still exists after two years. A general diminishing of nitrate concentrations can be noted. Boron, an untested analyte in 1986, appeared in concentrations ranging from 1.0 ppm to 2.8 ppm (wells 45 and 70, respectively). Molybdenum was not detected. Wells 60 and 70 continued to exhibit extremely poor overall quality.

5.2.4 Chemical Attenuation of Leachate in Soil

A major concern in developing a waste disposal landfill is the potential generation and migration of toxic leachate. If highly mineralized subsurface leachate moves beyond the disposal site degradation of valuable groundwater supplies might occur. The leachate from the fly ash and bottom ash samples were generally comparable, in terms of overall quality, to the chemical composition of naturally-occurring groundwater at the Heskett site. An examination of Exhibits 2-A and 5-J shows that several of the major ions actually occurred at lower concentrations in the leachate than in the groundwater. Unit 1 bottom ash leachate appeared to be of much better quality than any groundwater sampled. Fly ash samples produced more highly mineralized (higher TDS) leachate than did bottom ash samples.

The overall quality of the existing groundwater at the proposed Heskett ash disposal site is brackish to saline with an average TDS concentration of 8,000 mg/L. The ash leachate produced using the modified EP toxicity test had an average TDS concentration of 6,500 mg/L. Consequently it may be expected that Heskett ash leachate will not significantly affect the TDS content of contaminated underlying groundwater even if soil buffer and attenuation mechanisms would be discounted.

The heavy metal analytes of primary concern in the leachate appear to be arsenic, cadmium, and lead. Sorptive, precipitation and co-precipitation processes are the major attenuation mechanisms that effect the concentration of these dissolved elements. Hassett and Groenewold (1986) studied trace element attenuation capabilities of coal-bearing Tertiary overburden deposits of central and western North Dakota. They found that the pH of a given leachate and the alkaline buffering capacity of the geologic media were the most critical variables in trace element attenuation. Western fly ash leachates are typically very alkaline with pH values approaching 13. In order to buffer such a solution either protons (H^+) must be added or hydroxyls (OH-) must be removed. Oxides tend to loose protons in strongly alkaline solutions. This H⁺ source, along with other acid producing reactions such as pyrite oxidation and organic decomposition, are the main alkaline buffering reactions. The protons that are liberated during these reactions will tend to neutralize the hydroxyl ions, thereby lowering the pH of the solution. The pH of the leachate will be buffered until it reaches equilibrium with the groundwater. In central and western North Dakota this equilibrium is generally attained at a pH value of between 7 and 9 (Groenewold et al., 1983; Koob and Groenewold, 1984).

Direct precipitation of cadmium and lead occur at pH values above 6.5. The solubility product of lead carbonate (PbCO₃) at 18°C is 3.3 X 10⁻¹⁴. In groundwater systems which contain abundant carbonate lead will be precipitated as lead carbonate, thereby maintaining dissolved lead at low concentrations (Beaver, 1986 and 1987). The same type of reaction maintains cadmium at very low concentrations. Hassett and Groenewold (1986) found that cadmium was removed in excess of 99 percent during laboratory experiments with reduced and oxidized silts. Beaver (1986) confirmed the attenuation capabilities of similar geologic media during a coal ash field monitoring program near Center, North Dakota. He noted that several ions, including arsenic, cadmium and lead, were highly mobile under alkaline conditions within the ash itself. However, the alkaline leachate was buffered as soon as it came into contact with the surrounding clay and silt deposits. As the pH became lower the concentrations of cadmium and lead were greatly reduced (Beaver, 1986).

Arsenic attenuation is also controlled by solution pH. Laboratory experiments performed by Hassett and Groenewold (1986) have shown that arsenic, as As⁵⁺, is significantly attenuated by the Tertiary sediments of western North Dakota. Arsenic appears to be most strongly attenuated in the pH range of 7-9. The mobility of selenium is similar to that of arsenic and the same attenuation processes control its concentration in groundwater systems. Sorptive processes appear responsible for arsenic attenuation in geologic media but the mechanisms of attenuation have not yet been well defined (Hassett and Groenewold, 1986). It does appear that cation and anion adsorption on clay particles and hydroxide coatings are important mechanisms in attenuating arsenic and other trace elements.

Hassett and Groenewold (1986) have shown that the clay, silt and sand sediments of central and western North Dakota have a strong capacity to buffer

highly alkaline leachates and attenuate trace elements such as arsenic and selenium. The ash pile at Heskett station has been subjected to continuous leaching for the past 30 years. When the quality of the shallow groundwater in the vicinity of the ash pile (data currently on file with the Health Department) was compared to the proposed disposal site it was apparent that upgradient groundwater quality was similar to or of poorer quality than the water near the ash pile. Consequently, groundwater sampling data around the existing ash pile may support the Hassett and Groenewold conclusions if buffered and attenuated leachate from the ash pile is infiltrating underlying groundwater. EXHIBIT 5-A

1

TOPOGRAPHY AND BOREHOLE/CROSS-SECTION LOCATIONS

EXHIBIT 5-B

12.

GEOHYDROLOGIC CROSS-SECTIONS (PLATES A THROUGH H) EXHIBIT 5-C

WELL COMPLETION REPORTS

Well Number: 10

Project: MDU Ash Disposal Program

Construction Data:

Location: 139-81-10CCD

Elevation: Ground; 1722.06 ft. Casing top; 1725.01 ft. Well Bottom; 1604.01 ft.

Completion: Date drilled; 8-12-86 Driller; Mohl Drilling, Beulah, ND Method of drilling; Air rotary, dry; some air-mist

Boring: Diameter; 5 5/8 in. Depth drilled; 120 ft. Encountered water (below surface); 65 ft. Geophysical log recorded

Casing: Diameter; 2 in. Material; Sch. 40 PVC Depths (from ground); +2.90-115.30 ft.

Screen: Diameter; 2 in. Slot size; 20 Material; Factory slotted PVC Depths (from ground); 115.30-119.30 ft. Elevation of interval; 1604.01-1608.01 ft.

Sand Pack: Type of sand; Washed sand Depths (from ground); 114-120 ft.

Grout Seal: Depths (from ground); 0-114 ft. Date sealed; 8-13-86

Additional Data:

Static Water Level: Date; 8-21-86 Depth; 51.97 ft. below top of casing Elevation; 1673.04 ft.

Chemistry: Date; 8-21-86 pH; 7.75 Sp. cond; 11050 micromhos/cm Temp; 8.9 oC

Project: MDU Ash Disposal Program

Construction Data:

Location: 139-81-10CCD

Elevation: Ground; 1722.10 ft. Casing top; 1725.01 ft. Well Bottom; 1642.81 ft.

- Completion: Date drilled; 8-12-86 Driller; Mohl Drilling, Beulah, ND Method of drilling; Air rotary, dry; some air-mist
- Boring: Diameter; 5 5/8 in. Depth drilled; 80 ft. Encountered water (below surface); 65 ft.
- Casing: Diameter; 2 in. Material; Sch. 40 PVC Depths (from ground); +2.90-78.20 ft.
- Screen: Diameter; 2 in. Slot size; 20 Material; Factory slotted PVC Depths (from ground); 78.20-82.20 ft. Elevation of interval; 1642.81-1646.81 ft.
- Sand Pack: Type of sand; Washed sand Depths (from ground); 77-79 ft.
- Grout Seal: Depths (from ground); 0-77 ft. Date sealed; 8-13-86
- Additional Data: Static Water Level: Date; 8-21-86 Depth; 43.83 ft. below top of casing Elevation; 1681.18 ft.

Chemistry: Date; 8-21-86 pH; 7.75 Sp. cond; 9840 micromhos/cm Temp; 8.6 oC

Project: MDU Ash Disposal Program

Construction Data:

Location: 139-81-10CCD

Elevation: Ground; 1721.88 ft. Casing top; 1724.90 ft. Well Bottom; 1643.51 ft.

Completion: Date drilled; 8-12-86 Driller; Mohl Drilling, Beulah, ND Method of drilling; Air rotary, dry; some air-mist

Boring: Diameter; 5 5/8 in. Depth drilled; 80 ft. Encountered water (below surface); 65 ft.

Casing: Diameter; 2 in. Material; Sch. 40 PVC Depths (from ground); +3.02-58.37 ft.

Screen: Diameter; 2 in. Slot size; 20 Material; Factory slotted PVC Depths (from ground); 58.37-78.37 ft. Elevation of interval; 1643.51-1663.51 ft.

Sand Pack: Type of sand; Washed sand Depths (from ground); 57-79 ft.

Grout Seal: Depths (from ground); 0-57 ft. Date sealed; 8-13-86

Additional Data: Static Water Level: Date; 8-21-86 Depth; 43.60 ft. below top of casing Elevation; 1681.30 ft.

Chemistry: Date; 8-21-86 pH; 7.60 Sp. cond; 11440 micromhos/cm Temp; 8.5 oC

Project: MDU Ash Disposal Program

Construction Data:

Location: 139-81-10CCD

- Elevation: Ground; 1721.88 ft. Casing top; 1724.90 ft. Well Bottom; 1681.88 ft.
- Completion: Date drilled; 11-13-86 Driller; Mohl Drilling, Beulah, ND Method of drilling; Air rotary, dry
- Boring: Diameter; 5 5/8 in. Depth drilled; 40 ft. Encountered water (below surface); ? ft.
- Casing: Diameter; 2 in. Material; Sch. 40 PVC Depths (from ground); +3.02-20.37 ft.
- Screen: Diameter; 2 in. Slot size; 20 Material; Factory slotted PVC Depths (from ground); 20.37-40.37 ft. Elevation of interval; 1681.51-1701.51 ft.
- Sand Pack: Type of sand; Washed sand Depths (from ground); 19-41 ft.
- Grout Seal: Depths (from ground); 0-19 ft. Date sealed; 1-27-87

Additional Data: Static Water Level: Date; 12-15-86 Depth; 30.09 ft. below top of casing Elevation; 1694.81 ft.

Chemistry: Date; NA pH; NA Sp. cond; NA Temp; NA

Project: MDU Ash Disposal Program

Construction Data:

Location: 139-81-10CAC

Elevation: Ground; 1707.04 ft. Casing top; 1709.48 ft. Well Bottom; 1627.48 ft.

- Completion: Date drilled; 8-12-86 Driller; Mohl Drilling, Beulah, ND Method of drilling; Air rotary, dry
- Boring: Diameter; 5 5/8 in. Depth drilled; 80 ft. Encountered water (below surface); 45 ft. Geophysical log recorded
- Casing: Diameter; 2 in. Material; Sch. 40 PVC Depths (from ground); +2.44-75.56 ft.
- Screen: Diameter; 2 in. Slot size; 20 Material; Factory slotted PVC Depths (from ground); 75.56-79.56 ft. Elevation of interval; 1627.48-1631.48 ft.
- Sand Pack: Type of sand; Washed sand Depths (from ground); 74-80 ft.
- Grout Seal: Depths (from ground); 0-74 ft. Date sealed; 8-13-86

Additional Data: Static Water Level: Date; 8-21-86 Depth; 37.96 ft. below top of casing Elevation; 1671.52 ft.

Chemistry: Date; 8-21-86 pH; 7.98 Sp. cond; 4970 micromhos/cm Temp; 8.7 oC

Project: MDU Ash Disposal Program

Construction Data:

Location: 139-81-10CAC

Elevation: Ground; 1707.22 ft. Casing top; 1709.40 ft. Well Bottom; 1661.90 ft.

Completion: Date drilled; 8-12-86 Driller; Mohl Drilling, Beulah, ND Method of drilling; Air rotary, dry;

Boring: Diameter; 5 5/8 in. Depth drilled; 50 ft. Encountered water (below surface); 45 ft.

Casing: Diameter; 2 in. Material; Sch. 40 PVC Depths (from ground); +2.66-21.32 ft.

Screen: Diameter; 2 in. Slot size; 20 Material; Factory slotted PVC Depths (from ground); 21.32-45.32 ft. Elevation of interval; 1661.90-1685.90 ft.

Sand Pack: Type of sand; Washed sand Depths (from ground); 20-46 ft.

Grout Seal: Depths (from ground); 0-20 ft. Date sealed; 8-13-86

Additional Data: Static Water Level: Date; 8-21-86 Depth; 29.33 ft. below top of casing Elevation; 1680.07 ft.

Chemistry: Date; 8-21-86 pH; 6.95 Sp. cond; 13920 micromhos/cm Temp; 8.5 oC

Project: MDU Ash Disposal Program

Construction Data:

Location: 139-81-10CBA

Elevation: Ground; 1715.55 ft. Casing top; 1717.64 ft. Well Bottom; 1595.64 ft.

Completion: Date drilled; 8-12-86 Driller; Mohl Drilling, Beulah, ND Method of drilling; Air rotary, dry; some air-mist

Boring: Diameter; 5 5/8 in. Depth drilled; 120 ft. Encountered water (below surface); 60 ft. Geophysical log recorded

- Casing: Diameter; 2 in. Material; Sch. 40 PVC Depths (from ground); +2.90-115.91 ft.
- Screen: Diameter; 2 in. Slot size; 20 Material; Factory slotted PVC Depths (from ground); 115.91-119.91 ft. Elevation of interval; 1595.64-1599.64 ft.
- Sand Pack: Type of sand; Washed sand Depths (from ground); 114-120 ft.
- Grout Seal: Depths (from ground); 0-114 ft. Date sealed; 8-13-86

Additional Data: Static Water Level: Date; 8-21-86 Depth; 49.41 ft. below top of casing Elevation; 1668.23 ft.

Chemistry: Date; 8-21-86 pH; 7.95 Sp. cond; 1993 micromhos/cm Temp; 8.6 oC

Project: MDU Ash Disposal Program

Construction Data:

Location: 139-81-10CBA

Elevation: Ground; 1715.24 ft. Casing top; 1717.58 ft. Well Bottom; 1635.58 ft.

- Completion: Date drilled; 8-12-86 Driller; Mohl Drilling, Beulah, ND Method of drilling; Air rotary, dry; some air-mist
- Boring: Diameter; 5 5/8 in. Depth drilled; 80 ft. Encountered water (below surface); 60 ft.
- Casing: Diameter; 2 in. Material; Sch. 40 PVC Depths (from ground); +2.34-75.66 ft.
- Screen: Diameter; 2 in. Slot size; 20 Material; Factory slotted PVC Depths (from ground); 75.66-79.66 ft. Elevation of interval; 1635.58-1639.58 ft.
- Sand Pack: Type of sand; Washed sand Depths (from ground); 74-80 ft.
- Grout Seal: Depths (from ground); 0-74 ft. Date sealed; 8-13-86

Additional Data: Static Water Level: Date; 8-21-86 Depth; 43.54 ft. below top of casing Elevation; 1674.04 ft.

Chemistry: Date; 8-21-86 pH; 7.96 Sp. cond; 1993 micromhos/cm Temp; 7.8 oC

Project: MDU Ash Disposal Program

Construction Data:

Location: 139-81-10CBA

Elevation: Ground; 1715.34 ft. Casing top; 1717.79 ft. Well Bottom; 1641.69 ft.

Completion: Date drilled; 8-12-86 Driller; Mohl Drilling, Beulah, ND Method of drilling; Air rotary, dry; some air-mist

Boring: Diameter; 5 5/8 in. Depth drilled; 80 ft. Encountered water (below surface); 60 ft.

Casing: Diameter; 2 in. Material; Sch. 40 PVC Depths (from ground); +2:45-53.65 ft.

Screen: Diameter; 2 in. Slot size; 20 Material; Factory slotted PVC Depths (from ground); 53.65-73.65 ft. Elevation of interval; 1641.69-1661.69 ft.

Sand Pack: Type of sand; Washed sand Depths (from ground); 52-75 ft.

Grout Seal: Depths (from ground); 0-52 ft. Date sealed; 8-13-86

Additional Data: Static Water Level: Date; 8-21-86 Depth; 42.03 ft. below top of casing Elevation; 1675.76 ft.

Chemistry: Date; 8-21-86 pH; 7.22 Sp. cond; 3000 micromhos/cm Temp; 8.0 oC

Project: MDU Ash Disposal Program

Construction Data:

Location: 139-81-10CBA

- Elevation: Ground; 1715.34 ft. Casing top; 1717.79 ft. Well Bottom; 1672.79 ft.
- Completion: Date drilled; 11-13-86 Driller; Mohl Drilling, Beulah, ND Method of drilling; Air rotary, dry
- Boring: Diameter; 5 5/8 in. Depth drilled; 45 ft. Encountered water (below surface); ? ft.
- Casing: Diameter; 2 in. Material; Sch. 40 PVC Depths (from ground); +2.45-25.65 ft.
- Screen: Diameter; 2 in. Slot size; 20 Material; Factory slotted PVC Depths (from ground); 25.65-45.65 ft. Elevation of interval; 1669.69-1689.69 ft.
- Sand Pack: Type of sand; Washed sand Depths (from ground); 24-45 ft.
- Grout Seal: Depths (from ground); 0-24 ft. Date sealed; 1-27-87

Additional Data: Static Water Level: Date; 12-15-86 Depth; 40.68 ft. below top of casing Elevation; 1677.11 ft.

Chemistry: Date; NA pH; NA Sp. cond; NA Temp; NA

Project: MDU Ash Disposal Program

Construction Data:

Location: 139-81-10CDB

Elevation: Ground; 1708.02 ft. Casing top; 1710.15 ft. Well Bottom; 1592.25 ft.

Completion: Date drilled; 8-13-86 Driller; Mohl Drilling, Beulah, ND Method of drilling; Air rotary, dry; some air-mist

Boring: Diameter; 5 5/8 in. Depth drilled; 120 ft. Encountered water (below surface); 50 ft. Geophysical log recorded

Casing: Diameter; 2 in. Material; Sch. 40 PVC Depths (from ground); +2.13-111.77 ft.

Screen: Diameter; 2 in. Slot size; 20 Material; Factory slotted PVC Depths (from ground); 111.77-115.77 ft. Elevation of interval; 1592.25-1596.25 ft.

Sand Pack: Type of sand; Washed sand Depths (from ground); 110-117 ft.

Grout Seal: Depths (from ground); 0-117 ft. Date sealed; 8-13-86

Additional Data: Static Water Level: Date; 8-21-86 Depth; 63.72 ft. below top of casing Elevation; 1646.43 ft.

Chemistry: Date; 8-21-86 pH; 7.58 Sp. cond; 6260 micromhos/cm Temp; 8.2 oC

Project: MDU Ash Disposal Program

Construction Data:

Location: 139-81-10CDB

Elevation: Ground; 1708.03 ft. Casing top; 1710.07 ft. Well Bottom; 1626.77 ft.

Completion: Date drilled; 8-13-86 Driller; Mohl Drilling, Beulah, ND Method of drilling; Air rotary, dry; some air-mist

Boring: Diameter; 5 5/8 in. Depth drilled; 82 ft. Encountered water (below surface); 50 ft.

Casing: Diameter; 2 in. Material; Sch. 40 PVC Depths (from ground); +2.04-77.26 ft.

Screen: Diameter; 2 in. Slot size; 20 Material; Factory slotted PVC Depths (from ground); 77.26-81.26 ft. Elevation of interval; 1626.77-1630.77 ft.

Sand Pack: Type of sand; Washed sand Depths (from ground); 76-82 ft.

Grout Seal: Depths (from ground); 0-76 ft. Date sealed; 8-13-86

Additional Data: Static Water Level: Date; 8-21-86 Depth; 36.58 ft. below top of casing Elevation; 1673.49 ft.

Chemistry: Date; 8-21-86 pH; 7.57 Sp. cond; 5480 micromhos/cm Temp; 8.4 oC

Project: MDU Ash Disposal Program

Construction Data:

Location: 139-81-10CDB

Elevation: Ground; 1708.12 ft. Casing top; 1710.31 ft. Well Bottom; 1652.61 ft.

Completion: Date drilled; 8-13-86 Driller; Mohl Drilling, Beulah, ND Method of drilling; Air rotary, dry; some air-mist

- Boring: Diameter; 5 5/8 in. Depth drilled; 60 ft. Encountered water (below surface); 50 ft.
- Casing: Diameter; 2 in. Material; Sch. 40 PVC Depths (from ground); +2.19-35.51 ft.
- Screen: Diameter; 2 in. Slot size; 20 Material; Factory slotted PVC Depths (from ground); 35.51-55.51 ft. Elevation of interval; 1652.61-1672.61 ft.
- Sand Pack: Type of sand; Washed sand Depths (from ground); 34-56 ft.
- Grout Seal: Depths (from ground); 0-34 ft. Date sealed; 8-13-86

Additional Data: Static Water Level: Date; 8-21-86 Depth; 32.88 ft. below top of casing Elevation; 1677.43 ft.

Chemistry: Date; 8-21-86 pH; 7.22 Sp. cond; 5060 micromhos/cm Temp; 8.6 oC

Project: MDU Ash Disposal Program

Construction Data:

1、19日本ではない。19月1日には19月1日には、19月1日は19月1日に、19月1日には19月1日に、19月1日に、19月1日には19月1日に、19月1日には19月1日に、19月1

Location: 139-81-10CDD

Elevation: Ground; 1708.92 ft. Casing top; 1711.03 ft. Well Bottom; 1650.14 ft.

Completion: Date drilled; 9-18-86 Driller; Mohl Drilling, Beulah, ND Method of drilling; Air rotary, dry

Boring: Diameter; 5 5/8 in. Depth drilled; 60 ft. Encountered water (below surface); 25 ft.

Casing: Diameter; 2 in. Material; Sch. 40 PVC Depths (from ground); +2.11-54.78 ft.

Screen: Diameter; 2 in. Slot size; 20 Material; Factory slotted PVC Depths (from ground); 54.78-58.78 ft. Elevation of interval; 1650.14-1654.14 ft.

Sand Pack: Type of sand; Washed sand Depths (from ground); 53-59 ft.

Grout Seal: Depths (from ground); 0-53 ft. Date sealed; 9-18-86

Additional Data: Static Water Level: Date; 10-4-86 Depth; 25.85 ft. below top of casing Elevation; 1685.18 ft.

Chemistry: Date; 10-4-86 pH; 6.70 Sp. cond; 6950 micromhos/cm Temp; 8.5 oC

Project: MDU Ash Disposal Program

Construction Data:

Location: 139-81-10CDD

Elevation: Ground; 1709.09 ft. Casing top; 1711.40 ft. Well Bottom; 1685.88 ft.

Completion: Date drilled; 9-18-86 Driller; Mohl Drilling, Beulah, ND Method of drilling; Air rotary, dry

Boring: Diameter; 5 5/8 in. Depth drilled; 25 ft. Encountered water (below surface); 25 ft.

Casing: Diameter; 2 in. Material; Sch. 40 PVC Depths (from ground); +2.31-3.21 ft.

Screen: Diameter; 2 in. Slot size; 20 Material; Factory slotted PVC Depths (from ground); 3.21-23.54 ft. Elevation of interval; 1685.88-1705.88 ft.

Sand Pack: Type of sand; Washed sand Depths (from ground); 2.5-24.0 ft.

Grout Seal: Depths (from ground); 0-2.5 ft. Date sealed; 9-18-86

Additional Data: Static Water Level: Date; 10-4-86 Depth; 21.92 ft. below top of casing Elevation; 1689.48 ft.

Chemistry: Date; 10-4-86 pH; 6.72 Sp. cond; 10270 micromhos/cm Temp; 9.1 oC

Project: MDU Ash Disposal Program

Construction Data:

Location: 139-81-10CDB

Elevation: Ground; 1708.12 ft. Casing top; 1710.31 ft. Well Bottom; 1668.12 ft.

Completion: Date drilled; 11-13-86 Driller; Mohl Drilling, Beulah, ND Method of drilling; Air rotary, dry;

Boring: Diameter; 5 5/8 in. Depth drilled; 40 ft. Encountered water (below surface); ? ft.

Casing: Diameter; 2 in. Material; Sch. 40 PVC Depths (from ground); +2.19-20.51 ft.

Screen: Diameter; 2 in. Slot size; 20 Material; Factory slotted PVC Depths (from ground); 20.51-40.51 ft. Elevation of interval; 1667.61-1687.61 ft.

Sand Pack: Type of sand; Washed sand Depths (from ground); 19-41 ft.

Grout Seal: Depths (from ground); 0-19 ft. Date sealed; 1-27-86

Additional Data: Static Water Level: Date; 12-15-86 Depth; 28,71 ft. below top of casing Elevation; 1681.60 ft.

Chemistry: Date; NA pH; NA Sp. cond; NA Temp; NA

Project: MDU Ash Disposal Program

Construction Data:

Location: 139-81-10CAD

Elevation: Ground; 1674.58 ft. Casing top; 1677.01 ft. Well Bottom; 1647.51 ft.

Completion: Date drilled; 8-13-86 Driller; Mohl Drilling, Beulah, ND Method of drilling; Air rotary, dry; some air-mist

Boring: Diameter; 5 5/8 in. Depth drilled; 30 ft. Encountered water (below surface); 17 ft. Geophysical log recorded

Casing: Diameter; 2 in. Material; Sch. 40 PVC Depths (from ground); +2.43-7.07 ft.

Screen: Diameter; 2 in. Slot size; 20 Material; Factory slotted PVC Depths (from ground); 7.07-27.07 ft. Elevation of interval; 1647.51-1667.51 ft.

Sand Pack: Type of sand; Washed sand Depths (from ground); 6-29 ft.

Grout Seal: Depths (from ground); 0-6 ft. Date sealed; 8-13-86

Additional Data:

Static Water Level: Date; 8-21-86 Depth; 5.45 ft. below top of casing Elevation; 1671.56 ft.

Chemistry: Date; 8-21-86 pH; 7.56 Sp. cond; 6480 micromhos/cm Temp; 10.8 oC

Project: MDU Ash Disposal Program

Construction Data:

Location: 139-81-10CAD

- Elevation: Ground; 1674.47 ft. Casing top; 1676.70 ft. Well Bottom; 1637.33 ft.
- Completion: Date drilled; 9-18-86 Driller; Mohl Drilling, Beulah, ND Method of drilling; Air rotary, dry; some air-mist
- Boring: Diameter; 5 5/8 in. Depth drilled; 40 ft. Encountered water (below surface); 18 ft.
- Casing: Diameter; 2 in. Material; Sch. 40 PVC Depths (from ground); +2.23-32.14 ft.
- Screen: Diameter; 2 in. Slot size; 20 Material; Factory slotted PVC Depths (from ground); 32.14-37.14 ft. Elevation of interval; 1637.33-1642.33 ft.
- Sand Pack: Type of sand; Washed sand Depths (from ground); 31-38 ft.
- Grout Seal: Depths (from ground); 0-31 ft. Date sealed; 9-18-86

Additional Data: Static Water Level: Date; 10-4-86 Depth; 5.77 ft. below top of casing Elevation; 1670.93 ft.

Chemistry: Date; 10-4-86 pH; 7.46 Sp. cond; 3700 micromhos/cm Temp; 8.2 oC

Project: MDU Ash Disposal Program

Construction Data:

Location: 139-81-10CAD

Elevation: Ground; 1674.45 ft. Casing top; 1676.71 ft. Well Bottom; 1658.01 ft.

Completion: Date drilled; 9-18-86 Driller; Mohl Drilling, Beulah, ND Method of drilling; Air rotary, dry; some air-mist

Boring: Diameter; 5 5/8 in. Depth drilled; 20 ft. Encountered water (below surface); 18 ft.

Casing: Diameter; 2 in. Material; Sch. 40 PVC Depths (from ground); +2.26-6.44 ft.

- Screen: Diameter; 2 in. Slot size; 20 Material; Factory slotted PVC Depths (from ground); 6.44-16.44 ft. Elevation of interval; 1658.01-1668.01 ft.
- Sand Pack: Type of sand; Washed sand Depths (from ground); 5-18 ft.
- Grout Seal: Depths (from ground); 0-5 ft. Date sealed; 9-18-86

Additional Data: Static Water Level: Date; 10-4-86 Depth; 4.13 ft. below top of casing Elevation; 1672.58 ft.

Chemistry: Date; 10-4-86 pH; 7.29 Sp. cond; 6300 micromhos/cm Temp; 9.4 oC

Project: MDU Ash Disposal Program

Construction Data:

Location: 139-81-10DCC

Elevation: Ground; 1685.71 ft. Casing top; 1688.17 ft. Well Bottom; 1665.70 ft.

Completion: Date drilled; 9-18-86 Driller; Mohl Drilling, Beulah, ND Method of drilling; Air rotary, dry

Boring: Diameter; 5 5/8 in. Depth drilled; 21 ft. Encountered water (below surface); 15 ft.

Casing: Diameter; 2 in. Material; Sch. 40 PVC Depths (from ground); +2.46-5.01 ft.

- Screen: Diameter; 2 in. Slot size; 20 Material; Factory slotted PVC Depths (from ground); 5.01-20.01 ft. Elevation of interval; 1665.70-1680.70 ft.
- Sand Pack: Type of sand; Washed sand Depths (from ground); 4-21 ft.

Grout Seal: Depths (from ground); 0-4 ft. Date sealed; 9-18-86

Additional Data:

Static Water Level: Date; 10-4-86 Depth; 6.30 ft. below top of casing Elevation; 1681.87 ft.

Project: MDU Ash Disposal Program

Construction Data:

Location: 139-81-10DCC

- Elevation: Ground; 1685.71 ft. Casing top; 1688.10 ft. Well Bottom; 1633.11 ft.
- Completion: Date drilled; 9-18-86 Driller; Mohl Drilling, Beulah, ND Method of drilling; Air rotary, dry
- Boring: Diameter; 5 5/8 in. Depth drilled; 60 ft. Encountered water (below surface); 15 ft.
- Casing: Diameter; 2 in. Material; Sch. 40 PVC Depths (from ground); +2.39-47.60 ft.
- Screen: Diameter; 2 in. Slot size; 20 Material; Factory slotted PVC Depths (from ground); 47.60-52.60 ft. Elevation of interval; 1633.11-1638.11 ft.
- Sand Pack: Type of sand; Washed sand Depths (from ground); 46-54 ft.
- Grout Seal: Depths (from ground); 0-46 ft. Date sealed; 9-18-86

Additional Data:

Static Water Level: Date; 10-4-86 Depth; 15.16 ft. below top of casing Elevation; 1672.94 ft.

Chemistry: Date; 10-4-86 pH; 9.55 Sp. cond; 1100 micromhos/cm Temp; 9.8 oC

Project: MDU Ash Disposal Program

Construction Data:

Location: 139-81-10DCA

- Elevation: Ground; 1693.86 ft. Casing top; 1696.10 ft. Well Bottom; 1636.95 ft.
- Completion: Date drilled; 9-18-86 Driller; Mohl Drilling, Beulah, ND Method of drilling; Air rotary, dry
- Boring: Diameter; 5 5/8 in. Depth drilled; 60 ft. Encountered water (below surface); 45 ft.
- Casing: Diameter; 2 in. Material; Sch. 40 PVC Depths (from ground); +2.24-31.91 ft.
- Screen: Diameter; 2 in. Slot size; 20 Material; Factory slotted PVC Depths (from ground); 31.91-56.91 ft. Elevation of interval; 1636.95-1661.95 ft.
- Sand Pack: Type of sand; Washed sand Depths (from ground); 30-58 ft.
- Grout Seal: Depths (from ground); 0-30 ft. Date sealed; 9-18-86

Additional Data:

Static Water Level: Date; 10-4-86 Depth; 29.46 ft. below top of casing Elevation; 1666.64 ft.

Chemistry: Date; 10-4-86 pH; 6.81 Sp. cond; 10840 micromhos/cm Temp; 8.5 oC

Project: MDU Ash Disposal Program

Construction Data:

Location: 139-80-10DCA

Elevation: Ground; 1693.86 ft. Casing top; 1696.42 ft. Well Bottom; 1597.99 ft.

Completion: Date drilled; 9-18-86 Driller; Mohl Drilling, Beulah, ND Method of drilling; Air rotary, dry

Boring: Diameter; 5 5/8 in. Depth drilled; 100 ft. Encountered water (below surface); 45 ft.

Casing: Diameter; 2 in. Material; Sch. 40 PVC Depths (from ground); +2.56-91.87 ft.

- Screen: Diameter; 2 in. Slot size; 20 Material; Factory slotted PVC Depths (from ground); 91.87-96.87 ft. Elevation of interval; 1597.99-1601.99 ft.
- Sand Pack: Type of sand; Washed sand Depths (from ground); 90-98 ft.
- Grout Seal: Depths (from ground); 0-90 ft. Date sealed; 9-18-86

Additional Data:

Static Water Level: Date; 10-4-86 Depth; 42.03 ft. below top of casing Elevation; 1654.39 ft.

Chemistry: Date; 10-4-86 pH; 8.44 Sp. cond; 4160 micromhos/cm Temp; 8.3 oC

Project: MDU Ash Disposal Program

Construction Data:

Location: 139-18-10CDB

Elevation: Ground; 1714.23 ft. Casing top; 1716.42 ft. Well Bottom; 1662.02 ft.

Completion: Date drilled; 8-13-86 Driller; Mohl Drilling, Beulah, ND Method of drilling; Air rotary, dry; some air-mist

Boring: Diameter; 5 5/8 in. Depth drilled; 60 ft. Encountered water (below surface); 45 ft. Geophysical log recorded

Casing: Diameter; 2 in. Material; Sch. 40 PVC Depths (from ground); +2.19-22.21 ft.

- Screen: Diameter; 2 in. Slot size; 20 Material; Factory slotted PVC Depths (from ground); 22.21-52.21 ft. Elevation of interval; 1662.02-1692.02 ft.
- Sand Pack: Type of sand; Washed sand Depths (from ground); 21-54 ft.
- Grout Seal: Depths (from ground); 0-21 ft. Date sealed; 8-13-86

Additional Data: Static Water Level: Date; 8-21-86 Depth; 31.01 ft. below top of casing Elevation; 1685.41 ft.

Chemistry: Date; 8-21-86 pH; 6.94 Sp. cond; 15760 micromhos/cm Temp; 8.5 oC

Project: MDU Ash Disposal Program

Construction Data:

Location: 139-81-10CDA

- Elevation: Ground; 1714.23 ft. Casing top; 1716.53 ft. Well Bottom; 1670.89 ft.
- Completion: Date drilled; 9-18-86 Driller; Mohl Drilling, Beulah, ND Method of drilling; Air rotary, dry
- Boring: Diameter; 5 5/8 in. Depth drilled; 46 ft. Encountered water (below surface); 37 ft.
- Casing: Diameter; 2 in. Material; Sch. 40 PVC Depths (from ground); +2.30-13.34 ft.
- Screen: Diameter; 2 in. Slot size; 20 Material; Factory slotted PVC Depths (from ground); 13.34-43.34 ft. Elevation of interval; 1670.89-1700.89 ft.
- Sand Pack: Type of sand; Washed sand Depths (from ground); 12-45 ft.
- Grout Seal: Depths (from ground); 0-12 ft. Date sealed; 9-18-86

Additional Data: Static Water Level: Date; 10-4-86 Depth; 32.58 ft. below top of casing Elevation; 1683.95 ft.

Chemistry: Date; 10-4-86 pH; 6.83 Sp. cond; 12750 micromhos/cm Temp; 8.4 oC

Project: MDU Ash Disposal Program

Construction Data:

Location: 139-81-10CDB

Elevation: Ground; 1714.32 ft. Casing top; 1716.67 ft. Well Bottom; 1681.40 ft.

Completion: Date drilled; 9-18-86 Driller; Mohl Drilling, Beulah, ND Method of drilling; Air rotary, dry

Boring: Diameter; 5 5/8 in. Depth drilled; 35 ft. Encountered water (below surface); 35 ft.

Casing: Diameter; 2 in. Material; Sch. 40 PVC Depths (from ground); +2.35-12.92 ft.

- Screen: Diameter; 2 in. Slot size; 20 Material; Factory slotted PVC Depths (from ground); 12.92-32.91 ft. Elevation of interval; 1681.40-1701.40 ft.
- Sand Pack: Type of sand; Washed sand Depths (from ground); 11-34 ft.
- Grout Seal: Depths (from ground); 0-11 ft. Date sealed; 9-18-86

Additional Data:

Static Water Level: Date; 10-4-86 Depth; 32.74 ft. below top of casing Elevation; 1683.93 ft.

Chemistry: Date; 10-4-86 pH; 6.71 Sp. cond; 13170 micromhos/cm Temp; 9.3 oC

Project: MDU Ash Disposal Program

Construction Data:

Location: 139-81-16ABA

Elevation: Ground; 1733.18 ft. Casing top; 1735.67 ft. Well Bottom; 1634.57 ft.

Completion: Date drilled; 8-13-86 Driller; Mohl Drilling, Beulah, ND Method of drilling; Air rotary, dry; some air-mist

Boring: Diameter; 5 5/8 in. Depth drilled; 102 ft. Encountered water (below surface); 45 ft. Geophysical log recorded

Casing: Diameter; 2 in. Material; Sch. 40 PVC Depths (from ground); +2.49-94.61 ft.

- Screen: Diameter; 2 in. Slot size; 20 Material; Factory slotted PVC Depths (from ground); 94.61-98.61 ft. Elevation of interval; 1634.57-1638.57 ft.
- Sand Pack: Type of sand; Washed sand Depths (from ground); 93-99 ft.
- Grout Seal: Depths (from ground); 0-93 ft. Date sealed; 8-13-86

Additional Data: Static Water Level: Date; 8-21-86 Depth; 54.20 ft. below top of casing Elevation; 1681.47 ft.

Chemistry: Date; 8-21-86 pH; 7.85 Sp. cond; 13000 micromhos/cm Temp; 10.1 oC Well Number: (WS1)

Project: MDU Ash Disposal Program

Construction Data:

Location: 139-81-DBB

Elevation: Ground; 1679.61 ft. Casing top; 1681.71 ft. Well Bottom; 1606.73 ft. Repaired casing top (1-13-86); 1683.67 ft.

- Completion: Date drilled; 9-22-81 Driller; Water Supply, Inc. Method of drilling; NA
- Boring: Diameter; NA in. Depth drilled; 73 ft. Encountered water (below surface); NA ft.
- Casing: Diameter; 2 in. Material; Sch. 40 PVC Depths (from ground); +2.7-40, 45-73 ft. (as of 1-13-87); +4.7-40, 45-73 ft.
- Screen: Diameter; 2 in. Slot size; 20 Material; Factory slotted PVC Depths (from ground); 40-45 ft. Elevation of interval; 1634.61-1639.61 ft.
- Sand Pack: Type of sand; Washed sand Depths (from ground); 37-47 ft.
- Grout Seal: Depths (from ground); 0-37 ft. Date sealed; NA

Additional Data: Static Water Level: Date; 8-21-86 Depth; 24.61 ft. below top of casing Elevation; 1657.10 ft.

Chemistry: Date; 8-21-86 pH; 7.47 Sp. cond; 1899 micromhos/cm Temp 7.0 oC Well Number: (WS1A)

Project: MDU Ash Disposal Program

Construction Data:

Location: 139-81-DBB

Elevation: Ground; 1679.10 ft. Casing top; 1682.23 ft. Well Bottom; 1657.10 ft.

- Completion: Date drilled; 8-5-85 Driller; Water Supply, Inc. Method of drilling; NA
- Boring: Diameter; NA in. Depth drilled; 23 ft. Encountered water (below surface); NA ft.
- Casing: Diameter; 2 in. Material; Sch. 40 PVC Depths (from ground); +3.2-17 ft.
- Screen: Diameter; 2 in. Slot size; 20 Material; Factory slotted PVC Depths (from ground); 17-22 ft. Elevation of interval; 1657.10-1662.10 ft.
- Sand Pack: Type of sand; Washed sand Depths (from ground); 15-23 ft.
- Grout Seal: Depths (from ground); 0-15 ft. Date sealed; NA

Additional Data: Static Water Level: Date; 8-21-86 Depth; DRY ft. below top of casing Elevation; ft.

Well Number: (WS1B)

Project: MDU Ash Disposal Program

Construction Data:

Location: 139-81-10DBB

- Elevation: Ground; 1678.80 ft. Casing top; 1682.07 ft. Well Bottom; 1648.80 ft.
- Completion: Date drilled; 8-6-85 Driller; Water Supply, Inc. Method of drilling; NA
- Boring: Diameter; NA in. Depth drilled; 30 ft. Encountered water (below surface); NA ft.
- Casing: Diameter; 2 in. Material; Sch. 40 PVC Depths (from ground); +3.3-25 ft.
- Screen: Diameter; 2 in. Slot size; 20 Material; Factory slotted PVC Depths (from ground); 25-30 ft. Elevation of interval; 1648.80-1653.80 ft.
- Sand Pack: Type of sand; Washed sand Depths (from ground); 23-30 ft.
- Grout Seal: Depths (from ground); 0-22 ft. Date sealed; NA

Additional Data:

Static Water Level: Date; 8-21-86 Depth; 24.48 ft. below top of casing Elevation; 1657.59 ft.

Chemistry: Date; 8-21-86 pH; 7.07 Sp. cond; 3940 micromhos/cm Temp; 8.5 oC Well Number: (WS2)

Project: MDU Ash Disposal Program

Construction Data:

Location: 139-81-10DCC

- Elevation: Ground; 1696.00 ft. Casing top; 1698.64 ft. Well Bottom; 1607.00 ft.
- Completion: Date drilled; 9-23-81 Driller; Water Supply, Inc. Method of drilling; NA
- Boring: Diameter; NA in. Depth drilled; 90 ft. Encountered water (below surface); NA ft.
- Casing: Diameter; 2 in. Material; Sch. 40 PVC Depths (from ground); +3-56, 61-89 ft.
- Screen: Diameter; 2 in. Slot size; 20 Material; Factory slotted PVC Depths (from ground); 56-61 ft. Elevation of interval; 1635.00-1640.00 ft.
- Sand Pack: Type of sand; Washed sand Depths (from ground); 53-62 ft.
- Grout Seal: Depths (from ground); 0-52 ft. Date sealed; NA

Additional Data:

Static Water Level: Date; 10-4-86 Depth; 33.86 ft. below top of casing Elevation; 1664.78 ft.

Chemistry: Date; 8-21-86 pH; 7.04 Sp. cond; 3760 micromhos/cm Temp; 8.6 oC Well Number: (WS3)

Project: MDU Ash Disposal Program

Construction Data:

Location: 139-81-10DBA

Elevation: Ground; 1658.00 ft. Casing top; 1661.00 ft. Well Bottom; 1608.00 ft.

- Completion: Date drilled; 9-21-81 Driller; Water Supply, Inc. Method of drilling; NA
- Boring: Diameter; NA in. Depth drilled; 50 ft. Encountered water (below surface); NA ft.
- Casing: Diameter; 2 in. Material; Sch. 40 PVC Depths (from ground); +3-25, 30-50 ft.

Screen: Diameter; 2 in. Slot size; 20

Material; Factory slotted PVC Depths (from ground); 25-30 ft. Elevation of interval; 1628.00-1633.00 ft.

- Sand Pack: Type of sand; Washed sand Depths (from ground); 24-32 ft.
- Grout Seal: Depths (from ground); 0-23 ft. Date sealed; NA

Additional Data: Static Water Level: Date; 9-4-86 Depth; 14.67 ft. below top of casing Elevation; 1646.33 ft.

Well Number: (WS3A)

Project: MDU Ash Disposal Program

Construction Data:

Location: 139-81-10DBA

- Elevation: Ground; 1657.70 ft. Casing top; 1660.81 ft. Well Bottom; 1645.31 ft.
- Completion: Date drilled; 8-5-85 Driller; Water Supply, Inc. Method of drilling; NA
- Boring: Diameter; NA in. Depth drilled; 13 ft. Encountered water (below surface); NA ft.
- Casing: Diameter; 2 in. Material; Sch. 40 PVC Depths (from ground); +3.1-7.5 ft.
- Screen: Diameter; 2 in. Slot size; 20 Material; Factory slotted PVC Depths (from ground); 7.5-12.5 ft. Elevation of interval; 1645.31-1650.31 ft.
- Sand Pack: Type of sand; Washed sand Depths (from ground); 6-13 ft.
- Grout Seal: Depths (from ground); 0-6 ft. Date sealed; NA

Additional Data:

Static Water Level: Date; 10-4-86 Depth; 8.37 ft. below top of casing Elevation; 1652.44 ft.

Well Number: (WS4)

Project: MDU Ash Disposal Program

Construction Data:

Location: 139-81-10DBA

- Elevation: Ground; 1659.61 ft. Casing top; 1662.61 ft. Well Bottom; 1607.60 ft.
- Completion: Date drilled; 9-24-81 Driller; Water Supply, Inc. Method of drilling; NA
- Boring: Diameter; NA in. Depth drilled; 52 ft. Encountered water (below surface); NA ft.
- Casing: Diameter; 2 in. Material; Sch. 40 PVC Depths (from ground); +3-30, 35-52 ft.
- Screen: Diameter; 2 in. Slot size; 20 Material; Factory slotted PVC Depths (from ground); 30-35 ft. Elevation of interval; 1624.60-1629.60 ft.
- Sand Pack: Type of sand; Washed sand Depths (from ground); 27-36 ft.
- Grout Seal: Depths (from ground); 0-26 ft. Date sealed; NA

Additional Data:

Static Water Level: Date; 9-4-86 Depth; 19.62 ft. below top of casing Elevation; 1642.99 ft.

Well Number: (WS4A)

Project: MDU Ash Disposal Program

Construction Data:

Location: 139-81-10DBA

Elevation: Ground; 1659.49 ft. Casing top; 1662.49 ft. Well Bottom; 1641.50 ft.

Completion: Date drilled; 9-24-81 Driller; Water Supply, Inc. Method of drilling; NA

Boring: Diameter; NA in. Depth drilled; 18 ft. Encountered water (below surface); NA ft.

Casing: Diameter; 2 in. Material; Sch. 40 PVC Depths (from ground); +3-13 ft.

- Screen: Diameter; 2 in. Slot size; 20 Material; Factory slotted PVC Depths (from ground); 13-18 ft. Elevation of interval; 1641.50-1646.50 ft.
- Sand Pack: Type of sand; Washed sand Depths (from ground); 11-18 ft.

Grout Seal: Depths (from ground); 0-11 ft. Date sealed; NA

Additional Data:

Static Water Level: Date; 9-4-86 Depth; 17.29 ft. below top of casing Elevation; 1645.20 ft.

Chemistry:	Date; NA pH; NA	Sp.	cond;	NA		micromhos/cm
	Temp; NA oC	1			5	

Well Number: (WS4B)

Project: MDU Ash Disposal Program

Construction Data:

Location: 139-81-10DBA

Elevation: Ground; 1659.75 ft. Casing top; 1662.75 ft. Well Bottom; 1635.80 ft.

- Completion: Date drilled; 8-5-85 Driller; Water Supply, Inc. Method of drilling; NA
- Boring: Diameter; NA in. Depth drilled; 25 ft. Encountered water (below surface); NA ft.

Casing: Diameter; 2 in. Material; Sch. 40 PVC Depths (from ground); +3.1-19.0 ft.

- Screen: Diameter; 2 in. Slot size; 20 Material; Factory slotted PVC Depths (from ground); 19-24 ft. Elevation of interval; 1635.80-1640.80 ft.
- Sand Pack: Type of sand; Washed sand Depths (from ground); 18-25 ft.
- Grout Seal: Depths (from ground); 0-18 ft. Date sealed; NA

Additional Data:

Static Water Level: Date; 9-4-86 Depth; 17.39 ft. below top of casing Elevation; 1645.36 ft.

EXHIBIT 5-D

GEOPHYSICAL LOGS

EXHIBIT 5-E

LITHOLOGIC LOGS

Wells 10, 11, 12 and 13

0-1 Top soil, silty, clayey, sandy, brown, calcareous; with some limestone pebbles.

- 1-11 Silt, clayey, brownish-tan, slightly indurated, very dry, calcareous; with thin coarse-grained, clean silt lenses and a few small (less than .5 in.) iron oxide concretions. Abundant small gypsum crystals (less than .13 in. long). Some small, black flakes of organic plant material. Cannonball-Ludlow Formations.
- 11-14 Silt, as above, with some (less than 20%) very fine- to fine-grained sand interspersed.
- 14-30 Silt, as above, clayey, less sand than above interval, oxidized; with very fine-grained silty sand lenses and very few gypsum crystals.
- 30-41 Silt, very clayey, with some (less than 20%) very fine-grained sand interspersed, steel-gray (color change), moderately indurated; with fewer small gypsum crystals than above intervals.
- 41-59 Silt, as above, very clayey, with some (less than 20%) fine- to medium-grained sand interspersed in a silt and clay matrix.
- 59-65 Silt, as above, with abundant (more than 20%) fine- to medium-grained sand interspersed.
- 65-81 Silt, clayey, steel-gray to bluish, moderately indurated; with thin coarse-grained silt to very fine-grained sand lenses in an otherwise fine silt to clay matrix.
- 81-84 Clay, silty, steel-gray to bluish, moderately indurated, dense.
- 84-91 Siltstone, sandy, clayey, steel-gray to bluish, slightly indurated; with small fine-grained sand lenses and abundant (more than 20%) sand interspersed in the matrix.
- 91-110 Silt, clayey, bluish-gray, moderately indurated; with thin (less than 1 foot) mudstone lenses.
- 110-120 Silt, very clayey, steel-gray to bluish, moderately indurated, very dense. Cannonball-Ludlow Formations.

Wells 20 and 21

- 0-1 Top soil, silty, sandy, clayey, dark-brown, calcareous; with some limestone and granite pebbles.
- 1-21 Silt, clayey, with minor amounts (less than 10%) of very fine-grained sand interspersed, brownish-tan, slightly indurated, calcareous, oxidized; with small iron oxide concretions and abundant small gypsum crystals. Cannonball-Ludlow Formations.
- 21-26 Silt, as above, steel-gray (color change).
- 26-49 Silt, clayey, with some (less than 20%) very fine- to medium-grained sand interspersed, steel-gray to bluish, slightly indurated; with very few small gypsum crystals and some thin (less than 1 foot) siltstone lenses.
- 49-53 Silt, as above, with abundant (more than 20%) fine- to medium-grained sand interspersed.
- 53-63 Silt, as above, clayey, less sand, with thin (less than 1 foot) siltstone to mudstone lenses.
- 63-80 Silt, very clayey, steel-gray to bluish, moderately indurated, very dense. Cannonball-Ludlow Formations.

Wells 30, 31, 32 and 33

- 0-1 Top soil, silty, sandy, brownish, calcareous; with some granite and limestone pebbles.
- 1+2 Pebble-loam (glacial till), silty, sandy, clayey, yellowish-brown, dry, calcareous.
- 2-31 Silt, clayey, with minor amounts (less than 10%) of very fine-grained sand interspersed, brownish-tan, slightly indurated, calcareous, oxidized; with small iron oxide concretions. Some small, black flakes organic plant material. Cannonball-Ludlow Formations.
- 31-44 Silt, clayey, steel-gray (color change), slightly indurated, calcareous; with small iron oxide concretions, thin coarse silt lenses, small gypsum crystals and gray to reddish-brown mottling.

- 44-61 Silt, as above, with some (less than 20%) fineto medium-grained sand interspersed.
- 61-65 Silt, as above, with abundant (more than 20%) fine- to medium-grained sand interspersed, dense.
- 65-76 Silt, as above, clayey, less sand, some thin (less than 1 foot) lenses of siltstone to mudstone.
- 76-80 Siltstone, sandy, clayey, steel-gray to bluish, slightly indurated; with small fine-grained sand lenses and abundant (more than 20%) fine-grained sand interspersed in the matrix.
- 80-92 Silt, clayey, steel-gray to bluish, moderately indurated, with some (less than 20%) very fine- to fine grained sand interspersed.
- 92-120 Silt, very clayey, steel-gray to bluish, moderately indurated, very dense. Cannonball-Ludlow Formations.

Well 40

- 0-1 Top soil, sandy, silty, brownish-tan, calcareous; with some granite and limestone pebbles.
- 1-5 Pebble-loam (glacial till), sandy, silty, with detrital lignite and organic matter, yellowish-brown, very dry, calcareous.
- 5-22 Sand, very fine- to medium-grained, unconsolidated, with thin lenses of clay and detrital lignite, brownish-yellow, calcareous.
- 22-40 Silt, clayey, with minor amounts (less than 10%) very fine-grained sand interspersed, brownish-tan, slightly indurated, calcareous, oxidized; with small iron oxide concretions and small gypsum crystals; Cannonball-Ludlow Formations.
- 40-51 Silt, clayey, with minor amounts (less than 10%) of very fine-grained sand interspersed, steel-gray (color change), moderately indurated; with some reddish-brown mottling and some very thin (less than 6 inches) mudstone lenses.
- 51-58 Silt, as above, with abundant (more than 20%) fine-grained sand and thin silty-clay lenses.

- 58-62 Siltstone, sandy, clayey, steel-gray to bluish, moderately indurated; with small fine-grained sand lenses and abundant (more than 20%) sand interspersed in the matrix.
- 62-70 Silt, clayey, with some (less than 20%) fine- to medium-grained sand interspersed, steel-gray to bluish, moderately indurated; with thin (less than 2 feet) sandy lenses.
- 70-80 Silt, as above, very clayey, some (less than 10%) fine-grained sand interspersed; less sand than above interval.
- 80-120 Silt, as above, dark-steel-gray. Cannonball-Ludlow Formations.
- Wells 41, 42 and 43
- 0-1 Top soil, sandy, silty, dark-brown, calcareous; with some granite and limestone pebbles.
- 1-4 Pebble-loam (glacial till), sandy, silty, clayey, yellowish-brown, very dry, calcareous.
- 4-40 Silt, clayey, with some (less than 20%) very fine-grained sand interspersed, brownish-tan, unconsolidated, noncompacted, calcareous to 25 feet, oxidized; with small iron oxide concretions and abundant small gypsum crystals. Cannonball-Ludlow Formations.
- 40-51 Silt, clayey, with minor amounts (less than 10%) of very fine-grained sand interspersed, steel-gray (color change), moderately indurated; with some reddish-brown mottling and some very thin (less than 6 inches) mudstone lenses.
- 51-58 Silt, as above, with abundant (more than 20%) fine-grained sand and thin silty-clay lenses.
- 58-62 Siltstone, sandy, clayey, steel-gray to bluish, moderately indurated; with small fine-grained sand lenses and abundant (more than 20%) sand interspersed in the matrix.
- 62-70 Silt, clayey, with some (less than 20%) fine- to medium-grained sand interspersed, steel-gray to bluish, moderately indurated; with thin (less than 2 feet) sandy lenses.

- 30-40 Silt, as above, very clayey, less sand than above interval, dark-steel-gray. Cannonball-Ludlow Formations.
- Wells 53 and 54
- 0-4 Top soil, clayey, silty, very dark-brown, wet, sticky.
- 4-15 Clay, silty, with some (less than 20%) fine- to medium-grained sand interspersed, brownish-tan, slightly indurated, dry, calcareous; with small iron oxide concretions, small gypsum crystals and occasional reddish-brown mottling; Cannonball-Ludlow Formations.
- 15-20 Sand, very fine-grained to medium-grained, silty, clayey, unconsolidated, yellowish-brown, oxidized.
- 20-30 Silt, clayey, with some (less than 20%) fine-grained sand interspersed, steel-gray (color change), slightly indurated; with clay and sand lenses, some small concretions and some small gypsum crystals.
- 30-45 Silt, as above, very clayey.
- 45-60 Silt, as above, clayey, brownish-gray, moderately indurated, some reddish-brown mottling. Cannonball-Ludlow Formations.
- Wells 55 and 56
- 0-5 Sandy-loam (glacial), with fine- to medium-grained sand, silty, calcareous; with small granite and limestone pebbles.
- 5-26 Clay, silty, with minor amounts (less than 10%) of very fine-grained sand, dark-brownish-tan, moderately indurated, brittle, very dry, calcareous; with small iron oxide concretions, small gypsum crystals and occasional thin sandstone laminae. Some small, black flakes of organic plant material. Cannonball-Ludlow Formations.
- 26-35 Clay, as above, very silty, sandy, brownish-tan, oxidized.

- 35-40 Silt, clayey, with some (less than 20%) very fine- to fine-grained sand interspersed, steel-gray (color change) moderately indurated; with small gypsum crystals and occasional clay lenses.
- 40-60 Silt, as above, with minor amounts (less than 10%) of fine-grained sand interspersed.
- 60-85 Silt, as above, clayey, less sand than above interval.
- 85-100 Silt, as above, very clayey, with minor amounts (less than 10%) of sand interspersed, light-gray. Cannonball-Ludlow Formations.
- Wells 60, 61 and 62
- 0-2 Top soil, silty, clayey, dark-brown to tanish-brown, calcareous.
- 2-25 Silt, very clayey, with some minor amounts (less than 10%) of very fine- to fine-grained sand interspersed, brownish-tan, slightly indurated, dry, calcareous; with abundant small gypsum crystals and thin silt and sand lenses; Cannonball-Ludlow Formations.
- 25-29 Silt, as above, with abundant (more than 20%) fine- to medium-grained sand interspersed.
- 29-36 Silt, as above, clayey, less sand than above interval, dark-brownish-tan, oxidized.
- 36-60 Silt, very clayey, with some (less than 20%) very fine-grained sand interspersed, steel-gray (color change), moderately indurated; with thin (less than 1 foot) sandy-silt lenses. Cannonball-Ludlow Formations.
- Well 70 0-2 Pebble-loam (glacial till), clayey, sandy, yellowish-brown, unconsolidated, damp, calcareous.
- 2-21 Silty, clayey, with some (less than 20%) fine-grained sand interspersed, brownish-tan, moderately indurated, very dry, calcareous, oxidized; with small iron oxide concretions and abundant small gypsum crystals. Cannonball-Ludlow Formations.

- 21-24 Shale, silty, steel- to dark-gray (color change), indurated, fissile, very dry; with occasional thin silt and sand lenses.
- 24-31 Silt, clayey, with abundant (more than 30%) sand, steel-gray, moderately indurated.
- 31-62 Silt, clayey, with some (less than 20%) very fine- to fine- grained sand interspersed, steel-gray, moderately indurated; with some small gypsum crystals and small iron oxide concretions.
- 62-76 Silt, as above, with some (less than 20%) fine-grained sand interspersed.
- 76-82 Silt, as above, with abundant (more than 20%) fine- to medium-grained sand.
- 82-100 Silt, as above, clayey, with some (less than 20%) fine-grained sand interspersed, dark-gray. Cannonball-Ludlow Formations.

EXHIBIT 5-F

SITE SOILS CLASSIFICATION MAP

EXHIBIT 5-G

WATER LEVEL DATA

HESKETT SWL INFORMATION

WELL DATA

WELL	TOP	GROUND	J		CASING
NO .	OF CASE	SURFACE	SCREENED I	INTERVAL	HEIGHT
10	1725.01	1722.06	1604.01 to	1608.01	2.95
11	1725.01	1722.10	1642.81 to	1646.81	2.91
12	1724.90	1721.88	1643.51 to	1663.51	3.02
13	1724.98	1721.80	1681.51 to	1701.51	3.18
20	1709.48	1707.04	1627.48 to	1631.48	2.44
21	1709.40	1707.22	1661.90 to	1685.90	2.18
30	1717.64	1715.55	1595.64 to	1599.64	2.09
31	1717.58	1715.24	1635.58 to	1639.58	2.34
32	1717.79	1715.34	1641.69 to	1661.69	2.45
33	1717.91	1715.48	1669.69 to	1689.69	2.43
40	1710.15	1708.02	1592.25 to	1596.25	2.13
41	1710.07	1708.03	1626.77 to	1630.77	2.04
42	1710.31	1708.12	1652.61 to	1672.61	2.19
43	1711.03	1708.92	1650.14 to	1654.14	2.11
44	1711.40	1709.09	1685.88 to	1705.88	2.31
45	1710.17	1708.34	1667.61 to	1687.61	1.83
50	1677.01	1674.58	1647.51 to		2.43
51	1676.70	1674.47	1637.33 to	1642.33	2.23
52	1676.71	1674.45	1658.01 to	1668.01	2.26
53	1688.17	1685.71	1665.70 to	1680.70	2.46
54	1688.10	1685.71	1633.11 to	1638.11	2.39
55	1696.10	1693.86	1636.95 to	1661.95	2.24
56	1696.42	1693.86	1597.99 to		2.56
60	1716.42	1714.23	1662.02 to		2.19
61	1716.53	1714.23	1670.89 to	1700.89	2.30
62	1716.67	1714.32	1681.40 to		2.35
70	1735.67	1733.18	1634.57 to		2.49
WS2	1698.64	1696.00		1640.00	2.64
WS1	1681.71	1679.61	1634.61 to	1639.61	2.10
WS1	1683.67 as				4.06
WS1A	1682.23	1679.10	1657.10 to	1662.10	3.13
WS1B	1682.07	1678.80		1653.80	3.27
WS4	1662.61	1659.61		1629.60	3.00
WS4A	1662.49	1659.49		1646.50	3.00
WS4B	1662.75	1659.75	1635.80 to		3.00
WS3	1661.00	1658.00	1628.00 to		3.00
WS3A	1660.81	1657.70	1645.31 to	1650.31	3.11

CASING ON WELL WS1 WAS REPAIRED IN JANUARY, 1987

ALL VALUES ARE IN FEET ABOVE MEAN SEA LEVEL

SWL-TOP = STATIC WATER LEVEL (in feet) FROM TOP OF CASING SWL-MSL = STATIC WATER LEVEL (in feet) AT MEAN SEA LEVEL SWL-BLS = STATIC WATER LEVEL (in feet) BELOW LAND SURFACE

WELL NO.	DATE	SWL-TOP	SWL-MSL	SWL-BLS
10	9-11-86 $10-16-86$ $11-21-86$ $1-13-87$ $3-6-87$ $4-21-87$ $6-3-87$ $5-11-88$ $9-12-88$ $1-4-89$	51.64 53.32 53.58 53.71 53.61 53.45 53.48 54.79 55.05 56.33	1673.37 1671.69 1671.43 1671.30 1671.40 1671.56 1671.53 1670.22 1669.96 1668.68	48.69 50.37 50.63 50.76 50.66 50.50 50.53 51.84 52.10 53.38
11	9-11-86 10-16-86 11-21-86 1-13-87 3-6-87 4-21-87 6-3-87 5-11-88 9-12-88 1-4-89	42.42 41.47 40.88 40.72 40.59 40.72 40.65 42.62 43.67 44.10	1682.59 1683.54 1684.13 1684.29 1684.42 1684.29 1684.36 1682.39 1681.34 1680.91	39.51 38.56 37.97 37.81 37.68 37.81 37.74 39.71 40.76 41.19
12	9-11-86 10-16-86 11-21-86 1-13-87 3-6-87 4-21-87 6-3-87 5-11-88 9-12-88 1-4-89	42.42 40.55 40.00 39.86 39.77 39.83 39.90 41.90 43.21 43.37	1682.48 1684.35 1684.90 1685.04 1685.13 1685.07 1685.00 1683.00 1681.69 1681.53	39.40 37.53 36.98 36.84 36.75 36.81 36.88 38.88 40.19 40.35
13	12-15-86 $1-13-87$ $3-6-87$ $4-21-87$ $6-3-87$ $5-11-88$ $9-12-88$ $1-4-89$	30.09 29.99 30.15 29.92 29.86 31.27 31.53 31.69	1694.89 1694.99 1695.06 1695.12 1693.71 1693.45 1693.29	26.91 26.81 26.97 26.74 26.68 28.09 28.35 28.51

WELL				
NO .	DATE	SWL-TOP	SWL-MSL	SWL-BLS
~~~~~	0 11 0/			
20	9-11-86	37.17	1672.31	34.73
	10-16-86	36.85	1672.63	34.41
	11-21-86	36.75	1672.73	34.31
	1-13-87	36.68	1672.80	34.24
	3-6-87	35.09	1674.39	32.65
	4-21-87	35.73	1673.75	33.29
	6-3-87	35.93	1673.55	33.49
	5-11-88	37.93	1671.55	35.49
	9-12-88	39.80	1669.68	37.36
	1-4-89	40.16	1669.32	37.72
21	9-11-86	29.17	1680.23	26.99
	10-16-86	28.94	1680.46	26.76
	11-21-86	28.61	1680.79	26.43
	1-13-87	28.51	1680.89	26.33
	3-6-87	28.41	1680.99	26.23
	4-21-87	27.95	1681.45	25.77
	6-3-87	28.12	1681.28	25,94
	5-11-88	30.77	1678.63	28.59
	9-12-88	32.22	1677.18	30.04
	1-4-89	33.07	1676.33	30.89

WELL				
NO.	DATE	SWL-TOP	SWL-MSL	SWL-BLS
30	9-11-86	49.38	1668.26	47.29
	10-16-86	49.35	1668.29	47.26
	11-21-86	49.28	1668.36	47.19
	1-13-87	49.15	1668.49	47.06
	3-6-87	48.53	1669.11	46.44
	4-21-87	48.10	1669.54	46.01
	6-3-87	48.36	1669.28	46.27
	5-11-88	50.36	1667.28	48.27
	9-12-88	51.97	1665.67	49.88
	1-4-89	52.40	1665.24	50.31
31	9-11-86	43.21	1674.37	40.87
	10-16-86	43.74	1673.84	41.40
	11-21-86	43.74	1673.84	41.40
	1-13-87	43.41	1674.17	41.07
	3-6-87	42.59	1674.99	40.25
	4-21-87	42.26	1675.32	39.92
	6-3-87	42.59	1674.99	40.25
	5-11-88	45.01	1672.57	42.67
	9-12-88	46.88	1670.70	44.54
	1-4-89	47.31	1670.27	44.97
32	9-11-86	42.52	1675.27	40.07
	10-16-86	42.03	1675.76	39.58
	11-21-86	41.87	1675.92	39.42
	1-13-87	41.18	1676.61	38.73
~	3-6-87	40.29	1677.50	37.84
	4-21-87	40.00	1677.79	37.55
	6-3-87	40.39	1677.40	37.94
	5-11-88	43.18	1674.61	40.73
	9-12-88	45.18	1672.61	42.73
	1-4-89	45.65	1672.14	43.20
33	12-15-86	40.68	1677.23	38.25
	1-13-87	40.72	1677.19	38.29
	3-6-87	39.73	1678.18	37.30
	4-21-87	39.01	1678.90	36.58
	6-3-87	39.54	1678.37	37.11
	5-11-88	42.06	1675.85	39.63
	9-12-88	43.57	1674.34	41.14
	1-4-89	44.03	1673.88	41.60

WELL NO.	DATE	SWL-TOP	SWL-MSL	SWL-BLS
40	9-11-86	63.82	1646.33	61.69
	10-16-86	63.68	1646.47	61.55
	11-21-86	63.29	1646.86	61.16
	1-13-87	63.39	1646.76	61.26
	3-6-87	63.06	1647.09	60.93
	4-21-87	63.16	1646.99	61.03
	6-3-87	63.26	1646.89	61.13
	5-11-88	63.36	1646.79	61.23
	9-12-88	63.72	1646.43	61.59
	1-4-89	63.89	1646.26	61.76
41	9-11-86	36.29	1673.78	34.25
	10-16-86	36.09	1673.98	34.05
	11-21-86	35.93	1674.14	33.89
	1-13-87	36.16	1673.91	34.12
	3-6-87	35.83	1674.24	33.79
	4-21-87	35.43	1674.64	33.39
	6-3-87	35.63	1674.44	33.59
	5-11-88	37.40	1672.67	35.36
	9-12-88	39.21	1670.86	37.17
42	1-4-89 9-11-86 10-16-86 11-21-86 1-13-87 3-6-87 4-21-87 6-3-87 5-11-88 9-12-88 1-4-89	39.70 33.30 32.74 31.43 31.46 31.27 31.20 31.30 32.61 33.96 34.12	1670.37 1677.01 1677.57 1678.88 1678.85 1679.04 1679.11 1679.01 1677.70 1676.35	37.66 31.11 30.55 29.24 29.27 29.08 29.01 29.11 30.42 31.77
45	12-15-86 1-13-87 3-6-87 4-21-87 6-3-87 5-11-88 9-12-88 1-4-89	28.71 28.58 28.48 28.58 28.71 29.89 30.84 30.97	1676.19 1681.46 1681.59 1681.69 1681.59 1681.46 1680.28 1679.33 1679.20	31.93 26.88 26.75 26.65 26.75 26.88 28.06 29.01 29.14

WELL				
NO	DATE	SWL-TOP	SWL-MSL	SWL-BLS
43	10-16-86	26.02	1685.01	23.91
	11-21-86	25.82	1685.21	23.71
	1-13-87	26.08	1684.95	23.97
	3-6-87	25.89	1685.14	23.78
	4-21-87	26.12	1684.91	24.01
	6-3-87	26.58	1684.45	24.47
	5-11-88	27.56	1683.47	25.45
	9-12-88	29.92	1681.11	27.81
	1-4-89	29.20	1681.83	27.09
44				
	10-16-86	21.98	1689.42	19.67
	11-21-86	21.85	1689.55	19.54
	1-13-87	22.15	1689.25	19.84
	3-6-87	22.05	1689.35	19.74
	4-21-87	21.72	1689.68	19.41
	6-3-87	22.21	1689.19	19.90
	5-11-88	23.46	1687.94	21.15
	9-12-88	dry		
	1-4-89	24.87	1686.53	22.56
	5			

WELL				
NO.	DATE	SWL-TOP	SWL-MSL	SWL-BLS
50	9-11-86	5.45	1671.56	3.02
	10-16-86	4.53	1672.48	2.10
	11-21-86	4.17	1672.84	1.74
	1-13-87	4.76	1672.25	2.33
	3-6-87	not taker	٦ ا	
	4-21-87	3.74	1673.27	1.31
	6-3-87	4.33	1672.68	1.90
	5-11-88	5.41	1671.60	2.98
	9-12-88	7.87	1669.14	5.44
	1-4-89	7.97	1669.04	5.54
51	10-16-86	6.43	1670.27	4.20
	11-21-86	6.07	1670.63	3.84
	1-13-87	6.30	1670.40	4.07
	3-6-87	5.94	1670.76	3.71
	4-21-87	5.45	1671.25	3.22
	6-3-87	5.74	1670.96	3.51
	5-11-88	7.35	1669.35	5.12
	9-12-88		1667.09	7.38
	1-4-89	9.81	1666.89	7.58
52	10-16-86	4.43	1672.28	2.17
	11-21-86	4.07	1672.64	1.81
	1-13-87	4.56	1672.15	2.30
	3-6-87	3.81	1672.90	1.55
	4-21-87		1673.10	1.35
	6-3-87		1672.51	1.94
	5-11-88		1671.72	2.73
	9-12-88	7.81	1668.90	5.55
	1-4-89	7.89	1668.82	5.63

WELL				
NO.	DATE	SWL-TOP	SWL-MSL	SWL-BLS
53	10-16-86	6.66	1681.51	4.20
	11-21-86	6.46	1681.71	4.00
	1-13-87	6.92	1681.25	4.46
	3-6-87	7.55	1680.62	5.09
	4-21-87	6.17	1682.00	3.71
	6-3-87	7.32	1680.85	4.86
	5-11-88	7.51	1680.66	5.05
	9-12-88	11.25	1676.92	8.79
	1-4-89	10.93	1677.24	8.47
54	10-16-86	21.36	1666.74	18.97
	11-21-86	20.97	1667.13	18.58
	1-13-87	20.87	1667.23	18.48
	3-6-87	21.00	1667.10	18.61
	4-21-87	20.70	1667.40	18.31
	6-3-87	20.54	1667.56	18.15
	5-11-88	22.28	1665.82	19.89
	9-12-88	23.13	1664.97	20.74
	1-4-89	23.62	1664.48	21.23

55	10-16-86 $11-21-86$ $1-13-87$ $3-6-87$ $4-21-87$ $6-3-87$ $5-11-88$ $9-12-88$ $1-4-89$	29.46 29.50 29.30 29.30 29.30 29.13 29.86 30.35 29.66	1666.64 1666.54 1666.80 1666.80 1666.97 1666.24 1665.75 1666.44	27.22 27.26 27.32 27.06 27.06 26.89 27.62 28.11 27.42
56	10-16-86 $11-21-86$ $1-13-87$ $3-6-87$ $4-21-87$ $6-3-87$ $5-11-88$ $9-12-88$ $1-4-89$	42.52 39.93 39.96 39.83 39.40 39.54 41.08 42.06 42.88	1653.90 1656.49 1656.59 1657.02 1656.88 1655.34 1654.36 1653.54	39.96 37.37 37.40 37.27 36.84 36.98 38.52 39.50 40.32

WELL NO.	DATE	SWL-TOP	SWL-MSL	SWL-BLS
60	$\begin{array}{c} 9-11-86\\ 10-16-86\\ 11-21-86\\ 1-13-87\\ 3-6-87\\ 4-21-87\\ 6-3-87\\ 5-11-88\\ 9-12-88\\ 1-4-89 \end{array}$	32.58 32.51 32.35 32.51 32.51 32.29 32.25 34.61 35.47 35.92	1683.84 1683.91 1684.07 1684.07 1683.91 1684.13 1684.13 1684.17 1681.81 1680.95 1680.50	30.39 30.32 30.16 30.16 30.32 30.10 30.06 32.42 33.28 33.73
61	10-16-86 $11-21-86$ $1-13-87$ $3-6-87$ $4-21-87$ $6-3-87$ $5-11-88$ $9-12-88$ $1-4-89$	32.55 32.38 32.38 32.55 32.32 32.32 34.65 35.47 35.96	1683.98 1684.15 1684.15 1683.98 1684.21 1684.21 1681.88 1681.06 1680.57	30.25 30.08 30.08 30.25 30.02 30.02 32.35 33.17 33.66
62	10-16-86 $11-21-86$ $1-13-87$ $3-6-87$ $4-21-87$ $6-3-87$ $5-11-88$ $9-12-88$ $1-4-89$	32.74 32.55 32.51 32.71 32.48 32.48 34.81 dry dry	1683.93 1684.12 1684.16 1683.96 1684.19 1684.19 1681.86	30.39 30.20 30.16 30.36 30.13 30.13 32.46
70	9-11-86 10-16-86 11-21-86 1-13-87 3-6-87 4-21-87 6-3-87	55.02 54.99 54.56 54.46 54.40 54.53 54.43	1680.65 1680.68 1681.11 1681.21 1681.27 1681.14 1681.24	52.53 52.50 52.07 51.97 51.91 52.04 51.94

54.56

5-11-88

9-12-88 54.82

1-4-89 54.92

1681.11

1680.85

1680.75

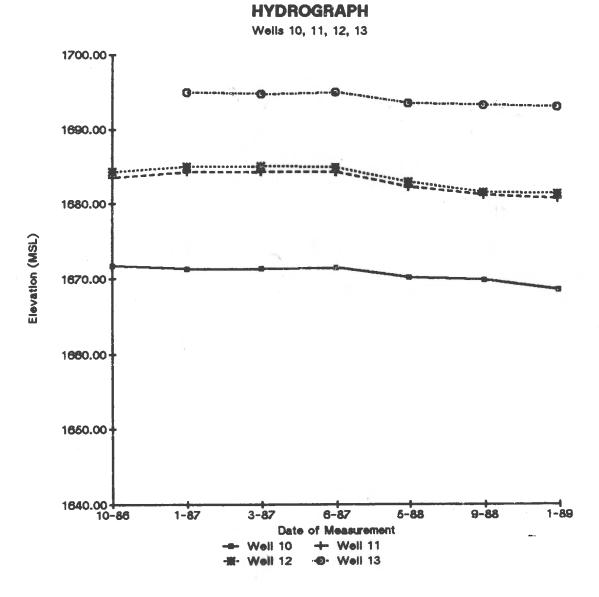
52.07

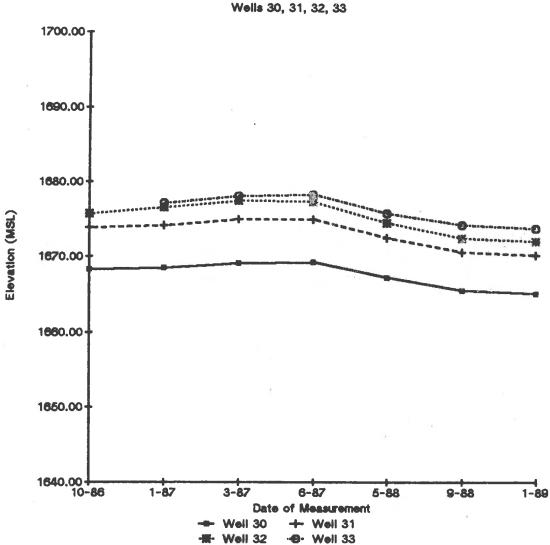
52.33

52,43

WELL NO.	DATE	SWL-TOP	SWL-MSL	SWL-BLS
WS1	9-4-86 10-16-86 11-21-86 1-13-87* 3-6-87 4-21-87 6-3-87 5-11-88 9-12-88 1-4-89 * = WELL	25.56 28.15 26.77 24.97 25.36 29.00 30.32 29.86	1656.71 1656.58 1656.15 1655.52 1656.90 1658.70 1658.31 1654.67 1653.35 1653.81 PAIRED	22.90 23.03 23.46 24.09 22.71 20.91 21.30 24.94 26.26 25.80
WS1A	9-4-86 10-16-86 11-21-86 1-13-87 3-6-87 4-21-87 6-3-87 5-11-88 9-12-88 1-4-89	dry dry dry 24.31 22.18 22.38 dry dry dry	1657.92 1660.05 1659.85	21.18 19.05 19.25
W\$1B		25.33 25.53 26.08 27.07 24.35 21.82 22.77 28.22 30.18 29.92	1656.74 1655.99 1655.00 1657.72 1660.25 1659.30 1653.85 1651.89 1652.15	22.06 22.26 22.81 23.80 21.08 18.55 19.50 24.95 26.91 26.65
WS2	9-4-86 10-16-86 11-21-86 1-13-87 3-6-87 4-21-87 6-3-87 5-11-88 9-12-88 1-4-89	33.96 33.66 33.47 33.79 33.73 32.91 33.04 35.33 36.68 37.17	1664.68 1664.98 1665.17 1664.85 1664.91 1665.73 1665.60 1663.31 1661.96 1661.47	31.32 31.02 30.83 31.15 31.09 30.27 30.40 32.69 34.04 34.53

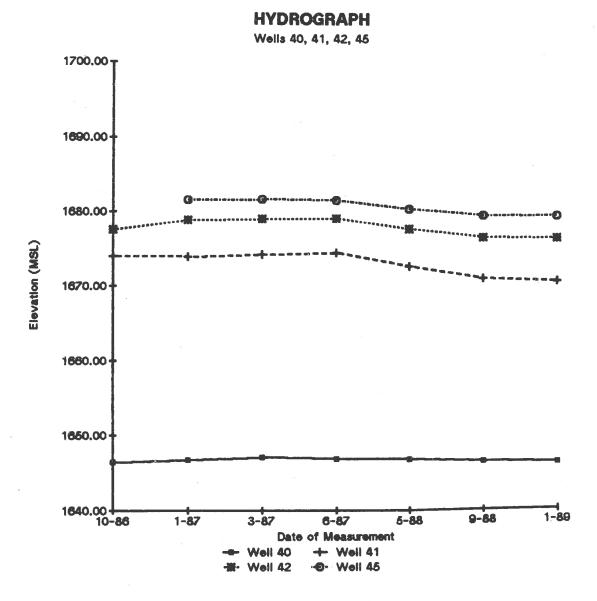
WELL NO.	DATE	SWL-TOP	SWL-MSL	SWL-BLS
WS3	9-4-86 10-16-86 11-21-86 1-13-87 3-6-87 4-21-87 6-3-87 5-11-88 9-12-88 1-4-89	14.67 14.44 14.40 13.98 14.80 13.94 14.60 17.52 17.88 17.68	1646.33 1646.56 1646.60 1647.02 1646.20 1647.06 1647.06 1643.48 1643.12 1643.32	11.67 11.44 11.40 10.98 11.80 10.94 11.60 14.52 14.88 14.68
WS3A	10-16-86 $11-21-86$ $1-13-87$ $3-6-87$ $4-21-87$ $6-3-87$ $5-11-88$ $9-12-88$ $1-4-89$	8.30 8.43 9.55 10.17 6.82 8.73 13.71 13.81 14.73	1652.51 1652.38 1651.26 1650.64 1653.99 1652.08 1647.10 1647.00 1646.08	5.19 5.32 6.44 7.06 3.71 5.62 10.60 10.70 11.62
WS4 -	9-4-86 10-16-86 11-21-86 1-13-87 3-6-87 4-21-87 6-3-87 5-11-88 9-12-88 1-4-89	19.62 19.52 19.42 18.83 19.16 19.00 19.39 21.46 21.95 21.23	1642.99 1643.09 1643.78 1643.45 1643.61 1643.22 1641.15 1640.66 1641.38	16.62 16.52 15.83 16.16 16.00 16.39 18.46 18.95 18.23
WS4A	9-4-86 10-16-86 11-21-86 1-13-87 3-6-87 4-21-87 6-3-87 5-11-88 9-12-88 1-4-89	17.39 17.62 15.81 16.93 19.36 20.11	1645.20 1645.33 1645.36 1645.10 1644.87 1646.68 1645.56 1643.13 1642.38 1642.74	14.29 14.16 14.13 14.39 14.62 12.81 13.93 16.36 17.11 16.75
WS48	9-4-86 10-16-86 11-21-86 1-13-87 3-6-87 4-21-87 6-3-87 5-11-88 9-12-88 1-4-89	17.65 15.81 17.06 19.55 20.28	1645.36 1645.52 1645.33 1645.10 1645.94 1645.69 1643.20 1642.47 1642.83	14.39 14.23 14.16 14.42 14.65 12.81 14.06 16.55 17.28 16.92

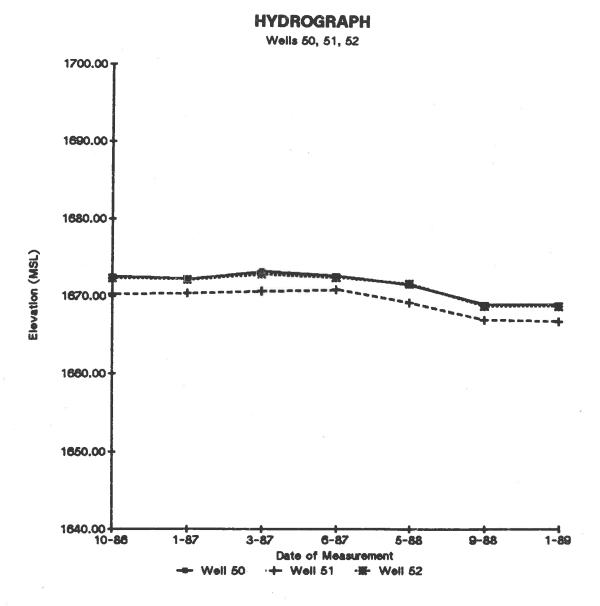

EXHIBIT 5-H


## WATER TABLE ELEVATION CONTOUR MAP

SITE HYDROGRAPHS

EXHIBIT 5-I


1






HYDROGRAPH

Wells 30, 31, 32, 33





## EXHIBIT 5-J

#### GROUNDWATER CHEMICAL ANALYSIS

Constituent		ecommended atration Limit ¹
Total Dissolved Solids Sulfate (SO ₂ ) Chloride (C1) Nitrate (NO ₃ ) Iron (Fe) Manganese (Mn) Copper (Cu) Zinc (Zn) Boron (B) Hydrogen Sulfide (H ₂ S)	(mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L)	500 250 250 45 0.3 0.05 1.0 5.0 1.0 0.05
	Maxim Con	um Permissible centration ²
Arsenic (As) Antimony (Sb) Barium (Ba) Cadmium (Cd) Chromium (Cr) Lead (Pb) Mercury (Hg) Selenium (Se) Silver (Ag) Fluoride (F)	(mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L)	0.05 0.01 1.0 0.01 0.05 0.050 0.002 0.01 0.050 1.4-2.41 ³
Organics: Cyanide Phenol Synthetic Detergents	(mg/L) (mg/L) (mg/L)	0.05 0.001 0.5

#### Drinking Water Standards

¹Recommended concentration limits for these constituents are mainly to provide esthetic and taste characteristics.

²Maximum permissible limits are set according to health criteria.

 3 Limit depends on average air temperature of the region; fluoride is toxic at about 5-10 mg/L if water is consumed over a long period of time.

Parameter		Well 10	Well 12	Well 30
Sample Collection Date Water Level Elevation; Screen Center Field Water Temp Field pH (standard Field Sp.Cond. (uml Total Dissolved Solids ² Total Alkalinity as CaCO ₃ Bicarbonate (HCO ₃ ) Boron (B)	hos/cm) (mg/L)	9-11-86 51.6 1606.0 8.0 7.6 7370.0 9736.0 674.0 825.0	9-11-86 42.4 1653.5 8.4 7.2 8070.0 10396.0 645.0 789.0	9-11-86 49.4 1597.6 8.0 8.1 1350.0 1286.0 425.0 520.0
Calcium (Ca) Chloride (Cl) Fluoride (F) Iron (Fe) Potassium (K) Magnesium (Mg) Nitrate (NO ₃ ) Sodium (Na) Sulfate (SO ₄ )	(mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L)	339.0 20.8 0.3 <.2 16.0 302.0 <1 2232.0 6443.0	422.0 20.7 <.2 0.6 13.0 318.0 <1 2438.0 6818.0	33.0 2.1 0.4 <.2 5.8 34.0 <1 352.0 606.0
TRACE ELEMENTS: Arsenic (Ar) Barium (Ba) Cadmium (Cd) Chromium (Cr) Lead (Pb) Manganese (Mn) Mercury (Hg) Molybdenum (Mo) Selenium (Se) Silver (Ag)	(mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L)	<.002 0.090 0.0020 <.002 <.002 0.986 <.0003 0.018 <.002 <.001	.0025 0.157 0.0012 <.002 <.002 2.130 <.0003 <.010 <.002 <.001	<.002 0.030 <.001 <.002 <.002 0.124 <.0003 <.010 <.002 <.001

¹From top of PCV casing. TDS is calculated.

Parameter		Well 32	Well 40	Well 42
Sample Collection Date Water Level Elevation; Screen Center Field Water Temp Field pH (standard Field Sp.Cond. (uml Total Dissolved Solids ² Total Alkalinity as CaCO ₃ Bicarbonate (HCO ₃ ) Boron (B)	hos/cm) (mg/L)	9-11-86 42.5 1651.7 8.3 6.9 3150.0 3927.0 467.0 571.0	9-11-86 63.8 1594.3 8.6 7.5 4290.0 5333.0 565.0 691.0	9-11-86 33.3 1662.6 8.5 7.0 3700.0 4658.0 424.0 519.0
Calcium (Ca) Chloride (C1) Fluoride (F) Iron (Fe) Potassium (K) Magnesium (Mg) Nitrate (NO ₃ ) Sodium (Na) Sulfate (SO ₄ )	(mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L)	313.0 10.0 0.3 <.2 14.0 318.0 <1 464.0 2538.0	422.0 15.2 0.2 <.2 12.0 136.0 <1 1047.0 3378.0	432.0 46.8 0.3 15.0 250.0 4.3 648.0 3058.0
TRACE ELEMENTS: Arsenic (Ar) Barium (Ba) Cadmium (Cd) Chromium (Cr) Lead (Pb) Manganese (Mn) Mercury (Hg) Molybdenum (Mo) Selenium (Se) Silver (Ag)	(mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L)	<.002 0.093 <.001 <.002 <.002 0.462 <.0003 0.014 <.002 <.001	<.002 0.083 <.001 <.002 <.002 0.037 <.0003 <.010 0.005 <.001	<.002 0.198 <.001 <.002 <.002 0.670 <.0003 <.010 0.032 <.001

¹₂From top of PCV casing. ²TDS is calculated.

Parameter		Well 44	Well 50	Well 50
Sample Collection Date Water Level Elevation; Screen Center Field Water Temp Field pH (standard Field Sp.Cond. (umh Total Dissolved Solids ² Total Alkalinity as CaCO ₃ Bicarbonate (HCO ₃ ) Boron (B)	os/cm) (mg/L)	11-21-86 21.85 1687.9 6.5 6.76 7580.0 11240.0 401.0 491.0	9-11-86 5.5 1657.5 9.7 7.5 4310.0 4999.0 418.0 511.0	11-21-86 4.17 1657.5 8.5 7.37 3620.0 5196.0 416.0 509.2
Calcium (Ca) Chloride (Cl) Fluoride (F) Iron (Fe) Potassium (K) Magnesium (Mg) Nitrate (NO ₃ ) Sodium (Na) Sulfate (SO ₄ )	(mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L)	648.0 558.0 0.5 <0.2 51.0 1322.0 30.0 1589.0 7390.0	313.0 34.8 0.3 <.2 12.0 250.0 23.5 871.0 3302.0	391.0 33.0 <0.2 <0.2 13.0 257.0 112.0 902.0 3384.0
TRACE ELEMENTS: Arsenic (Ar) Barium (Ba) Cadmium (Cd) Chromium (Cr) Lead (Pb) Manganese (Mn) Mercury (Hg) Molybdenum (Mo) Selenium (Se) Silver (Ag) Phenol Oil & Grease	(mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L)	<.002 0.156 <.001 <0.001 <.005 0.218 <.0003 <.010 0.086 <.002 <1.0 <3.0	<.002 0.084 <.001 <.002 <.002 0.010 <.0003 <.010 0.055 <.001 <1.0 <3.0	<.002 0.128 <.001 0.003 <.005 <.0003 <.010 0.076 <.002 <1.0 <3.0

¹From top of PCV casing. ²TDS is calculated.

Parameter		Well 52	Well 54	Well 55
Total Alkalinity as $CaCO_3$ Bicarbonate ( $HCO_3$ )	(ft) (ft) (oC) units) nos/cm) (mg/L)	11-21-86 4.07 1663.0 8.7 7.38 4650.0 6072.0 424.0 519.0	11-21-86 20.97 1635.1 6.9 8.03 4570.0 7223.0 616.0 754.0	11-21-86 29.50 1648.9 7.5 6.81 9007.0 13081.0 528.0 646.3
Boron (B) Calcium (Ca) Chloride (Cl) Fluoride (F) Iron (Fe) Potassium (K) Magnesium (Mg) Nitrate (NO ₃ ) Sodium (Na) Sulfate (SO ₄ )	(mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L)	392.0 45.0 <0.2 <0.2 15.0 305.0 148.0 1115.0 3991.0	295.0 92.0 0.3 <0.2 13.0 439.0 6.0 1490.0 4617.0	445.0 81.0 0.7 <0.2 28.0 862.0 154.0 2423.0 9007.0
TRACE ELEMENTS: Arsenic (Ar) Barium (Ba) Cadmium (Cd) Chromium (Cr) Lead (Pb) Manganese (Mn) Mercury (Hg) Molybdenum (Mo) Selenium (Se) Silver (Ag) Phenol Oil & Grease	(mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L)	0.125 <.001 0.003 <.005 0.004 <.0003 <.010 0.088 <.002	<.002 0.105 <.001 0.003 <.005 1.080 <.0003 0.041 0.025 <.002 <1.0 <3.0	<.002 0.133 <.001 0.003 <.005 0.045 <.0003 <.010 0.386 <.002

¹₂From top of PCV casing. ²TDS is calculated.

Parameter		Well 60	Well 70
Sample Collection Date Water Level Elevation; Screen Center Field Water Temp Field pH (standard Field Sp.Cond. (umH Total Dissolved Solids ² Total Alkalinity as CaCO ₃ Bicarbonate (HCO ₃ ) Boron (B)	nos/cm) (mg/L)	11-21-86 32.35 1677.0 7.6 6.83 10440.0 14917.0 540.0 661.0	9-11-86 55.0 1636.4 8.6 8.3 10370.0 13129.0 491.0 600.0
Calcium (Ca) Chloride (Cl) Fluoride (F) Iron (Fe) Potassium (K) Magnesium (Mg) Nitrate (NO ₃ ) Sodium (Na) Sulfate (SO ₄ )	(mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L)	417.0 208.0 0.5 <0.2 41.0 1355.0 170.0 1148.0 11632.0	192.0 10.9 0.3 <.2 22.0 121.0 <1 3682.0 8818.0
TRACE ELEMENTS: Arsenic (Ar) Barium (Ba) Cadmium (Cd) Chromium (Cr) Lead (Pb) Manganese (Mn) Mercury (Hg) Molybdenum (Mo) Selenium (Se) Silver (Ag) Phenol Oil & Grease	(mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L)	<.002 0.151 <.001 0.004 <.005 0.033 <.0003 <.010 0.195 <.002 <1.0 <3.0	.0032 0.080 0.0010 <.002 <.002 0.110 <.0003 0.017 <.002 <.001

¹From top of PCV casing. ²TDS is calculated.

PRUJECI LUCALIUN/SITE:	MDU Hesket Plant -	FLELD INVESTIGATOR	ESTIGATOR	J.Solberg			
GENERAL I. AMATION Sample Location/I.D. Casing Diameter Total Well Depth Past Static Water Level Approximate Volume of Water	er	45 2" PVC 40' ? 30.6' 1.5 gal	52 2" PVC 17' ? 7.7' 1.5 gal	60 2" PVC 48' ? 35.8' 2 Eal	33 2" PVC 38'? 36.8' .25 &al	13 2" PVC 40' ? 31.9' 1.5 gal	70 2" PVC 100' ? 54.85' 7.5 <b>ga</b> l
STATIC LEVEL MEASUREMENT Date Time Datum Measurement Equipment Static Water Level		12/19/88 14:20 PVC Top SteelTape 30.60	12/19/88 1 14:45 1 PVC Top F SteelTape 5 7.65	12/19/88 15:00 PVC Top SteelTape 35.80		12/19/88 12/19/88 15:25 16:00 PVC Top PVC Top SteelTape SteelTape 36.80 31.92	12/19/88 16:35 PVC Top SteelTape 2 54.85
PRE-SAMPLING PREPARATION Pre-Sample Technique/Equip. Volume Removed	Ċ	PVCbailer 1.5 gal (dirty)	PVCbailer 1 gal	PVCbailer 2 gal	PVCbailer .5 gal (dirty)	PVCbailer PVCbailer PVCbailer PVCbailer PVCbailer 1.5 gal 1 gal 2 gal .5 gal 1.5 gal 6 gal (dirty) (dirty)	PVCbailer 6 gal
Date Date Time Measurement Equipment Static Water Level Sampling Technique/Equip. Field Temperature (C) Field pH Field DH		12/20/88 10:15 SteelTape 3 31.05 PVCbailer 1 5.60 5.60	12/20/88 1 10:45 1 SteelTape S 7.95 PVCbailer P 5.80 5.80	12/20/88 12/20/88 10:45 11:25 SteelTape SteelTape 35.86 7.95 35.86 PVCbailer PVCbailer 1 5.80 5.50 7200 1400	12/20/88 12:00 SteelTape 36.92 PVCbailer 5.60 5.60	12/21/88 15:50 SteelTape 31.85 PVCbailer 5.90 5.90	12/21/88 16:22 SteelTape 54.90 PVCbailer 6.40 1380
Samples collected Raw-Unfiltered Unfiltered/Sulferic Acid Filtered/Nitric Acid Other (unfilter/untreat)	id t)	2 liters 2 125ml 1 125ml 1 125ml	2 liters 2 125ml 1 125ml 1 125ml	2 liters 2 125ml 1 125ml 1 125ml		2 liters 2 125ml 1 125ml 1 125ml	2 liters 2 125ml 1 125ml 1 125ml
DELIVERY Date Time Delivered To Via Delivery Container	12/20/88 - 12/22/88 4:30 - 10:30 Minnesota Valley Testing Laboratories, Hand Delivered Cooler with Ice	Inc.	-	· .			

COMMENTS

۹

* Well 33 had insufficient water for any samples - field parameters taken Well 45 - samples were dirty



# MINNESOTA VALLEY TESTING LABORATORIES, *Inc.*

#### 1411 SOUTH 12TH STREET • P.O. BOX 1873 BISMARCK, NORTH DAKOTA 58502-1873 WATER ANALYSIS REPORT



Montana-Dakota Utilities
 400 North Fourth
 Bismarck, ND 58501
 W
 Attention: John Verwey
 Sample
 MDU - Heskett
 P.
 Identification:
 #13 15:50 CST
 12/20/88

Date: January 27, 1989 W.O. #: 82-045 Lab. #: M-156

P.O. #: M04548

Date Received: 12/22/88

#### PHYSICAL PARAMETERS: NUTRIENTS: Color ..... units of apparent color Conductivity .... micromhos/cm @ 25 °C 12078 Nitrite-Nitrogen as N mg/l рН..... 7.2 Nitrate-Nitrogen as N.....mg/l _ 25.8 Total - Kieldahl Nitrogen Solids (Total Suspended) Solids (Total Volatile) Phosphorus (Total) as P Turbidity — NTU Phosphorus (Dissolved) as P. . . . . mg/l _ **COMMON IONS: METALS:** 366.0 Copper (Total) ......mg/l Magnesium mg/l 642.0 Iron (Total) Manganese (Total) MISCELLANEOUS: Acidity as CaCO₃ 600 Biochemical Oxygen Demand ......mg/l Bicarbonate as CaCO3 600 Chemical Oxygen Demand ......mg/l Bicarbonate as HCO₃ mg/l Carbonate as CaCO₃.....mg/l 0 Fecal Coliform Count - Millipore P-Alkalinity as CaCO₃ filter/100 ml 6774.9 0.62 Iron Bacteria Oil & Grease Total Hardness as CaCO3 Land mg/l 3556 Phenols _____mg/l _ Sodium Adsorption Ratio 14.37 Total Organic Carbon Cations 157.9 Total Plate Count per 100ml Anions 164.2 % Error 2.0 TRACE ELEMENTS: Aluminum mg/l Cobalt 0.034 mg/l Silver mg/l ___ Antimony mg/l Iron ..... 0.11 mg/l Lead <0.001 mg/l Thorium <0.05 Tin ______mg/l _____ Mercury mg/l 0.0011 <0.100 Chromium _____mg/I _____ Selenium mg/l <0.002 ******** Metals are reported as dissolved. unless otherwise indicated. *******

FIELD DATA:		
Flow	T° C	7.0°C
<b>E. C.</b> <u>1190</u>	pH	5.90
Static Water Level_	31.	85

Forin anno Phelps

Catherine A. Phelps, Chemist

As a Mutual Protection to Clients, the Public and Ourselves, All Reports are Submitted as the Confidential Property of Clients, and Authorization For Publication of Statements, Conclusions or Extracts From or Regarding Our Reports is Reserved Pending Our Written Approval.



# **MINNESOTA VALLEY TESTING LABORATORIES**, *Inc.*

#### 1411 SOUTH 12TH STREET • P.O. BOX 1873 BISMARCK, NORTH DAKOTA 58502-1873 WATER ANALYSIS REPORT



Montana-Dakota Utilities D 400 North Fourth Bismarck, ND 58501 W Attention: John Verwey L Sample MDU - Heskett P Identification: #45 10:15 CST 12-20-88 PHYSICAL PARAMETERS: Color inite of Co pН So So

ate:	January	24,	1989
<b>/.O</b> . #:	82-041		
ab. #:	M- 145		
.0. #:	M04548		

**Date Received:** 12-21-88

# NUTRIENTS:

Color	Ammonia-Nitrogen
Conductivity , , , , micromhos/cm @ 25 °C3937	Nitrite-Nitrogen as N
pH7	.5 Nitrate-Nitrogen as Nmg/l4.6
Solids (Total)	Organic-Nitrogen
Solids (Total Dissolved)	Total - Kjeldahl Nitrogen
Solids (Total Suspended)	
Solids (Total Volatile)mg/l	
Turbidity – NTU	
COMMON IONS:	Phosphorus (Dissolved) as Pmg/l
Calcium	
Magnesium	
Sodium	
Potassium	0 Manganese (Total) Miscellaneous:
Acidity as CaCO ₃	
Alkalinity (Total) as CaCO ₃	
Bicarbonate as CaCO ₃	Biochemical Oxygen Demand
Bicarbonate as HCO ₃ mg/l	
	Cyanide mg/l Fecal Coliform Count Millipore
P-Alkalinity as CaCO ₃	
Sulfate mg/l 1840	
Chloride	
Total Hardness as CaCO3	Oil & Grease
	.50 Phenols
Cations 48	
Anions	5 Total Plate Count per 100ml
% Error0	5
TRACE ELEMENTS:	•
Aluminum Cobalt Cobalt	
Beryllium mg/l Manganese	
9	
Bromide mg/l Molybdenur	
	5
•	ma// <0.002
	as dissolved, unless otherwise indicated,
	Analysis completed by Controls for Environmental
	Pollution; Santa Fe, New Mexico
E. C. <u>3800</u> pH <u>5.6</u>	alourin ame Philpre
Static Water Level 31.05	

Catherine A. Phelps, Chemist





# **MINNESOTA VALLEY TESTING LABORATORIES**, *Anc.*

#### 1411 SOUTH 12TH STREET • P.O. BOX 1873 BISMARCK, NORTH DAKOTA 58502-1873 WATER ANALYSIS REPORT



Montana-Dakota Utilities 400 North Fourth Bismarck, ND 58501 Attention: John Verwey

Sample	MDU	-	Hes	kett
Identification:	#52	10	:45	CST
	12-20	-8	8	

Date:	January	24,	1989
<b>W.O</b> . #:	82-041		
Lab. #:	M- 146		
P.O. #:	M04548		

Date Received: 12-21-88

PHYSICAL PARAMETERS:		NUTRIENTS:	
Color units of apparent color	· ·		
Conductivity micromhos/cm @ 25°C	7300	Ammonia-Nitrogen	
pH	7 6	Nitrate Nitrogen as N	27 0
Solids (Total)		Nitrate-Nitrogen as N	
Solids (Total Dissolved)	6721	Organic-Nitrogen	
Solids (Total Suspended) mg/l		Total - Kjeldahl Nitrogen	
Solids (Total Volatile) mg/l		Ortho-phosphate as P mg/l	
Turbidity — NTU		Phosphorus (Total) as P mg/l	
COMMON IONS:		Phosphorus (Dissolved) as P mg/l	
Calcium	421.0	METALS:	
Magnesium mg/l		Copper (Total) mg/l	
Sodium		Iron (Total)mg/l	
Potassium mg/l		Manganese (Total)	
Acidity as CaCO	14,3	MISCELLANEOUS:	
Acidity as CaCO ₃		ADA g/l	
Alkalinity (Total) as CaCO ₃	438	Biochemical Oxygen Demandmg/l	
Bicarbonate as CaCO ₃	438	Chemical Oxygen Demand	
Bicarbonate as HCO ₃ mg/l		Cyanide	
Carbonate as CaCO ₃ mg/l		Fecal Coliform Count — Millipore	
P-Alkalinity as CaCO ₃ mg/l		filter/100 ml	
Sulfate		Fluoride	
Chloride	99.3	Iron Bacteria	
T	2224	Oil & Grease	
Total Hardness as CaCO ₃ housing/l		Phenois	
Sodium Adsorption Ratio		Total Organic Carbon mg/l	
Cations		Total Plate Count per 100ml	
Anions			
% Error	2.3		
TRACE ELEMENTS:			
Aluminum mg/l C	Cobalt	mg/l Silver	mg/l 0.02
	Copper	mg/l Strontium	
Arsenic	on		÷ .
Barium	ead	mg/l <0.001 Thorium	mg/l
Beryllium Mg/l N	langanese	mg/l Tin	.mg/l
	fercury		
Bromide	lolybdenum	mg/i <0.10 Vanadium	ma/l
Cadmium	lickel	mg/l Zinc	ma/l
Chromium mg/l <0.05 S	elenium	ma/1 0.005 *CEP	
		ed, unless otherwise indicated.	
FIELD DATA:			
Flow T°C _5.0° (		s completed by Controls for Envir	ronmental
E. C. <u>7200</u> pH <u>5.8</u>		n; Santa Ee, New Mexico	
Static Water Level 7,95	-	Parinin Care Poly	
		1 Classical Clance Could	

Catherine A. Phelps, Chemist



Dologia Italiata

# MINNESOTA VALLEY **TESTING LABORATORIES**, *Inc.*





19.4

0.64

1989

	12-20-88	Date Rec	eived:	12-2	1-88
Sample Identification:	MDU - Heskett 60 ll:25 CST	<b>P.O.</b> #:	M04548		
Attention: John	Verwey	Lab. #:	M- 147		
Bismarck, N		<b>W.O.</b> #:	82-041		
400 North F	ourth	Date:	January	z 24,	198

#### PHYSICAL PARAMETERS: NUTRIENTS: Color ..... units of apparent color . Conductivity micromhos/cm @ 25°C _ 15,166 рН..... 7.0 Nitrate-Nitrogen as N ......mg/l Organic-Nitrogen _____mg/l __ Total - Kjeldahl Nitrogen Ortho-phosphate as P Phosphorus (Total) as P ......mg/l _____ Turbidity — NTU Phosphorus (Dissolved) as P. ....mg/l COMMON IONS: METALS: 415.0 Copper (Total) Iron (Total) Manganese (Total) 33.8 MISCELLANEOUS: 524 524 0 Fecal Coliform Count - Millipore P-Alkalinity as CaCO₃ filter/100 ml 10.779.8 273.0 Iron Bacteria Total Hardness as CaCO₃ mg/l 6,552 Sodium Adsorption Ratio Total Organic Carbon Cations 230.4 Total Plate Count per 100ml Anions 244.2 % Error **High TDS due to hygroscopic nature of 2.9 TRACE ELEMENTS: cations and anions. Aluminum mg/l ____ Cobalt ma/l Antimony mg/l <0.002 Thallium _____mg/l _____ Lead mg/l <0.001 Thorium _____mg/l __ Manganese mg/l 0.08 Tin ......mg/l _____ 1.800 Vanadium <0.001* Chromium mg/l <u><0.05</u> Selenium mg/l <0.002

******** Metals are reported as dissolved, unless otherwise indicated. ********

FIELD DATA:	
Flow	T°C <u>5.0</u> °C
<b>E. C.</b> <u>1400</u>	<b>pH</b> 5.5
Static Water Level_	35.86

*Analysis completed by Controls for Environmental Pollution; Santa Fg, New Mexico

alexand land b

Catherine A. Phelps, Chemist





# **MINNESOTA VALLEY TESTING LABORATORIES**, *Inc.*

#### 1411 SOUTH 12TH STREET . P.O. BOX 1873 BISMARCK, NORTH DAKOTA 58502-1873 WATER ANALYSIS REPORT



<1.0

0.27

Montana-Dakota Utilities 400 North Fourth	Date:	January 27, 1989
Bismarck, ND 58501	<b>W.O.</b> #: {	82-045
Attention: John Verwey	Lab. #:	M- 157
SampleMDU - HesIdentification:#70 16:22	i i i i i i i i i i i i i i i i i i i	M04548
12/20/88	Date Recei	ived: 12/22/88

#### PHYSICAL PARAMETERS:

NUTRIENTS: Ammonia-Nitrogen mg/l 14841 Conductivity micromhos/cm @ 25 °C рН..... 8.0 Phosphorus (Total) as P _____mg/l _ Turbidity — NTU **COMMON IONS:** METALS: 212.5 117.0 Iron (Total) .....mg/l ___ Manganese (Total) 26.5 MISCELLANEOUS: Acidity as CaCO₃.....mg/l Alkalinity (Total) as CaCO3 510 Biochemical Oxygen Demand ......mg/l 510 Chemical Oxygen Demand Cyanide .....mg/l ___ Carbonate as CaCO₃....mg/l 0 Fecal Coliform Count - Millipore filter/100 ml 8334.9 19.9 Iron Bacteria Oil & Grease mg/l Total Hardness as CaCO₃ _______ 1012 Sodium Adsorption Ratio 53.19 Total Organic Carbon Cations 190.4 Total Plate Count per 100ml % Error _____ 1.6 TRACE ELEMENTS: Cobalt mg/l Silver mg/l 0.030 Antimony mg/l Strontium mg/l 0.14 <0.001 Thorium _____ mg/l _____ Manganese mg/l ___ 0.28 0.0010 <0.100 Vanadium <0.001 Chromium mg/l <u><0.050</u> <0.002

******** Metals are reported as dissolved, unless otherwise indicated. *

FIELD DATA:		
Flow	T° C	6.0°C
<b>E. C.</b> <u>1380</u>	pH	6.40
Static Water Level		54.90

Catherine A. Phelps, Chemist

## EXHIBIT 5-K

# HYDRAULIC CONDUCTIVITIES, CATION EXCHANGE CAPACITIES,

AND PARTICLE SIZE ANALYSES

(WELLS 60, WS1, WS2, WS3, AND WS4)



PROJECT

LABORATORY TEST RESULTS PROPOSED ASH PIT HESKETT STATION MANDAN, NORTH DAKOTA Montana-Dakota Utilities REPORTED TO: Attn: John Verwey 400 North 4th Street Bismarck, ND 58501

3100 EAST BROADWAY P.O. BOX 1114 BISMARCK, ND 58502 PHONE 701/223-6149

un city testina

DATE: September 18, 1986 FURNISHED BY:

COPIES TO:

LABORATORY No. 5200-86-454

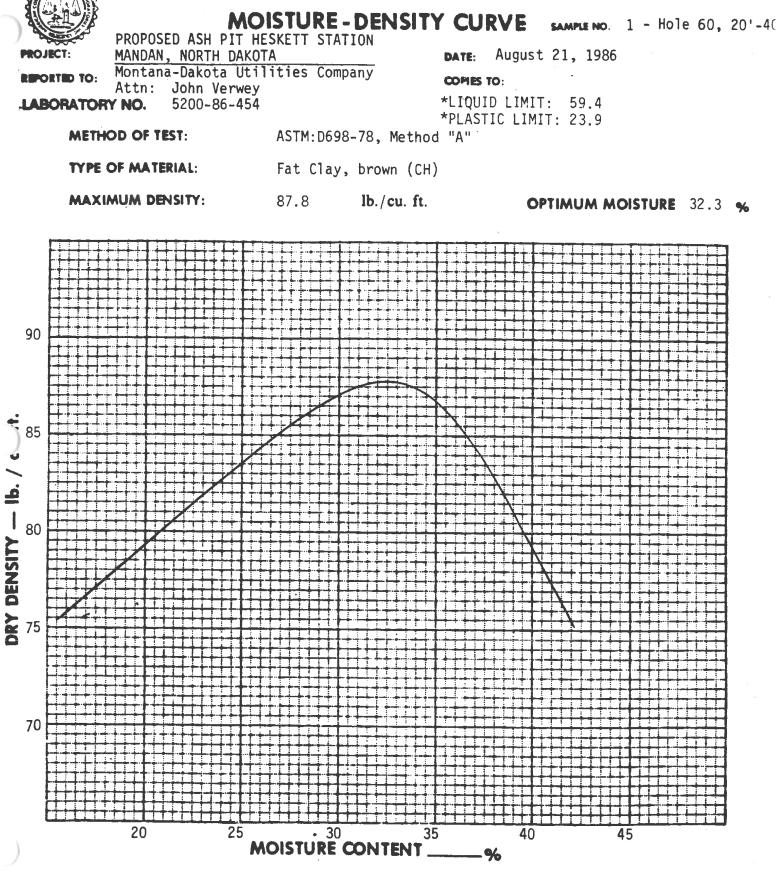
#### INTRODUCTION

A sample of fat clay was submitted to Twin City Testing Corporation on August 14, 1986. We were authorized by you to perform an Atterberg limit test, standard proctor test and permeability test. We are transmitting two (2) copies of this report.

#### RESULTS

The test results can be found on the attached drafts. The permeability test was performed with the falling head method on a sample remolded to 14.5% of the maximum dry density at a moisture content of 32.4%, or 0.1% above the optimum moisture content. The maximum dry density and optimum moisture content were determined in accordance with ASTM:D698.

The test results indicate that the coeficient of permeability is  $2.0 \times 10^{-7}$ centimeters per second on the remolded sample.


#### CLOSURE

you desire to test the coeficient of permeability at a higher remolded If compaction level and/or higher moisture content, please contact us. Also contact us if you have any questions in regards to this report or if we can be of further service to you.

ITUAL PROTECTION TO CLIENTS, THE PUBLIC AND OURBELVES, ALL REPORTS ARE SUBMITTED AS THE CONFIDENTIAL PROPERTY OF CLIENTS. AND AUTHO ATION OF STATEMENTS, CONCLUSIONS OR EXTRACTS FROM OR REGARDING OUR REPORTS IS RESERVED PENDING OUR WRITTEN AP

Twin City_Testing Corporation





Twin City Testing and Engineering Laboratory, Inc.

By Name

REPORTED TO: MO		TT STATION-MANDAN, NO	RTH DAKOTA			
REPORTED TO: Mo At Boring No. Sample No.	ntana-Dakota Ut	ilities Company	RIH DAKUTA			
Boring No. Sample No.				520	0 96 454	
Boring No. Sample No.	·		·····	JOB NO.: 5200-86-454		
Sample No.						
		Hole 60				
Depth (ft)		20-40				
Type of Sample		Bag				
Soil Classification (ASTM:D2487)	·	Fat Clay (CH)				
In-Place Moisture Conte	ent (%)	_				
Moisture-Density Relati (ASTM:D698)	on of Soil					
Max. Dry	Density (PCF)	87.8				
Optimum	Moisture Content (%)	32.3				
Permeability Test Trial No.		6.8				
Type of Tes	șt.	Falling Head				
Type of Spo	ecimen	Compacted				
Specimen H	leight (inches)	3.00				
Specimen [	liameter (inches)	2.82			· · · · · · · · · · · · · · · · · · ·	
Dry Densin	(PCF)	82.9				
Percent of i	Max. Density	94.5				
Moisture Co	ontent (%)	32.4				
Max. Head	Differential (ft)	5.0			2	
Confining P (effective		2.0				
	perature ( ⁰ C)	21				
	of Permeability C (cm/sec)	$2 \times 10^{-7}$				
	C (ft/min)	$4 \times 10^{-7}$				
Atterberg Limits						
Liquid Lim	it (%)	59.4				
Plastic Lim	it (%)	23.9				
Plasticity In	ndex	35,5		5		
					1	

December 14, 1981

Water Supply, Inc PO Box 1191 Bismarck, ND 58502

Attn: Roger Schmid

Gentlemen

Subj: Soil Testing for MDU Heskett Power Plant Mandan, North Dakota Invoice #52-0688

Attached herewith, please find our laboratory test results for permeability tests, cation exchange capacity, particle size distribution curves and U.S.D.A. textural classification charts.

If you have any questions or need any additional information, please contact us at the Bismarck office.

Very truly yours, Gary L Arman, P.E.

Gary L Ayman, P.E. Operations Manager Western North Dakota

GLA:djs

Encs

#### LABORATORY TEST DATA

PROJECT: SOIL TESTING FOR MDU HESKETT POWER PLANT - MANDAN, ND

.

DATE: December 14, 1981

KEPORTED TO: Water Supply, Inc

52-0688

Boring No	·	MDU Heskett 1	MDU Heskett 1	MDU Heskett 1	MDU Heskett
Sample No Sample De				•	
Depth (ft)		20-21	25-26	30-31	29-30
Type of Sa	ample	Core	Core	Core	Core
Soil Classi (ASTM:D2		SILTY CLAY & FAT CLAY (CL & CH)	SILTY CLAY & FAT CLAY (CL & CH)	SILTY CLAY & FAT CLAY (CL & CH)	SHALE, (Tex- tural Classi fication: Fa Clay) (CH)
In-Place M	loisture Content (%)			•.	
	Density Relation of Soil TM:D698)				
	Max. Drv Density (PCF)				
	Optimum Moisture Content (%)				
Permeabili	ity Test				
	Trial No.	1	1	1	1
)	Type of Test	Falling Head	Falling Head	Falling Head	Falling Head
	Type of Specimen	Natura1	Natural	Natural	Natural
	Specimen Height (inches)	4.36	3.49	3.76	2.08
	Specimen Diameter (inches)	4.00	2.86	4.00	1.98
	Dry Density (PCF)		• • • •		
	Percent of Max. Density				
	Moisture Content (%)				
	Max. Head Differential (ft)	5.0	5.0	5.0	5.0
	Confining Pressure (effective - PSI)	2.0	2.0	2.0	2.0
	Water Temperature ( ⁰ C)	21	21	20	21
	Coefficient of Permeability K @ 20°C (cm/sec)	2.6x10 ⁻⁸	1.5x10 ⁻⁸	1.7x10 ⁻⁸	2.7x10 ⁻⁹
	K @ 20°C (ft/min)	5.2x10 ⁻⁸	2.9×10 ⁻⁸	3.4×10 ⁻⁸	5.4x10 ⁻⁹
Atterberg	Limits Liquid Limit (%)				
٠	Plastic Limit (%)				
	Plasticity Index				

TWIN CITY TESTING LAB

#### LABORATORY TEST DATA

.

PROJECT: SOIL TESTING FOR MDU HESKETT POWER PLANT - MANDAN, ND

REPORTED TO: Water Supply, Inc

JOB NO.: 52-0688

DATE: December 14, 1981

Boring No	».	MDU Heskett 2	MDU Heskett 2	MDU Heskett 3	MDU Heskett 3
Sample No Sample De					
Depth (ft)		61-62	73-74	15-16	19-20
Type of Sa	ample	Core	Core	Core	Core ·
Soil Classi (ASTM:D2		SHALE, (Tex- tural Classi- fication: Fat Clay) (CH)	SHALE, (Tex- tural Classi- fication: Fat Clay) (CH)	SILTY CLAY (CL-ML)	FAT CLAY & SILTY CLAY (CH & CL)
In-Place M	loisture Content (%)				
	Density Relation of Soil TM:D698) Max. Drv Density (PCF)		1		
-	Optimum Moisture Content (%)		·····		
Permeabili		1	1	1	1
) -	Type of Test	Falling Head	Falling Head	Falling Head	Falling Head
	Type of Specimen	Natural	Natural	Natural	Natural
	Specimen Height (inches)	1.96	0.80	2.93	3.29
	Specimen Diameter (inches)	1.99	1.98	4.00	4.00
	Dry Density (PCF)		· .		
	Percent of Max. Density				
	Moisture Content (%)				
	Max. Head Differential (ft)	5.0	5.0	5.0	50.0
	Confining Pressure (effective - PSI)	2.0	2.0	2.0	2.0
	Water Temperature ( ^O C)	21	19	22	22
	Coefficient of Permeability K @ 20°C (cm/sec)	3.6x10 ⁻⁸	1.8×10 ⁻⁸	8.5x10 ⁻⁸	1.8×10 ⁻⁹
	K @ 20°C (ft/min)	7.1x10 ⁻⁸	3.6x10 ⁻⁸	1.7x10 ⁻⁷	3.5x10 ⁻⁹
Atterberg	; Limits Liquid Limit (%)				
•	Plastic Limit (%)		1		~
	Plasticity Index				

.

### LABORATORY TEST DATA

,

REPORTE	ED TO: Water Supply, Inc		<u></u>	JOB NO.:	-0688
Boring No.	, ,,,,,,,,,,,,	MDU Heskett 3	MDU Heskett 4	MDU Heskett 4	MDU Heskett
Sample No Sample De					
Depth (ft)		31-32	9-10	41-42	51-52
Type of Sa	ample	Core	Core	Core	Core
Soil Classif (ASTM:D2		SILTY CLAY & FAT CLAY (CL & CH)	FAT CLAY & SILTY CLAY (CH & CL)	SHALE, (Tex- tural Classi- fication: Organic Fat Clay (CH-OH) )	SHALE, (Tex-
In-Place M	loisture Content (%)				
	Density Relation of Soil TM:D698) Max. Dry Density (PCF)				
-	Optimum Moisture Content (%)		1		
	Optimum moisture content (,			1	
Permeabili	ity Test Trial No.	1	1	1	1
	Type of Test	Falling Head	Falling Head	Falling Head	Falling Head
	Type of Specimen	Natura1	Natural	Natural	Natural
	Specimen Height (inches)	2.20	3.63	2.31	2.31
	Specimen Diameter (inches)	4.00	4.00	1.98	1.45
	Dry Density (PCF)		•		
	Percent of Max. Density				
2	Moisture Content (%)				
	Max. Head Differential (ft)	30.0	50.0	5.0	5.0
. 7	Confining Pressure (effective - PSI)	2.0	2.0	2.0	2.0
	Water Temperature ( ^O C)	21	22	20	21
•	Coefficient of Permeability K @ 20°C (cm/sec)	9.1x10 ⁻⁹	7.2x10- ⁹	7.6x10 ⁻⁹	1.9x10 ⁻⁷
	K @ 20°C (ft/min)	1.8x10 ⁻⁸	1.4x10 ⁻⁸	1.5x10 ⁻⁸	3.7x10 ⁻⁷
Atterberg	Limits Liquid Limit (%)				
	Plastic Limit (%)				
					·

TWIN CITY TESTING LAB

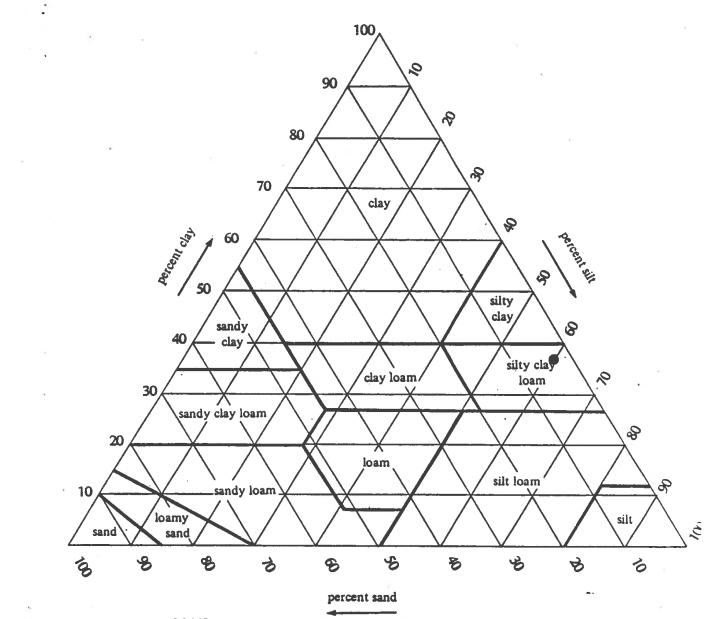
· · ·

.

			ring labo 310 Box Biso	ratory, Inc. 0 E. Broadway 1114 Arck. ND 5850
PROJECT: REPORTED TO:	PLANT - MANDAN, N Water Supply, Inc PO Box 1191	9502	DATE:	December 14, 1981
LABORATC	DRY No. 52-0688			
SAMPLE NUMBE	ER	DEPTHS		CATION EXCHANGE CAPACITY (meq/100g) (milliequivalents/100 gr)
MDU Heskett	#1	20'-21		- 71.8
	#1	25'-26'		12.3
	#1	30'-31'	۰.	74.2
	#1	40'-41'		27.4
MDU Heskett	#2	29'-30'		92.2
	#2	56'-57'		69.7
	#2	61'-62'		12.0
)	#2	73'-74'	(8)	48.4
MDU Heskett	#3	15'-16'		70.1
2	#3	19'-20'		58.1
	#3	31'-32'	· ·	35.6
MDU Heskett	#4 [·]	9'-10'		40.4
	#4	15'-16'		60.9
	#4	31'-32'		26.1
, ×	#4	41'-42'		51.3
	#4	51'-52'		56.4

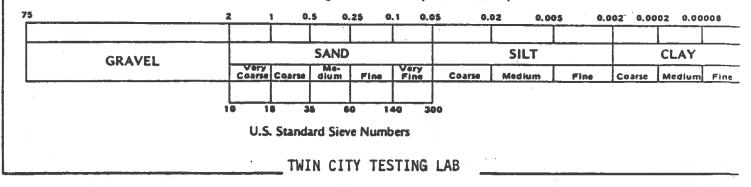
AS A MUTUAL PROTECTION TO CLIENTS. THE PUBLIC AND OURSELVES, ALL REPORTS ARE SUBMITTED AS THE CONFIDENTIAL PROPERTY OF CLIENTS. AND AUTHOR. IZATION FOR PUBLICATION OF STATEMENTS, CONCLUSIONS OR EXTRACTS FROM OR REGARDING OUR REPORTS IS RESERVED PENDING OUR WRITTEN APPROVAL

.


.

.

•


DAKOTA										/					8
HESKETT													8		
FOR													.005.004		
	, Inc.					/								•	
SOIL	. Supply,														
Project:	: Mater	•	0	$\left  \begin{array}{c} \\ \end{array} \right $									.05 .04 .03		
CESCING BOORALON, INC. 662 CROMMELL AVENUE ST PAUL, MN 55114 PHONE 612-645-3601	Reported To:	CURVE	S #200												-
	<u>مح</u>	DISTRIBUTION	U.S. STANDARD SIEVE SIZES 0 #30 #40 #50 #60 #80 #100										0.2		
			TANDARD S #40 #50										0.5 0.4 0.3	SIZE HY MILLIMETERS	
<u>ין ט</u> וו דעטי		AIN SIZE	U.S. ST #20 #30												
		GRA	#10								•		2.0 1.0 PARTICLE	12.20	
20'-21'			8#										4.0 3.0 2		
Depiti: CH	CLAY		. %										5.0 4		-
• EA1	T & FAI		. ж. 3/8.										10.0	I.	
52-0688 No. MDU Heskett tion (ASTM:D2487)		-	1. %											GRAVEL	
			2%" 2"										50.0		
Job No Sample Classifica	Description		3.	<u> </u>	8	2 2 2	е зном		R BERCEN	50	2	<u> </u>			

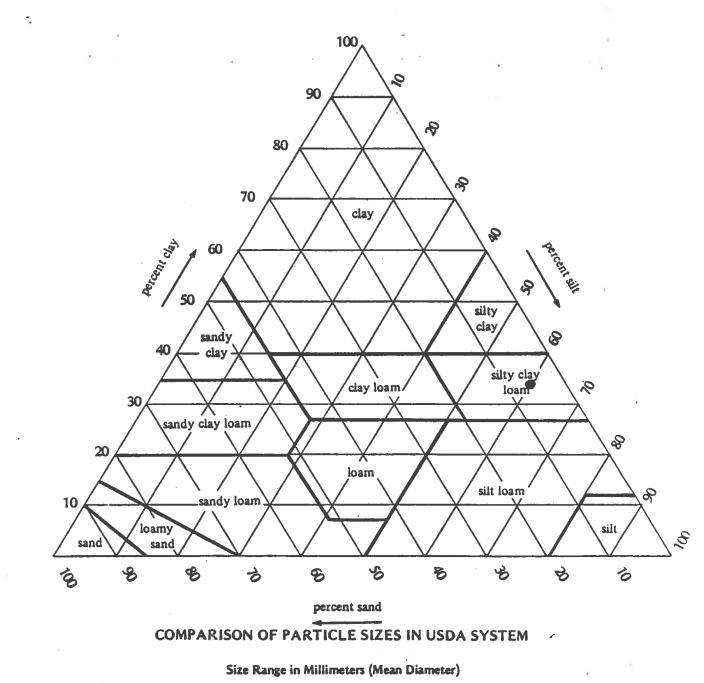
## MDU HESKETT #1, 20'-21'

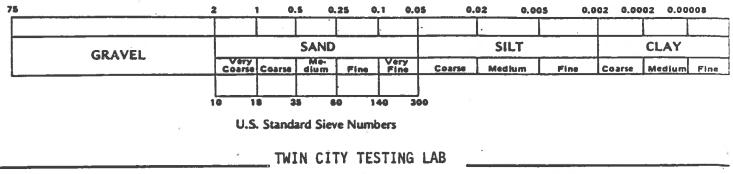


COMPARISON OF PARTICLE SIZES IN USDA SYSTEM



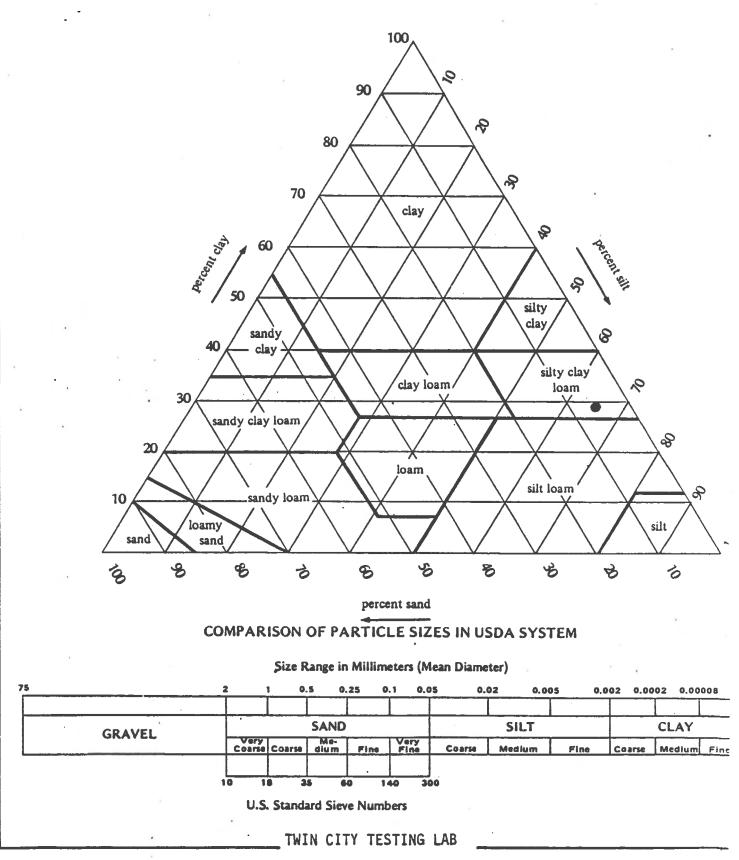



--


-

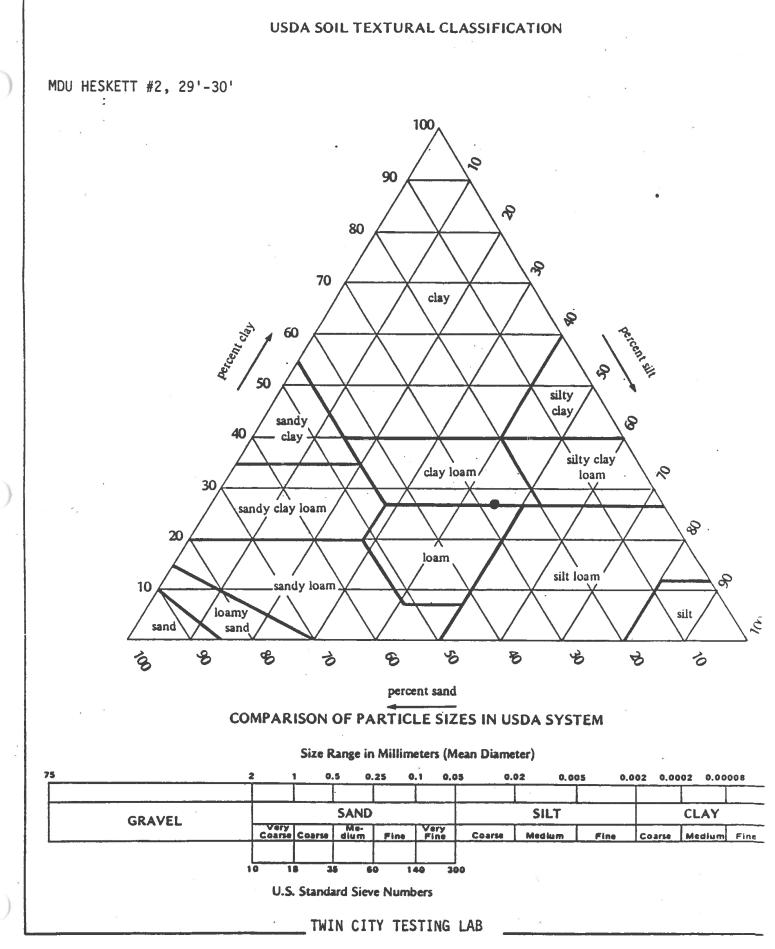


MDU HESKETT #1, 25'-26'


.

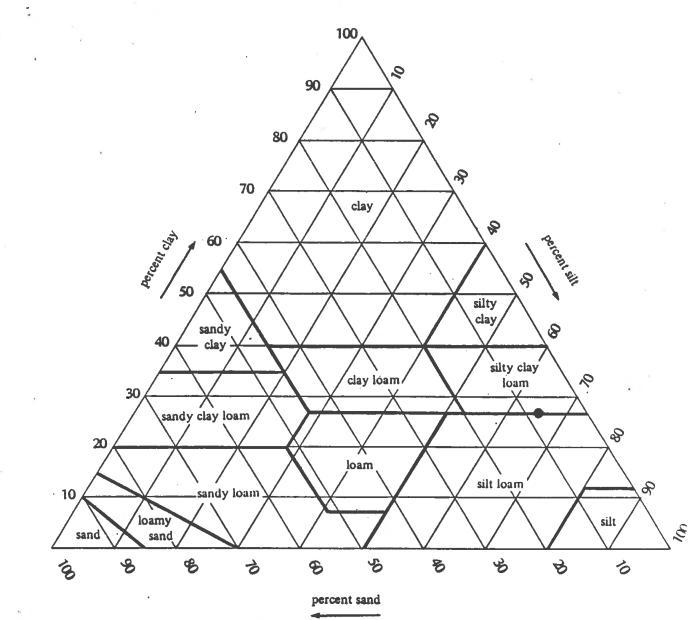





SOIL TESTING FOR MDU HESKETT POWER PLANT - MANDAN, NORTH DAKOTA Supply. Inc.								.02 .01 .005.004.003.002	FINES
CONTRACTOR RESCRIPTION and engineering reported to: Mater Supply.	<b>GRAIN SIZE DISTRIBUTION CURVE</b>	U.S. STANDARD SIEVE SIZES						1.0 0.5 0.4 0.3 0.2 0.1 0.05 04 03 PARTICLE SIZE IN MILLIMETERS	SAND MARTINA T
Job No. 52-0688 Sample No. MDU Heskett #1 Depth. 30'-31' Classification (ASTM:D2487) CL & CH Description SILTY CLAY & FAT CLAY								50.0 10.0 5.0 4.0 3.0 2.0	GRAVEL GRAVEL COARSE FINE

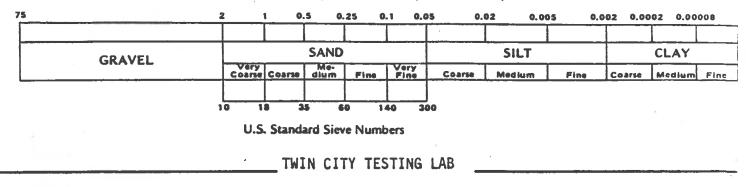




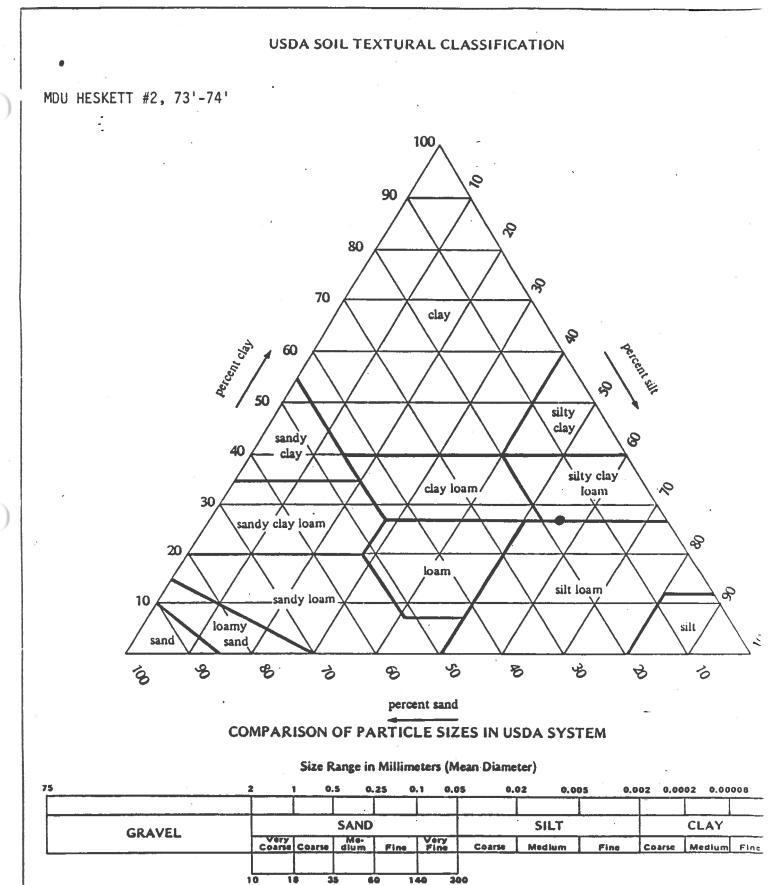

		and the second se			2					
Job No. Sample	Job No. 52-0688 Sample No.MDU Heskett	#3	Depth: 29' - 30'	it M L L			Project:	SOIL TESTING	FOR MDU H	
Clas Des	Classification (ASTM:D2487) Description SHALE, (Te) tion: Fat Clav)	M:D2487) <u>CH</u> E, (Textural Classi V)	sifica-	<u>:</u>		ST PAUL. MN 55114 PHONE 612-645-3601 Reported To:	To:	POWER PLANT Water Supply.	- MANDAN, Inc.	NORTH DAKOTA
				GRAIN SI	SIZE DISTRIBUTION	UTION CURVE	/E			
						EVE SIZES				
<u> </u>	3" 2%" 2"	1" ¥" ½" 3/8" ½"	#4 #8 #	<b>≑10 #20</b>	#30 #40 #50 #	#50 #60 #80 #100	#200			
6					7					
						1				
е гноми										
2										
ć										
	50.0	10.0	5.0 4.0 3.0 2.0 I	1.0	0.5 0.4 0.3	0.2 0.1	.05 .04 .03	.02	01 ,005 ,004 ,003	03 .002 .001
		GRAVEL				2				
- - -	COARSE	FINE	COARSE	MEDIUM		FINE	• . :		FINES	

•




lob Ma. 23-068 Sampa No. 201 IEBNEET # 2 UNIT. 511-67 Sampa No. 201 IEBNEET # 2 UNIT. 511-67 Sampa No. 201 IEBNEET # 2 UNIT. 611-67 Sampa No. 201 IEBNEET # 2 UNIT. 611-67 Sampa No. 201 IEBNEET # 2 UNIT. 611-67 Sampa No. 201 IEBNEET # 2 UNIT. 601 IESTING NO. 1 HEXET Sampa No. 201 IEBNEET # 2 UNIT. 611-67 Sampa No. 201 IEBNEET # 2 UNIT. 601 IESTING NO. 1 HEXET Sampa No. 201 IEBNEET # 2 UNIT. 611-67 Sampa No. 201 IEBNEET # 2 UNIT. 611-		1	) -																	~					Ì															
GRAN SIZE DISTRIBUTION CIRVE UL STANDA SIZE DEPENDENT FOR MALENDARY SIZES UL STANDA OR SIZES UL STANDA	Jot Sa Cia Des ti	o No ssifi ssifi	Le Le .	52 on (A at	NDU NSTN NDU	B8 He:	sket (487) (Te)			Cli ben .	S S	61' ifi	-6; -6									Lu u					L K Z Z Z		voje Ma	ter _	PON SO	VER .	PL/ LV.	Ind	AANI	ADU	HE			KOT
																0	RA	N	SIZ		SIC	TRI	BU.	110	Z	I.S.	IVE													
		1 Z				1	×	×			ļ	#4		8				£	U.S.	STA	NDA	BD BD	SIEV	IS 3.	ZES		1													
	0	<u></u>									1 1 1 1 1																											1 1.1		
	ดี	•			-					-			+							C In I a																	÷ •			
										- :						• • • • • • • •					·							يشده تستصريك و												
		╞╧╤╤╧╷																																						ma di sang mi si pangangan da
0     0     0     0     0     0       0     0     0     0     0     0     0       0     0     0     0     0     0     0       0     0     0     0     0     0     0       0     0     0     0     0     0     0       0     0     0     0     0     0     0       0     0     0     0     0     0     0										· · · · · · · · · · ·																								- 4 - 4 - 4 - 4 - 4	-		. <u> </u>			
0       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1									· · · · · · · · ·																									1 1 1 1						
20 10 10 10 10 10 10 10 10 10 10 10 10 10														-	+																						/			
64AVE     50.0     10.0     5.0.4     0.3     0.2     0.1     0.5     0.4     0.3     0.0					•																																			
50.0     10.0     50.4     0.3     0.2     0.1     0.05     0.4     003     002       GRAVE     CANE     CANE     CANE     CANE     CANE     CANE     CANE									····			مى مۇمۇر يې مەربىيە ئىرىمى		17. i 1																									<u>, fi tu tu ti</u>	
50.0     10.0     5.0 4.0 3.0     2.0     1.0     0.5 0.4 0.3     0.2     0.1     .05     .04     .005     .003     .003     .003     .003     .003     .003     .003     .003     .003     .003     .003     .003     .003     .003     .003     .003     .003     .003     .003     .003     .003     .003     .003     .003     .003     .003     .003     .003     .003     .003     .003     .003     .003     .003     .003     .003     .003     .003     .003     .003     .003     .003     .003     .003     .003     .003     .003     .003     .003     .003     .003     .003     .003     .003     .003     .003     .003     .003     .003     .003     .003     .003     .003     .003     .003     .003     .003     .003     .003     .003     .003     .003     .003     .003     .003     .003     .003     .003     .003     .003     .003     .003     .003     .003     .003     .003     .003     .003     .003     .003     .003     .003     .003     .003     .003     .003     .003     .003     .003     .003     .003     .003<	; o																																		┝┿┿┶┷┙	a state of the local division of the local d				
			50.	0					0.0		5.					.80			7 1	0.5	4.0	0.3	0.0	~		0.1	-	ö				2		5		02.00	104		5	
						GRA	VEL								-	PAR	1 1		ZE	∑ Z		MET	ERS																	

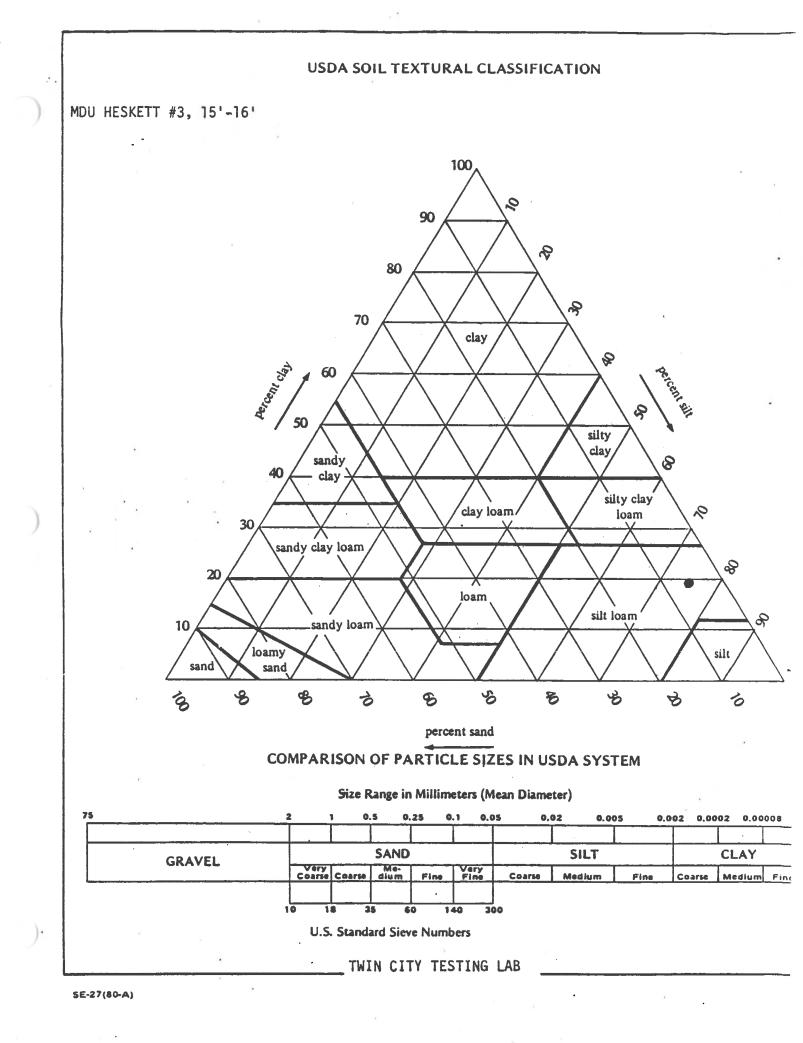





COMPARISON OF PARTICLE SIZES IN USDA SYSTEM

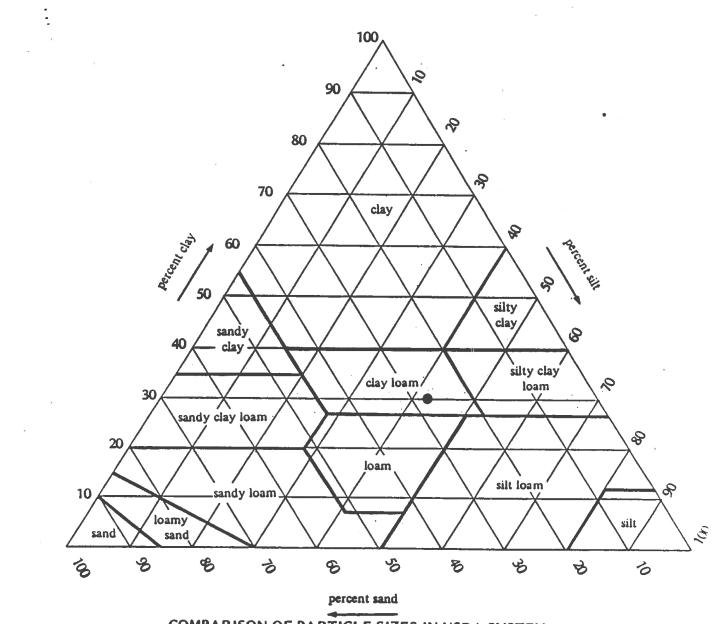





|--|

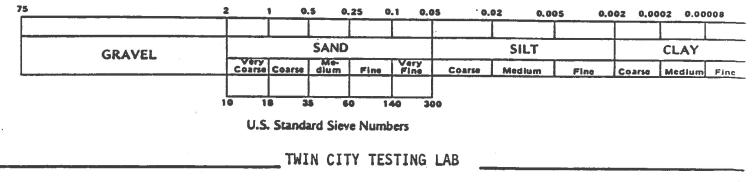


U.S. Standard Sieve Numbers


TWIN CITY TESTING LAB

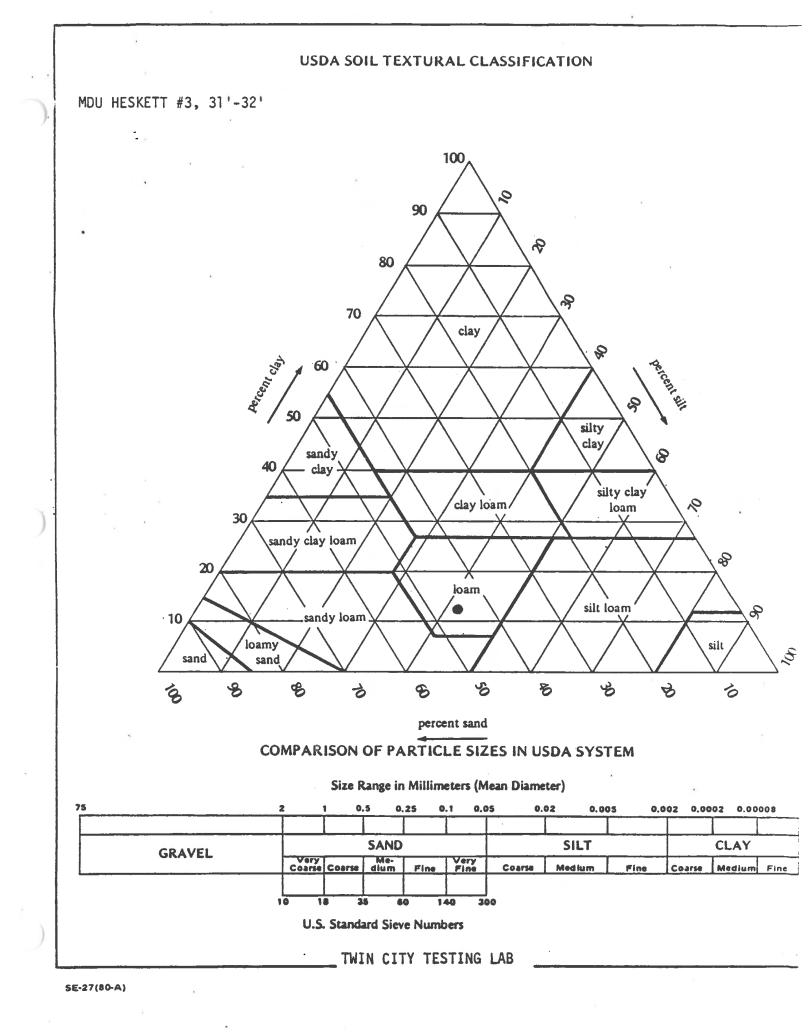
Project: SOIL TESTING FOR MDU HESKETT POWER PLANT - MANDAN, NORTH DAKOTA			9						02 01 005 003 003		
CLUID CICY LESELTING and engineering indoratory, inc. Es: CROWILL AVENE SI PAUL, MN 55114 PHONE 612/643-3601 Reported To:	<b>GRAIN SIZE DISTRIBUTION CURVE</b>	U.S. STANDARD SIEVE SIZE	#10 #20 #30 #40 #50 #60 #80 #100 #200							PARTICLE SIZE IN MILLIMETERS	SAND
Job No. 52-0688 Sample No. MDU Heskett #3 Depul.: 15'-16' Classification (ASTM::D2487) CL-ML Description SILTY CLAY			1 X X 3/8 X #4 #8 #1								GRAVEL




	)							J												
Job No.	vo. 52-0688	88					Л	בשוח כובץ	בוגל כוגל		testina								-	
Samy Class Desci -10 to	Sample No. <u>M</u> Classification (AS Description <u>FAT</u> -10 material to small bou	DU Hesk TM:D2487 CLAY & used f lder in	a r SII	AY Meto	'-20' ote: test le.)	Distributi rather tha	<u> </u>	curve total s	denqueenna curve based otal sample	due due	and engineering laboratory, inc. 662 CHOMMELL AVENUE ST PAUL MN 55114 PHONE 612/645.3601 n curve based on total sample due Reported To:	<b>To:</b>	Project: SOIL POWE Water Sup	SOIL TES POWER PL Supply.	SOIL TESTIN POWER PLANT Supply, In		FOR MDU	HESKET	T I DAKOTA	TA
		1 1		1 1		0	GRAIN S	SIZE DI	İSTRIB	UTION	DISTRIBUTION CURVE	٨E						×.		
							) )	U.S. STANDARD SIEVE SIZES	DARD SI	EVE SIZ	ES									
1001	3" 2%" 2" 	- Transa	ד 3/8"	× =	8	B #10	#20	#30 #40		#50 #60 #80 #100	1100	#200								
0							1	_/												
G									/	/										
															· · · · · · · · · · · · · · · · · · ·					
E SHOWN																				
																				+
-																				
<u> </u>																				/
2					· · · · · · · · · · · · · · · · · · ·															
<u></u>				· · · · · · · · ·																
5 -	60.0		10.0	5.0 4	0 3.0	2.0	1.0	0.5 0.4	4 0.3	0.2	- 1.0		.04 .03	6	-		.005 .0(	005 004 003	002	
				:		PARTICLE		SIZE IN MILLIMETERS	LIMETER	SF										
i	COARSE	GRAVEL E	FINE		COARGE		MEDIUM	SAND		E INF						FINES				
-		-		-		•		-				_								-

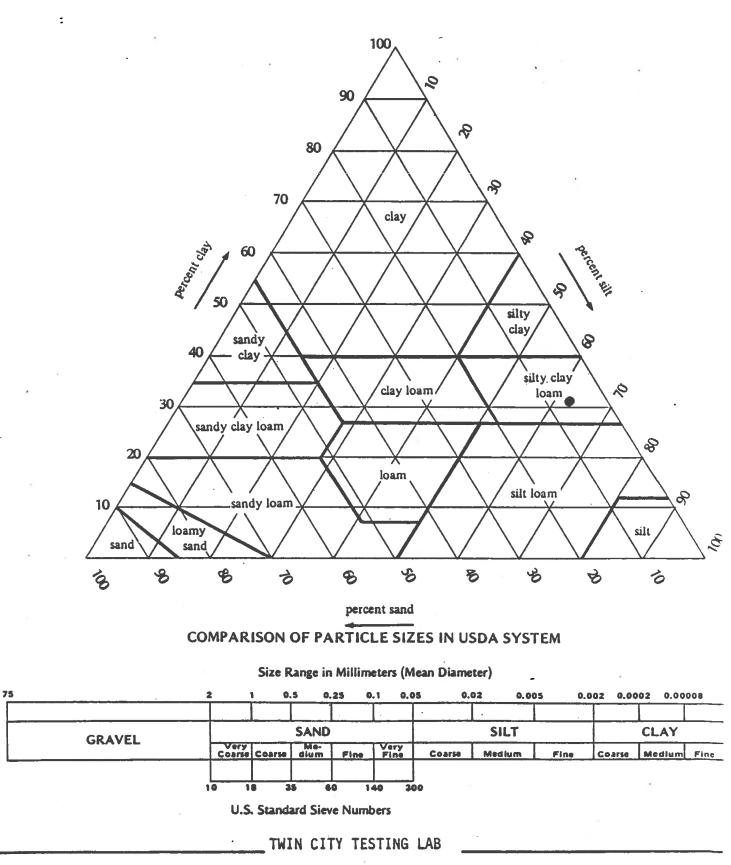
MDU HESKETT #3, 19'-20'




# COMPARISON OF PARTICLE SIZES IN USDA SYSTEM



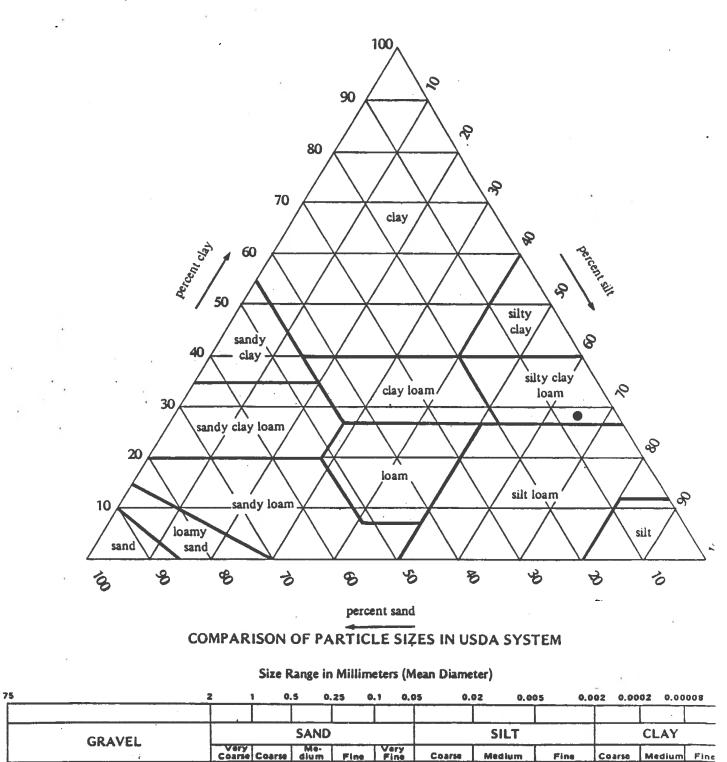


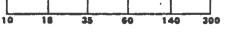

Co: Water Supply. Inc.	.02 01
GRAIN SIZE DISTRIBUTION U.S. STANDARD SIEVE SIZ U.S. STANDARD SIEVE SIZ PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHON	1.0 0.5 0.4 0.3 0.2 PARTICLE SIZE IN MILLIMETERS SAND MI DIUM
CL & CH & CH	50.0 5.0 4.0 3.0 2.0 5.0 4.0 3.0 2.0 COARSE FINE COARSE FINE COARSE
Cation (ASTM:D2487) UL & CH	50.0 5.0 4.0 3.0 2.0

.



Project: SOIL TESTING FOR MDU HESKETT POWER PLANT - MANDAN, NORTH DAKOTA Water Supply, Inc.							.01 .005.004.003.002
To:	SIZE U.S. ST/	#10 #20 #30 #40 #50 #60 #80 #100					0.5 0.4 0.3 0.2 0.1 .05


### MDU HESKETT #4, 9'-10"




en rear les

- MANDAN, NORTH DAKOTA 00 -----÷ <u>|---</u> E 1 ł i-----<u>+</u>-+ 1 SOIL TESTING FOR MDU HESKETT 005 .004 .003 .002 : 7.1 <u>د.</u> ł ÷ ÷. £ 🛫 •. FINES Water Supply, Inc. POWER PLANT <u>5</u> -. ÷ ----: ŧ 7 ī ł ţ 03 41. 60. Project:_ 40 02 Reported To:_ #200 **GRAIN SIZE DISTRIBUTION CURVE** 662 CROMWELL AVENUE ST PAUL, MN 55114 PHONE 612/645 3601 **EWIN CILY LESTING** and engineering incoratory, inc. į 11 0.1 #50 #60 #80 #100 U.S. STANDARD SIEVE SIZES E IAIE 0.2 2 PARTICLE SIZE IN MILLIMETERS 0.5 0.4 0.3 #40 SAND #20 #30 MULU IN 0.1 #8 #10 2.0 Sample No. MDU Heskett #4 Depth: 15'-16' 4.0 3.0 #4 5.0 CLAY . CH .- . . •2 3/8. FINE FAT 10.0 Ч ÷ ż ంభ Classification (ASTM:D2487) GRAVEL Description_SILTY CLAY ; ÷ :* 52-0688 ÷ 1 1 COARSE -Ł 3" 2%" 2" **50.0** 111 Job No. 8 90 80 70 20 69 \$ 10 8 20 C PERCENT FINER THAN SIZE SHOWN







**U.S. Standard Sieve Numbers** 

TWIN CITY TESTING LAB

Fine

Medium

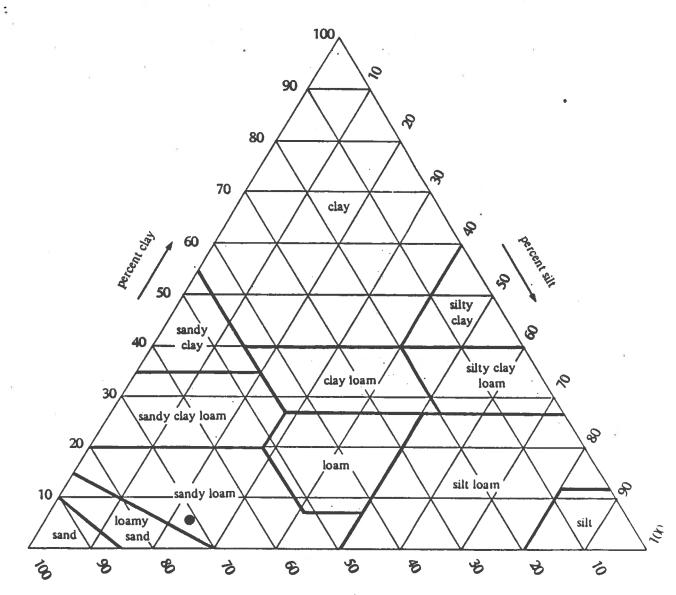
Fine

Coarse

Coarse Medium Fine

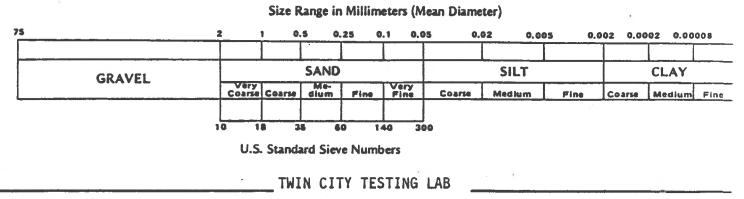
SE-27(80-A)

) •


														)	I													2	1		
Job Sau	Job No Sample 1	Job No. 52-0688 Sample No. MDU Heskett	688 Hesk	1		Deput.: 31'-32'	31	-32	<b>.</b>		m						Cescinq Booratory, Hic.		<b>FT</b> 1 ±	Proj	Project:	SOIL	í	TESTING		OR M	na	FOR MDU HESKETT	ETT		
Cla Des	Classificatio Description	Classification (ASTM:D2487), Description SILTY SAND,	M:D24		fine		grained			ĸ	<u> </u>	_	5			ST PAU PHONE	ST PAUL, MN 55114 PHONE 612/645 3601 Reported	C MN 55114 612/645 3601 Reported To:	d To:		ter	POWI Sup	POWER PL Water Supply,	POWER PLANT Supply, Inc	· ا	MANDAN	•	NORTH		DAKOTA	TA
																	-														
					•					-	GRAI	Z	SIZE	DIS	TRIB	DISTRIBUTION CURVE	NO	CUR	KE									5			
	3. 2%.	2"	1" ¥"		., 3/8,,		р 14 1		f	01#		, C €	S. ST.	ANDA	RD SI	U.S. STANDARD SIEVE SIZES	SIZES	,	0007											-	
100			1	+		1															-	ŀ	-		ļ		Į				
						i, p					· · · ·						~	<u>4 ] 4</u>													
с 2 ммонs 3:																															
				· · · · · · · · · · · · · · · · · · ·		······································																									
				· · · · · · · · · · · · · · · · · · ·	<u></u>																										
				· · · · · · · · ·																							•				
				· · · ·		······································		······																							
2	<u> </u>																	-			/					-		I.L.E.		-	
C						<u></u>											· · · ·										· · · · · ·				T
· ·	<b>50.0</b>	0			10.0		5.0 4.	4.0 3.0	1	2.0	-		0	0.5 0.4	0.3	0.2			-	- SO.	.04 .03		03	<b>]</b> °		-	005 .004	4 .003	- 00		٦ē
						:			· .	PAF	PARTICLE		N N N	SIZE IN MILLIMETERS	METE	ЯS															
		100000	GRAVEL									S	SAND						   ,						FINES	×					
_	ں ارز	101 MO	-		FINE		_	COARSI		_	ME E	MEDIUM		_		FINE	ان.				,			•							

• •

.

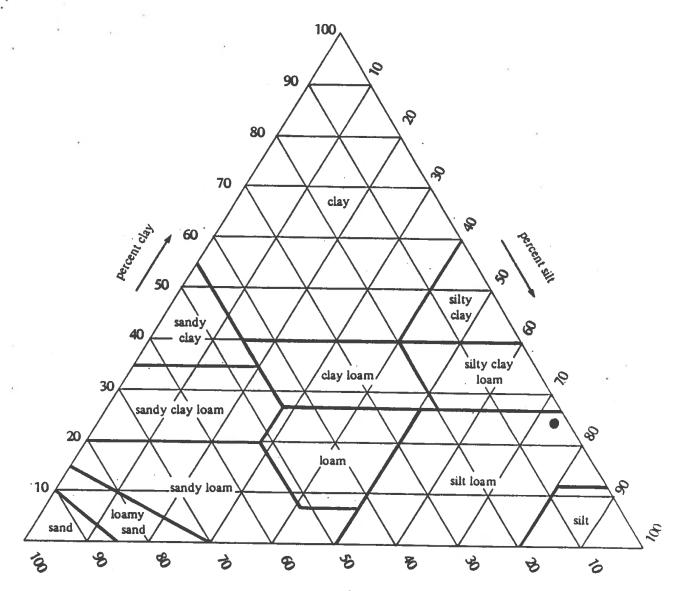

### USDA SOIL TEXTURAL CLASSIFICATION

### MDU HESKETT #4, 31'-32'



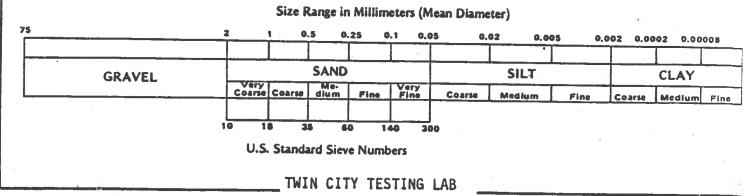
percent sand

## COMPARISON OF PARTICLE SIZES IN USDA SYSTEM



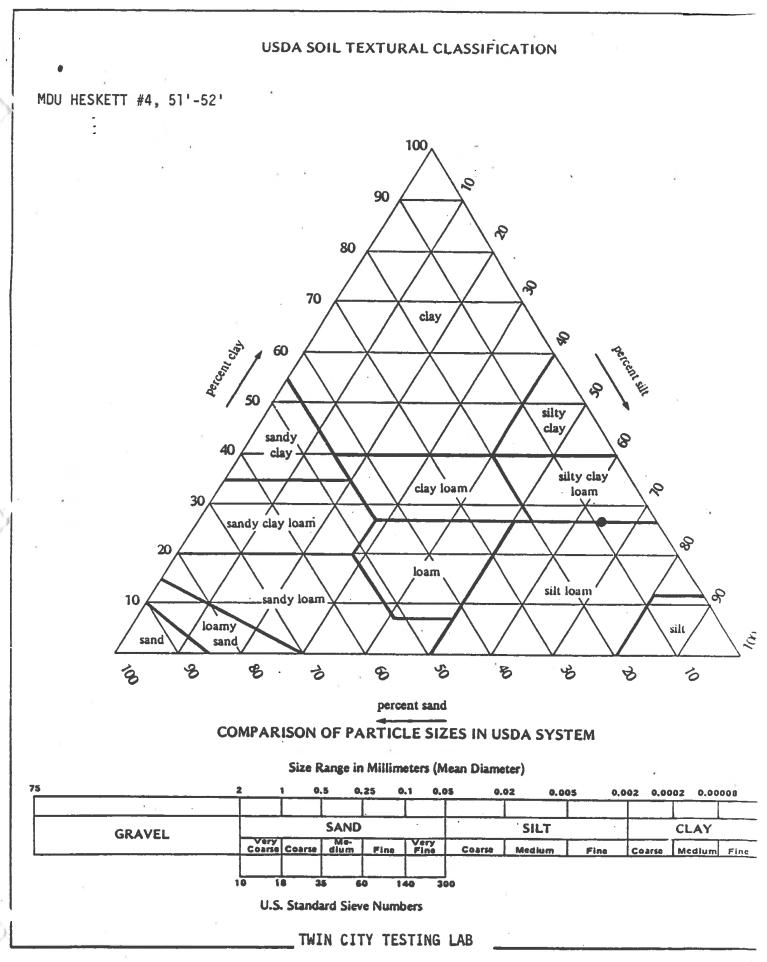

SE-27(80-A)

		2													À																	Г
- <u><u></u><u></u><u></u><u></u><u></u></u>	Job No. Samp1e Classifica		52-0688 No.MDU Heskett tion (ASTM:D2487) SHALF (Tov	8 eske D248 (T			Deptit: 41'-42 OH Classifica	- 4	-42		رور		<u> </u>				ECCION SI PAU	16 2 3 4			Project:		SOIL	TES'	TESTING PLANT -		OR MDU MANDAN	N, HE	FOR MDU HESKETT MANDAN, NORTH		DAKOTA	
	Description		]	o l	Clay	1 11												Rep	Reported To:	To:	Water	1	Supply,		Inc.							
											0	GRAIN		SIZE (	DIST	RIBI	DISTRIBUTION	1	CURVE	Ъ,												1
•		2%" 2"	-		*	.3/8.,	, i	#4		# #	#10		U.S. #20 #	* OC#	ANDAR #40	115 CI	STANDARD SIEVE SIZES 30 #40 #50 #60 #80 #10	RD SIEVE SIZES #50 #60 #80 #100		<b>#</b> 200							4					
	8													1	1771				127		F								1			
	06											· · · · · · · · · · · · · · · · · · ·							1 1 1 1 1			Ζ				1 1						_
×	•			*														· · · · · · · ·														1 1 1 1 1
	8																															
	2						·																									
ZIS NAH.					· · · ·																											<u> </u>
. FINER T	3																				1444											
LNBORB							·																									
l 																													1			
						· · · · · · · · · · · · · · · · · · ·	····																									
	, -	50.0				10.0		5.0 4.0	0 3.0	2.0		0.1		0.5	5 0.4 0	0.3	0.5			-	.05 .04	E.	.0				.005	000	003 00	02		_ =
8				CBAVEL							PARTIC	TICLE		Z Z	SIZE IN MILLIMETERS	AE TE F	ss															
_		COARSI.				FINE	-		COARSE	34	1	MEDIUM	WOI	A NO	-		FINE								FIN	FINES						


## USDA SOIL TEXTURAL CLASSIFICATION

MDU HESKETT #4, 41-42'




percent sand

# COMPARISON OF PARTICLE SIZES IN USDA SYSTEM



SE-27(80-A)

	X	•												$\rangle$													1	~		
lob Sar Clar Des	Job No. Sample No. Classification ( Description 511t		Job No. 52-0688 Sample No. MDU Heskett #4Deput. Classification (ASTM:D2487) CL Description SHALE, (Textural Clas tion: Silty Clay)		tt # CL Xtura			51'-52' sifica-	32' a-								totu, me totu, me witt avenue MN 55114 612/645-3601 Reported To:		ā	Project: Water	0	SOIL 1 POWER		STING LANT Inc.	- FOR	OR MDU MANDAN	A, N	FOR MDU HESKETT MANDAN, NORTH		ракота
											GRAIN	,	SIZE		DISTRIBUTION	<b>UTI</b>	CURVE	Ч К К												
	3" 2%	.5.		×	й. З	3/8"	*	#4	¥	8 #10		#20	.S. ST #30	ANDA #40	RD S #50 #	1EVE 160 #6		#200												
, ,																		4								·				
06						-			-																					▶ • • • • • • • • • • • • • • • • • • •
																												1		
· ·																														
8																													1 1 4 4 4 4	-
2 8									-																	1				
3 8					- <u>5</u> 																						1	1		7
R :														<u></u>											-	L				
											• • •																			
,	ũ	50.0			0.01	0	5.0	4.0	3.0	2.0 PA	PARTICL	.0 E SIZE		5 0.4 MILLI	0.5 0.4 0.3 0.	0.2 RS		I	. 30.	.04 .03		3	1	5	-	02 0	005 .004 .003	3 .002		- ¹⁶
				GRAVEL						1																				
2							-																	0.000						-



SE-27(80-A)

### 6.1 Site Preparation and Construction

### 6.1.1 Access and Preconstruction

Exhibit 5-F presents soil information on the Heskett site currently available through the Morton County Agricultural Stabilization and Conservation Service office. Because this data was gathered from fieldwork conducted several decades ago and provides little site-specific soil depth information, a new soil survey will be commissioned. The survey will be conducted prior to the onset of construction and cover the entire permit area. Soil profiles will be developed identifying soil types and topsoil (A horizon) and subsoil (B horizon) depths. This information will be used to establish plant growth material (SPGM) salvage and replacement depths during future construction and reclamation activities.

Surface water drainage of adjoining land east of the site will be improved by the permanent installation of a grass-lined ditch (Exhibit 6-B). This drainageway will be located along the base of an existing draw and enhance movement of surface runoff waters and permitted discharges from impoundments located to the south on Amoco Refinery property. The drainageway will be about 8 feet deep, 8 feet wide at the base, and provide a slope of 1% to a discharge at Rock Haven Creek. Existing surface water drainage patterns should not be significantly altered by this installation.

Primary access to the site will be along a dedicated haul road extending eastward to Heskett Station (Exhibit 6-B). Roadbed construction will require 34,500 cy of excess earthern material removed during the excavation of the initial disposal slot. The road surface will be covered with

gravel to allow all weather access to the site. All haulage road construction activities will be performed on Montana-Dakota property and will not interfere with traffic on surrounding public roads.

Other points of access to the site will be restricted by the installation of a lockable personnel fence around the perimeter of the facility. Public access to the site will not be allowed.

### 6.1.2 Facility Construction

The first phase of the facility described in Exhibit 6-B will be constructed and made operational during the 1989 earthwork construction season. Waste placement will begin upon the completion of the initial waste disposal slot. To minimize impacts to the landscape and reduce potential fugitive dust and leachate generation, new disposal trenches of similar design will be excavated approximately every other year. Filled trenches will be closed and reclaimed concurrently with new trench construction

The 47 acre disposal facility will be developed in two phases. Phase I, comprising the disposal area on the north side of the haul road, will provide about 13 years (approximately 700,000 cy) of disposal capacity. The initial disposal slot will be constructed along the western edge of the Phase I area. Subsequent excavations will proceed eastward until the Phase I area is filled. Phase II of the disposal site lies south of the haul road and will provide disposal capacity for about 15 years (approximately 600,000 cy). Phase II development (Exhibit 6-C) will begin parallel to the southern edge of the haul road and proceed southward. The final trench excavation at the site will lie parallel to the southern edge of the site. It is not currently expected that ash will be placed directly beneath the on-site portion of the

haul road. However, ash emplacement beneath the road may be considered as a contingency if needed.

Exhibit 6-D provides information regarding earth quantity movements for each disposal trench. These estimates (and the subsequent size of the trenches) may be adjusted somewhat if ash waste generation rates markedly differ from projections. The initial slot of Phase I will be constructed to contain slightly over one year of waste (60,000 cy). Subsequent trenches will be constructed to contain all ash generated during the ensuing one to two years.

All construction activities will be performed during the normal earthwork construction season. Equipment such as bulldozers, scrapers, graders, and compactors will remove, modify, and/or replace earthen materials. Most material excavation and relocation operations will rely upon scrapers.

)-

Each trench will have a compacted in-situ clay liner along its base to restrict downward migration of in-pit liquids. Available information (see Exhibits 5-E and 5-K) indicates an abundance of naturally occurring clay and silt which will be uncovered in conjunction with trench excavations. These materials will be scarified to a depth of 18 inches and recompacted to a permeability of not more than 1 X  $10^{-7}$  cm sec⁻¹. Occurrences of sand or gravel will be removed and replaced with clay-rich spoil. In-situ materials providing marginally acceptable rates of permeability will be replaced, treated with a soil liner admixture such as bentonite, or thickened to provide the equivalent permeability of 18 inches of 1 X  $10^{-7}$  cm sec⁻¹ material. The in-situ liner will cover the entire floor of the trench, the liquids collection sump, and be extended to include the lower five feet of the trench sidewall. Liner installations associated with new trench construction will be keyed into the previous trench liners, thereby providing contiguous liquids

#### 6.1.3 Excavated Materials

The removal and stockpiling of suitable plant growth material (SPGM) will be completed prior to any operation which would interfere with the use and integrity of the top soil. Top soil thickness information provided by the soil survey (see Section 6.1.1) will be used to establish SPGM salvage depth. SPGM will be removed by scraper in two lifts; soil horizon A will be removed in the first lift, soil horizon B will comprise the second lift. Each lift will be separately stockpiled in an area described in the Site Plan of Exhibit 6-B. Because filled trenches will be closed in conjunction with new trench construction, removed SPGM shall be stockpiled only when it is not practical for direct placement in areas concurrently undergoing reclamation.

Exhibit 6-D projects the amount of earthen materials which will be excavated. The largest single Phase I excavation (59,000 cy) will be the initial trench construction. Resulting excess materials from drainage ditch and disposal slot excavation will be used in the construction of the access road, evaporation pond, and a permanent visual obstruction berm along the southern perimeter of the site. Excess spoil may be diverted to the closure of the adjacent Heskett ash pile if available. Because future excavations will generate volumes of materials which approximate requirements for closure (i.e., cap construction and overburden placement) relatively little material should require stockpiling along the western edge of the site. Stockpile Area No. 1 and 2 may be converted into an additional visual obstruction berm if excess spoils require permanent dislocation from the reclamation area.

All temporary SPGM and clay material stockpiles will be maintained in a manner which minimizes the effects of erosion yet maintains soil integrity. Protective measures will be applied and include the planting of cover crops, mulching, use of chemical binders, contour tillage, or other site specific

infiltration protection. Verification of construction quality and attainment of proper rates of permeability will be made by an independent registered professional engineer.

Each trench floor will be positioned to provide at least five feet of separation between the waste and the 1986 water table elevation. Additionally, the base of each slot will be contoured to provide a positive drainage slope of not less than 1% both laterally and lengthwise, thus promoting rapid movement of in-pit liquids away from the waste and into the collection sump.

Exhibit 6-C, Section X-X illustrates a typical cross-section of the leachate collection pipe which will be permanently installed with each new trench. A perforated pipe will gather liquids from the operational and closed portions of the facility and discharge them into the liquids collection sump in use at that time. Liquids will continue to be gathered by the collection line after the closure of Phase I and discharge directly into the evaporation pond. Waste leachates collected by the Phase II line will not discharge into the active sump but rather directly into the evaporation pond.

All liquids collected within the pit sump and leachate collection lines will be evaporated in a 53,000 square foot evaporation pond (Exhibit 6-B, Section D-D). This pond will be constructed to contain in-pit liquids resulting from normally-occurring rainfall plus a single 24 hour 2.5 inch. precipitation event. The evaporation pond will have 5 foot side walls and be equipped with a three foot thick clay liner possessing a permeability of not more than 1 X 10⁻⁷ cm sec⁻¹. The evaporation pond will service the disposal facility throughout the operational life of the site.

treatments. Annual cover crops may be planted in areas of frequent stockpile disturbance if necessary to control wind and water erosion. Obstructional berms will be permanently reclaimed to native grasses as soon as possible after completion.

### 6.2 Operation and Management

### 6.2.1 Waste Placement

Coal combustion ash will be loaded onto trucks and slightly wetted for dust control before transportation to the disposal site via the ash haul road. Haulage will take place daily during daylight hours; only in emergencies will ash haulage occur after nightfall. Spilled waste material on the haul road and at the site will be immediately cleaned-up and placed in the disposal trench. Ash waste will not be temporarily stored at the site prior to disposal.

Haul trucks will enter the trench by way of ramps located at the end of the trench with the highest elevation (Exhibit 6-B, Operational Schematic). Waste will be initially placed in each trench near the ramp and expanded to provide a surface for unloading activities. Vehicular traffic upon the disposal slot floor will be held to a minimum to reduce inadvertent liner damage. Dumped waste will be leveled with a front end loader and spread across the trench floor in lifts 5 to 8 feet thick. The active sump area will not be filled with waste. Ash will not be dumped from the pit highwall into the trench.

Because initial disposal activity will be conducted at an elevation below ground surface the waste will receive only moderate exposure to surface winds. Consequently, little fugitive dust is expected to be generated. As

the waste elevation increases, however, strong surface winds might produce increasing amounts of airborne nuisance particulates. Dust suppression measures will be implemented as required to control fugitive dust. These measures will include the selective placement of AFBC bottom ash (a relatively low dust emitting material) over other ash wastes or the thin spreading of earthen or other dust control material. A 2,500 gallon water spray truck is available for dust control applications over the ash haul road. Water spray will not be used for dust control over the disposed of waste.

Montana-Dakota personnel will perform all daily operational monitoring and disposal activities at the site. Facility points-of-contact are:

Station Superintendent - Duane Steen Fuel and Grounds Supervisor - Darhl Bowers Facility Telephone - (701) 663-9576

The Fuel and Grounds Supervisor (or his designee) at Heskett Station will have general supervision of the site and verify that procedures specified in this permit application are adhered to. The site will be monitored daily in conjunction with normal ash haulage activities. Weekly log entries will be made concerning the amount of ash hauled, waste-contaminated water transferences, and unusual operational occurrences such as waste spillages or failures in site reclamation. Corrective actions will also be noted.

6.2.2 Surface Water Management

Ground surface runoff waters will be prevented from entering the pit by either a positive slope away from the edge of the pit or the construction of diversionary trenches or berms. Uncontaminated ground surface runoff waters

will not be controlled at the site except in instances where erosion and/or sedimentation is occurring. Waste spillages at the site and on the haul road will be immediately cleaned-up after each incident; consequently no contaminated waters should be generated in these areas. The ash haul road will be graded to promote surface water run off away from the active disposal area (see Exhibit 6-B, Section b-b and Exhibit 6-C, Section b-b) and into the drainage ditch.

The in-pit sump will hold all meteoric-source precipitation falling within the trench (both waste contacting and non-contacting liquids) and infiltrated water gathered by the leachate collection line (Phase I only). Each collection sump will be sized to provide 100% retention of normal rainfall plus one 2.5 inch precipitation event occurring in a 24-hour period. The sumps will be equipped with an 18 inch compacted clay liner similar in design to the rest of the pit floor. When accumulated liquids approach 3 feet in depth (see Exhibit 6-B, Section X-X), the liquids will be transferred to the evaporation pond. It should be noted that restraints regarding weather, accessibility, equipment or personnel availability may occasionally change the 3 foot liquids volume transfer standard.

Liquid transfer to the evaporation pond will be performed through the use of a portable pump and an overland pipe constructed of PVC or similar material. Pumping activities will normally be conducted during periods of ash haulage and will be continually monitored for leakage during operation. Pumping will not be performed at night or during freezing conditions which could damage the pipe.

Minimal care should be required around the evaporation pond. Surface discharges will not be made from the pond. Growth of vegetation in the impoundment will be controlled through additions of herbicide or mechanical

cutting whenever damage to the clay liner is considered likely. The pond will be monitored monthly for evidence of deterioration and leakage. The groundwater monitoring plan provides for the installation of a water table elevation and quality monitoring well immediately downgradient of the impoundment. Samples of impounded liquids will be taken (if available) semi-annually in conjunction with the groundwater sampling program and analyzed for the same chemical parameters. Surface impoundment analytical data will be combined with the groundwater quality information and submitted to the NDSDH according to the schedule specified in Section 7.3

### 6.2.3 Contingencies and Potential Impacts

The proposed waste facility was sited and designed to reasonably ensure that groundwater will not intrude upon the waste. Two consecutive years of potentiometric monitoring has shown a relatively stable water table elevation with little apparent seasonal fluctuation. This general stability, even during the severe drought of 1988, might be partially attributable to constant upgradient recharge provided by surface impoundments on Amoco Refinery property to the south. Discussions with Amoco personnel has indicated there are no proposals to expand or otherwise modify this impoundment system.

The facility will be located over a marginal groundwater resource. Groundwater chemical characterizations (Exhibit 5-J) indicate it to be of comparable quality with the waste leachate (Exhibit 2-A). Furthermore, recent studies (referenced in Section 5.2.4) have shown that heavy metals which exist in the leachate (such as arsenic, cadmium, and lead) are effectively attenuated by clay and silt materials which naturally occur in abundance throughout the Heskett Site. The Cannonball Formation water at the Heskett Site is unsuitable for most domestic or agricultural purposes without prior

purification. Area residences rely upon other underlying aquifers such as the Ludlow for their domestic water supplies. Consequently, the proposed facility will not pose a threat to a desirable groundwater resource. Indeed, even major releases of Heskett ash leachate to the underlying groundwater might be expected to result in only minor deviations from normal background chemical makeup.

A number of simple remedial measures are available at the site should groundwater elevations rise to intrude upon the waste, thereby endangering an area resource. Because Rock Haven Creek on the west and north of the site. along with the small draw located to east, already provides natural points of surface discharge to a rising groundwater table, modification to these topographic depressions or the installation of a shallow subsurface drainage system in their vicinity would serve to allow groundwater discharge at a lower elevation. This would serve to permanently lessen the potentiometric level of the water table. Increasing the depth of the drainageway might be particularly appropriate due to its close proximity to the lowest point of waste placement (i.e. the eastern edges of Phases I and II). Another option includes the permanent installation of a subsurface drainage pipe or french drain five to eight feet below the southern edge of the last Phase II trench. Such a system would intercept the groundwater below and upgradient of the waste and divert flow laterally to a discharge point on the drainageway. This would hydraulically isolate the waste.

An in-pit leachate collection system will be constructed to detect and gather in-waste liquids that would occur during the operational life of the site. Significant leachate collections may extend the life of the gathering pipes (and evaporation pond) beyond the site closure date until the problem is remedied. The in-pit sump and evaporation pond will have compacted clay

liners to assure minimal rates of subsurface leachate migration. The evaporation pond will be monitored monthly to determine liquids volume and detect evidence of deterioration, erosion, seepage, or overtopping. The in-put collection sump will be similarly inspected weekly and after precipitation events. Should a sudden drop occur in the liquids level of the impoundment or groundwater quality monitoring indicate significant leakage is occurring, repair or replacement of the liner with a soil-based or admixed liner will be performed. Similarly, the size of in-pit collection sumps will be expanded in subsequent trench excavations should it become apparent that more retention volume is needed.

Provisions have been made which allow for visual and acoustical obstructions (earthen berms and tree shelter belts) between facility operations and residences to the south. Additional tree plants and berm construction (depending upon materials availability) may be emplaced around the facility perimeter at a future date. Shelter belts or berms will not be placed over waste disposal areas. Decisions regarding these features will be made after the facility becomes operational and their need at a specific location becomes apparent. Dust control measures (as described in Section 6.2.1) will be implemented until these features become permanently established.

6.3 Closure and Reclamation

### 6.3.1 Closure Methods

As each trench is brought to its final waste elevation, a 1 to 3 inch layer of earthen material will be applied to the waste if fugitive waste dust requires suppression. New trenches will be first constructed adjacent to the

disposal area intended for closure. Excavated materials from the new trench will be used to close the waste filled trench. Excess excavated material may be temporarily stockpiled in the area described in Exhibit 6-B or used in permanent berm construction. Similarly, new trenches providing inadequate volumes of earth for closure work will require withdrawal from stockpiled inventories.

A two-foot thick compacted clay cap will be constructed over the waste (Exhibit 6-C, Sections A-A and B-B). The cap will be developed from clay-rich spoil materials such as those documented in Exhibit 5-K. Earth moving equipment such as bulldozers, scrapers, graders, and compactors will emplace materials so that compaction of approximately 95% of maximum dry density and a permeability of 1 X  $10^{-7}$  cm sec⁻¹ or less is attained. If available materials cannot provide for a two-foot thickness of 1 X  $10^{-7}$  cm sec⁻¹ permeability, cap thickness will be increase commensurably and/or treated with an admixture to a point which affords equivalent moisture infiltration protection. Verification of adequate construction quality and permeability will be made by an independent registered professional engineer.

Uncompacted spoil will be immediately spread over the completed clay cap and shaped to prevent surface water ponding. Surface slopes will range from 4% to 10%. Spread depth will be adequate to create a total earthern material profile above the waste (i.e., clay cap, uncompacted spoil, and SPGM) of not less than eight feet.

SPGM will be spread over the spoil material at a uniform depth determined by material availability. The respread will be done in accordance with currently accepted practices and procedures which assure proper interlift adhesion. Compaction of materials will be held to a minimum.

The final Phase II trench closure (thus leading to final site closure) will include the removal of the waste haulage road surface and the evaporation pond. All waste-contaminated material will be placed with the waste in the final disposal trench. Disturbed areas will be shaped to the topography illustrated in the site plan of Exhibit 6-D and reclaimed. The leachate collection lines will be abondoned in-place and will not be monitored or maintained. Points of access to the leachate collection line will be sealed during final closure for purposes of safety. The drainageway will not be modified or restored to original contours during or after final closure of the site unless deemed necessary at the time.

### 6.3.2 Reclamation

SPGM will be sampled and tested to determine soil nutrient status. Fertilizer application recommendations will be solicited from a soil testing laboratory and utilized in consideration of existing soil properties, topography, seed mix components, and practical experience.

The seedbed will be prepared in a fashion which would promote a stable, self-supporting prairie grassland. Rates for seed mixture will approximate:

	Rate
<u>Species</u>	(lb/acre)
	8
Western Wheatgrass	6.0
Pubescent Wheatgrass	4.0
Smooth Brome	2.0

Seed implantation will be performed with a seed drill during the first favorable planting period; typically from April 15 through June 7, August 10 through September 15, or after October 20. A straw mulch or cover crop will be applied immediately after seeding to provide temporary erosion control. Reseeding or interseeding will be performed if grass fails to establish over large areas. Bale dikes, excelsior mats, or other appropriate measures will be utilized for control of significant erosion features.

6.3.3 Post-Closure Surface Care

The Heskett Site will be incrementally reclaimed as individual disposal trenches are filled and closed. Post-closure surface care will continue until five years after final closure of the facility. Reclamation failures at the site would extend the surface care requirement period until such time as the deficiency is permanently corrected.

The post-closure maintenance will begin from the date of vegetation seeding. During the first year, each reclaimed area will be examined monthly and after storm events to:

- 1. Verify that final contours and drainages are maintained,
- 2. Ensure that healthy vegetative cover is established, and
- Maintain proper erosion control measures which may be in-place at the site.

Post-closure inspections will be performed quarterly for the remaining four years of the surface care period. Inspection results and corrective actions will be logged. These records will be summarized into an annual facility status report and forwarded to the NDSDH.

The reclaimed area will resemble a gently sloping hill supporting a typical grassland prairie. The growth of woody species (whose root system might penetrate the underlying clay cap) will be suppressed through cutting or chemical treatment. Montana-Dakota may eventually sell hayland or pasture rights if the integrity and plant growth productivity of the site can be maintained with minimal care. No haying or grazing activities will be allowed

for at least three years following initial vegetation establishment of each reclaimed increment.

Montana-Dakota intends to continue ownership of the site for the forseeable future. No plans to allow surface disturbance or agricultural utilization (except hayland or pasture usage) of the reclaimed area exist. The current industrial land use zoning classification will be retained.

# EXHIBIT 6-A

# EXISTING CONDITIONS AND AREA MAPS

EXHIBIT 6-B

# PHASE I DEVELOPMENT

# EXHIBIT 6-C

# PHASE I CLOSURE - PHASE II DEVELOPMENT

EXHIBIT 6-D

FINAL CLOSURE

14

### 7.1 Operational Monitoring

Analysis of disposal site groundwater quality and potentiometric surfaces will focus upon the uppermost 15 feet of the Cannonball Formation saturated zone. Because facility expansion will eventually destroy most of the existing site instrumentation positioned for possible water quality monitoring purposes, a new series of monitoring wells will be installed prior to waste placement. Four new wells (3 downgradient, 1 upgradient) will be placed in the approximate areas described in Exhibit 6-B. These wells will be constructed similarly to existing site wells and fitted with a 20 foot screen, the lower 15 feet of which will be positioned below the existing water table. Each well will be lithologically logged during installation.

With the possible exception of infrequent potentiometric level determinations, all other wells existing at the site will not be relied upon for any monitoring functions. These deactivated wells will remain undisturbed until such time as their permanent closure is warrented by facility expansion. Permanently closed wells will be sealed their entire length with grout or other appropriate material in order to assure that groundwater communication between subsurface strata does not occur along the well casing.

Wells which monitor facility operations will be sampled quarterly for the first year to establish background chemical data. The first quarterly sample will be acquired before waste is placed in the facility. The sampling frequency will thereafter be reduced to a semi-annual basis throughout the remaining operational life of the facility.

Water quality samples will be collected and analyzed by personnel experienced in groundwater characterization protocols. Static water table

• 7 = 1

elevation measurements will be made in advance of any well disturbances. Wells will be purged by pumping three to five well volumes (or until dry) immediately prior to well sampling. Delays in sampling greater than 24 hours will require re-purging.

All first-year background groundwater samples will be analyzed for water quality parameters specified in Table 7-1. This list of parameters will be reduced to a semi-annual groundwater quality characterization of Table 7-2 constituents subsequent to the completion of the first year collection of background data gathering.

### 7.2 Post-Closure Monitoring

Annual post-closure groundwater monitoring will continue for 30 years after final closure of the entire facility. Sampling for the first five years of the closure period will be performed on the same wells for the same chemical parameters as is in effect for operational monitoring program at the time of closure (i.e., Table 7-2 constituents).

If, after review of all accumulated operational and five years of post-closure data, no leachate contamination is statistically evident in the groundwater when compared to background levels, the suite of annuallymonitored parameters will be reduced to:

рН	Static Water Level
Specific Conductance	Arsenic
Total Dissolved Solids	Boron
Carbonate	Selenium
Bicarbonate	Calcium
Sodium	Lead
Sulfate	Temperature

### TABLE 7-1

Background Groundwater Quality Analysis Parameters

Alkalinity, total (as CaCO₃) Magnesium (Mg) Arsenic (As)* Manganese (Mn)* Barium (Ba)* Mercury (Hg)* Bicarbonate (HCO₃) Molybdenum (Mo)* Boron (B)* Nitrate (NO₃) Cadmium (Cd)* pH** Calcium (Ca) Potassium (K)* Carbonate (CO₃) Selenium (Se)* Chloride (Cl) Silver (Ag)* Chromium, total (Cr)* Sodium (Na) Fluorine (F) Specific Conductance** Hardness (as CaCO₃) Sulfate (SO₄) Iron (Fe)* Temperature** Lead (Pb)* Total Dissolved Solids (TDS)

*Analyses only for dissolved metal concentration **Field determinations

Static water levels will be measured from top-of-pipe.

### TABLE 7-2

Operational Groundwater Quality Analysis Parameters

```
Alkalinity, total (as CaCO<sub>3</sub>)
                                                 Molybdenum (Mo)*
Arsenic (As)*
                                                  pH**
Bicarbonate (HCO<sub>3</sub>)
                                                 Potassium (K)*
Boron (B)*
                                                 Selenium (Se)*
Cadmium (Cd)*
                                                 Sodium (Na)
Calcium (Ca)
                                                 Specific Conductance**
Carbonate (CO_3)
                                                 Sulfate (SO<sub>4</sub>)
Hardness (as CaCO<sub>3</sub>)
                                                 Temperature**
Lead (Pb)*
                                                 Total Dissolved Solids (TDS)
Magnesium (Mg)
```

*Analyses only for dissolved metal concentration **Field determinations

Static water levels will be measured from top-of-pipe.

Characterization of these groundwater quality indicator parameters will continue for the remaining 25 year post-closure groundwater monitoring period.

7.3 Quality Assurance and Data Management

Montana-Dakota currently relies upon experienced independent contractors to acquire analytical and potentiometric groundwater information. This practice is expected to continue for the forseeable future. Minimum levels of performance for such contractors will include:

- Use of non-contaminating, non-aerating equipment for all monitoring activities. Equipment other than bailers or submersible diaphragm pumps for purging and sampling must be specifically approved by Montana-Dakota before use. Air-lift pumps may not be used in any circumstance.
- All samples must be conditioned, preserved, and analyzed according to methods and limitations prescribed in <u>Methods for Chemical Analysis</u> of Water and Wastes, EPA-600/4-79-020 (revised March 1983).
- Description of field sampling methods and analytical quality controls will be required of each contractor. Evidence of appropriate laboratory certification and participation in interlaboratory comparison will be requested. Brief resumes of involved personnel must also be provided.
- Cation/anion balances and replicate values for each set of data must be identified on the analysis report.

Montana-Dakota shall annually evaluate accumulated water table elevation and groundwater quality information gathered from site instrumentation by the contractor. Post-closure groundwater data obtained from wells surrounding

the adjacent Heskett ash waste pile (WS-series wells) will also be examined to determine their possible contribution to Heskett Site contamination monitoring. Data evaluation techniques will include chemical constituent comparisons between upgradient and downgradient wells at the same point in time and comparisons of individual wells to their historic backround concentrations. A variety of statistical tools will be examined for application against the data base. Goodness-of-fit testing will confirm or deny the existence of normally distributed data. Specific test procedures might include hypothesis testing (t-test), parametric analysis of variance (ANOVA), ANOVA's based upon ranks, and perhaps tolerance intervals. Significance will be established at the 0.05 confidence level.

Operational groundwater monitoring will typically be performed in the second and fourth calendar quarters. Annual post-closure groundwater monitoring will be performed during the second or third quarter. All groundwater sample analysis results, water table surface elevations, and other associated information will be forwarded to the North Dakota State Department of Health within 30 days of its receipt from the independent groundwater sampling contractor. Cumulative statistical data summaries (including descriptions of the statistical methods employed) will be forwarded to the Department annually as they are completed.

#### 8.0 PERMITTING

Upon approval by the North Dakota State Department of Health of the proposed solid waste disposal facility but before the onset of actual disposal activities, a notarized affidavit shall be recorded in the tract system of the Morton County Registrar of Deeds. This affidavit shall specify that the SW1/4 of Section 10, Range 81 West, Township 139 North, has been permitted to receive solid waste for disposal. Another affidavit shall be similarly filed upon final closure of the site which provides information concerning waste types, location, construction, and management. Copies of both instruments shall be forwarded to the North Dakota State Department of Health within 30 days of recording.

Other requirements, as specified by the North Dakota State Department of Health and other regulatory authorities, will be complied with as they become evident.

Upon the beginning of normal operations of the proposed disposal facility all waste placement at the current disposal facility (i.e. the Heskett Ash Pile) will cease. The ash pile will then be closed according to the specifications described in the relevant Special Use Disposal Site permit application (submitted to the North Dakota State Department of Health on March 10, 1986: Solid Waste Permit issuance still pending).



APPLICATION FOR PERMIT TO CONSTRUCT/OPERATE A SPECIAL USE DISPOSAL SITE NORTH DANOTA STATE DEPARTMENT OF HEALTH SFN 8376 (01/86)

NOTE: Please read the instructions for details on information and documents required to support your application.

PERSON TO BE RESPONSIBLE FOR O Station Manager, He	PERATION skett S	(APPLICANT) tation			APPLICATION DATE March 1, 1989
ADDRESS OF APPLICANT					TELEPHONE NUMBER
400 North Fourth St	reet, B	ismarck, ND	58501		(701) 222-7900
NAME OF SITE		S OF SITE			TELEPHONE NUMBER
Heskett Ash Site PROPERTY OWNER	Hesket	t Station, 2	Miles North (	of Mandan, N	D (701) 663-9576
Montana-Dakota Utilities		<b>S OF PROPERTY OW</b> rth Fourth St	NER Bismarck,	ND 58501	TELEPHONE NUMBER (701) 222-7900
LEGAL DESCRIPTION OF SITE A Portion of the $SW_4^1$		SECTION 10	TOWNSHIP 139N	RANGE 81W	COUNTY Morton
PRESENT ZONING CLASSIFICATION (	DFSITE	DOES PRESENT ZO	NING ALLOW THIS	PROPOSED USE?	
Industrial					OF SITE
		YESN	0		28YEARS

I hereby affirm all information in this application is true and accurate to the best of my knowledge and belief.

Druce

SIGNATURE OF APPLICANT

SEND COMPLETED APPLICATION TO:

NORTH DAKOTA STATE DEPARTMENT OF HEALTH DIVISION OF HAZARDOUS WASTE MANAGEMENT AND SPECIAL STUDIES 1200 MISSOURI AVENUE, ROOM 302 BOX 5520 BISMARCK, ND 58502-5520

### INSTRUCTIONS FOR COMPLETING AN APPLICATION FOR A PERMIT TO CONSTRUCT AND/OR OPERATE A SPECIAL USE DISPOSAL SITE

### APPLICATION AND ALL ACCOMPANYING DOCUMENTS MUST BE SUBMITTED IN QUADRUPLICATE

These instructions are considered to be general guidelines only. More or less data may be required by the Department depending on the waste and on conditions at the specific disposal sites. The information required for a specific site will be determined by a preliminary site evaluation by the Department. This may eliminate the expense of investigations at some sites which are obviously unacceptable. After the required site investigation has been completed by the applicant, further work may be required as deemed necessary by the results of the initial investigation.

Permit applications must be prepared and compiled as one cohesive document that logically presents all information necessary to review a permit. Any modifications or information submitted to the Department subsequent to the initial permit application should be in a format that can be physically incorporated into the formal permit application. The Department reserves the right to reject or return a permit application if it is not complete, or if the information is not presented in an orderly and logical format.

The instructions below address the following required information:

- I. Waste Information
- II. Location Information
- III. General Geographic Setting
- IV. Site Specific Characteristics (Geology and Hydrology)
- V. Construction Plans and Specifications
- VI. Groundwater Monitoring
- VII. Operation and Management Methods
- VIII. Record Solid Waste Activity with County Registrar of Deeds
- IX. Closure
- I. WASTE INFORMATION: For each type of solid waste to be managed, specify

   (a) amount in tons per day or cubic yards per day, or gallons per day;
   (b) physical description; and (c) qualitative and quantitative chemical
   analyses.
- II. LOCATION INFORMATION: Show the facility location on a USGS 7 ¹/₂ minute quadrangle map (scale not less than 1:24,000). Also include a current map or aerial photograph of the area showing existing land use. Aerial

photographs are often available from the Agricultural Stabilization and Conservation Service (ASCS). The map or aerial photograph shall be of sufficient scale to show those man-made and natural features of the area, such as water courses, flood plains, dry runs, wells, roads, and other appropriate details and the general topography of the area.

This section should also address the zoning within a quarter mile of the proposed location and any proposed changes in zoning required for waste disposal activities. The Department may request additional information from the applicant and/or the local zoning authorities regarding the zoning requirements for the site.

- III. GENERAL GEOGRAPHIC SETTING: This narrative should be a general description of the site. It should include a general treatment of the geography, climate, soils, vegetation, geology, and groundwater to give an adequate background and foundation for effective presentation of the hydrogeology of the site and adjacent areas. The description should not be more elaborate than is necessary to accomplish this purpose.
- IV. SITE SPECIFIC CHARACTERISTICS: (Geology and Hydrology) This information shall be a detailed, integrated evaluation of the hydrogeologic conditions beneath and adjacent to the proposed site pertinent to the production and migration of refuse leachate, and to the capability for leachate containment and attenuation to acceptable quality before reaching a present or potential water source.

A qualitative and quantitative analysis of the effects of the emplacement of the refuse on the existing hydrologic regime must be addressed. Hydrogeologic data must be based on a systematic investigation utilizing data from borings, piezometers, water wells and other nearby water sources, the chemical characteristics of subsurface waters, and other available information.

After all pertinent information has been obtained, site investigation borings must be properly sealed or grouted in a manner that will prevent cross-contamination or interconnection of formations of strata.

A. TYPE AND EXTENT OF SUBSURFACE MATERIALS: A minimum of one boring is required for each ten (10) acres at the site. Regardless of minimum requirements, the degree of subsurface information obtained must be sufficiently comprehensive to allow the design hydrologist/geologist or engineer to make a detailed evaluation of the hydrologic and geologic properties of the subsurface materials, both at the site and laterally extrapolated, such that a reasonable estimate of the effects of these materials on the containment, migration, and attenuation of the leachate can be made. The site specific details must be incorporated into at least two or three cross-sections showing details on the site's geology, hydrology, and elevation. Any clay-rich soil to be used for compacted clay liners or cap must be accurately identified, located, and analyzed.

Borings used for the cross-sections must extend to a minimum depth of fifty (50) feet below the proposed elevation of the buried refuse, or if pertinent, a sufficient depth into bedrock to

τ.,

determine its character and hydraulic characteristics. In-situ permeability tests may be necessary to determine the permeability of the formations surrounding and underlying the proposed facility. A lithologic and geophysical log may be required for each boring. The geophysical log may include a gamma-gamma and a gamma-density log.

The placement, construction and design of borings piezometer(s) and/or monitoring well(s) should be coordinated with an appropriate representative of the Department. The complete logs of each boring must be provided as well as the following information.

1. Date of boring

- 2. Location of boring
- Method of drilling including the circulation technique (air, air-mist, water, mud)
- 4. Method of sampling
- 5. Diameter of borehole
- Elevation at surface of boring, referenced to mean sea level to the nearest 0.1 foot
- 7. For monitoring wells, the elevations of the screened interval
- 8. Depth and elevation of the water level in the borehole or piezometer
- 9. Method of piezometer and/or monitor well completion or method used to seal and abandon borehole, whichever is applicable
- B. MATERIAL CLASSIFICATION AND ANALYSIS: Material samples should be taken by split spoon or shelby tube at depths in the boring operation where the type of material encountered differs from that immediately overlying, or in homogeneous materials, at regular intervals. These samples and any samples of clay-rich soil to be used for clay liners must be classified, tested, and analyzed in a materials testing laboratory and the following data reported:
  - 1. Textural classification (USDA System or Unified System) plotted on the appropriate textural classification.
  - 2. Particle size distribution curves of representative samples.
  - Coefficient of permeability based on field (preferred) and/or laboratory tests.
  - 4. Ion-exchange capacity of samples and ability to adsorb and "fix" heavy metals. Results should be reported in millequivalents per 100 grams of sample. Most fine textured materials will favor ion-exchange because of their mineralogy,

з.

low permeability and large surface area. Sands and gravels are less effective and hence will permit less attenuation of leachate per unit of flow path, and will allow more rapid rates of travel.

C. HYDROLOGY: The hydrology of the site will dictate its ultimate suitability and the final design of the facility.

The design and operation, if soundly based on hydrogeologic principles, will incorporate one or more of the following: elevating the base of the disposal facility above any existing or potential zones of saturation; utilization of existing natural environment to contain and "treat" the leachate; modification of the natural environment to provide the desired hydrogeologic characteristics to either contain the leachate within the refuse, or to provide attenuation in the resulting hydrologic flow system and; isolate the refuse from the surrounding flow system by the use of a natural or artificially-installed liner, and thence collecting and treating the leachate by an engineered system.

Placement of refuse above the zone of saturation does not preclude all leachate production and resultant groundwater pollution, since precipitation during site operation as well as after site closure may generate leachate.

The hydrogeological factors which must be sufficiently considered include:

- The permeability of the subsurface materials beneath and surrounding the area to be filled with waste;
- The rate(s) and direction(s) of groundwater movement;
- 3. The spatial distribution of the potentiometric surface(s) at the time instrumentation is completed, as well as after the facility is constructed, including the water table and the potentiometric surfaces for aquifers in the vicinity of the site;
- 4. Any structural features which may affect the flow path for groundwater and/or leachate migration. Facilities proposed for areas underlain by significant lignite seams or for areas where lignite has been mined should include a structural contour map of the base of the lignite seam;
- 5. The effects of facility construction and the emplacement of the refuse on the existing hydrologic regimen, including consideration of flow-system changes as a result of site disruption, construction, or pumpage from present or potential water sources; and
- 6. The thickness, composition, and configuration of the final cover of the filled area, as well as the post-reclamation vegetation and its effect on surface water infiltration.

4.

 $W_{n,\infty}$ 

- V. CONSTRUCTION PLANS AND SPECIFICATIONS: Submit a detailed narrative report with the following:
  - A. A detailed topographic map of the existing site, (scale 1" = 200' or larger) using a contour interval of five (5) feet where the relief exceeds twenty (20) feet, and two (2) foot contour intervals where the relief is less than twenty (20) feet. The map should show all buildings, ponds, streams, ditches, utilities, roads, fences, location(s) of boreholes, and any other items of significance.
  - B. A second topographic map, matched to the scale of the above map, prepared to completely describe the final construction of the proposed site. This should include the construction of disposal areas of trenches; the development of control features for surface water run-off, run-on, and drainage; any installation for the collection and treatment of leachate; access roads; buildings; utilities; fencing; monitoring wells; topsoil and subsoil stockpiles; cover material stockpiles; liner and clay cap material stockpiles; and all other features of the developed facility.
  - C. A soil survey report with appropriate maps and a narrative. This section should describe the types of soils at the site and describe the thickness of the topsoil ("A" horizons) and the subsoil ("B" horizons). A description of how these horizons will be removed, handled, and stockpiled for later respreading during site reclamation must be included in detail. This stockpiled soil material (Suitable Plant Growth Material or SPGM) must be handled, stockpiled, and the piles revegetated in a manner that minimizes erosion and/or contamination of the material. The maps included in construction plans should identify locations of the SPGM stockpiles.
  - D. Submit a series of cross-sections or profiles (scale 1" = 200'or larger) of the developed site. These sections should number no less than three (3), but in any case must be adequate to define the three dimensional distribution of materials to a depth of fifty (50) feet below the proposed elevation of refuse.

These profiles should clearly indicate the constructed pits, the geologic strata or lithology surrounding and underlying the disposal facility, the placement of any required side and/or bottom liners, the placement of any surface water sumps, the placement and screened interval of appropriate monitoring wells, the levels of the water table, groundwater flow directions, the proposed sequence of placement and total compacted thickness of each lift of waste, thickness of cover material for each lift, and the slope of the completed landfill with final cover in place. These cross-sections should be in a format that allows permit reviewers to obtain a quick and concise view of the proposed facility.

E. The construction plans should address the Quality Control and Assurance Procedures to be used during site construction, liner

5.

installation, groundwater monitoring, site operation, and site closure. The Department may require a routine report from the facility on the status of the operation and its construction (especially the liners) and its operation (especially surface water control and dust control). The description of the Quality Control Procedures for liner construction or any other appropriate construction (clay cap, etc.) should be signed by an independent registered engineer. A routine status report could be included with the quarterly groundwater monitoring report.

- VI. GROUNDWATER MONITORING: The design of a groundwater monitoring system and the parameters for water analysis should be based on an assessment of the waste analysis, the site's geology and hydrology, the plans for construction, and the facility's method of operation. Items that should be discussed include:
  - A. The water level in the boreholes immediately after boring completion and sufficient periodic measurements of the depth to water until stabilization has been attained.
  - B. The vertical and horizontal components of the hydraulic gradients; a contour map for each potentiometric surface (data for which may be based on local domestic and industrial wells, and on-site piezometers and boreholes).
  - C. The location of one or more up-gradient groundwater quality monitoring well nests and a minimum of two down-gradient groundwater quality monitoring piezometer nests to be located in the expected path(s) of the leachate migration. The location and construction of the piezometers should be in accordance with the hydrogeology of the site as determined by the exploratory program, subject to final approval by the Department.
  - D. All monitoring wells must be cased and must be installed in compliance with Chapter 43-35 of the North Dakota Century Code and in compliance with Chapter 33-18-01 of the North Dakota Administrative Code governing water well construction. Monitoring wells must be completed in a manner that maintains the integrity of the borehole and precludes cross-contamination or interconnection of aquifers or geologic strata. The casing must be screened with an appropriately sized factory slotted pipe and packed with clean sand or gravel to allow collection of groundwater samples. The annular space between the well casing and borehole must be properly sealed to prevent contamination of samples and the groundwater.

At the surface, all wells must have a proper apron to prevent surface water infiltration and a protective outer casing to prevent physical damage to the well. The outer casing should include a cap and lock.

The monitoring piezometer should be constructed of non-metallic material, with a two (2) inch or greater inside diameter. Such piezometers will aid in evaluation of the effectiveness of the proposed facility design, and provide an early warning of design malfunction so that timely remedial measures can be initiated.

E. Background analysis for the following chemical characteristics shall be mandatory for at least one groundwater sample taken from a piezometer installed in the expected flow path(s) of the leachate.

EPA standard procedure shall be used for obtaining, transporting, and analyzing samples. The results of the analysis shall be submitted to the Department before an operating permit can be issued.

#### CHEMICAL PARAMETERS FOR GROUNDWATER ANALYSIS

1. Total Alkalinity (CACO₃) Arsenic (AS*) 3. Bicarbonate (HCO₂) 4. Cadmium (Cd) * 5. Calcium (Ca) * 6. Carbonate (CO₃) 7. Chloride (Cl) 8. Total Chromium * 9. Fluoride (F-) 10. Hardness (as calcium carbonate) 11. Iron (Fe)* 12. Lead (pb) * 13. Magnesium (Mg)* 14. Manganese (Mn)* 15. Mercury (Hg) * 16. Nitrate (NO₃) 17. pH 18. Potassium (K)* 19. Sodium (Na)* 20. Specific Conductance** 21. Sulfate (SO_A) 22. Total Dissolved Solids 23. Selenium (Se)* 24. Barium (Ba)* 25. Silver (Ag) *

- 26. Molybdenum *
- * Analyzed for "dissolved" metals. (i.e. samples filtered through an 0.45u membrane filter.

** Reported in micromhos at 25 degrees C.

Additional parameters may be assigned by the Department. These parameters will be determined by the detailed chemical analysis of the waste.

All constituents reported in milligrams per liter (mg/l).

Periodic groundwater samples shall be collected and analyzed by the applicant, or his designated representative, to monitor for alterations in groundwater quality. The frequency of samples and parameters required for analysis will be specified by the Department.

- VII. OPERATION AND MANAGEMENT METHODS: The permit application must contain details on the facility's operation and maintenance. This should include in detail:
  - A Personnel

Sec. 1. 18.

- B Contingency and emergency plans
- C Control of access to the site (fence, gates, signs, etc.)
- D Roads (including maintenance)
- E Confining disposal to as small an area as possible
- F Dust control
- G Spill prevention and cleanup
- H Storage (if any)
- I Source and thickness of cover
- J Frequency of covering
- K Methods of waste handling and haulage
- L Leachate (including pit water) and surface water run-on/run-off control, handling, and disposal
- M Recordkeeping
- N Development Plans
- 0 Quality Assurance and Quality Control
- VIII. RECORD OF SOLID WASTE DISPOSAL ACTIVITY WITH THE COUNTY REGISTER OF DEEDS: Prior to onset of disposal activities, the permittee shall record a notarized affidavit with the County Register of Deeds to place a notation in the County's tract system specifying that this solid waste management site, as specified in the legal description, is permitted to accept solid wastes for disposal.

This affidavit shall specify that another affidavit must be recorded upon the facility's final closure.

Upon closure, an additional affidavit shall be recorded, as above, specifying any final details regarding the types of wastes disposed at the site, as well as any final details regarding the site's location, construction, management, etc.

The Department must be provided with a copy of both affidavits certified by the County Register of Deeds in the county in which the disposal site is located, within thirty (30) days of their recorded dates.

IX. CLOSURE: A closure plan must be included which describes in detail the procedures to be followed and the materials and manpower to be used in accomplishing final closure of the disposal facility. Generally, closed sites should have an adequate slope to promote surface water run-off without causing active erosion of the final cover.

The plan should include whatever maps, cross-sections, diagrams, and narrative is necessary to detail such things as:

A. Schedule or timetable of closure.

B. Final elevation of disposed wastes.

- C. Equipment necessary to accomplish closure.
- D. Type, volume, and source of cover material.
- E. Construction and placement of clay and/or synthetic cap and any drainage layers.
- F. Final grading/contouring of the facility.
- G. Topsoil replacement.

Sec. 1 Sec.

- H. Seed, fertilizer, and irrigation necessary to establish cover.
- I. Surface water run-off.
- J. Schedule for post-closure groundwater monitoring.
- K. Maintenance of leachate control or collection system.
- L. A short description of the utilization and maintenance of the disposal area after closure. The closed site should be managed in a careful manner that will prevent deterioration of the desired plant community and the low permeability final cover. The closure plan should provide for routine inspection and maintenance of the closed site, including the replanting of vegetation and the replacement of any eroded final cover.

#### 9.0 SUMMARY

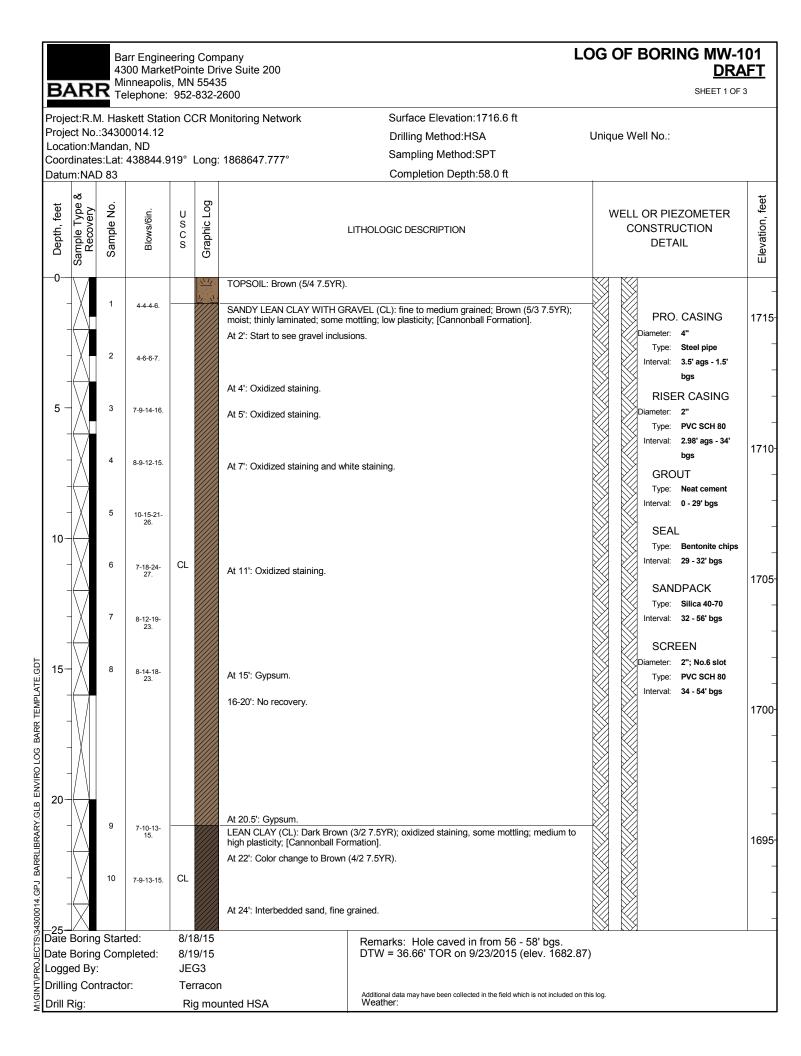
A permanent coal combustion ash disposal facility will be constructed north of Mandan, ND adjacent to the R. M. Heskett power station. The disposal site will be incrementally developed to minimize impact upon the landscape and reduce potential for fugitive dust emissions and waste leachate generation. Disposal trenches will be bi-annually constructed and equipped with an in situ clay liner sloping towards an in-pit leachate collection system. Collected leachate will be evaporatively treated in a clay-lined surface impoundment.

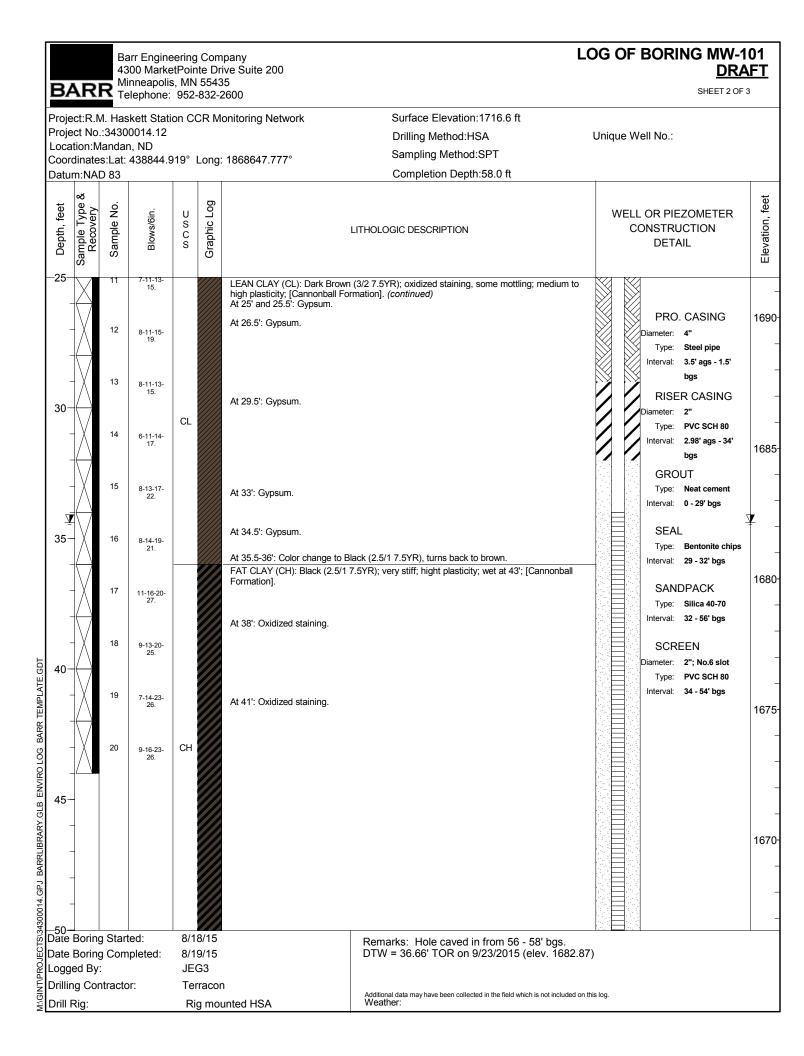
Earthen berms and tree plantings will provide visual and acoustical obstructions between facility operations and adjacent dwellings to the south. Additional landscaping may be performed as needed. Filled trenches will be covered with a compacted clay cap along with uncompacted overburden and plant growth materials to a total depth of eight feet. Reclamation will be performed with each disposal trench closure and produce a gently sloping grassland.

The groundwater immediately beneath the site is of poor quality and marginally useful as a domestic or agricultural resource. All waste will be emplaced above the historic water table. Facility operations should not effect local groundwater flow. A monitoring program will be established to characterize deviations in groundwater hydrology and chemistry. Contingencies have been identified in the event of site characterization errors, incompatible facility design, or operational difficulties as outlined in this permit application.

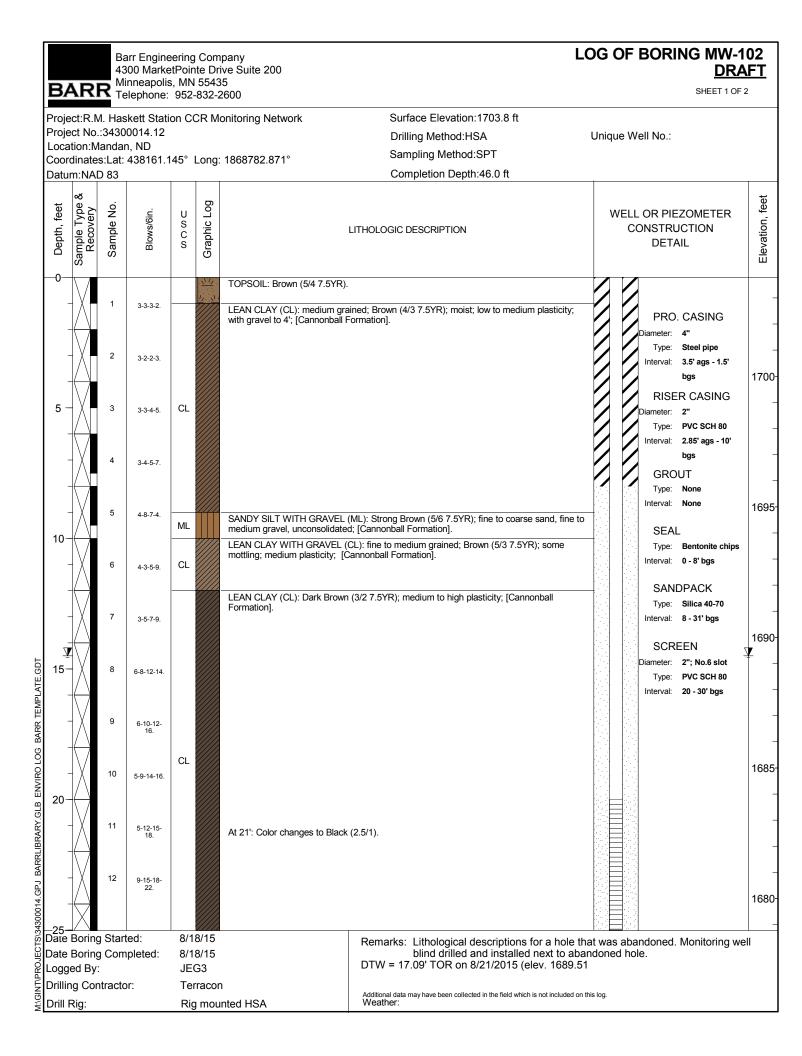
9 - 1

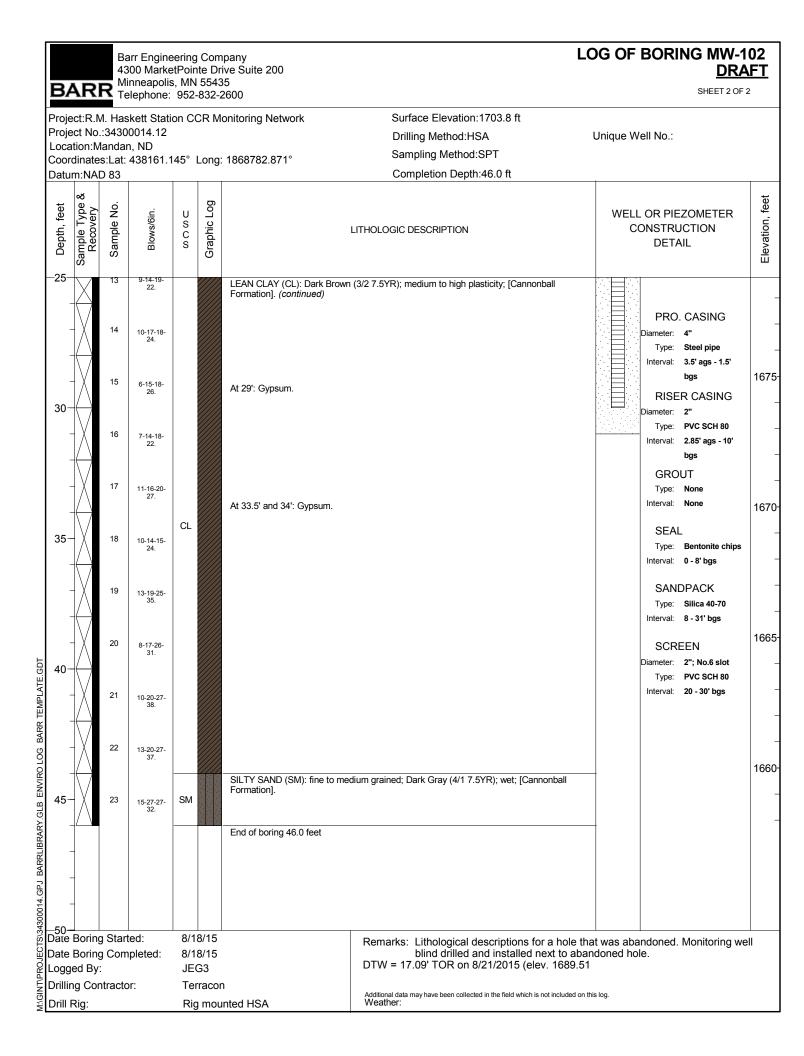
#### 10.0 REFERENCES

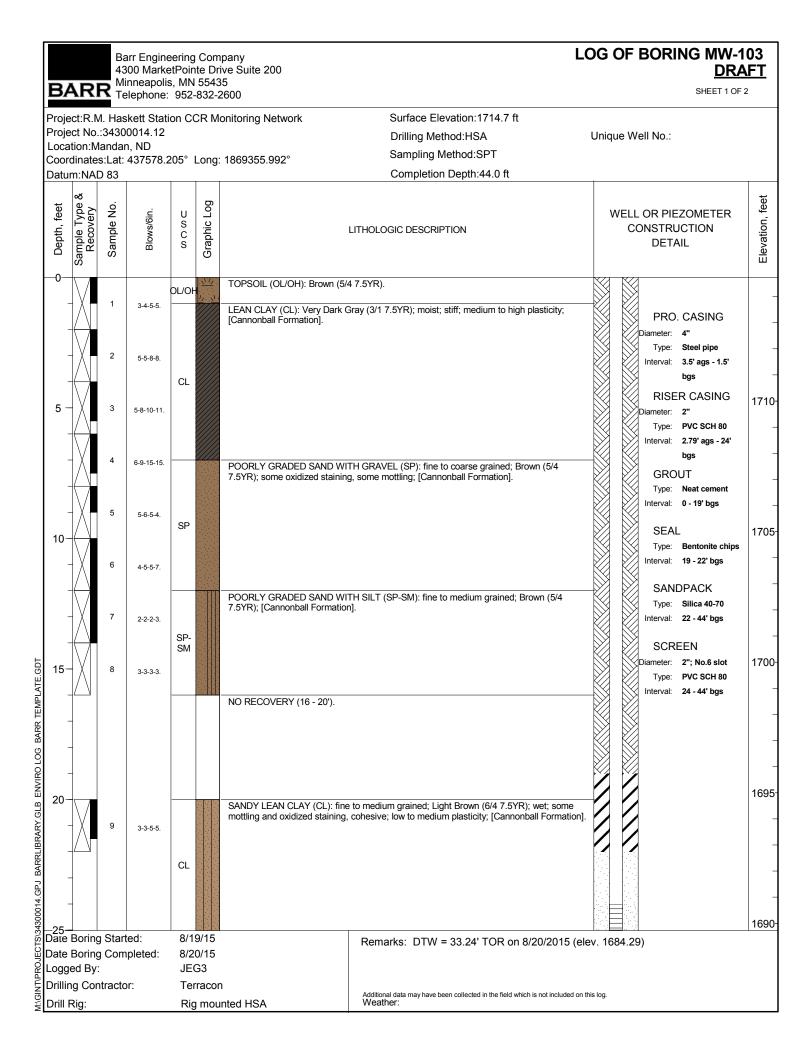

- Ackerman, D.J., 1977, Ground-water basic data for Morton County, North Dakota: North Dakota Geological Survey Bulletin 72, pt. II and North Dakota Water Commission County Ground-Water Studies 27, pt. 2, 528 p.
- Ackerman, D.J., 1980, Ground-water resources of Morton County, North Dakota: North Dakota Geological Survey Bulletin 72, pt. III and North Dakota Water Commission County Ground-Water Studies 27, pt. III, 51 p.
- Armstrong, C.A., and Schmid, R.W., 1986, Hydrogeologic Investigation of the Heskett Station Ash Pile for Montana-Dakota Utilities: Unpublished report to Montana-Dakota Utilities Company, Bismarck, North Dakota, 8 p.
- Beaver, F.W., 1986, The effect of fly ash and flue-gas desulfurization wastes on groundwater in a reclaimed lignite stripe mine disposal site: University of North Dakota Ph.D dissertation. p. 1-210.
- Beaver, F.W., 1987, Verbal communication: Manager of the Coal By-Products Utilization Laboratory, University of North Dakota, Grand Forks, ND.
- Bluemle, J.P., 1971, Geology of McLean County, North Dakota: North Dakota Geological Survey Bulletin 60, pt. I and North Dakota State Water Commission County Ground-Water Studies 19, pt 1, p. 16-20.
- Carlson, G.C., 1983, Geology of Morton County, North Dakota: North Dakota Geological Survey Bulletin 72, pt. I and North Dakota Water Commission County Ground-Water Studies 29, pt. 1, 37p.
- Cvancara, A.M., 1976, Geology of the Cannonball Formation (Paleocene) in the Williston Basin, with reference to uranium potential: North Dakota Geological Survey Report of Investigation 57, 22 p.
- Drever, J.I., 1982, The geochemistry of natural waters: Prentice-Hall Inc., Englewood Cliffs, NJ, 388 p.
- Edwards, J.M., and Ableiter, J.K., 1936, Soil survey of Morton County, North Dakota: U.S. Department of Agriculture, Soil Survey, Series 1936, no 28, 145 p.
- Freeze, R.A. and Cherry, J.A., 1979, Groundwater: Prentice-Hall Inc., Englewood Cliffs, NJ, 604 p.
- Groenewold, G.H., Hemish, L.A., Cherry, J.A., Rehm, B.W., Meyer, G.N., Clayton, L.S. and Winczewski, L.M., 1979, Geology and geohydrology of the Knife River Basin and adjacent areas of west-central North Dakota: North Dakota Geological Survey Report of Investigation 64,402 p.
- Groenewold, G.H., Cherry, J.A., Manz, O.E., Gullicks, H.A., Hassett, D.J. and Rehm, B.W., 1980, Potential effects on groundwater of fly ash and FGD waste disposal in lignite surface-mine pits in North Dakota: Proceedings of the Symposium on Flue Gas Desulfization, Houston, Texas, p. 657-693.

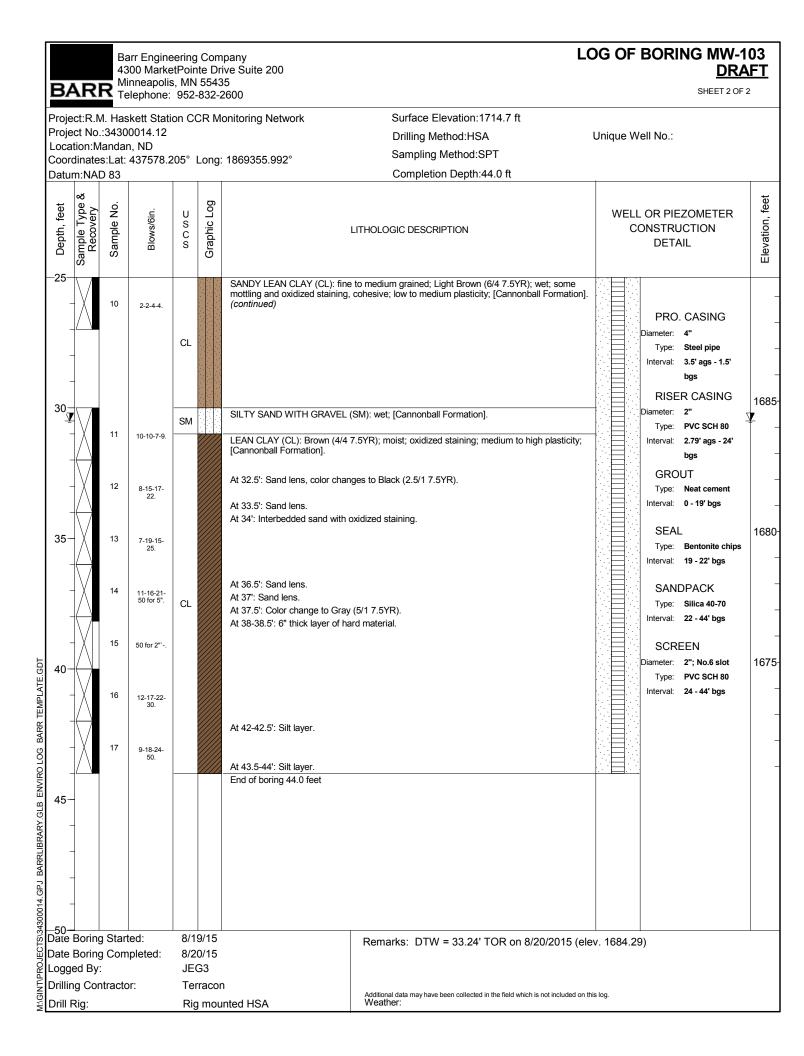

- Groenewold, G.H., Koob, G.J., McCarthy, B.W., and Peterson, W.M., 1983, Geological and geochemical controls on the chemical evolution of subsurface water in undisturbed and surface-mined landscapes on western North Dakota: North Dakota Geological Survey Report of Investigation 79, 151 p.
- Hassett, D.J. and Groenewold, G.H., 1986, Attenuation capacity of western North Dakota overburden sediments: North Dakota Mining and Mineral Resource Research Institute, Bulletin 86-04-MMRRI-01, 105 p.
- Jensen, R., 1984, Climate of North Dakota: North Dakota National Weather Service, North Dakota State University, Fargo, North Dakota, 45 p.
- Koob, R.D. and Groenewold, G.H., 1984, Alkaline buffering capacity of Northern Plains overburden materials: Final Technical Report, U.S. Department of Energy, DOE/FC/10120-1717.
- Kume, J., and Hansen, D.E., 1965, Geology and ground water resources of Burleigh County, North Dakota: North Dakota Geological Survey Bulletin 42, pt. I, and North Dakota Water Commission County Ground-Water Studies 3, pt. 2, p. 46.
- Patterson, D.D., Johnsgard, G.A., Sweeney, M.D., and Omodt, H.W., 1968, Soil survey report: North Dakota State University Agricultural Experiment Station, Fargo, ND, Bulletin No. 473, 150 p.
- U.S. Environmental Protection Agency, 1982, Handbook for sampling and sample preservation of water and waste water: U.S. EPA 600/4-82-029, Cincinnati, OH, p. 1-88.
- U.S. Environmental Protection Agency, 1979, Methods for chemical analysis of water and wastes: U.S. EPA 600/4-79-020, 3rd ed., Cincinnati, OH.
- U.S. Department of Commerce, 1973, Monthly normals of temperature, precipitation and heating and cooling days 1941-1970: U.S. Department of Commerce, Climatography of the United States, no 81 (North Dakota).

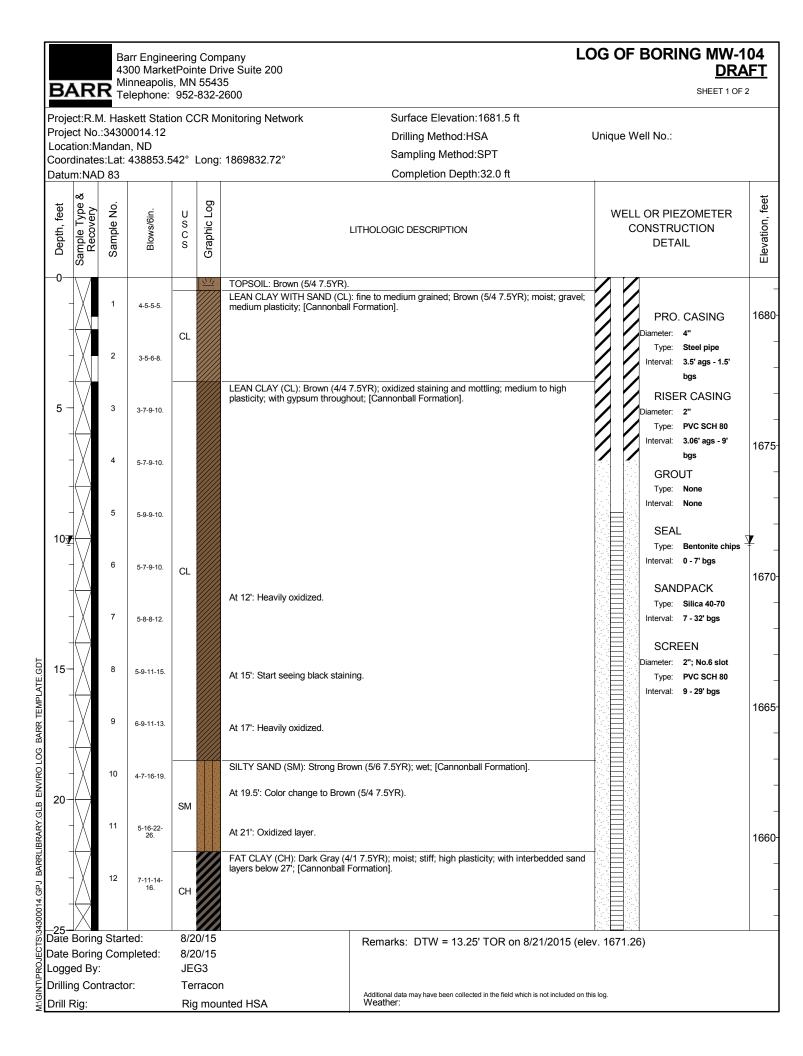
10 - 2


Appendix D

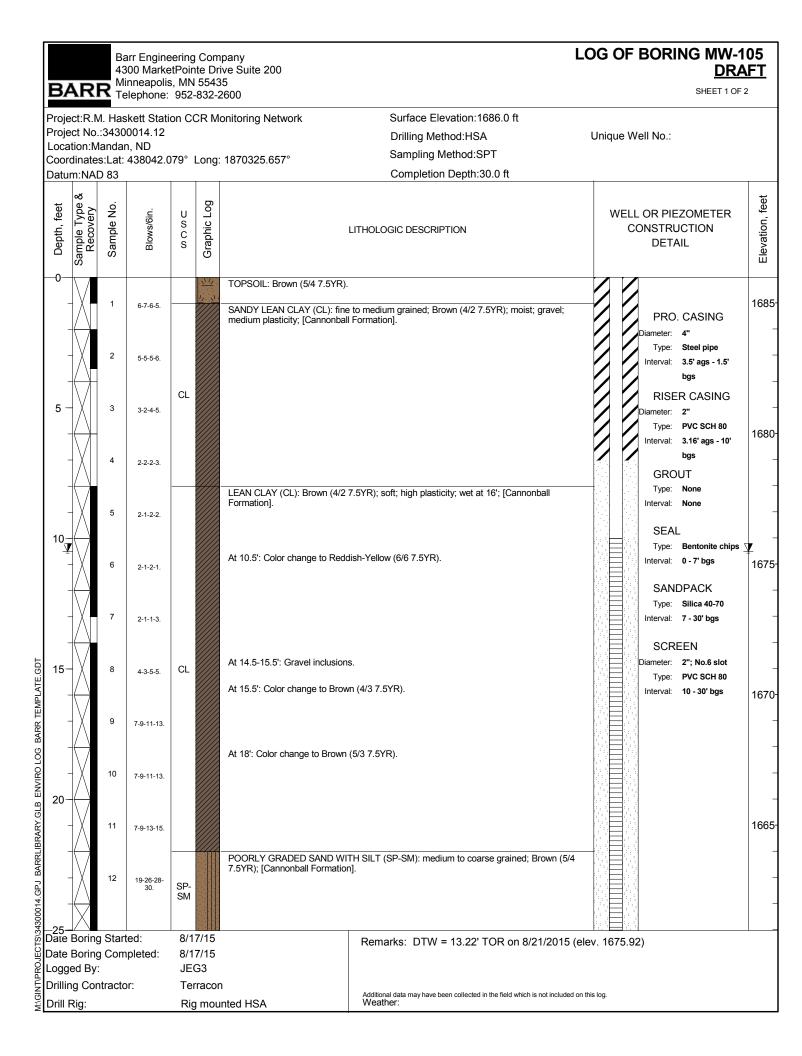

2014 and 2016 Boring Logs



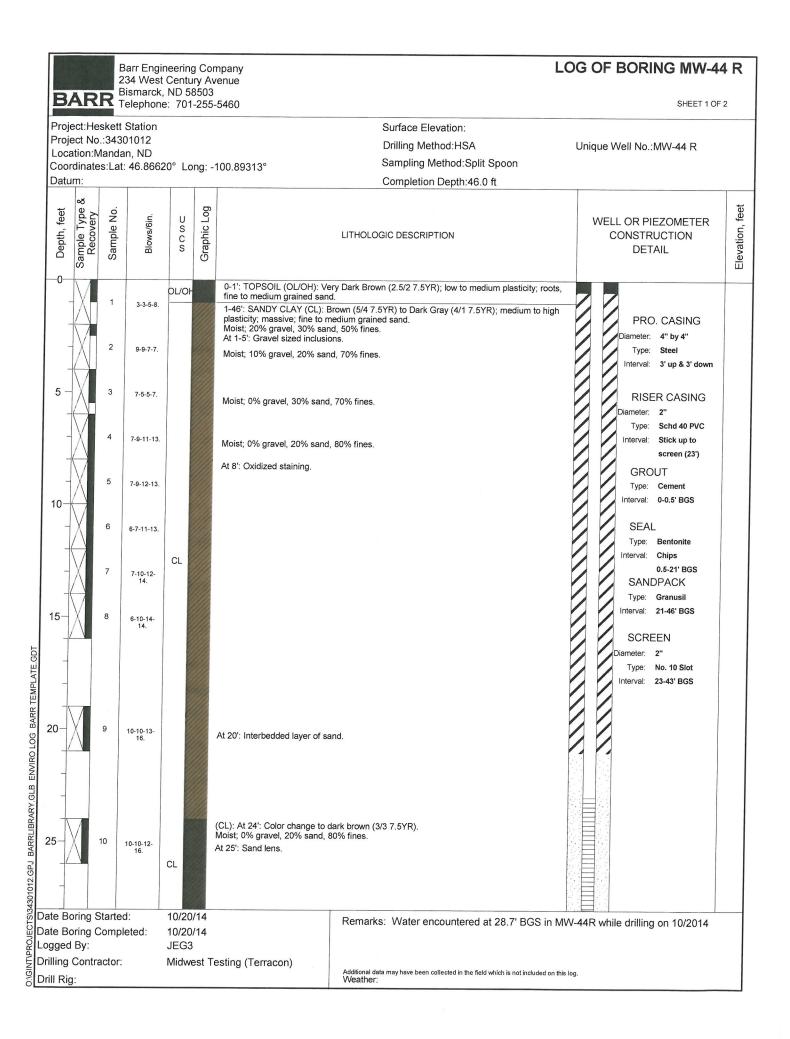



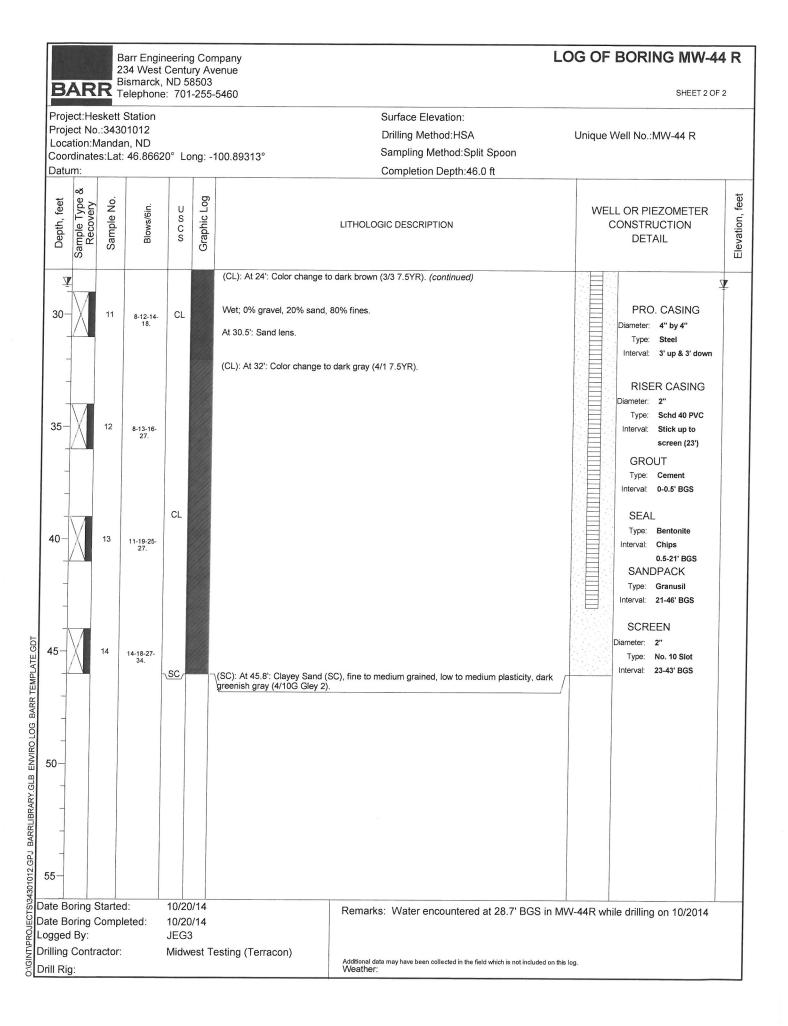


4300 M	gineering Company arketPointe Drive Suite 200 polis, MN 55435		LOG OF BORING MW-101 <u>DRAFT</u>
BARR Minnea Teleph	one: 952-832-2600		SHEET 3 OF 3
Project No.:34300014 Location:Mandan, ND		Surface Elevation:1716.6 ft Drilling Method:HSA Sampling Method:SPT Completion Depth:58.0 ft	Unique Well No.:
Depth, feet Sample Type & Recovery Sample No.	s s s c s Graphic Log	LITHOLOGIC DESCRIPTION	WELL OR PIEZOMETER CONSTRUCTION DETAIL
-50 	CH End of boring 58.0 feet	I 7.5YR); very stiff; hight plasticity; wet at 43'; [Cannonball	PRO. CASING 1665- Diameter: 4" Type: Steel pipe - Interval: 3.5' ags - 1.5' bgs - RISER CASING - Diameter: 2" Type: PVC SCH 80 - Interval: 2.98' ags - 34' bgs 1660- GROUT - Type: Neat cement Interval: 0 - 29' bgs
60			SEAL Type: Bentonite chips Interval: 29 - 32' bgs SANDPACK Type: Silica 40-70 Interval: 32 - 56' bgs SCREEN Diameter: 2"; No.6 slot Type: PVC SCH 80 Interval: 34 - 54' bgs
Date Boring Started: Date Boring Complete Logged By:	8/18/15 d: 8/19/15 JEG3	Remarks: Hole caved in from 56 - 58' bgs. DTW = 36.66' TOR on 9/23/2015 (elev. 1682	.87)
Drilling Contractor: Drill Rig:	Terracon Rig mounted HSA	Additional data may have been collected in the field which is not included Weather:	on this log.







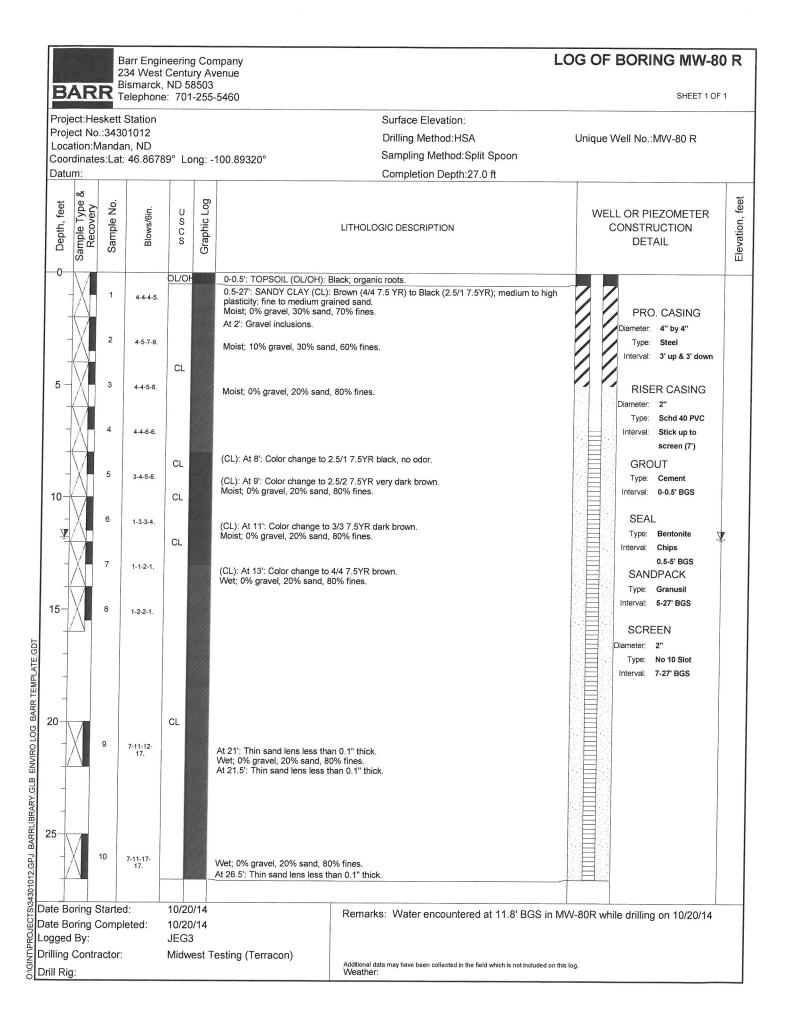




4300	Engineering Company MarketPointe Drive S		LOG OF BORING MW-104 <u>DRAFT</u>
BARR Minn Telep	eapolis, MN 55435 phone: 952-832-2600		SHEET 2 OF 2
Project:R.M. Haske Project No.:343000 Location:Mandan, N	tt Station CCR Monito 14.12	Drilling Method:HSA	Unique Well No.:
Depth, feet Sample Type & Recovery Sample No.	Blows/6in. ∽ ∩ ∽ ⊂ Graphic Log	LITHOLOGIC DESCRIPTION	WELL OR PIEZOMETER CONSTRUCTION DETAIL
	5-12-16- 17. FAT laye 3-12-16- 21. CH 3-12-16- 20.	CLAY (CH): Dark Gray (4/1 7.5YR); moist; stiff; high plasticity; with interbedded sa s below 27'; [Cannonball Formation]. <i>(continued)</i>	PRO. CASING Diameter: 4" Type: Steel pipe Interval: 3.5' ags - 1.5' bgs RISER CASING
		r notes: sluff. of boring 32.0 feet	Diameter: 2" Type: PVC SCH 80 Interval: 3.06' ags - 9' bgs GROUT Type: None Interval: None SEAL Type: Bentonite chips Interval: 0 - 7' bgs
40			SANDPACK Type: Silica 40-70 Interval: 7 - 32' bgs SCREEN Diameter: 2"; No.6 slot Type: PVC SCH 80 Interval: 9 - 29' bgs
45			
Date Boring Started Date Boring Comple Logged By:		Remarks: DTW = 13.25' TOR on 8/21/2015	(elev. 1671.26)
Drilling Contractor: Drill Rig:	Terracon Rig mounted	Additional data may have been collected in the field which is not included Weather:	l on this log.



		43		tPoin	te Dr	ive Suite 200		LOG OF	BORING MW-10 DRA	
BA	٩R	R Te	inneapolis elephone:	952-	832-	2600			SHEET 2 OF 2	2
Proje Loca Coor	ect No. tion:M	:3430 andar s:Lat:	0014.12 n, ND			onitoring Network : 1870325.657°	Surface Elevation:1686.0 ft Drilling Method:HSA Sampling Method:SPT Completion Depth:30.0 ft	Unique W	/ell No.:	
Depth, feet	Sample Type & Recovery	Sample No.	Blows/6in.	U S C S	Graphic Log		LITHOLOGIC DESCRIPTION		OR PIEZOMETER ONSTRUCTION DETAIL	Elevation, feet
-25- - - - - - - - - - - - - - - - - - -		13	15-25-31- 40. 10-15-18- 30. 11-16-22- 32.	CL		FAT CLAY (CL): Dark Brown ( Formation]. At 26': Color change to Gray ( End of boring 30.0 feet	3/4 7.5YR); high plasticity; sand lens at 26.5'; [Cannonba		PRO. CASING Diameter: 4" Type: Steel pipe Interval: 3.5' ags - 1.5' bgs RISER CASING Diameter: 2" Type: PVC SCH 80	1660-
35-	-								Interval: 3.16' ags - 10' bgs GROUT Type: None Interval: None SEAL Type: Bentonite chips Interval: 0 - 7' bgs SANDPACK Type: Silica 40-70 Interval: 7 - 30' bgs SCREEN	
40- 40-									Diameter: 2"; No.6 slot Type: PVC SCH 80 Interval: 10 - 30' bgs	
Date	Boring Boring Boring ed By:	g Com	ted: pleted:		7/15 7/15 73		Remarks: DTW = 13.22' TOR on 8/21/2015	 (elev. 1675.92	2)	
Drilling Contractor:     Terracon       Drill Rig:     Rig mounted HSA										






# State of North Dakota BOARD OF WATER WELL CONTRACTORS

900 E. BOULEVARD • BISMARCK, NORTH DAKOTA 58505

#### MONITORING WELL REPORT

State law requires that this report be filed with the State Board of Water Well Cont	ractors within 30 days after completion or abandonment of the well.
1. WELL OWNER	Well head completion:
Name MDU Uselast Station	24" above grade Other x
Name MDU-Heskett Station	If other, specify <u>4" x 4" x 5' steel cover</u>
Address 2025 38 th Street	Was protective casing installed? ■ Yes □ No
Mandan, North Dakota	Was well disinfected upon completion? □ Yes ■ No
2. WELL LOCATION (MW-44R)	
Address (if in city) (see attached drawing)	5. WATER LEVEL
	Static water level 28.5 feet below surface
County Morton	If flowing: closed in pressure psi or ft. above land surface
<u>SE ¼ SE ¼ SW ¼</u> Sec. <u>10</u> Twp. <u>139</u> N. Rge. <u>81</u> W.	6. WELL LOG Depth (Ft.)
Lat. <u>46.86620</u> Long.: <u>-100.89313</u>	
Altitude:	Formation From To
3. METHOD DRILLED	Topsoil 0 0.5
Auger Other	Sandy lean clay 0.5 5
4. WELL CONSTRUCTION	Sandy fat clay 5 46
Diameter of Hole <u>8</u> inches Depth <u>46</u> feet	
Riser: ■ PVC □ Other	
■ Threaded □ Solvent □ Other	
Riser rating SDR Schedule40	
Diameter <u>2.0</u> inches	
From <u>+2</u> ft. to <u>23</u> ft.	
Was a well screen installed? ■ Yes □ No	
Material <u>Schedule 40 PVC</u> Diameter <u>2.0</u> inches	
Slot Size <u>#10</u> set from <u>23</u> feet to <u>43</u> feet	
Sand packed from ft to 46 ft	(Use separate sheet if necessary)
Depth grouted from <u>1</u> ft to <u>21</u> ft	7. WAS THE HOLE PLUGGED OR ABANDONED?
Grouting Material	🗆 Yes 🔳 No
Bentonite Other	If so, how?
If other explain:	
One foot concrete collar at surface	8. REMARKS
	3 steel bumpers installed around well head
	9. DATE COMPLETED 10-21-14
	10. CONTRACTOR CERTIFICATION
	This well was drilled under my jurisdiction and this report is true to the best of my knowledge.
	Midwest Testing Laboratory, Inc. 444
	Monitoring Well Contractor Certificate No.
	P.O. Box 2084, Bismarck, ND 58502-2084
	Address
	Miller 10-22-14
	Signature Date



# State of North Dakota BOARD OF WATER WELL CONTRACTORS

•

900 E. BOULEVARD • BISMARCK, NORTH DAKOTA 58505

#### MONITORING WELL REPORT

State law requires that this report be filed with the State Board of Water Well Cont	
1. WELL OWNER	Well head completion:
NameMDU-Heskett Station	24" above grade Other X
Address 2025 38 th Street	If other, specify <u>4" x 4" x 5' steel cover</u>
Mandan, North Dakota	Was protective casing installed? ■ Yes □ No
2. WELL LOCATION (MW-80R)	Was well disinfected upon completion? □ Yes ■ No
	5. WATER LEVEL
Address (if in city) (see attached drawing)	S. WATER LEVEL Static water level 12 feet below surface
County Morton	If flowing: closed in pressure psi or ft. above land surface
<u>NE ¼ SE ¼ SW ¼ Sec. 10</u> Twp. <u>139</u> N. Rge. <u>81</u> W.	6. WELL LOG Depth (Ft.)
Lat. <u>46.86789</u> Long.: - <u>100.89320</u>	
Altitude:	Formation
3. METHOD DRILLED	Formation From To
	Topsoil 0 0.5
Auger Other	Sandy lean clay 0.5 27
4. WELL CONSTRUCTION	
Diameter of Hole <u>8</u> inches Depth <u>27</u> feet Riser: ■ PVC □ Other	
■ Threaded □ Solvent □ Other Riser rating SDR Schedule40	
Diameter <u>2.0</u> inches	
From $\underline{-+2.5}$ ft. to $\underline{-7}$ ft.	
Was a well screen installed? $\blacksquare$ Yes $\Box$ No	
Material <u>Schedule 40 PVC</u> Diameter <u>2.0</u> inches	
Slot Size $_{10}$ set from $_{7}$ feet to $_{27}$ feet	
Sand packed from5ft to27ft	(Use separate sheet if necessary)
Depth grouted from <u>1</u> ft to <u>5</u> ft	7. WAS THE HOLE PLUGGED OR ABANDONED?
Grouting Material	🗆 Yes 🔎 No
Bentonite X Other	If so, how?
If other explain:	
One foot concrete collar at surface	8. REMARKS
	3 steel bumpers installed around well head
	9. DATE COMPLETED 10-21-14
	10. CONTRACTOR CERTIFICATION
	This well was drilled under my jurisdiction and this report is true to the
	best of my knowledge.
	Midwest Testing Laboratory, Inc. 444
	Monitoring Well Contractor Certificate No.
	P.O. Box 2084, Bismarck, ND 58502-2084
	Address A
	Mil an 10-22-14
	Signature Date



# Alternative Source Demonstration: April 2019 Event

# R.M. Heskett Station

Prepared for Montana-Dakota Utilities Co.

November 2019

4300 MarketPointe Drive, Suite 200 Minneapolis, MN 55435 952.832.2600 www.barr.com

## Alternative Source Demonstration April 2019 Event

November 2019

# Contents

1.0	In	itroduction1
2.0	A	pril 2019 SSIs2
2.1		April Sampling Event2
2.2		Verification Sampling
3.0	A	Iternative Source Demonstration4
3.1		Source Hypothesis #1: CCR Unit Release4
3.2		Source Hypothesis #2: Natural Variations of Pre-Landfill or Regional Groundwater Quality5
3	.2.1	Chloride at MW-1055
3	.2.2	
3	.2.3	Sulfate and TDS at MW-1046
3.3		Source Hypothesis #3: Evaporation Pond Release7
3	.3.1	TDS and Sulfate at MW-1047
4.0	C	onclusions10
5.0	Re	eferences11

### List of Tables

- Table 1
   Detection Monitoring Results for Potential SSI Well-Parameter Pairs
- Table 2Verification Sampling Results
- Table 3
   Fluoride Concentrations in Morton County, North Dakota
- Table 4Summary of SSIs and Alternative Sources

## List of Figures

- Figure 1 Site Layout and CCR Monitoring Network
- Figure 2 Piper Plot
- Figure 3 Sulfate Concentrations
- Figure 4 TDS Concentrations

### List of Appendices

- Appendix A Ash SPLP Laboratory Report (2011)
- Appendix B Aerial Photo (March 30, 1988)
- Appendix C 2014 and 2015 Boring Logs
- Appendix D MW1-90 Time Series Plots
- Appendix E Geochemist's Workbench Results

## Certifications

I hereby certify that I, or my agent, have examined this written demonstration and attest that this Coal Combustion Residuals Facility Alternative Source Demonstration (ASD) is accurate and has been prepared in accordance with good engineering practice, including consideration of applicable industry standards and the requirements of 40 CFR §257.94. I further certify that this report was prepared by me or under my direct supervision and that I am a duly Licensed Professional Engineer under the laws of the state of North Dakota.

Revision	Date	Summary of Revisions
0	November 4, 2019	Initial Alternative Source Demonstration



Thomas J. Radue, P.E. Barr Engineering Co. ND Registration Number PE – 3632

# 1.0 Introduction

Montana-Dakota Utilities Co. (MDU) owns and operates R.M. Heskett Station (Site), a coal-fired generating station and a gas-fired turbine located in Mandan, Morton County, North Dakota (Figure 1). One CCR (coal combustion residual) unit, as defined by 40 CFR 257.53, is located on the property. The CCR unit contains coal combustion by-products, asbestos wastes generated from construction activity associated with MDU-owned facilities, and ash derived from burning of tire-derived fuel (TDF) at the facility.

The CCR Rule (US EPA, 2015) §257.94(e)(2) allows for an alternative source demonstration (ASD) in the event of an identified statistically significant increase (SSI) in a water quality parameter in a downgradient monitoring well over background levels:

The owner or operator may demonstrate that a source other than the CCR unit caused the statistically significant increase over background levels for a constituent or that the statistically significant increase resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. The owner or operator must complete the written demonstration within 90 days of detecting a statistically significant increase over background levels to include obtaining a certification from a qualified professional engineer verifying the accuracy of the information in the report.

The purpose of this work is to evaluate the data collected as part of the April 2019 monitoring event, along with historical data, to demonstrate if the proposed SSIs are the results of a "source other than the CCR unit" or due to natural variation in groundwater quality, an error in sampling, analysis, or statistical evaluation.

# 2.0 April 2019 SSIs

Sampling for the first detection monitoring event in 2019 was conducted on April 1-2. Four potential SSIs over background were identified: chloride at MW-105, sulfate and total dissolved solids (TDS) at MW-104, and fluoride at MW-2-90.

Evaluations were undertaken to review potential alternative sources for the SSIs. These evaluations include comparing the following:

- Leaching tests of on-site CCR materials;
- Leachate collected in the Evaporation Pond (non-CCR unit);
- Regional (background) groundwater quality data; and
- Groundwater quality collected at the site prior to construction of the CCR unit.

Several characteristics of the CCR unit site geology, groundwater monitoring well locations, and historic groundwater quality data prompted consideration of potential alternative sources for the potential SSIs, including:

- Elevated water quality parameters in pre-landfill groundwater monitoring data;
- Site-specific geologic conditions; and
- Leakage from the Evaporation Pond (non-CCR unit).

A successful alternative source demonstration is discussed in Section 3.0.

## 2.1 April Sampling Event

Methods used to evaluate potential alternative sources as the basis for water quality parameter concentrations over background from the April 2019 detection monitoring event are discussed below. Concentrations for potential SSIs observed in April 2019 are similar to those observed during prior detection monitoring events (Table 1).

Well		Interwell Prediction	C	Detection Monit	ection Monitoring Results		
	Parameter	Limit (mg/L)	October 2017 (mg/L)	April 2018 (mg/L)	October 2018 (mg/L)	April 2019 (mg/L)	
MW-105	Chloride	271	346	333	384	282	
MW-104	Sulfate	6,770	10,200	10,700	11,000	11,100	
MW-104	TDS	9,970	15,400	17,400	18,000	17,700	
MW-2-90	Fluoride	0.93	0.93	1.03	1.00	1.02	

Bolded values indicate concentrations exceed the associated interwell predication limits.

# 2.2 Verification Sampling

Verification sampling was conducted on potential SSIs. Results of verification sampling are outlined in Table 2.

#### Table 2. Verification Sampling Results

Well	Parameter	Interwell Prediction Limit (mg/L)	Detection Monitoring April 2019 (mg/L)	Verification Sampling Aug 2019 (mg/L)
MW-105	Chloride	271	282	279
MW-104	Sulfate	6,770	11,100	11,000
MW-104	TDS	9,970	17,700	17,300
MW-2-90	Fluoride	0.93	1.02	1.00

Bolded values indicate concentrations exceed the associated interwell predication limits.

All the initial SSI determinations were verified by the resampling. Therefore, the initial values collected in April will be used moving forward.

# 3.0 Alternative Source Demonstration

Successful demonstrations of alternative sources have previously been documented for the four potential SSIs. The associated ASD Reports (Barr, 2018a; Barr, 2018b; Barr, 2019) documented that each of the SSIs could be explained by natural groundwater quality variability based on concentrations that were either present at the Site before the landfill was constructed and/or consistent with regional groundwater quality data. The purpose of this ASD Report is to validate the results of prior findings with the April 2019 data. For each potential SSI, three hypotheses regarding the potential source of the SSI are assessed: 1) a release of leachate from the CCR unit is the source of one or more of the potential SSIs; 2) natural variations of pre-landfill or regional groundwater quality is the source of one or more of the potential SSIs; or 3) a release of leachate from the Evaporation Pond (non-CCR unit) is the source of one or more of the potential SSIs.

## 3.1 Source Hypothesis #1: CCR Unit Release

To accept the hypothesis that a release of leachate from the CCR unit is the source of one or more of the potential SSIs, it would be assumed that groundwater chemistry at one or more of the potentially impacted wells (MW-2-90, MW-104, and MW-105) would be geochemically similar to impacted water from the CCR unit. However, if they are geochemically dissimilar, this indicates that a source "other than the CCR unit" may be responsible for the potential SSI. Therefore, major ion chemistry from the CCR monitoring locations (upgradient and downgradient) were compared to CCR ash Synthetic Precipitation Leaching Procedure (SPLP method; EPA Method 1312) data collected July 2011 (Appendix A).

In order to test this hypothesis, Piper diagrams were used to visually compare the CCR SPLP results (Appendix A) and the measured groundwater quality at the Site (Figure 2). Piper diagrams are plots of major ion chemistry of water samples (calcium, magnesium, potassium, sodium, chloride, sulfate, and alkalinity) that are used to differentiate between water types and to identify potential mixing of water types. This method is a means to identify or "fingerprint" water samples by their common characteristics (major ions) to assess which types of water are similar or dissimilar to potential source water types (Hensel and Hirsch, 2002).

Downgradient water quality (including the potential SSI parameter-well pairs) is characterized as a Mg-SO₄ type water, whereas the ash SPLP results are Na-SO₄ type water. The major difference observed between the downgradient water quality and the SPLP results is the dominant cation concentration (magnesium vs. sodium). Because water quality data from SSI well-parameter pairs are clustered within the upgradient wells rather than near the SPLP results, it indicates that the water chemistry at those locations are more like upgradient groundwater than a potential release from the CCR unit. **Therefore, we reject the hypothesis that the CCR unit is the source of the fluoride observed at MW-2-90, sulfate and TDS observed at MW-104, and chloride at MW-105.** 

## 3.2 Source Hypothesis #2: Natural Variations of Pre-Landfill or Regional Groundwater Quality

As Source Hypothesis #1 (CCR Unit Release) was rejected as a potential source of the SSIs, natural variations of pre-landfill conditions and/or regional groundwater quality were evaluated for each of the potential SSIs. The second hypothesis evaluated is that concentrations of fluoride at MW-2-90, sulfate and TDS at MW-104, and chloride at MW-105 are consistent with historical (pre-landfill) or regional (background) groundwater data. To test this hypothesis, results of April 2019 Detection Monitoring were compared to pre-landfill data and/or regional groundwater quality data from the Cannonball Formation and associated units to determine if natural variation is a potential alternative source for the SSIs.

### 3.2.1 Chloride at MW-105

Groundwater samples collected in 1986 (prior to construction of the CCR unit; an aerial photograph from March 30, 1988 shows the area of the CCR unit, which appears to be undisturbed (Appendix B)) were included in the 1989 Special Use Disposal Site Permit Application (Permit Application; MDU, 1989). Pre-landfill chloride concentrations collected from groundwater at the Site were measured as high as 558 mg/L (Well 44, 1986), indicating that high chloride concentrations pre-date construction of the CCR unit. Additionally, the North Dakota State Water Commission conducted a groundwater study in Morton County (Ackerman, 1980); 45 wells screened in the Cannonball and Ludlow Formations were sampled for various parameters including chloride. Chloride concentrations ranged from 0 to 500 mg/L (37% of which had concentrations greater than 250 mg/L).

Historic data shows that concentrations of chloride in groundwater at the Site measured prior to the construction of the CCR unit (558 mg/L) as well as regional groundwater quality data (0 to 500 mg/L) are consistent with and/or higher than chloride measured at MW-105 in April 2019 (282 mg/L). This supports the hypothesis that the SSI for chloride at MW-105 is due to a "source other than the CCR unit." **Therefore, we accept the hypothesis that chloride concentrations observed at MW-105 are consistent with regional (background) groundwater data.** 

### 3.2.2 Fluoride at MW2-90

This hypothesis was tested by comparing fluoride concentrations collected as part of several regional groundwater quality studies on the Cannonball Formation and associated units. A summary of the range of fluoride concentrations in the Cannonball Formation and associated units are included in the table below.

#### Table 3. Fluoride Concentrations in Morton County, North Dakota

Reference	Fluoride Conc. Range	Formation/Units	Data Source Location
Ackerman, D.J., 1980. Ground-Water Resources of Morton County, North Dakota. North Dakota Geological Survey Bulletin 72, Part III. 51 p.	0.0 to 4.0 mg/L	Cannonball and Ludlow formations, undifferentiated	Morton County
Crosby, O.A. and Klausing, R.L., 1984. Hydrology of Area 47, Northern Great Plains and Rocky Mountain Coal Provinces, North Dakota, South Dakota, and Montana. USGS Water- Resources Investigations Open-File Report 83-221, 93 p.	0.1 to 6.3 mg/L	Entire Fort Union Formation (includes Cannonball Formation)	Morton County

The Ackerman study provides summary statistics for the fluoride concentrations observed in Morton County. Forty-six samples were analyzed for fluoride; of those, 20 (or 43%) had concentrations greater than 1.3 mg/L (Ackerman, 1980). The fluoride concentration observed at MW-2-90 in April 2019 (1.02 mg/L) is within the range of values consistent with naturally-occurring concentrations of fluoride associated with the Cannonball Formation in Morton County. **Therefore, we accept the hypothesis that fluoride concentrations observed at MW-2-90 are consistent with regional (background) groundwater data.** 

### 3.2.3 Sulfate and TDS at MW-104

Analyses of groundwater samples collected prior to construction of the CCR unit included in the Permit Application notes that high sulfate and TDS was observed at the Site. Maximum sulfate and TDS concentrations reported in 1986 were 11,632 mg/L and 14,917 mg/L, respectively, in Well 60 (approximately 700 feet southwest of MW-104), with similar concentrations observed two years later. Sulfate concentrations reported in April 2019 (11,100 mg/L) at MW-104 are within range of historically observed concentrations, but TDS concentrations are somewhat higher than historically observed (17,700 mg/L). Figures 3 and 4 show the range of sulfate and TDS concentrations, respectively, across the Site, including recent and historical monitoring well data.

The mineralogy of the underlying geology may yield an explanation for the elevated sulfate concentrations (which leads to elevated TDS concentrations). The dominant lithology observed at the Site is unconsolidated silt in a clay matrix with interspersed fine to medium-grained sand (10% to 30%). Small gypsum crystals are documented discontinuously throughout the upper 30 feet of the surface materials, which have been presumed to be the result of diagenetic processes which occur above the water table during alternating wetting and drying cycles (Groenewold et al, 1983). Gypsum is a hydrated calcium sulfate mineral that can be a source of high sulfate concentrations in groundwater. Dissolution of gypsum will occur until equilibrium concentrations are attained in the groundwater or until all the minerals are consumed.

The boring log for MW-104 (Appendix C) notes gypsum present throughout the upper layer of the screened interval. Boring logs for other CCR wells and pre-landfill wells note gypsum occurrences across

the Site (Appendix C). The water level and screened interval in MW-104 are within the gypsum-bearing unit. In other wells with lower sulfate and TDS concentrations, the water levels and/or screened units are below the documented gypsum occurrences. As groundwater fluctuates and surface water infiltration occurs, periodic dissolution of gypsum into the water column may occur, resulting in elevated sulfate concentrations (and therefore elevated TDS, too).

Based on presence of gypsum in native subsurface deposits and documentation of elevated sulfate and TDS in pre-landfill groundwater, the hypothesis that the SSI for sulfate and TDS at MW-104 may be due to natural conditions (a "source other than the CCR unit.") is possible. However, a statistically significant increasing trend for TDS at MW-104 was observed. Although natural/background groundwater can be affected by seasonality and/or site-wide aquifer changes, resulting in trending data, no other monitoring wells at the Site has observed trends for TDS (or sulfate). Additionally, seasonality was not detected in TDS or sulfate at MW-104. Therefore, sulfate and TDS concentrations at MW-104 may be due to natural conditions, however additional source considerations were evaluated.

# 3.3 Source Hypothesis #3: Evaporation Pond Release

Two conditions are necessary in order to accept the hypothesis that a release of Evaporation Pond water is the source of one or more of the potential SSIs:

- Mechanism of release (such as an issue with Evaporation Pond liner integrity) and
- Geochemically similar groundwater chemistry at one or more of the potentially impacted wells with water from the Evaporation Pond.

Based on proximity, only the SSIs observed at MW-104 (TDS and sulfate) are being evaluated for this potential source.

### 3.3.1 TDS and Sulfate at MW-104

A statistically significant increasing trend in TDS was observed at MW-104 following the April 2019 detection monitoring event. No other statistically significant trends were observed for Appendix III parameters at this location. Past ASD Reports (Barr, 2018a; Barr, 2018b; Barr, 2019) attributed elevated sulfate and TDS concentrations at MW-104 to natural conditions, as the values observed were consistent with historically observed concentrations. However, with the addition of the increasing trend for TDS, it was deemed prudent to evaluate for the potential of a source impacting MW-104 beyond natural conditions. MW-104 is located between the CCR unit and the Evaporation Pond (a non-CCR unit). The Evaporation Pond was constructed to collect surface water run-off from the Site as well as leachate from the CCR Unit. Due to the relative proximity of MW-104 to the Evaporation Pond, an evaluation was conducted to assess the Evaporation Pond liner integrity, potential impacts to downgradient wells, and determine the geochemical feasibility of Evaporation Pond water contributing to the conditions observed at MW-104.

#### **Liner Integrity Evaluation**

In the 2010 Annual Report for the Special Waste Disposal Permit (SP-087), it was noted that erosion was encountered at the Evaporation Pond. More specifically, "cuts in the banks of the pond ranged from 8 to

24-inches. Erosion was caused from storm water running into the evaporation pond from closed Slots and the haul road" (MDU, 2011). No repairs were made at that time due to standing water in the pond. Similar erosional features were noted in the 2011 and 2012 Annual Reports, citing erosion cuts of 8 to 48-inches (MDU, 2012 and MDU, 2013). These erosion cuts were repaired in 2013 during the construction of Slot 10. Additionally, the 2013 Annual Report stated that "the west wall of the evaporation pond was raised and graded to reroute storm water that accumulates outside of the ash disposal area from the cover of Phase I ash disposal site away from the pond during rain events" (MDU, 2014).

These reports did not specify if the erosional cuts were 8 to 48-inches wide or 8 to 48-inches deep. Based on the Phase I Development "as-constructed" Plan Sheets (January and November 1990), the Evaporation Pond was built with a 3-foot-thick compacted clay liner (MDU, 1989 Exhibit 6-B). If the erosional cuts were up to 48-inches deep, then the cuts would extend through the entirety of the liner thickness, creating a conduit for Evaporation Pond water to enter the groundwater. Additionally, no details were provided on the materials used for repairing the Evaporation Pond (i.e. if the liner was impacted, were the erosion cuts filled in with a comparable clay liner material).

Additionally, the integrity of the Evaporation Pond liner may have been compromised due to cation exchange. If the Evaporation Pond liner is comprised of sodium-bentonite clay, a cation exchange may occur between the sodium in the clay and positively charged cations in the evaporation pond water (potassium, calcium, magnesium, and aluminum), displaced from the liner. Over time this exchange may decrease swelling potential and increase hydraulic conductivity of the clay constituting the pond liner. Time series plots of groundwater quality at nearby wells, MW1-90 (Appendix D), show an increase in sodium and magnesium; these increases are most apparent at MW1-90 between 2012 and 2019.

#### **Downgradient Impacts**

The base of the Evaporation Pond sits at approximately 1675 feet above MSL whereas the most recent groundwater elevation in MW-104 and MW1-90 were measured at roughly 1670 feet above MSL and 1665 feet above MSL, respectively. Therefore, any water leaking from the Evaporation Pond would report radially downward into the groundwater, toward both MW-104 and MW1-90, making both wells downgradient of the Pond.

As MW-104 was installed on August 20, 2015, it is not possible to determine if the erosional cuts observed in the early 2010s impacted the water quality at this location. However, data has consistently been collected from nearby well MW1-90, also downgradient of the Evaporation Pond. As seen in the time series plots (Appendix D), in approximately 2010 concentrations of chloride, sulfate, TDS, magnesium, sodium, hardness, and specific conductance at MW1-90 began increasing more rapidly. To a lesser extent, changes in concentrations were observed around this same time for calcium, potassium, nitrogen, and total alkalinity. This timing corresponds to when the erosional cuts at the Evaporation Pond were first observed in the Annual Monitoring Reports. The increasing trends have since continued, despite reports of the erosional cuts being repaired.

#### **Geochemical Feasibility**

A simple mixing model was developed to determine the potential of producing a similar water quality observed at MW-104 (and MW1-90, as a historical analogue) when mixing Evaporation Pond water with unimpacted upgradient water. This mixing model was conducted in Geochemist's Workbench ® v.12.0, using a water sample collected from the Evaporation Pond in September 2014 and a water sample from upgradient monitoring wells MW-13 and MW-103 on September 2014 and April 2019, respectively, and historical well MW-60. Both wells are hydraulically upgradient of MW-104. It should be noted that this is not a perfect model, as the groundwater quality in the upgradient monitoring wells has slightly different major ion chemistry than downgradient wells, due to heterogeneity of the geology at the Site. Due to the lack of historical (pre-landfill) data at MW-104, it was decided to use upgradient (non-impacted) water. Therefore, the ultimate purpose of this model is to evaluate the potential to produce a similar water sample to what has been observed at MW-104, not an identical match.

The results of the model, using Stiff and Piper plots are provided in Appendix E. Figures E.1 and E.3 show the results of the mixing model on a stiff diagram for MW-13 and MW-103, respectively. Downgradient wells MW-104 and MW1-90 are shown as gray and green diamonds, respectively, in each figure. The blue line in each figure represents the various possible outcomes when mixing the upgradient water quality with the Evaporation Pond. The purple squares (E.1) or black circles (E.3) represent specific proportions (1-part upgradient water to 0.01-, 0.05-, 0.1-, 0.5-, and 1-part Evaporation Pond water). Figures E.2 and E.4 show the results as stiff plots. Table E.1 provides the numerical inputs and results of the various mixed proportions.

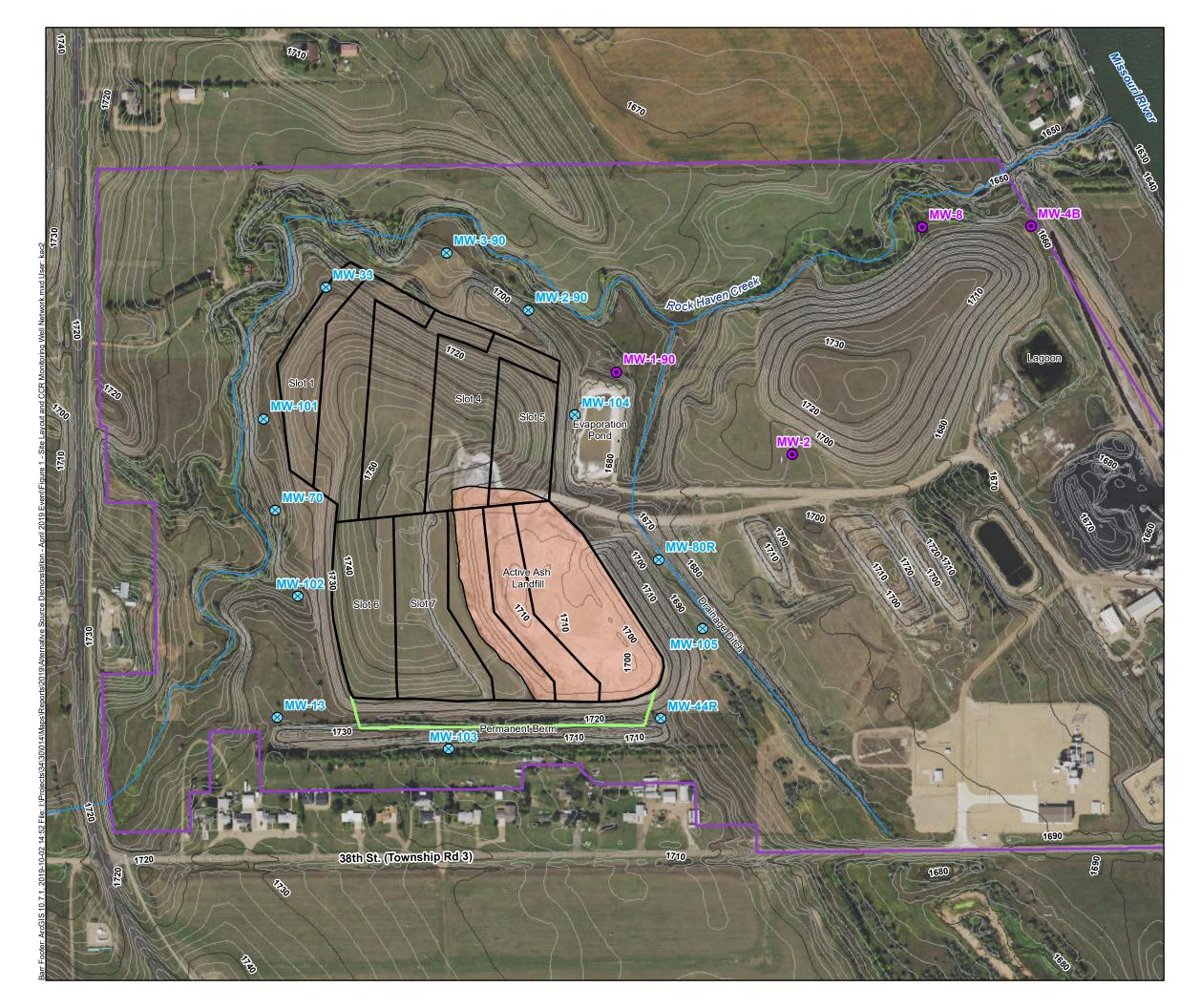
As seen in Figure E.1, mixing of the upgradient monitoring well, MW-13, with the Evaporation Pond water does not result in an impacted water chemically similar to MW-104, as the path of the mixing reaction does not intersect the location of the MW-104 sample. However, mixing of MW-103 with Evaporation Pond water may potentially result in a water sample with concentrations similarly observed at MW-104. As seen in Figure E.3, the path of the mixing reaction from MW-103 to the Evaporation Pond transects MW-104, when 1-part upgradient (MW-103) water is mixed with 0.05-part Evaporation Pond water. Therefore, it is plausible that only a small portion of Evaporation Pond water would be needed to "impact" upgradient groundwater such to get a similar chemistry as observed in MW-104.

Based on the description of erosional features extending upwards of 48-inches in the liner of the Evaporation Pond in 2010-2013 corresponding with the increased concentrations of several parameters observed in downgradient monitoring well MW1-90, it's possible that a release from the Evaporation Pond occurred starting in approximately 2011. Furthermore, the results of the geochemical modelling exercise along with the general proximity and hydraulic position of MW-104 relative to the Evaporation Pond supports the hypothesis that the SSI for TDS and sulfate at MW-104 is due to a "source other than the CCR unit." Therefore, we accept the hypothesis that TDS and sulfate concentrations observed at MW-104 are consistent with a potential release from the Evaporation Pond, a non CCR unit.

# 4.0 Conclusions

Four SSIs were identified from the April 2019 detection monitoring event. This report demonstrates that a "source other than the CCR unit" caused the potential SSIs (natural variation in regional and/or pre-landfill groundwater quality and the Evaporation Pond), as allowed by §257.94(e)(2). The results of this alternative source demonstration are summarized in the table below.

Well	Parameter	Report Section	Evidence for Alternative Source
MW-105	Chloride	3.2.1	Natural variability (pre-landfill values and geologic background)
MW-104	Sulfate	3.3.1	Natural variability or Other (Evaporation Pond, a non CCR unit)
MW-104	Total Dissolved Solids	3.3.1	Natural Variability or Other (Evaporation Pond, a non CCR unit)
MW-2-90	Fluoride	3.2.2	Natural variability (pre-landfill values and geologic background)


### Table 4. Summary of SSIs and Alternative Sources

Based on the foregoing, the alternative source demonstration presented herein meets the requirements of CCR Rule §257.94(e)(2). As coal unit operations will cease by about the end of March 2022, MDU will work with the ND DEQ on closure options for the Evaporation Pond as it is regulated under a permit through the ND DEQ.

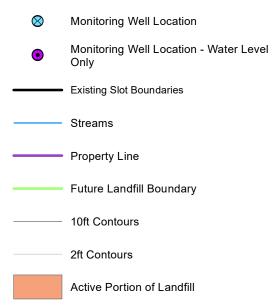
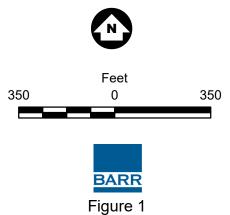
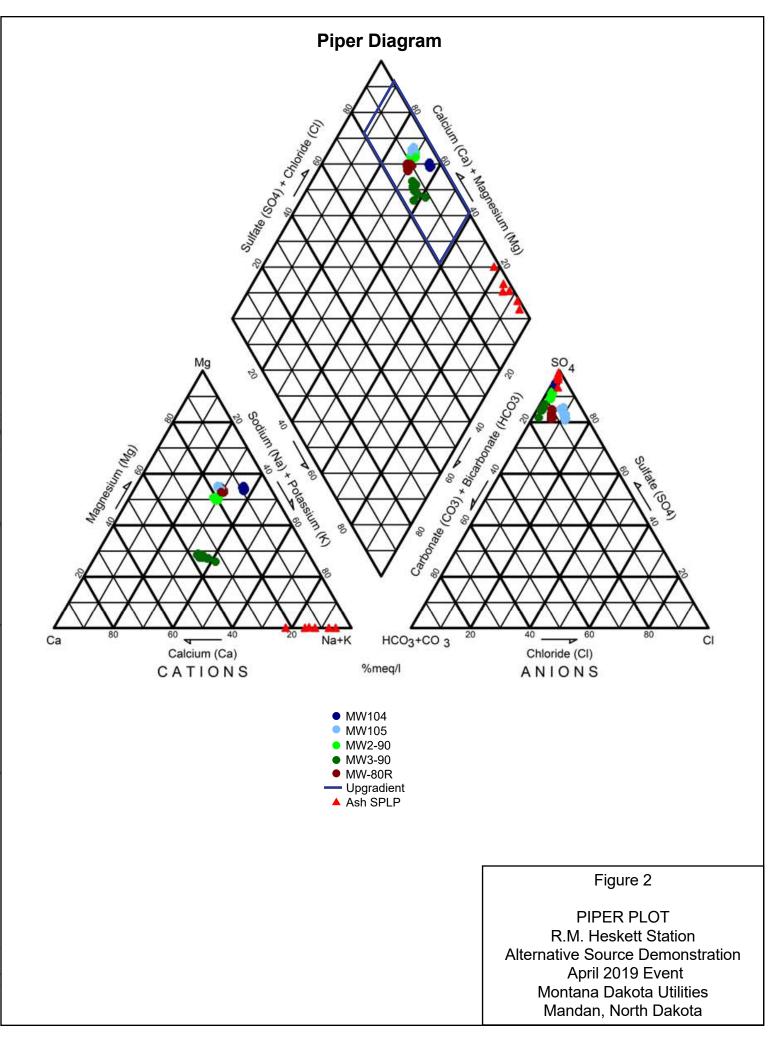
# 5.0 References

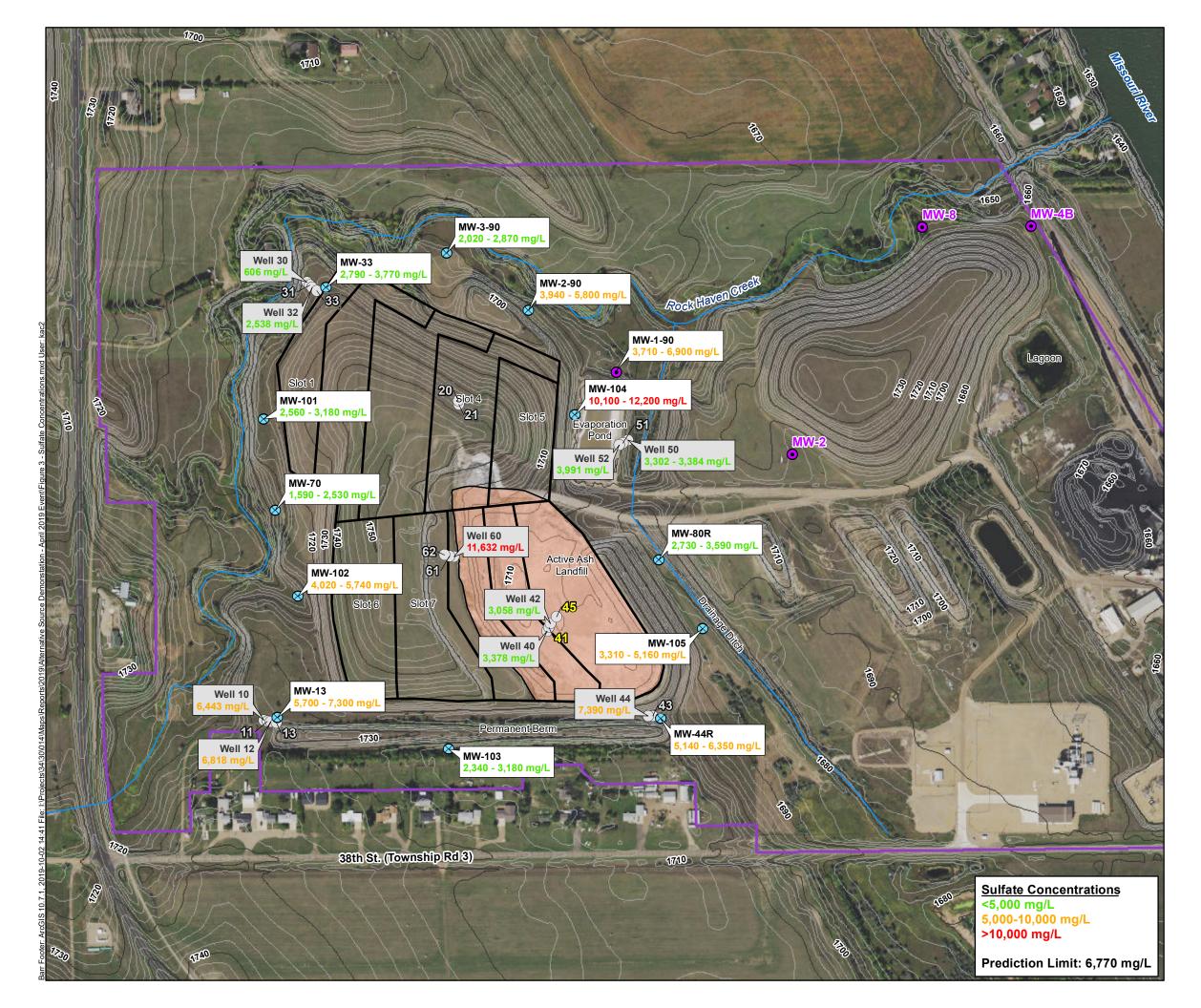
- Ackerman, D.J., 1980. Ground-Water Resources of Morton County, North Dakota. North Dakota Geological Survey Bulletin 72, Part III. 51 p.
- Barr Engineering Co., 2018a. Alternative Source Demonstration: October 2017 Event. R.M. Heskett Station. Prepared for Montana-Dakota Utilities Co. April 2018.
- Barr Engineering Co., 2018b. Alternative Source Demonstration: April 2018 Event. R.M. Heskett Station. Prepared for Montana-Dakota Utilities Co. December 2018.
- Barr Engineering Co., 2019. Alternative Source Demonstration: October 2018 Event. R.M. Heskett Station. Prepared for Montana-Dakota Utilities Co. April 2019.
- Crosby, O.A. and Klausing, R.L., 1984. Hydrology of Area 47, Northern Great Plains and Rocky Mountain Coal Provinces, North Dakota, South Dakota, and Montana. USGS Water-Resources Investigations Open-File Report 83-221, 93 p.
- Groenewold, G.H., Koob, G.J., McCarthy, B.W., and Peterson, W.M., 1983, Geologic and Geochemical Controls on the Chemical Evolution of Subsurface Water in Undisturbed and Surface-Mined Landscapes on Western North Dakota, North Dakota Geological Survey Report of Investigation 79, 151 p.
- Hensel, D.R. and R. M. Hirsch, 2002. Statistical Methods in Water Resources Techniques of Water Resources Investigations, Book 4, chapter A3. U.S. Geological Survey. 522 pages.
- Lindholm, R., 1983. Bivalve Associations of Cannonball Formation (Paleocene, Danian) of North Dakota. AAPG Bulletin, Volume 67, Issue 8, P1347. Meeting abstract available at: <u>http://archives.datapages.com/data/bulletns/1982-83/data/pg/0067/0008/1300/1347a.htm</u>
- Montana-Dakota Utilities Co. (MDU), 1989, R.M. Heskett Station Special Use Disposal Site Permit Application. Submitted to North Dakota State Department of Health, March 1, 1989.
- MDU, 2011, R.M. Heskett Station Special Waste Disposal Permit SP-087 2010 Annual Report. February 2011.
- MDU, 2012, R.M. Heskett Station Special Waste Disposal Permit SP-087 2011 Annual Report. February 2012.
- MDU, 2013, R.M. Heskett Station Special Waste Disposal Permit SP-087 2012 Annual Report. February 2013.
- MDU, 2014, R.M. Heskett Station Special Waste Disposal Permit SP-087 2013 Annual Report. February 2014.
- US EPA, 2015, Hazardous and Solid Waste Management Systems; Management of Coal Combustion Residuals from Electric Utility, CFR Parts 257 and 261, Federal Register, Vol. 80, No. 74, April 17, 2015.

# Figures







Image Source: 2019 Statewide Imagery (ND GIS Hub)

CAD Data Source: Slot Linework.dwg



SITE LAYOUT AND CCR MONITORING WELL NETWORK R. M. Heskett Station Alternative Source Demonstration: April 2019 Event Montana Dakota Utilities Mandan, North Dakota







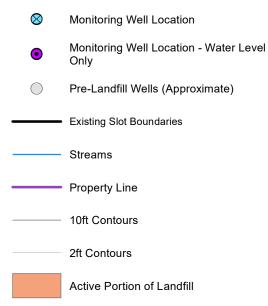



Image Source: 2018 Statewide Imagery (ND GIS Hub)

CAD Data Source: Slot Linework.dwg Pre-Landfill well concentrations are from 9/11/1986, 11/21/1986 (MDU, 1989), and CCR Rule monitoring well concentrations are from 2016-2019.

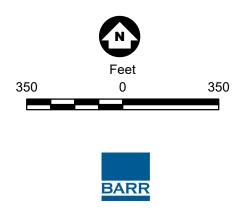
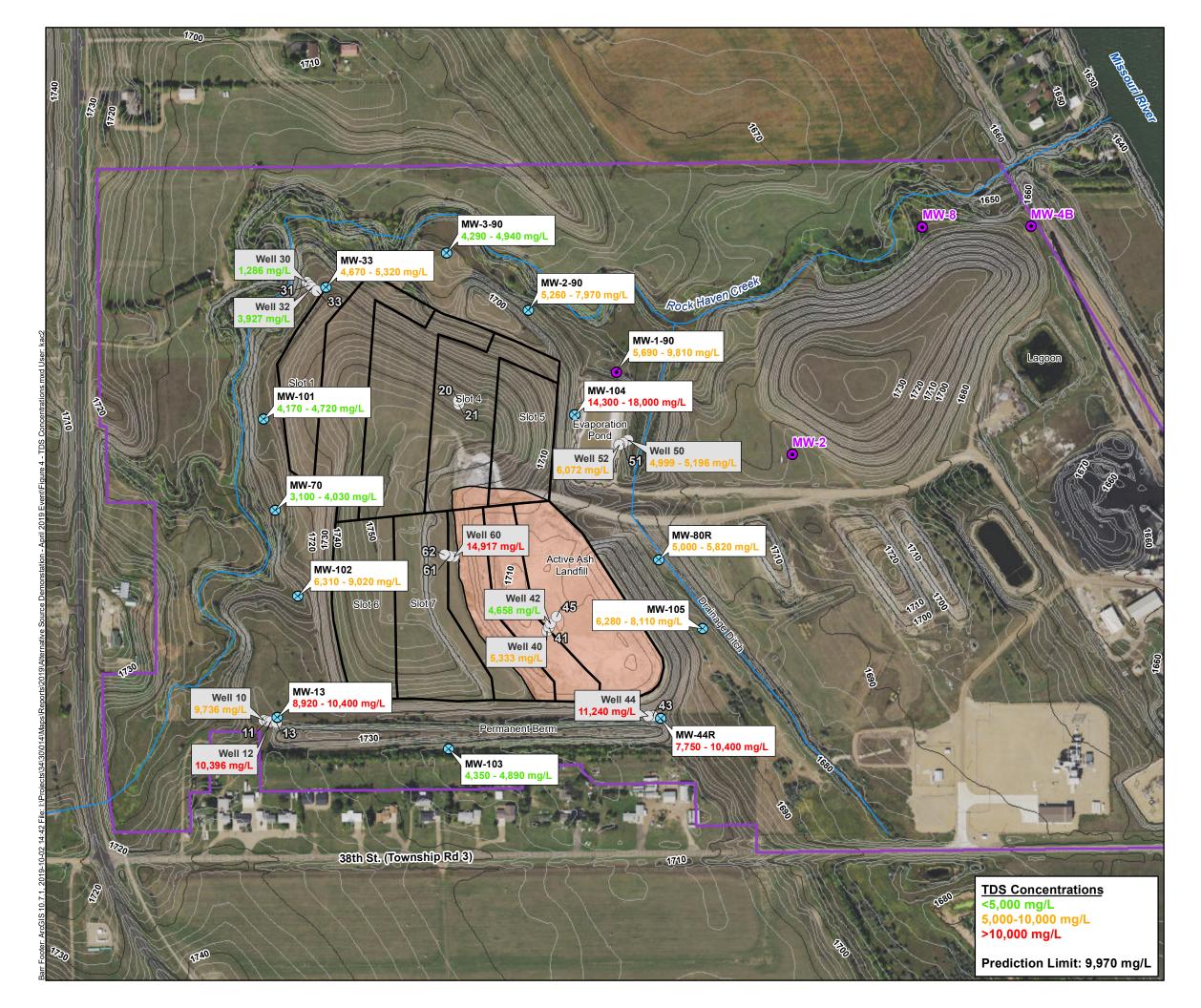




Figure 3

SULFATE CONCENTRATIONS R. M. Heskett Station Alternative Source Demonstration: April 2019 Event Montana Dakota Utilities Mandan, North Dakota





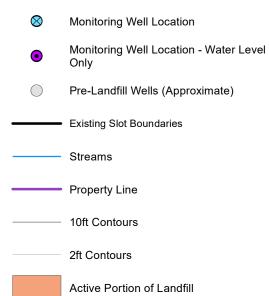



Image Source: 2018 Statewide Imagery (ND GIS Hub)

CAD Data Source: Slot Linework.dwg Pre-Landfill well concentrations are from 9/11/1986, 11/21/1986 (MDU, 1989), and CCR Rule monitoring well concentrations are from 2016-2019.

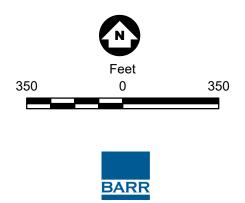



Figure 4

TDS CONCENTRATIONS R. M. Heskett Station Alternative Source Demonstration: April 2019 Event Montana Dakota Utilities Mandan, North Dakota

# Appendix A

Ash SPLP Laboratory Report (2011)



1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 51 West Lincoln Way ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com



### Page: 1 of 2

Report Date: 8 Sep 11 Lab Number: 11-M2450 Work Order #:81-818 Account #: 013479 Date Sampled: Date Received: 28 Jun 11 9:00 PO #: 131460 OP

Duane Leingang Montana Dakota Utilities PO Box 40 Mandan ND 58554

Sample Description: Unit I Bottom Ash Sample Site: MDU Heskett

	As Receive Result	ed	Method RL	Method Reference	Date Analyzed	Analyst
SPLP Extraction				1312	22 Jul 11	SS
рН	12.2	units	N/A	SM4500 H+ B	22 Jul 11 17:00	
Specific Conductance	8778	umhos/cm	N/A	SM2510-B	22 Jul 11 17:00	
Total Suspended Solids	3	mg/l	1	SM2540-D	22 Jul 11 14:00	
Total Alkalinity	1120	mg/l CaCO3	4	SM2320-B	22 Jul 11 17:00	
Phenolphthalein Alk	1090	mg/l CaCO3	4	SM2320-B	22 Jul 11 17:00	
Bicarbonate	< 4	mg/l CaCO3	4	SM2320-B	22 Jul 11 17:00	
Carbonate	60	mg/l CaCO3	4	SM2320-B	22 Jul 11 17:0	
Hydroxide	1060	mg/l CaCO3	0	SM2320-B	22 Jul 11 17:00	
Tot Dis Solids (Summation)	4860	mg/l	NA	SM1030-F	3 Aug 11 8:4	2
Total Hardness as CaCO3	524	mg/l	NA	SM2340-B	3 Aug 11 8:4	
Hardness in grains/gallon	30.7	gr/gal	NA	SM2340-B	3 Aug 11 8:4	
Cation Summation	74.3	meg/L	NA	SM1030-F	3 Aug 11 8:4	
Anion Summation	74.6	meq/L	NA	SM1030-F	28 Jul 11 14:3	
Percent Error	-0.24	8	NA	SM1030-F	3 Aug 11 8:4	
Sodium Adsorption Ratio	27.1		NA	USDA 20b	3 Aug 11 8:4	
Gross Alpha Radiation	Attached	pCi/l			22 Aug 11 2:0	
Radon 222	Attached				28 Jul 11 4:3	
Radium 226	Attached	pCi/l			22 Aug 11 22:2	
Radium 228	Attached	pCi/l			16 Aug 11 16:5	
Total Organic Carbon	0.7	mg/l	0.5	SM5310-C	1 Aug 11 8:0	
Fluoride	< 0.1	mg/l	0.10	SM4500-F-C	4 Aug 11 17:0	
Sulfate	2440	mg/l	5.00	ASTM D516-02	27 Jul 11 9:0	
Chloride	50.5	mg/l	1.0	SM4500-Cl-E	27 Jul 11 14:0	
Nitrate-Nitrite as N	0.21	mg/l	0.10	EPA 353.2	28 Jul 11 14:3	
Ammonia-Nitrogen as N	0.32	mg/l	0.10	EPA 350.1	28 Jul 11 10:4	
Phosphorus as P - Total	< 0.1	mg/l	0.10	EPA 365.1	28 Jul 11 13:0	
Mercury - Total	< 0.0002	mg/l	0.0002	EPA 245.1	28 Jul 11 8:0	
Chemical Oxygen Demand	< 5	mg/l	5.0	HACH 8000	1 Aug 11 8:3	· · · · · · · · · · · · · · · · · · ·
Calcium - Total	210	mg/l	1.0	6010	3 Aug 11 8:4	-
Magnesium - Total	< 2.5	mg/l	1.0	6010	3 Aug 11 8:4	
Sodium - Total	1440	mg/l	1.0	6010	3 Aug 11 8:4	4
Potassium - Total	44.8	mg/l	1.0	6010	3 Aug 11 8:4	
Aluminum - Total	< 0.5	mg/l	0.10	6010	2 Aug 11 9:3	-
Iron - Total	< 0.5	mg/l	0.10	6010	2 Aug 11 9:3	-
Strontium - Total	28.2	mg/l	0.10	6010	2 Aug 11 9:3	-
Titanium - Total	< 0.5	mg/l	0.10	6010	2 Aug 11 9:3	4
Boron - Total	< 0,5	mg/l	0.10	6010	11 Aug 11 8:4	0 Stacy

RL = Method Reporting Limit

Elevated "Less Than Result" (<): @ = Due to sample matrix ! = Due to sample quantity # = Due to sample concentration

CERTIFICATION: MN LAB # 038-999-267 ND # ND-00016

+ = Due to extract volume

MVTL guarantees the accuracy of the analysis done on the sample submitted for testing. It is not possible for MVTL to guarantee that a test result obtained on a particular sample will be the same on any other sample unless all conditions affecting the sample are the same, including sampling by MVTL. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.



1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 51 West Lincoln Way ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com



Page: 2 of 2

Report Date: 8 Sep 11 Lab Number: 11-M2450 Work Order #:81-818 Account #: 013479 Date Sampled: Date Received: 28 Jun 11 9:00 PO #: 131460 OP

Duane Leingang Montana Dakota Utilities PO Box 40 Mandan ND 58554

Sample Description: Unit I Bottom Ash Sample Site: MDU Heskett

	As Receive Result	ed	Method RL	Method Reference	Date Analyzed	Analyst
Antimony - Total	< 0.002	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Arsenic - Total	0.0044	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Barium - Total	0.1135	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Beryllium - Total	< 0.001	mg/l	0.0010	6020	25 Jul 11 16:18	Claudette
Cadmium - Total	0.00164	mg/l	0.00100	6020	25 Jul 11 16:18	Claudette
Chromium - Total	0.0065	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Cobalt - Total	< 0.002	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Copper - Total	0.0213	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Lead - Total	< 0.002	mg/l	0.0020	6020	25 Jul 11 16:18	
Manganese - Total	0.0027	mg/l	0.0010	6020	25 Jul 11 16:18	
Molybdenum - Total	0.6860	mg/l	0.0020	6020	26 Jul 11 12:46	7.
Nickel - Total	0.0074	mg/l	0.0020	6020	25 Jul 11 16:18	
Selenium - Total	0.0133	mg/l	0.0020	6020	26 Jul 11 9:46	Claudette
Silver - Total	< 0.001	mg/l	0.0010	6020	25 Jul 11 16:18	Claudette
Thallium - Total	< 0.002	mg/1	0.0020	6020	25 Jul 11 16:18	Claudette
Tin - Total	< 0.05	mg/l	0.0500	6020	25 Jul 11 16:18	Claudette
Vanadium - Total	0.0189	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Zinc - Total	0.0151	mg/l	0.0100	6020	25 Jul 11 16:18	Claudette
Uranium	< 0.002	mg/l	0.002	6020	25 Jul 11 16:18	Claudette

All analyses were performed on the extract from Method 1312 (SPLP) with a modified solution to solids ratio of 4:1.

A Tander Approved by:

RL = Method Reporting Limit

CERTIFICATION: MN LAB # 038-999-267

Elevated "Less Than Result" (<): @ = Due to sample matrix | = Due to sample quantity

# = Due to sample concentration
+ = Due to extract volume

MVTL guarantees the accuracy of the analysis done on the sample submitted for testing. It is not possible for MVTL to guarantee that a test result obtained on a particular sample will be the same on any other sample unless all conditions affecting the sample are the same, including sampling by MVTL. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

ND # ND-00016



l

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 51 West Lincoln Way ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com



### Page: 1 of 2

Report Date: 8 Sep 11 Lab Number: 11-M2451 Work Order #:81-818 Account #: 013479 Date Sampled: Date Received: 28 Jun 11 9:00 PO #: 131460 OP

Duane Leingang Montana Dakota Utilities PO Box 40 Mandan ND 58554

Sample Description: Unit II Sand Ash Sample Site: MDU Heskett

	As Receiv Result	ed	Method RL	Method Reference	Date Analyzed	Analyst
SPLP Extraction				1312	22 Jul 11	SS
pH	11.1	units	N/A	SM4500 H+ B	22 Jul 11 17:00	Claudette
Specific Conductance	20110	umhos/cm	N/A	SM2510-B	22 Jul 11 17:00	Claudette
Total Suspended Solids	21	mg/l	1	SM2540-D	22 Jul 11 14:00	CLB
Total Alkalinity	203	mg/l CaCO3	4	SM2320-B	22 Jul 11 17:00	Claudette
Phenolphthalein Alk	171	mg/l CaCO3	4	SM2320-B	22 Jul 11 17:00	Claudette
Bicarbonate	< 4	mg/l CaCO3	4	SM2320-B	22 Jul 11 17:00	Claudette
Carbonate	64	mg/l CaCO3	4	SM2320-B	22 Jul 11 17:00	Claudette
Hydroxide	139	mg/l CaCO3	0	SM2320-B	22 Jul 11 17:00	Claudette
Tot Dis Solids (Summation)	22500	mg/l	NA	SM1030-F	3 Aug 11 8:40	Calculated
Total Hardness as CaCO3	1200	mg/l	NA	SM2340-B	3 Aug 11 8:40	Calculated
Hardness in grains/gallon	70.2	gr/gal	NA	SM2340-B	3 Aug 11 8:40	Calculated
Cation Summation	318	meg/L	NA	SM1030-F	3 Aug 11 8:40	Calculated
Anion Summation	314	meg/L	NA	SM1030-F	28 Jul 11 14:30	Calculated
Percent Error	0.65	8	NA	SM1030-F	3 Aug 11 8:40	Calculated
Sodium Adsorption Ratio	80.9		NA	USDA 20b	3 Aug 11 8:40	Calculated
Gross Alpha Radiation	Attached	pCi/l			22 Aug 11 2:03	
Radon 222	See Attac	hed			28 Jul 11 4:37	
Radium 226	Attached	pCi/l			22 Aug 11 22:20	
Radium 228	Attached	pCi/l			16 Aug 11 16:50	
Total Organic Carbon	< 0.5	mg/l	0.5	SM5310-C	1 Aug 11 8:00	Eric
Fluoride	< 0.1	mg/l	0.10	SM4500-F-C	4 Aug 11 17:00	CLB
Sulfate	14900	mg/l	5.00	ASTM D516-02	27 Jul 11 9:00	KMP
Chloride	2.0	mg/l	1.0	SM4500-Cl-E	27 Jul 11 14:00	KMP
Nitrate-Nitrite as N	< 0.1	mg/l	0.10	EPA 353.2	28 Jul 11 14:30	KMP
Ammonia-Nitrogen as N	0.10	mg/l	0.10	EPA 350.1	28 Jul 11 10:45	KMP
Phosphorus as P - Total	< 0.1	mg/l	0.10	EPA 365.1	28 Jul 11 13:00	KMP
Mercury - Total	< 0.0002	mg/l	0.0002	EPA 245.1	28 Jul 11 8:00	Eric
Chemical Oxygen Demand	< 5	mg/l	5.0	HACH 8000	1 Aug 11 8:30	Wayne
Calcium - Total	481	mg/l	1.0	6010	3 Aug 11 8:40	Stacy
Magnesium - Total	< 5	mg/l	1.0	6010	3 Aug 11 8:40	Stacy
Sodium - Total	6500	mg/l	1.0	6010	3 Aug 11 8:40	Stacy
Potassium - Total	459	mg/l	1.0	6010	3 Aug 11 8:40	Stacy
Aluminum - Total	1.09	mg/l	0.10	6010	2 Aug 11 9:30	Stacy
Iron - Total	< 1	mg/l	0.10	6010	2 Aug 11 9:30	Stacy
Strontium - Total	66.0	mg/l	0.10	6010	2 Aug 11 9:30	Stacy
Titanium - Total	< 1	mg/l	0.10	6010	2 Aug 11 9:30	Stacy
Boron - Total	5.96	mg/l	0.10	6010	11 Aug 11 8:40	Stacy

RL = Method Reporting Limit

Elevated "Less Than Result" (<):  $\circledast$  = Due to sample matrix ! = Due to sample quantity # = Due to sample concentration
+ = Due to extract volume

CERTIFICATION: MN LAB # 038-999-267 ND # ND-00016

MVTL guarantees the accuracy of the analysis done on the sample submitted for testing. It is not possible for MVTL to guarantee that a test result obtained on a particular sample will be the same on any other sample unless all conditions affecting the sample are the same, including sampling by MVTL. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.



I.

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 51 West Lincoln Way ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com



Page: 2 of 2

Report Date: 8 Sep 11 Lab Number: 11-M2451 Work Order #:81-818 Account #: 013479 Date Sampled: Date Received: 28 Jun 11 9:00 PO #: 131460 OP

Duane Leingang Montana Dakota Utilities PO Box 40 Mandan ND 58554

.

Sample Description: Unit II Sand Ash Sample Site: MDU Heskett

	As Receive Result	ed	Method RL	Method Reference	Date Analyzed	Analyst
Antimony - Total	< 0.002	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Arsenic - Total	0.0822	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Barium - Total	0.0930	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Beryllium - Total	< 0.001	mg/l	0.0010	6020	25 Jul 11 16:18	Claudette
Cadmium - Total	0.00182	mg/l	0.00100	6020	25 Jul 11 16:18	Claudette
Chromium - Total	0.0244	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Cobalt - Total	< 0.002	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Copper - Total	0.1108	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Lead - Total	< 0.002	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Manganese - Total	0.0052	mg/l	0.0010	6020	25 Jul 11 16:18	Claudette
Molybdenum - Total	0.1000	mg/l	0.0020	6020	26 Jul 11 12:46	Claudette
Nickel - Total	0.0136	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Selenium - Total	0.0937	mg/l	0.0020	6020	26 Jul 11 9:46	Claudette
Silver - Total	< 0.001	mg/l	0.0010	6020	25 Jul 11 16:18	Claudette
Thallium - Total	< 0.002	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Tin - Total	< 0.05	mg/l	0.0500	6020	25 Jul 11 16:18	Claudette
Vanadium - Total	0.3026	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Zinc - Total	0.0327	mg/l	0.0100	6020	25 Jul 11 16:18	Claudette
Uranium	< 0.002	mg/l	0.002	6020	25 Jul 11 16:18	Claudette

All analyses were performed on the extract from Method 1312 (SPLP) with a modified solution to solids ratio of 4:1.

Tonde Approved by:

RL = Method Reporting Limit

CERTIFICATION: MN LAB # 038-999-267

Elevated "Less Than Result" (<): @ = Due to sample matrix ! = Due to sample quantity ND # ND-00016

# = Due to sample concentration + = Due to extract volume

MVTL guarantees the accuracy of the analysis done on the sample submitted for testing. It is not possible for MVTL to guarantee that a test result obtained on a particular sample will be the same on any other sample unless all conditions affecting the sample are the same, including sampling by MVTL. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.



1

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 51 West Lincoln Way ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com



Page: 1 of 2

Report Date: 8 Sep 11 Lab Number: 11-M2452 Work Order #:81-818 Account #: 013479 Date Sampled: Date Received: 28 Jun 11 9:00 PO #: 131460 OP

Duane Leingang Montana Dakota Utilities PO Box 40 Mandan ND 58554

Sample Description: Unit I Fly Ash Sample Site: MDU Heskett

	As Receive Result	ed	Method RL	Method Reference	Date Analyzed	Analyst
SPLP Extraction				1312	22 Jul 11	SS
pH	12.9	units	N/A	SM4500 H+ B	22 Jul 11 17:00	Claudette
Specific Conductance	50660	umhos/cm	N/A	SM2510-B	22 Jul 11 17:00	Claudette
Total Suspended Solids	30	mg/l	1	SM2540-D	22 Jul 11 14:00	CLB
Total Alkalinity	7020	mg/l CaCO3	4	SM2320-B	25 Jul 11 17:00	Claudette
Phenolphthalein Alk	6900	mg/l CaCO3	4	SM2320-B	25 Jul 11 17:00	Claudette
Bicarbonate	< 4	mg/l CaCO3	4	SM2320-B	25 Jul 11 17:00	Claudette
Carbonate	240	mg/l CaCO3	4	SM2320-B	25 Jul 11 17:00	Claudette
Hydroxide	6780	mg/l CaCO3	0	SM2320-B	25 Jul 11 17:00	Claudette
Tot Dis Solids (Summation)	42200	mg/l	NA	SM1030-F	3 Aug 11 8:40	Calculated
Total Hardness as CaCO3	1750	mg/l	NA	SM2340-B	3 Aug 11 8:40	Calculated
Hardness in grains/gallon	102	gr/gal	NA	SM2340-B	3 Aug 11 8:40	Calculated
Cation Summation	663	meq/L	NA	SM1030-F	3 Aug 11 8:40	Calculated
Anion Summation	613	meq/L	NA	SM1030-F	28 Jul 11 14:30	Calculated
Percent Error	3,99	8	NA	SM1030-F	3 Aug 11 8:40	Calculated
Sodium Adsorption Ratio	143		NA	USDA 20b	3 Aug 11 8:40	Calculated
Gross Alpha Radiation	Attached	pCi/l			22 Aug 11 2:03	
Radon 222	Attached				28 Jul 11 4:37	
Radium 226	Attached	pCi/l			22 Aug 11 22:20	
Radium 228	Attached	pCi/l			16 Aug 11 16:50	D. J.
Total Organic Carbon	1.5	mg/l	0.5	SM5310-C	1 Aug 11 8:00	
Fluoride	5.60	mg/l	0.10	SM4500-F-C	10 Aug 11 17:00	CLB
Sulfate	22600	mg/l	5.00	ASTM D516-02	27 Jul 11 9:00	KMP
Chloride	53.8	mg/l	1.0	SM4500-Cl-E	27 Jul 11 14:00	KMP
Nitrate-Nitrite as N	0.68	mg/l	0.10	EPA 353.2	28 Jul 11 14:30	KMP
Ammonia-Nitrogen as N	7.22	mg/l	0.10	EPA 350.1	28 Jul 11 10:45	KMP
Phosphorus as P - Total	< 0.1	mg/l	0.10	EPA 365.1	28 Jul 11 13:00	KMP
Mercury - Total	< 0.0002	mg/l	0.0002	EPA 245.1	28 Jul 11 8:00	
Chemical Oxygen Demand	22.4	mg/l	5.0	HACH 8000	1 Aug 11 8:30	-
Calcium - Total	700	mg/l	1.0	6010	3 Aug 11 8:40	
Magnesium - Total	< 25	mg/l	1.0	6010	3 Aug 11 8:40	Stacy
Sodium - Total	14100	mg/l	1.0	6010	3 Aug 11 8:40	
Potassium - Total	580	mg/l	1.0	6010	3 Aug 11 8:40	-
Aluminum - Total	< 5	mg/l	0.10	6010	2 Aug 11 9:30	Stacy
Iron - Total	< 5	mg/l	0.10	6010	2 Aug 11 9:30	-
Strontium - Total	59.5	mg/l	0.10	6010	2 Aug 11 9:30	-
Titanium - Total	< 5	mg/l	0.10	6010	2 Aug 11 9:30	
Boron - Total	1.89	mg/l	0.10	6010	11 Aug 11 8:40	Stacy

RL = Method Reporting Limit

Elevated "Less Than Result" (<): @ = Due to sample matrix ! = Due to sample quantity

# = Due to sample concentration
+ = Due to extract volume

CERTIFICATION: MN LAB # 038-999-267 ND # ND-00016

MVTL guarantees the accuracy of the analysis done on the sample submitted for testing. It is not possible for MVTL to guarantee that a test result obtained on a particular sample will be the same on any other sample unless all conditions affecting the sample are the same, including sampling by MVTLi As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.



1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 51 West Lincoln Way ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com



Page: 2 of 2

Report Date: 8 Sep 11 Lab Number: 11-M2452 Work Order #:81-818 Account #: 013479 Date Sampled: Date Received: 28 Jun 11 9:00 PO #: 131460 OP

Duane Leingang Montana Dakota Utilities PO Box 40 Mandan ND 58554

Sample Description: Unit I Fly Ash Sample Site: MDU Heskett

	As Receiv Result	ed	Method RL	Method Reference	Date Analyzed	Analyst
Antimony - Total	< 0.002	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Arsenic - Total	0.1128	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Barium - Total	0.0906	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Beryllium - Total	< 0.001	mg/l	0.0010	6020	25 Jul 11 16:18	Claudette
Cadmium - Total	0.00244	mg/l	0.00100	6020	25 Jul 11 16:18	Claudette
Chromium - Total	0.0270	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Cobalt - Total	< 0.002	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Copper - Total	0.2934	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Lead - Total	0.0161	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Manganese - Total	0.0102	mg/l	0.0010	6020	25 Jul 11 16:18	Claudette
Molybdenum - Total	0,9246	mg/l	0.0020	6020	26 Jul 11 12:46	
Nickel - Total	0.0175	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Selenium - Total	0.1959	mg/l	0.0020	6020	26 Jul 11 9:46	Claudette
Silver - Total	< 0.001	mg/l	0.0010	6020	25 Jul 11 16:18	Claudette
Thallium - Total	< 0.002	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Tin - Total	< 0.05	mg/l	0.0500	6020	25 Jul 11 16:18	Claudette
Vanadium - Total	0.0158	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Zinc - Total	0.3984	mg/l	0.0100	6020	25 Jul 11 16:18	Claudette
Uranium	< 0.002	mg/l	0.002	6020	25 Jul 11 16:18	Claudette

All analyses were performed on the extract from Method 1312 (SPLP) with a modified solution to solids ratio of 4:1.

Approved by:

Torda

RL = Method Reporting Limit

CERTIFICATION: MN LAB # 038-999-267

Elevated "Less Than Result" (c): @ = Due to sample matrix  $\frac{1}{2}$  = Due to sample quantity

ND # ND-00016

# = Due to sample concentration
+ = Due to extract volume

MVTL guarantees the accuracy of the analysis done on the sample submitted for testing. It is not possible for MVTL to guarantee that a test result obtained on a particular sample will be the same on any other sample unless all conditions affecting the sample are the same, including sampling by MVTL. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.



1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 51 West Lincoln Way ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com



#### 1 of 2 Page:

Report Date: 8 Sep 11 Lab Number: 11-M2453 Work Order #:81-818 Account #: 013479 Date Sampled: Date Received: 28 Jun 11 9:00 PO #: 131460 OP

Duane Leingang Montana Dakota Utilities PO Box 40 Mandan ND 58554

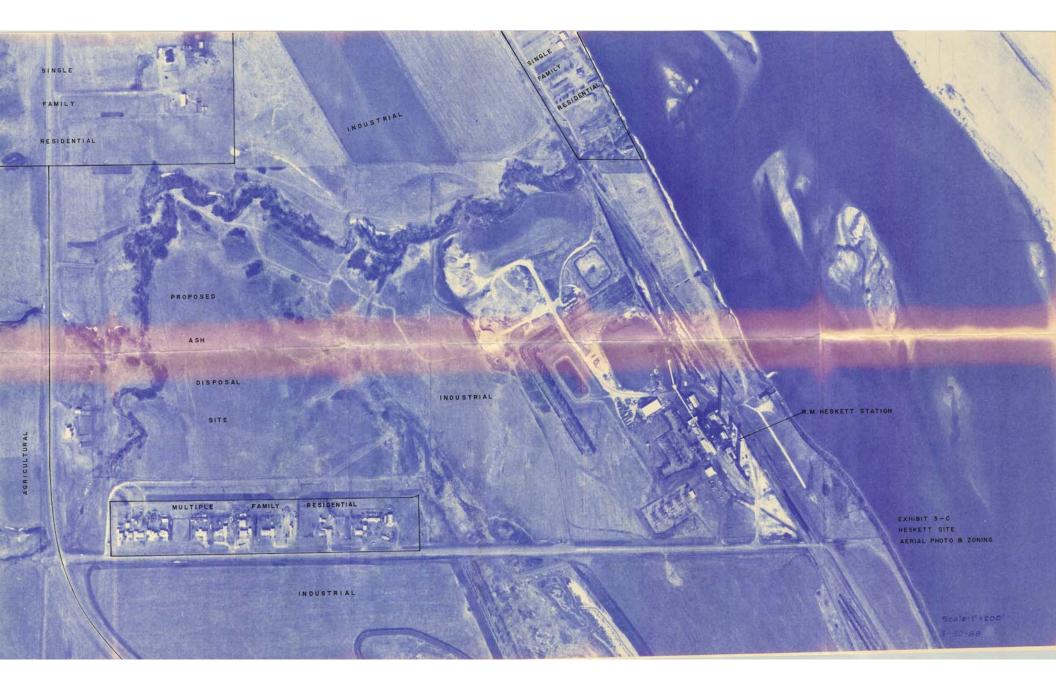
Sample Description: Unit II Fly Ash Sample Site: MDU Heskett

	As Receivo Result	ed	Method RL	Method Reference	Date Analyzed	Analyst
SPLP Extraction				1312	22 Jul 11	SS
рН	12.8	units	N/A	SM4500 H+ B	22 Jul 11 17:00	Claudette
Specific Conductance	27240	umhos/cm	N/A	SM2510-B	22 Jul 11 17:00	Claudette
Total Suspended Solids	13	mg/l	1	SM2540-D	22 Jul 11 14:00	CLB
Total Alkalinity	4570	mg/l CaCO3	4	SM2320-B	22 Jul 11 17:00	Claudette
Phenolphthalein Alk	4520	mg/l CaCO3	4	SM2320-B	22 Jul 11 17:00	Claudette
Bicarbonate	< 4	mg/l CaCO3	4	SM2320-B	22 Jul 11 17:00	Claudette
Carbonate	100	mg/l CaCO3	4	SM2320-B	22 Jul 11 17:00	Claudette
Hydroxide	4470	mg/l CaCO3	0	SM2320-B	22 Jul 11 17:00	Claudette
Tot Dis Solids (Summation)	16000	mg/l	NA	SM1030-F	3 Aug 11 8:40	Calculated
Total Hardness as CaCO3	1960	mg/l	NA	SM2340-B	3 Aug 11 8:40	Calculated
Hardness in grains/gallon	115	gr/gal	NA	SM2340-B	3 Aug 11 8:40	Calculated
Cation Summation	252	meg/L	NA	SM1030-F	9 Aug 11 9:09	Calculated
Anion Summation	247	meq/L	NA	SM1030-F	28 Jul 11 14:30	Calculated
Percent Error	1.00	do	NA	SM1030-F	9 Aug 11 9:09	Calculated
Sodium Adsorption Ratio	46.1		NA	USDA 20b	3 Aug 11 8:40	Calculated
Gross Alpha Radiation	Attached	pCi/l			22 Aug 11 2:03	
Radon 222	Attached				28 Jul 11 4:37	
Radium 226	Attached	pCi/l			22 Aug 11 22:20	
Radium 228	Attached	pCi/l			16 Aug 11 16:50	
Total Organic Carbon	1.6	mg/l	0.5	SM5310-C	1 Aug 11 8:00	Eric
Fluoride	3.60	mg/l	0.10	SM4500-F-C	4 Aug 11 17:00	CLB
Sulfate	7400	mg/l	5.00	ASTM D516-02	27 Jul 11 9:00	KMP
Chloride	66.0	mg/l	1.0	SM4500-Cl-E	27 Jul 11 14:00	KMP
Nitrate-Nitrite as N	0.38	mg/l	0.10	EPA 353.2	28 Jul 11 14:30	KMP
Ammonia-Nitrogen as N	15.0	mg/l	0.10	EPA 350.1	28 Jul 11 10:45	KMP
Phosphorus as P - Total	< 0.1	mg/l	0.10	EPA 365.1	28 Jul 11 13:00	KMP
Mercury - Total	< 0.0002	mg/l	0.0002	EPA 245.1	28 Jul 11 8:00	Eric
Chemical Oxygen Demand	9.4	mg/l	5.0	HACH 8000	1 Aug 11 8:30	Wayne
Calcium - Total	785	mg/l	1.0	6010	3 Aug 11 8:40	Stacy
Magnesium - Total	< 5	mg/l	1.0	6010	3 Aug 11 8:40	Stacy
Sodium - Total	4720	mg/l	1.0	6010	3 Aug 11 8:40	Stacy
Potassium - Total	275	mg/l	1.0	6010	3 Aug 11 8:40	Stacy
Aluminum - Total	< 1	mg/l	0.10	6010	9 Aug 11 9:09	Stacy
Iron - Total	< 1	mg/l	0.10	6010	9 Aug 11 9:09	Stacy
Strontium - Total	85.0	mg/l	0.10	6010	9 Aug 11 9:09	Stacy
Titanium - Total	< 1	mg/l	0.10	6010	9 Aug 11 9:09	Stacy
Boron - Total	< 1	mg/l	0.10	6010	11 Aug 11 8:40	Stacy

RL = Method Reporting Limit

CERTIFICATION: MN LAB # 038-999-267

Elevated "Less Than Result" (<): @ = Due to sample matrix ! = Due to sample quantity


ND # ND-00016

# = Due to sample concentration + = Due to extract volume

MVTL guarantees the accuracy of the analysis done on the sample submitted for testing. It is not possible for MVTL to guarantee that a test result obtained on a particular sample will be the same on any other sample unless all conditions affecting the sample are the same, including sampling by MVTL. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

# Appendix B

Aerial Photo (March 30, 1988)



Appendix C

2014 and 2016 Boring Logs

EXHIBIT 5-E

LITHOLOGIC LOGS

Wells 10, 11, 12 and 13

- 0-1 Top soil, silty, clayey, sandy, brown, calcareous; with some limestone pebbles.
- 1-11 Silt, clayey, brownish-tan, slightly indurated, very dry, calcareous; with thin coarse-grained, clean silt lenses and a few small (less than .5 in.) iron oxide concretions. Abundant small gypsum crystals (less than .13 in. long). Some small, black flakes of organic plant material. Cannonball-Ludlow Formations.
- 11-14 Silt, as above, with some (less than 20%) very fine- to fine-grained sand interspersed.
- 14-30 Silt, as above, clayey, less sand than above interval, oxidized; with very fine-grained silty sand lenses and very few gypsum crystals.
- 30-41 Silt, very clayey, with some (less than 20%) very fine-grained sand interspersed, steel-gray (color change), moderately indurated; with fewer small gypsum crystals than above intervals.
- 41-59 Silt, as above, very clayey, with some (less than 20%) fine- to medium-grained sand interspersed in a silt and clay matrix.
- 59-65 Silt, as above, with abundant (more than 20%) fine- to medium-grained sand interspersed.
- 65-81 Silt, clayey, steel-gray to bluish, moderately indurated; with thin coarse-grained silt to very fine-grained sand lenses in an otherwise fine silt to clay matrix.
- 81-84 Clay, silty, steel-gray to bluish, moderately indurated, dense.
- 84-91 Siltstone, sandy, clayey, steel-gray to bluish, slightly indurated; with small fine-grained sand lenses and abundant (more than 20%) sand interspersed in the matrix.
- 91-110 Silt, clayey, bluish-gray, moderately indurated; with thin (less than 1 foot) mudstone lenses.
- 110-120 Silt, very clayey, steel-gray to bluish, moderately indurated, very dense. Cannonball-Ludlow Formations.

Wells 20 and 21

1	Top soil, silty,	sandy, clayey,	dark-brown,
	calcareous; with	some limestone	and granite
	pebbles.		

- 1-21 Silt, clayey, with minor amounts (less than 10%) of very fine-grained sand interspersed, brownish-tan, slightly indurated, calcareous, oxidized; with small iron oxide concretions and abundant small gypsum crystals. Cannonball-Ludlow Formations.
- 21-26 Silt, as above, steel-gray (color change).
- 26-49 Silt, clayey, with some (less than 20%) very fine- to medium-grained sand interspersed, steel-gray to bluish, slightly indurated; with very few small gypsum crystals and some thin (less than 1 foot) siltstone lenses.
- 49-53 Silt, as above, with abundant (more than 20%) fine- to medium-grained sand interspersed.
- 53-63 Silt, as above, clayey, less sand, with thin (less than 1 foot) siltstone to mudstone lenses.
- 63-80 Silt, very clayey, steel-gray to bluish, moderately indurated, very dense. Cannonball-Ludlow Formations.

Wells 30, 31, 32 and 33

- 0-1 Top soil, silty, sandy, brownish, calcareous; with some granite and limestone pebbles.
- 1-2 Pebble-loam (glacial till), silty, sandy, clayey, yellowish-brown, dry, calcareous.
- 2-31 Silt, clayey, with minor amounts (less than 10%) of very fine-grained sand interspersed, brownish-tan, slightly indurated, calcareous, oxidized; with small iron oxide concretions. Some small, black flakes organic plant material. Cannonball-Ludlow Formations.
- 31-44 Silt, clayey, steel-gray (color change), slightly indurated, calcareous; with small iron oxide concretions, thin coarse silt lenses, small gypsum crystals and gray to reddish-brown mottling.

- 44-61 Silt, as above, with some (less than 20%) fineto medium-grained sand interspersed.
- 61-65 Silt, as above, with abundant (more than 20%) fine- to medium-grained sand interspersed, dense.
- 65-76 Silt, as above, clayey, less sand, some thin (less than 1 foot) lenses of siltstone to mudstone.
- 76-80 Siltstone, sandy, clayey, steel-gray to bluish, slightly indurated; with small fine-grained sand lenses and abundant (more than 20%) fine-grained sand interspersed in the matrix.
- 80-92 Silt, clayey, steel-gray to bluish, moderately indurated, with some (less than 20%) very fine- to fine grained sand interspersed.
- 92-120 Silt, very clayey, steel-gray to bluish, moderately indurated, very dense. Cannonball-Ludlow Formations.
- Well 40
- 0-1 Top soil, sandy, silty, brownish-tan, calcareous; with some granite and limestone pebbles.
- 1-5 Pebble-loam (glacial till), sandy, silty, with detrital lignite and organic matter, yellowish-brown, very dry, calcareous.
- 5-22 Sand, very fine- to medium-grained, unconsolidated, with thin lenses of clay and detrital lignite, brownish-yellow, calcareous.
- 22-40 Silt, clayey, with minor amounts (less than 10%) very fine-grained sand interspersed, brownish-tan, slightly indurated, calcareous, oxidized; with small iron oxide concretions and small gypsum crystals; Cannonball-Ludlow Formations.
- 40-51 Silt, clayey, with minor amounts (less than 10%) of very fine-grained sand interspersed, steel-gray (color change), moderately indurated; with some reddish-brown mottling and some very thin (less than 6 inches) mudstone lenses.
- 51-58 Silt, as above, with abundant (more than 20%) fine-grained sand and thin silty-clay lenses.

- 58-62 Siltstone, sandy, clayey, steel-gray to bluish, moderately indurated; with small fine-grained sand lenses and abundant (more than 20%) sand interspersed in the matrix.
- 62-70 Silt, clayey, with some (less than 20%) fine- to medium-grained sand interspersed, steel-gray to bluish, moderately indurated; with thin (less than 2 feet) sandy lenses.
- 70-80 Silt, as above, very clayey, some (less than 10%) fine-grained sand interspersed; less sand than above interval.
- 80-120 Silt, as above, dark-steel-gray. Cannonball-Ludlow Formations.
- Wells 41, 42 and 43
- 0-1 Top soil, sandy, silty, dark-brown, calcareous; with some granite and limestone pebbles.
- 1-4 Pebble-loam (glacial till), sandy, silty, clayey, yellowish-brown, very dry, calcareous.
- 4-40 Silt, clayey, with some (less than 20%) very fine-grained sand interspersed, brownish-tan, unconsolidated, noncompacted, calcareous to 25 feet, oxidized; with small iron oxide concretions and abundant small gypsum crystals. Cannonball-Ludlow Formations.
- 40-51 Silt, clayey, with minor amounts (less than 10%) of very fine-grained sand interspersed, steel-gray (color change), moderately indurated; with some reddish-brown mottling and some very thin (less than 6 inches) mudstone lenses.
- 51-58 Silt, as above, with abundant (more than 20%) fine-grained sand and thin silty-clay lenses.
- 58-62 Siltstone, sandy, clayey, steel-gray to bluish, moderately indurated; with small fine-grained sand lenses and abundant (more than 20%) sand interspersed in the matrix.
- 62-70 Silt, clayey, with some (less than 20%) fine- to medium-grained sand interspersed, steel-gray to bluish, moderately indurated; with thin (less than 2 feet) sandy lenses.

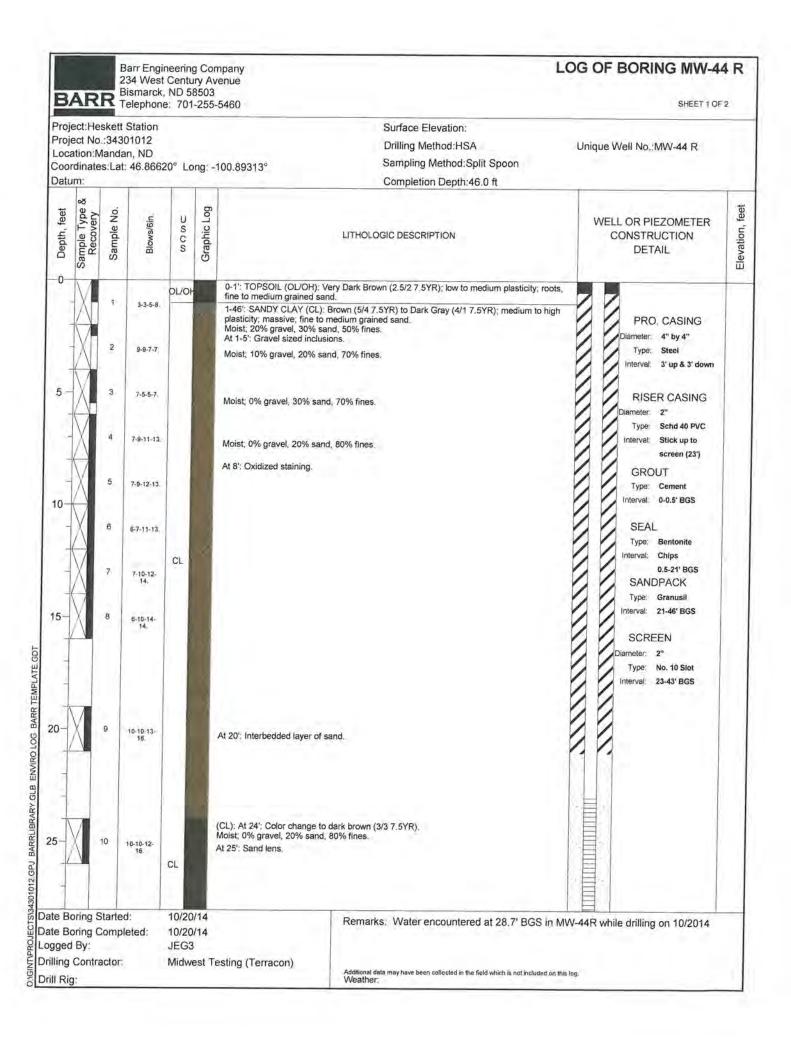
- 70-80 Silt, as above, very clayey, some (less than 10%) fine-grained sand interspersed; less sand than above interval.
- Wells 43 and 44
- 0-2 Top soil, clayey, silty, some sand, brownish-tan to light-gray, calcareous.
- 2-20 Silt, clayey, with some (less than 20%) fine-grained sand interspersed, brownish-tan, slightly indurated, very dry, calcareous; with small iron oxide concretions, abundant small gypsum crystals and occasional thin silt lenses. Cannonball-Ludlow Formations.
- 20-25 Silt, as above, very clayey, oxidized, with minor amounts (less than 10%) of fine-grained sand.
- 25-35 Silt, as above, dark-brownish-tan to bluish-gray (color change), with thin very fine-grained sand lenses.
- 35-60 Silt, clayey, with some (less than 20%) fine- to medium-grained sand interspersed, steel-gray to bluish, moderately indurated; with some indurated silty sand lenses. Cannonball-Ludlow Formations.

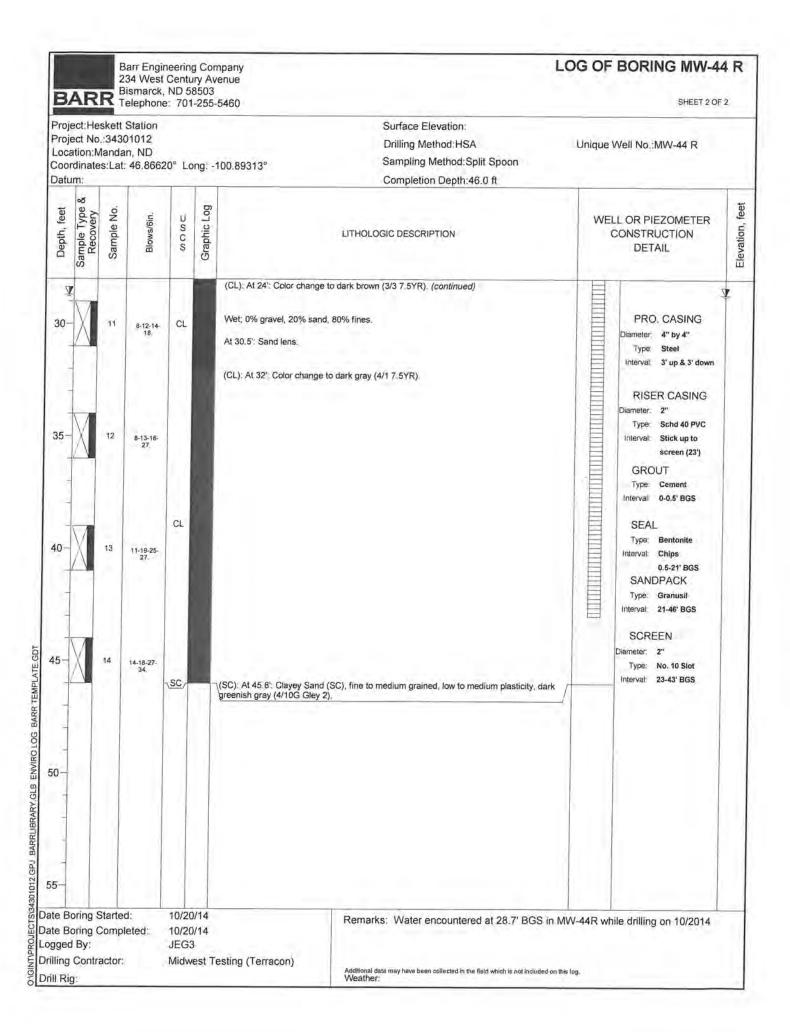
### Wells 50, 51 and 52

- 0-4 Top soil, clayey, silty, very dark-brown.
- 4-10 Clay, silty, with some (less than 20%) fine-grained sand, dark-brownish-tan, soft, cohesive, wet, sticky; with some pebbles.
- 10-22 Silt, very clayey, with some (less than 20%) very fine-grained sand interspersed, brownish-tan, slightly indurated, calcareous, dense; with abundant small gypsum crystals and very thin silt and sand lenses; Cannonball-Ludlow Formations.
- 22-23 Sandstone, fine-grained, silty, indurated, oxidized, dark-brown.
- 23-30 Silt, very clayey, with some (less than 20%) very fine-grained sand interspersed, steel-gray (color change), moderately indurated; with thin medium grained sand lenses.

- 30-40 Silt, as above, very clayey, less sand than above interval, dark-steel-gray. Cannonball-Ludlow Formations.
- Wells 53 and 54
- 0-4 Top soil, clayey, silty, very dark-brown, wet, sticky.
- 4-15 Clay, silty, with some (less than 20%) fine- to medium-grained sand interspersed, brownish-tan, slightly indurated, dry, calcareous; with small iron oxide concretions, small gypsum crystals and occasional reddish-brown mottling; Cannonball-Ludlow Formations.
- 15-20 Sand, very fine-grained to medium-grained, silty, clayey, unconsolidated, yellowish-brown, oxidized.
- 20-30 Silt, clayey, with some (less than 20%) fine-grained sand interspersed, steel-gray (color change), slightly indurated; with clay and sand lenses, some small concretions and some small gypsum crystals.
- 30-45 Silt, as above, very clayey.
- 45-60 Silt, as above, clayey, brownish-gray, moderately indurated, some reddish-brown mottling. Cannonball-Ludlow Formations.
- Wells 55 and 56
- 0-5 Sandy-loam (glacial), with fine- to medium-grained sand, silty, calcareous; with small granite and limestone pebbles.
- 5-26 Clay, silty, with minor amounts (less than 10%) of very fine-grained sand, dark-brownish-tan, moderately indurated, brittle, very dry, calcareous; with small iron oxide concretions, small gypsum crystals and occasional thin sandstone laminae. Some small, black flakes of organic plant material. Cannonball-Ludlow Formations.
- 26-35 Clay, as above, very silty, sandy, brownish-tan, oxidized.

35-40 Silt, clayey, with some (less than 20%) very fine- to fine-grained sand interspersed, steel-gray (color change) moderately indurated; with small gypsum crystals and occasional clay lenses.


ة ريد

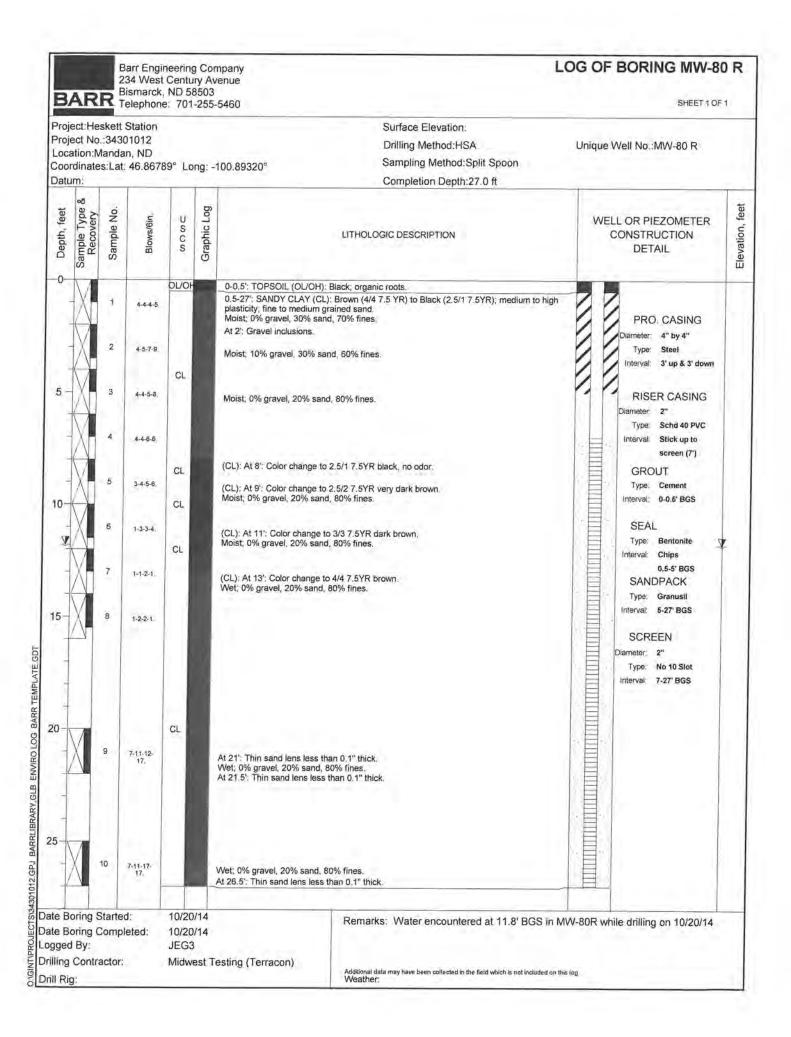

- 40-60 Silt, as above, with minor amounts (less than 10%) of fine-grained sand interspersed.
- 60-85 Silt, as above, clayey, less sand than above interval.
- 85-100 Silt, as above, very clayey, with minor amounts (less than 10%) of sand interspersed, light-gray. Cannonball-Ludlow Formations.
- Wells 60, 61 and 62
- 0-2 Top soil, silty, clayey, dark-brown to tanish-brown, calcareous.
- 2-25 Silt, very clayey, with some minor amounts (less than 10%) of very fine- to fine-grained sand interspersed, brownish-tan, slightly indurated, dry, calcareous; with abundant small gypsum crystals and thin silt and sand lenses; Cannonball-Ludlow Formations.
- 25-29 Silt, as above, with abundant (more than 20%) fine- to medium-grained sand interspersed.
- 29-36 Silt, as above, clayey, less sand than above interval, dark-brownish-tan, oxidized.
- 36-60 Silt, very clayey, with some (less than 20%) very fine-grained sand interspersed, steel-gray (color change), moderately indurated; with thin (less than 1 foot) sandy-silt lenses. Cannonball-Ludlow Formations.
- Well 70 0-2 Pebble-loam (glacial till), clayey, sandy, yellowish-brown, unconsolidated, damp, calcareous.
- 2-21 Silty, clayey, with some (less than 20%) fine-grained sand interspersed, brownish-tan, moderately indurated, very dry, calcareous, oxidized; with small iron oxide concretions and abundant small gypsum crystals. Cannonball-Ludlow Formations.

- 21-24 Shale, silty, steel- to dark-gray (color change), indurated, fissile, very dry; with occasional thin silt and sand lenses.
- 24-31 Silt, clayey, with abundant (more than 30%) sand, steel-gray, moderately indurated.
- 31-62 Silt, clayey, with some (less than 20%) very fine- to fine- grained sand interspersed, steel-gray, moderately indurated; with some small gypsum crystals and small iron oxide concretions.
- 62-76 Silt, as above, with some (less than 20%) fine-grained sand interspersed.
- 76-82 Silt, as above, with abundant (more than 20%) fine- to medium-grained sand.
- 82-100 Silt, as above, clayey, with some (less than 20%) fine-grained sand interspersed, dark-gray. Cannonball-Ludlow Formations.

The lithologic logs for wells 1-4 were described by personal from Water Supply Incorporated (WS), Bismarck, North Dakota. The wells were installed during a previous ground water investigation at Heskett Station.

Well WS 2 0-1 1-4	Top soil, silty, black. Pebble-loam(glacial till), silty, clayey, some cobbles, yellowish-brown.
4-7	Gravel, sand and rocks.
7-21	Sand, fine- to coarse-grained, some pebbles.
21-39	Clay, silty, sandy, yellowish-brown to gray.
39-52	Clay, silty, sandy, gray.
52-67	Sand, fine-grained, bluish, with some clay
	layers.
67-89	Clay, silty, sandy, brown to gray.
Wolle WS 1	
Wells WS 1, 1 0-1	
1-4	Top soil, silty, black
1.7.4	Clay, (glacial), silty, with pebbles, yellowish-brown.
4-21	Sand, fine- to medium-grained, yellowish-brown;
	with clay and silt lenses.
21-25	Clay, silty, yellowish-brown.
25-30	Sand, fine-grained, yellowish-brown, some
	indurated layers.
30-35	Clay, silty, yellowish-brown.
35-45	Sand, fine-grained, yellowish-brown.
45-50	Clay, silty, sandy, gray, about 50 percent shale.
50-56	Sand, fine-grained, with clay layers.
56-73	Clay, silty, sandy, gray.
WE11s WS 4, 4 0-13	
0-13	Pebble-loam (glacial till), silty, sandy, with
13-23	some cobbles, yellowish-brown.
	Sand, fine- to medium-grained, yellowish-brown.
23-25	Slay, silty, sandy, yellowish-brown.
25-27	Sandstone, indurated.
27-30	Clay, sandy, silty, gray.
30-36	Sand, fine-grained, gray.
36-52	Clay, silty, sandy, gray; with some sand layers.
Wells WS 3 an	d 3A
0-1	Top soil, silty, black.
1-12	Pebble-loam, clayey, silty, with some cobbles,
12-16	yellowish-brown.
16-18	Clay, silty, gray; with some shale layers.
	Limestone, indurated.
18-23	Clay, silty, yellowish-brown; with some sand
00:00	layers.
23-44	Sand, fine- to medium-grained, gray; with some
44-50	clay layers.
77-30	Clay, silty, medium-gray.





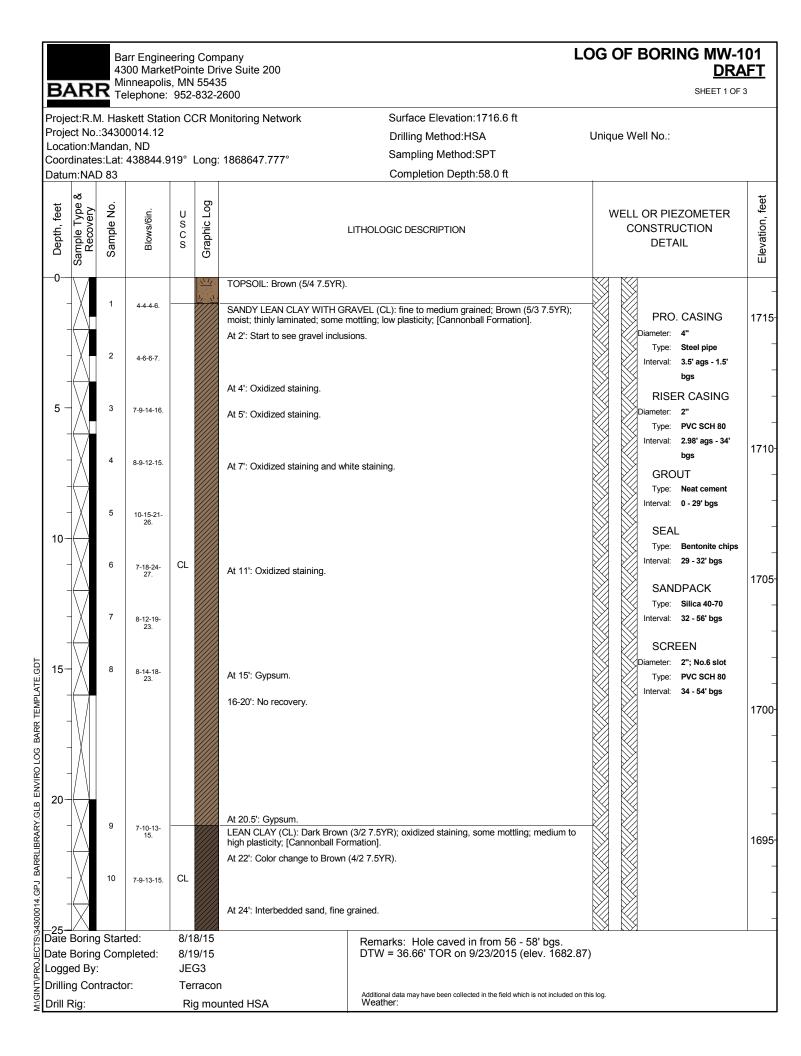

## State of North Dakota BOARD OF WATER WELL CONTRACTORS

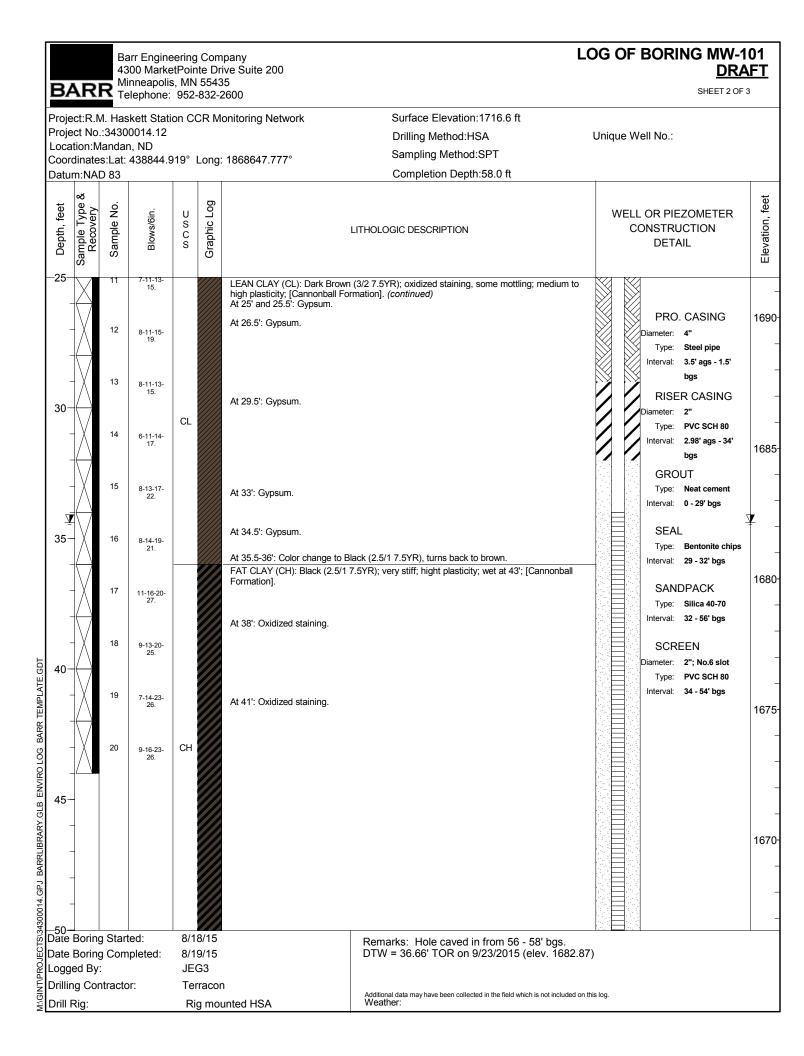
900 E. BOULEVARD • BISMARCK, NORTH DAKOTA 58505

### MONITORING WELL REPORT

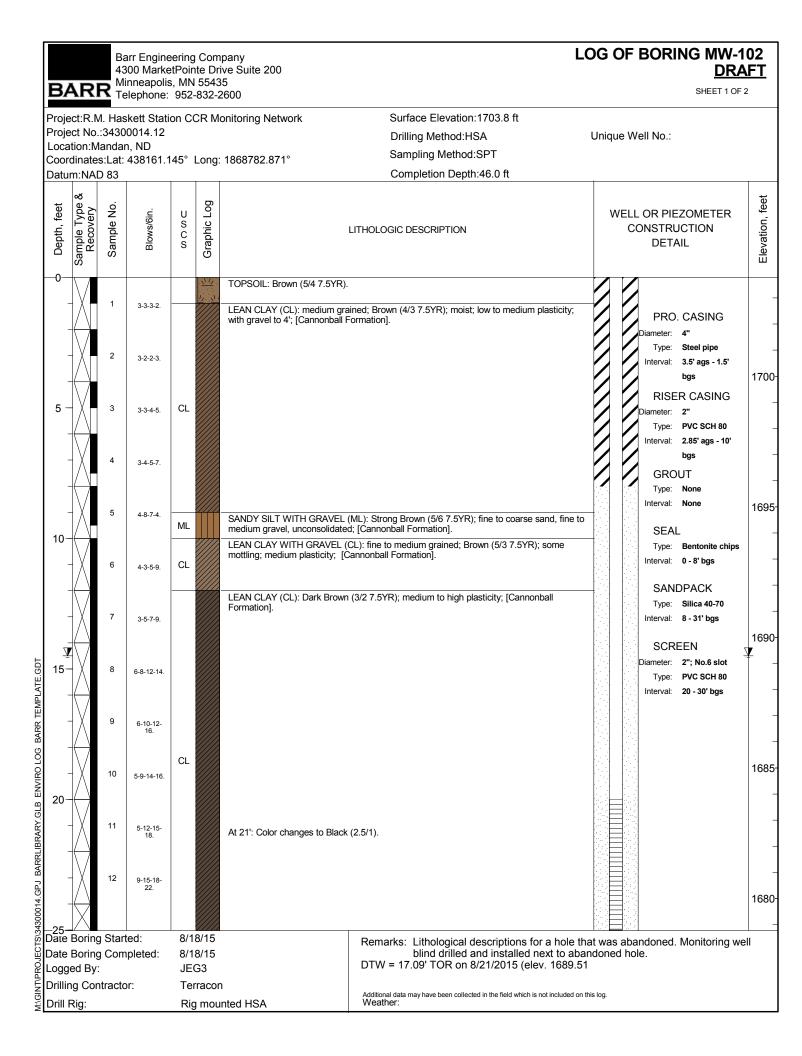
State law requires that this report be filed with the State Board of Water Well Cont	ractors within 30 days after completion or abandonment of the well.
1. WELL OWNER	Well head completion:
	24" above grade Other x
Name MDU-Heskett Station	If other, specify _4" x 4" x 5' steel cover
Address 2025 38 th Street	Was protective casing installed? ■ Yes □ No
Mandan, North Dakota	Was well disinfected upon completion? □ Yes ■ No
2. WELL LOCATION (MW-44R)	
Address (if in city) (see attached drawing)	5. WATER LEVEL
	Static water level 28.5 feet below surface
County Morton	If flowing: closed in pressure psi or ft. above land surface
<u>SE ¼ SE ¼ SW ¼</u> Sec. <u>10</u> Twp. <u>139</u> N. Rge. <u>81</u> W.	6. WELL LOG Depth (Ft.)
Lat. <u>46.86620</u> Long.: <u>-100.89313</u>	
Altitude:	Formation From To
3. METHOD DRILLED	Topsoil 0 0.5
Auger Other	Sandy lean clay 0.5 5
4. WELL CONSTRUCTION	Sandy fat clay 5 46
Diameter of Hole <u>8</u> inches Depth <u>46</u> feet	
Riser: ■ PVC □ Other	
■ Threaded □ Solvent □ Other	
Riser rating SDR Schedule40	
Diameter <u>2.0</u> inches	· · · · · · · · · · · · · · · · · · ·
From <u>+2</u> ft. to <u>23</u> ft.	
Was a well screen installed? ■ Yes □ No	
Material <u>Schedule 40 PVC</u> Diameter <u>2.0</u> inches	
Slot Size <u>#10</u> set from <u>23</u> feet to <u>43</u> feet	
Sand packed from21 ft to46 ft	(Use separate sheet if necessary)
Depth grouted from ft to ft	7. WAS THE HOLE PLUGGED OR ABANDONED?
Grouting Material	□ Yes ■ No
Bentonite X Other	If so, how?
If other explain:	
One foot concrete collar at surface	8. REMARKS
	3 steel bumpers installed around well head
	9. DATE COMPLETED <u>10-21-14</u>
	10. CONTRACTOR CERTIFICATION
	This well was drilled under my jurisdiction and this report is true to the
	best of my knowledge. Midwest Testing Laboratory, Inc. 444
	Monitoring Well Contractor Certificate No.
	P.O. Box 2084, Bismarck, ND 58502-2084
	Address
	10-22-14
	Signature Date

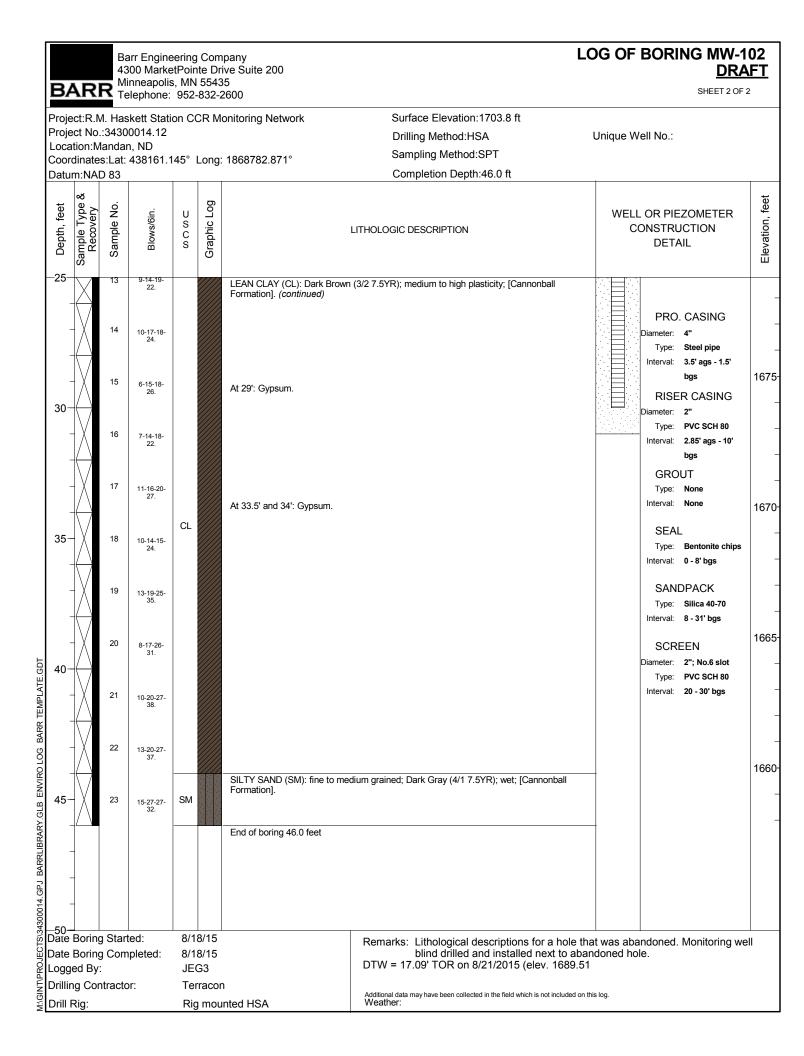


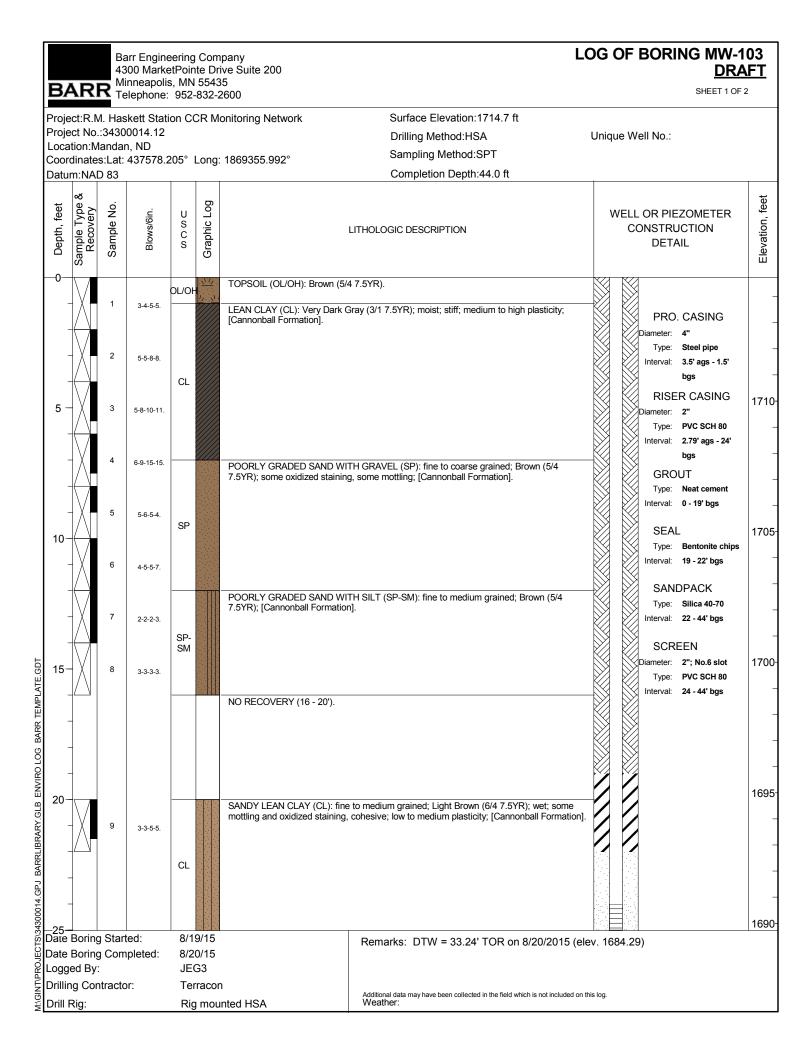

# State of North Dakota BOARD OF WATER WELL CONTRACTORS

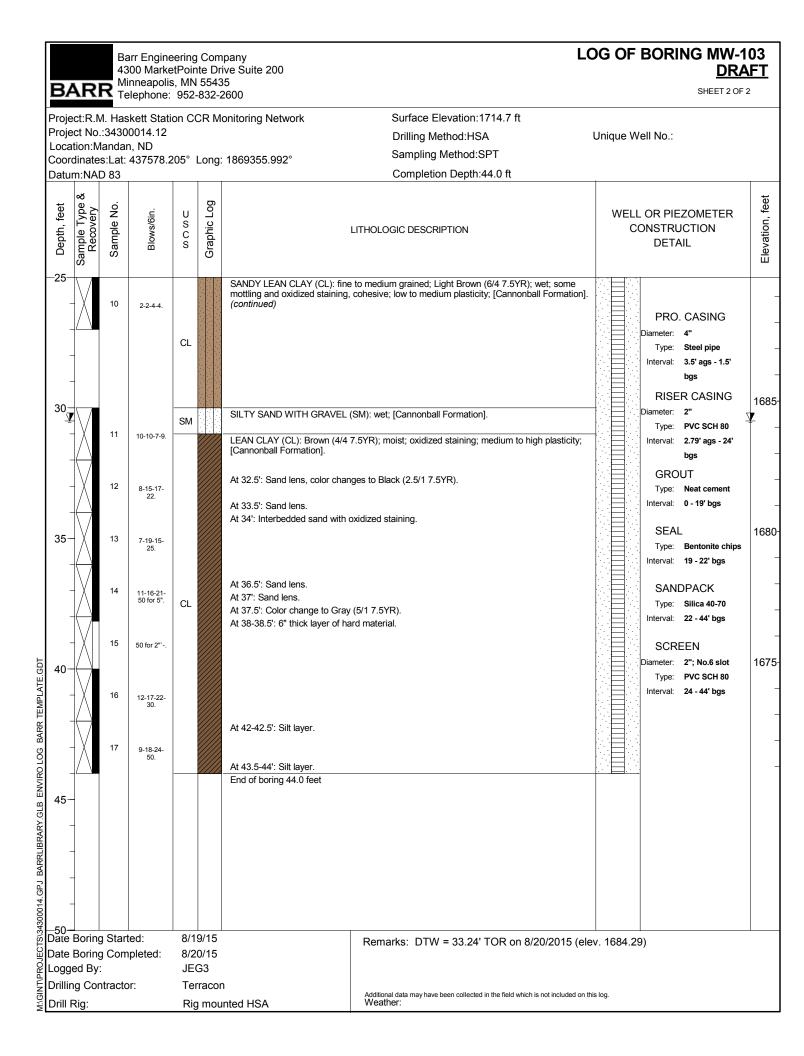

e

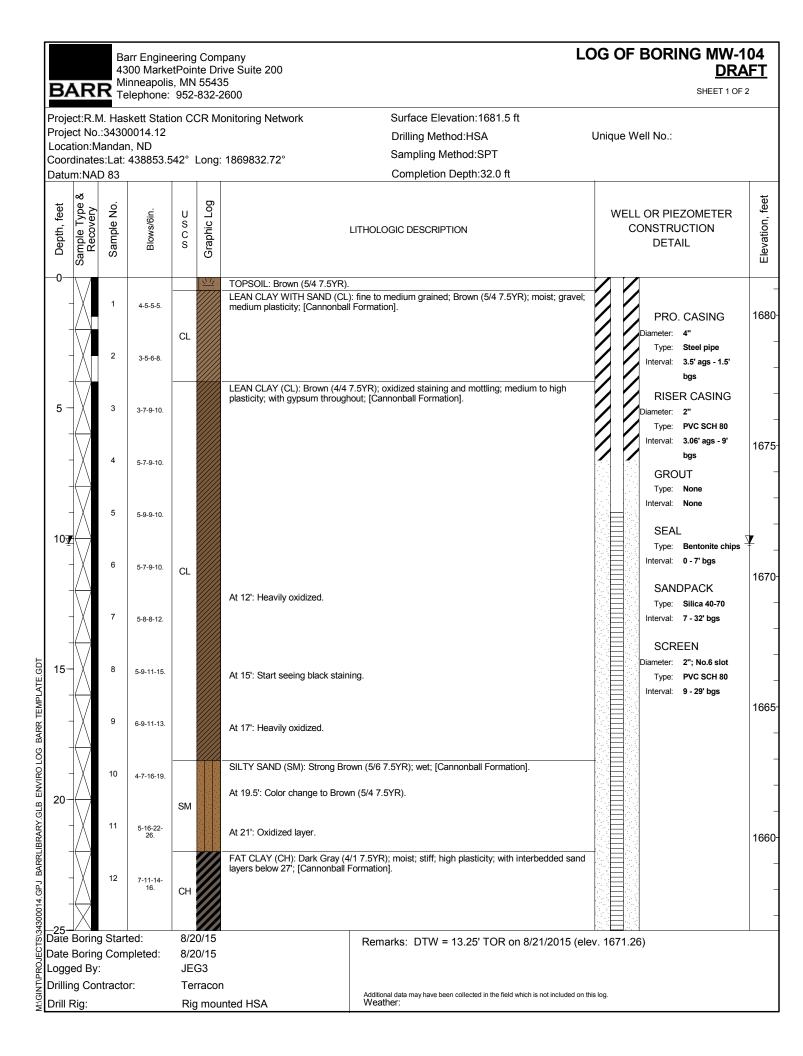
900 E. BOULEVARD • BISMARCK, NORTH DAKOTA 58505


### **MONITORING WELL REPORT**

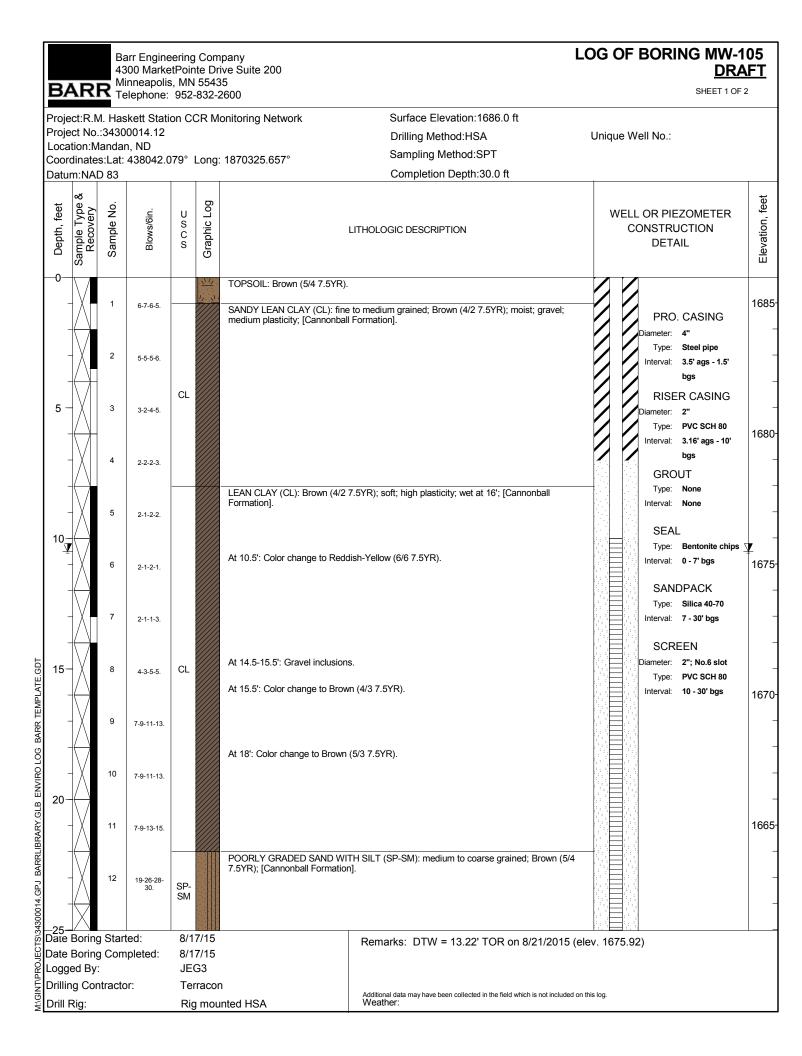

State law requires that this report be filed with the State Board of Water Well Cont	tractors within 30 days after completion or abandonment of the well.
1. WELL OWNER	Well head completion:
	24" above grade Other X
Name MDU-Heskett Station	If other, specify <u>4" x 4" x 5' steel cover</u>
Address 2025 38 th Street	Was protective casing installed? ■ Yes □ No
Mandan, North Dakota	Was well disinfected upon completion? □ Yes ■ No
2. WELL LOCATION (MW-80R)	
Address (if in city) (see attached drawing)	5. WATER LEVEL
	Static water level 12 feet below surface
County Morton	If flowing: closed in pressure psi or ft. above land surface
<u>NE ¼ SE ¼ SW ¼</u> Sec. <u>10</u> Twp. <u>139</u> N. Rge. <u>81</u> W.	6. WELL LOG Depth (Ft.)
Lat. <u>46.86789</u> Long.: <u>-100.89320</u>	
Altitude:	Formation To
3. METHOD DRILLED	Topsoil 0 0.5
	•
	Sandy lean clay 0.5 27
4. WELL CONSTRUCTION	
Diameter of Hole 8 inches Depth 27 feet	
Riser: ■ PVC □ Other	
Threaded I Solvent I Other	
Riser rating SDR Schedule40	
Diameter <u>2.0</u> inches	
From $+2.5$ ft. to 7 ft.	
Was a well screen installed? ■ Yes □ No	
Material <u>Schedule 40 PVC</u> Diameter <u>2.0</u> inches	
Slot Size <u>#10</u> set from <u>7</u> feet to <u>27</u> feet	(Use separate sheet if necessary)
Sand packed from <u>5</u> ft to <u>27</u> ft	7. WAS THE HOLE PLUGGED OR ABANDONED?
Depth grouted from <u>1</u> ft to <u>5</u> ft	Yes ■ No
Grouting Material	If so, how?
Bentonite Other	It so, now:
If other explain:	
One foot concrete collar at surface	8. REMARKS 3 steel bumpers installed around well head
	5 steel bumpers instance around wen nead
	9. DATE COMPLETED 10-21-14
	10. CONTRACTOR CERTIFICATION
	This well was drilled under my jurisdiction and this report is true to the
	best of my knowledge. Midwest Testing Laboratory, Inc. 444
	Monitoring Well Contractor Certificate No.
	P.O. Box 2084, Bismarck, ND 58502-2084
	······································
	Address
	Malan 10-22-14
	Signature Date Date





Barr Engineering Company 4300 MarketPointe Drive Suite 200 Minneapolis, MN 55435		LOG OF BORING MW-101 <u>DRAFT</u>	
BARR Minneapor	e: 952-832-2600		SHEET 3 OF 3
Project No.:34300014.1 Location:Mandan, ND	ation CCR Monitoring Network 2 4.919° Long: 1868647.777°	Surface Elevation:1716.6 ft Drilling Method:HSA Sampling Method:SPT Completion Depth:58.0 ft	Unique Well No.:
Depth, feet Sample Type & Recovery Sample No. Blows/6in.	o o o ∩ Graphic Log	LITHOLOGIC DESCRIPTION	WELL OR PIEZOMETER CONSTRUCTION DETAIL
-50 - - - - 55- - - - -	CH End of boring 58.0 feet	1 7.5YR); very stiff; hight plasticity; wet at 43'; [Cannonball	PRO. CASING PRO. CASING Diameter: 4" Type: Steel pipe Interval: 3.5' ags - 1.5' bgs RISER CASING Diameter: 2" Type: PVC SCH 80 Interval: 2.98' ags - 34' bgs GROUT Type: Neat cement Interval: 0 - 29' bgs
60			SEAL Type: Bentonite chips Interval: 29 - 32' bgs SANDPACK Type: Silica 40-70 Interval: 32 - 56' bgs SCREEN Diameter: 2"; No.6 slot Type: PVC SCH 80
			Interval: 34 - 54' bgs
 Date Boring Started: Date Boring Completed Logged By:	8/18/15 8/19/15 JEG3	Remarks: Hole caved in from 56 - 58' bgs. DTW = 36.66' TOR on 9/23/2015 (elev. 1682	.87)
Drilling Contractor:     Terracon       Drill Rig:     Rig mounted HSA		Additional data may have been collected in the field which is not included on this log. Weather:	





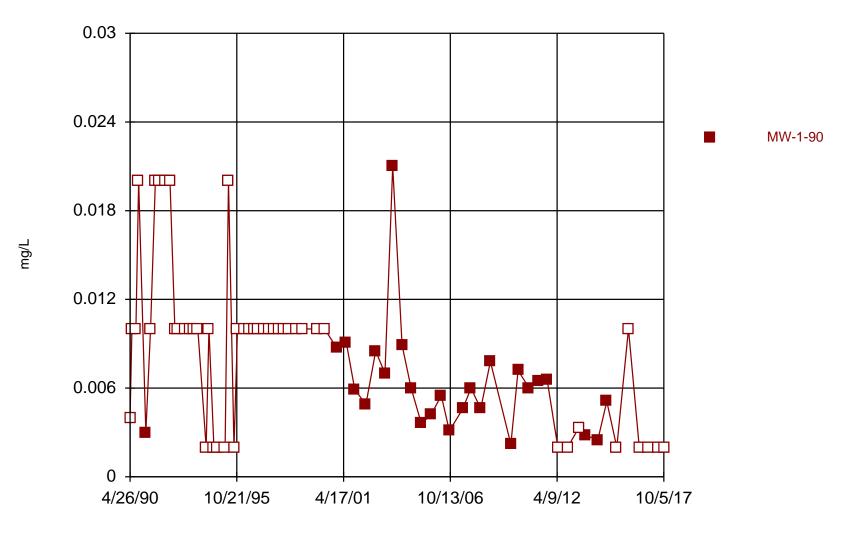


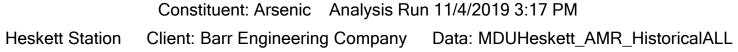


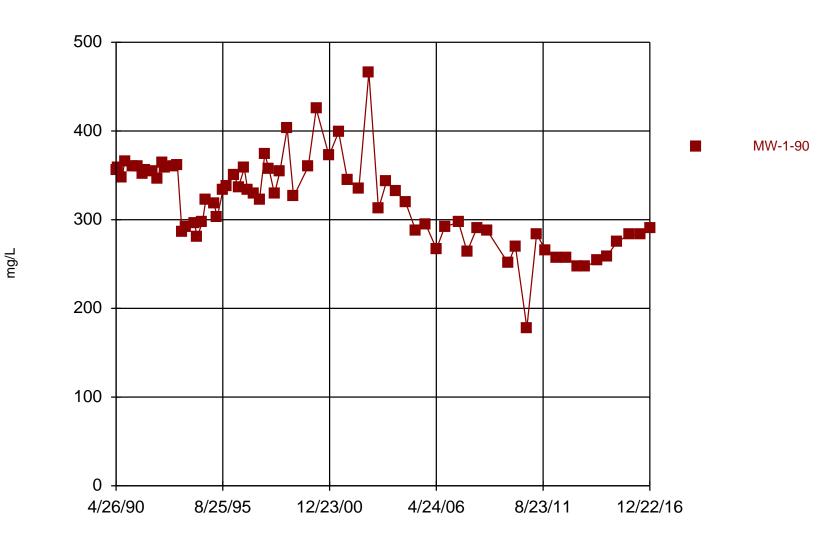


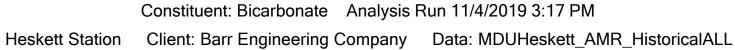

4300	Engineering Company MarketPointe Drive S	LOG OF BORING MW-104 <u>DRAFT</u>							
BARR Minn Telep	eapolis, MN 55435 phone: 952-832-2600		SHEET 2 OF 2						
Project:R.M. Haske Project No.:343000 Location:Mandan, N	tt Station CCR Monito 14.12	Drilling Method:HSA	Unique Well No.:						
Depth, feet Sample Type & Recovery Sample No.	Blows/6in. ∽ ∩ ∽ ⊂ Graphic Log	LITHOLOGIC DESCRIPTION	WELL OR PIEZOMETER CONSTRUCTION DETAIL						
	5-12-16- 17. FAT laye 3-12-16- 21. CH 3-12-16- 20.	CLAY (CH): Dark Gray (4/1 7.5YR); moist; stiff; high plasticity; with interbedded sa s below 27'; [Cannonball Formation]. <i>(continued)</i>	PRO. CASING Diameter: 4" Type: Steel pipe Interval: 3.5' ags - 1.5' bgs RISER CASING						
		r notes: sluff. of boring 32.0 feet	Diameter: 2" Type: PVC SCH 80 Interval: 3.06' ags - 9' bgs GROUT Type: None Interval: None SEAL Type: Bentonite chips Interval: 0 - 7' bgs						
40			SANDPACK Type: Silica 40-70 Interval: 7 - 32' bgs SCREEN Diameter: 2"; No.6 slot Type: PVC SCH 80 Interval: 9 - 29' bgs						
45									
Date Boring Started Date Boring Comple Logged By:		Remarks: DTW = 13.25' TOR on 8/21/2015	Remarks: DTW = 13.25' TOR on 8/21/2015 (elev. 1671.26)						
Drilling Contractor: Drill Rig:	Terracon Rig mounted	Additional data may have been collected in the field which is not included Weather:	Additional data may have been collected in the field which is not included on this log. Weather:						



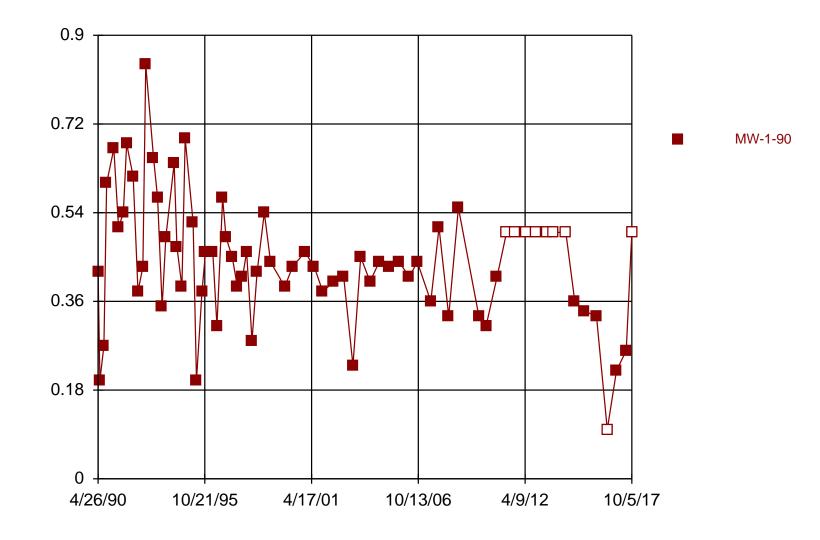

		43		tPoin	te Dr	ive Suite 200	LOG OF BORING MW-105 DRAFT							
BA	٩R	R Te	inneapolis elephone:	952-	832-	2600			SHEET 2 OF 2	2				
Proje Loca Coor	ect No. ition:M	:3430 andar s:Lat:	0014.12 n, ND			onitoring Network : 1870325.657°	Surface Elevation:1686.0 ft Drilling Method:HSA Sampling Method:SPT Completion Depth:30.0 ft	Unique W	/ell No.:					
Depth, feet	Sample Type & Recovery	Sample No.	Blows/6in.	U S C S	Graphic Log		LITHOLOGIC DESCRIPTION		OR PIEZOMETER ONSTRUCTION DETAIL	Elevation, feet				
-25- - - - - - - - - - - - - - - - - - -		13	15-25-31- 40. 10-15-18- 30. 11-16-22- 32.	CL		FAT CLAY (CL): Dark Brown ( Formation]. At 26': Color change to Gray ( End of boring 30.0 feet	3/4 7.5YR); high plasticity; sand lens at 26.5'; [Cannonba		PRO. CASING Diameter: 4" Type: Steel pipe Interval: 3.5' ags - 1.5' bgs RISER CASING Diameter: 2" Type: PVC SCH 80	1660-				
35-	-								Interval: 3.16' ags - 10' bgs GROUT Type: None Interval: None SEAL Type: Bentonite chips Interval: 0 - 7' bgs SANDPACK Type: Silica 40-70 Interval: 7 - 30' bgs SCREEN					
40- 40-									Diameter: 2"; No.6 slot Type: PVC SCH 80 Interval: 10 - 30' bgs					
Date	Boring Boring ed By:	g Com	ted: pleted:		7/15 7/15 73		Remarks: DTW = 13.22' TOR on 8/21/2015	 (elev. 1675.92	2)					
Drill Rig: Rig mounted HSA				Ter	raco		Additional data may have been collected in the field which is not included on this log. Weather:							


Appendix D


MW1-90 Time Series Plots


Sanitas[™] v.9.6.23 For the statistical analyses of ground water by Barr Engineering Company only. UG Hollow symbols indicate censored values.

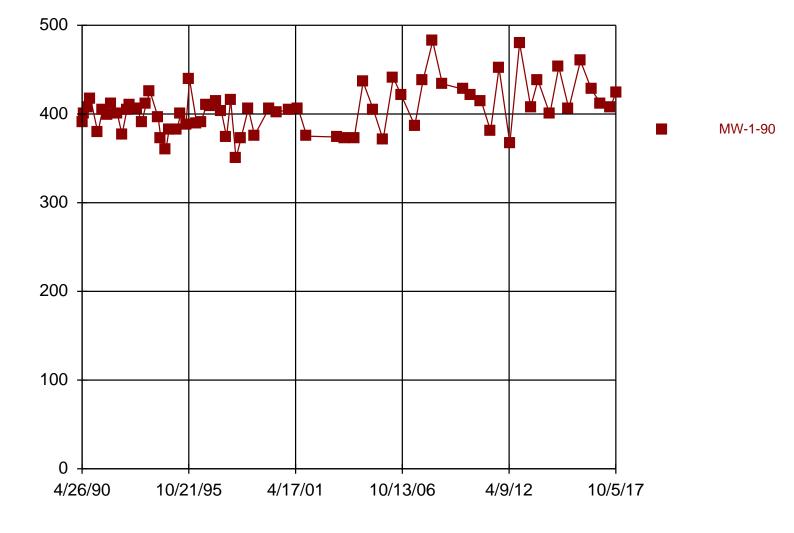


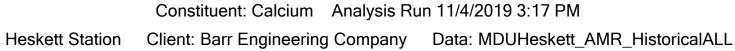


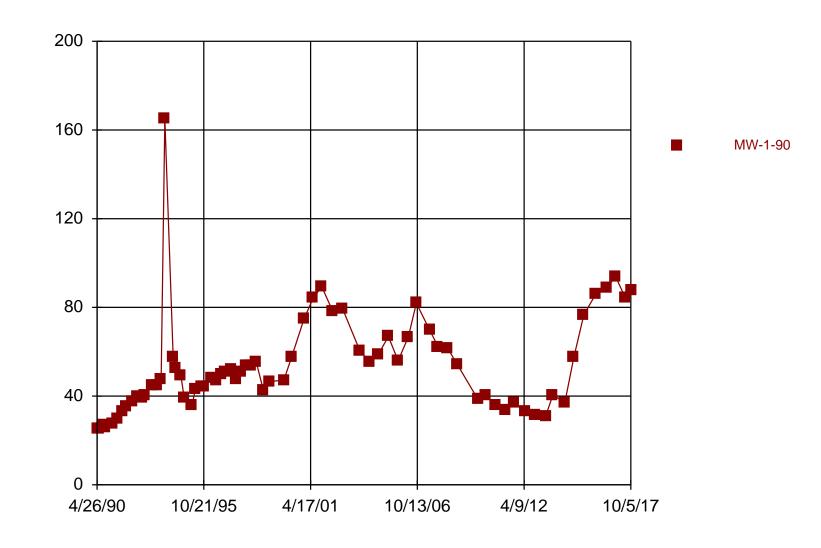








Sanitas[™] v.9.6.23 For the statistical analyses of ground water by Barr Engineering Company only. UG Hollow symbols indicate censored values.

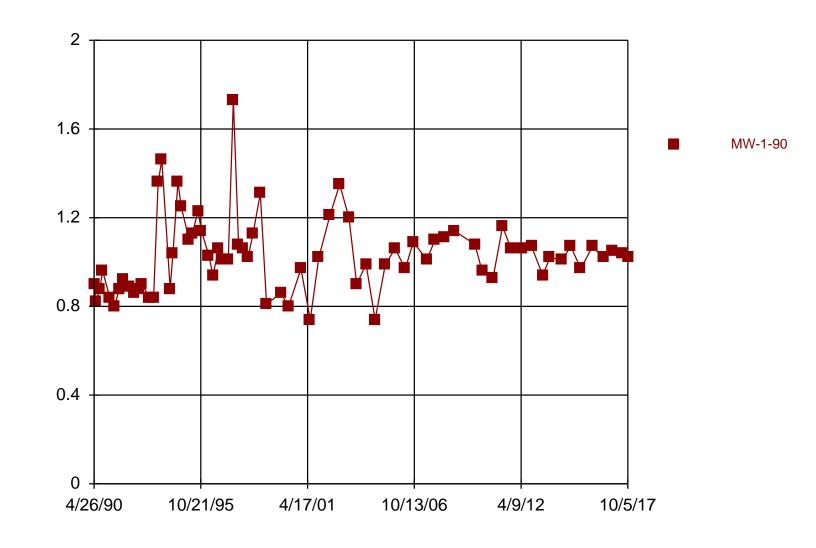




**Time Series** 

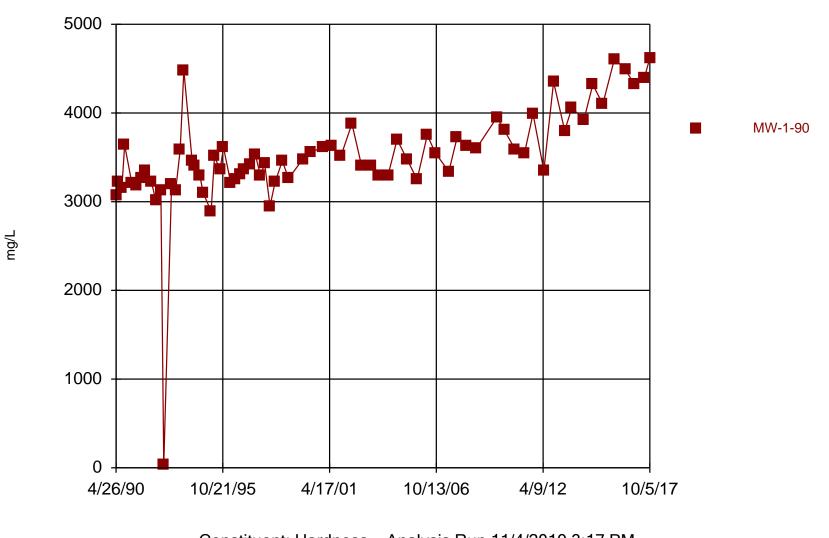
## Constituent: Boron Analysis Run 11/4/2019 3:17 PM Heskett Station Client: Barr Engineering Company Data: MDUHeskett_AMR_HistoricalALL

mg/L

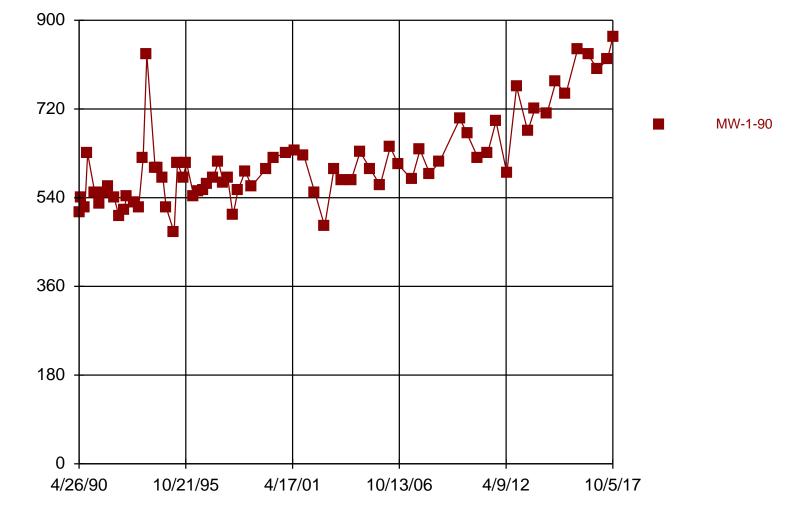


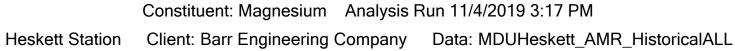


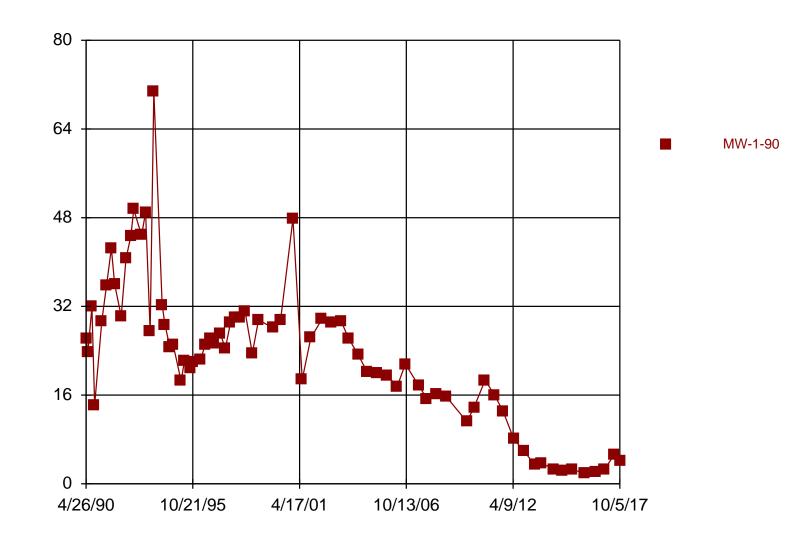




Constituent: Chloride Analysis Run 11/4/2019 3:17 PM Heskett Station Client: Barr Engineering Company Data: MDUHeskett_AMR_HistoricalALL

## **Time Series**


mg/L



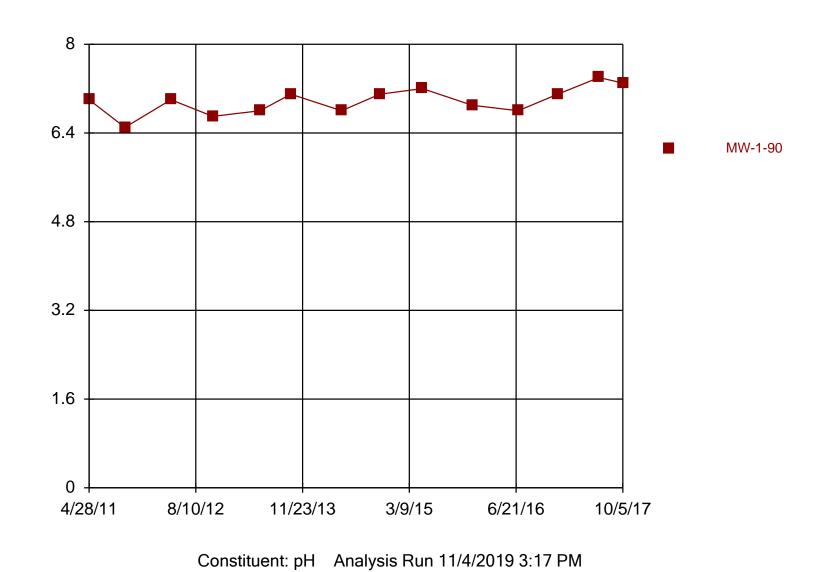


## Constituent: Fluoride Analysis Run 11/4/2019 3:17 PM Heskett Station Client: Barr Engineering Company Data: MDUHeskett_AMR_HistoricalALL







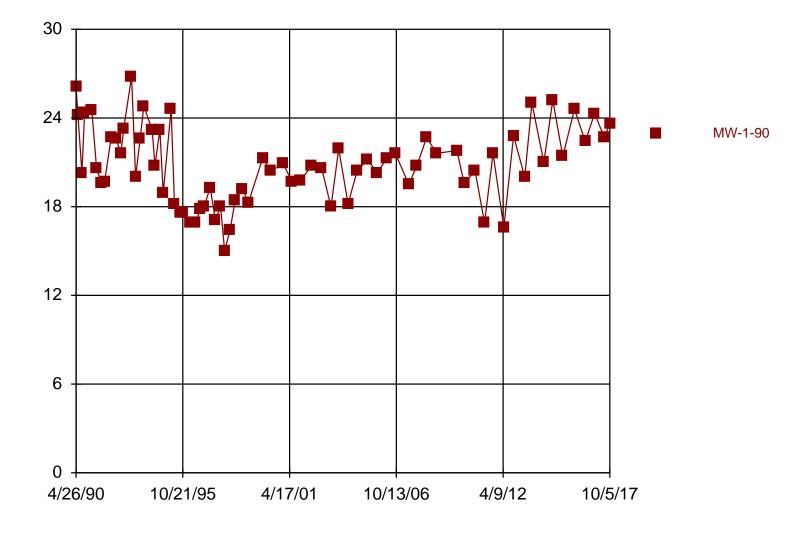





Constituent: Nitrogen Analysis Run 11/4/2019 3:17 PM Heskett Station Client: Barr Engineering Company Data: MDUHeskett_AMR_HistoricalALL

#### **Time Series**

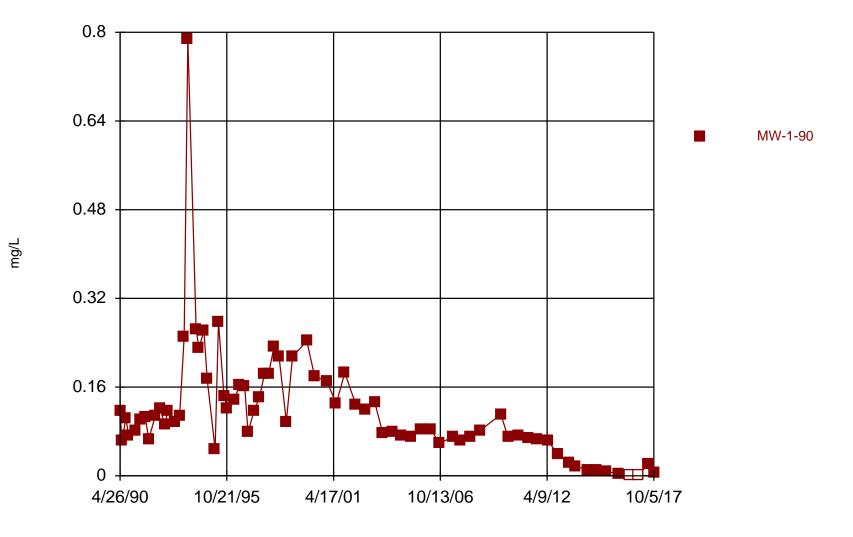
mg/L

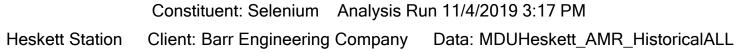

Sanitas™ v.9.6.23 For the statistical analyses of ground water by Barr Engineering Company only. UG

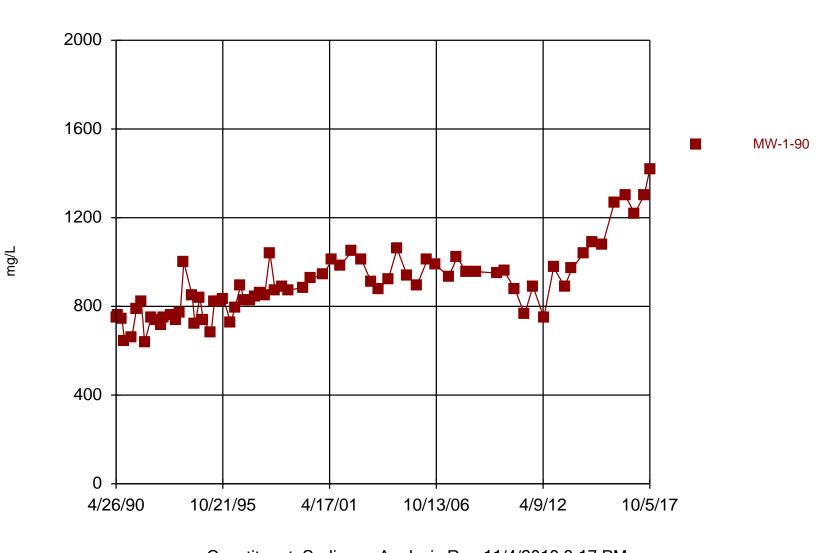



Heskett Station Client: Barr Engineering Company Data: MDUHeskett_AMR_HistoricalALL

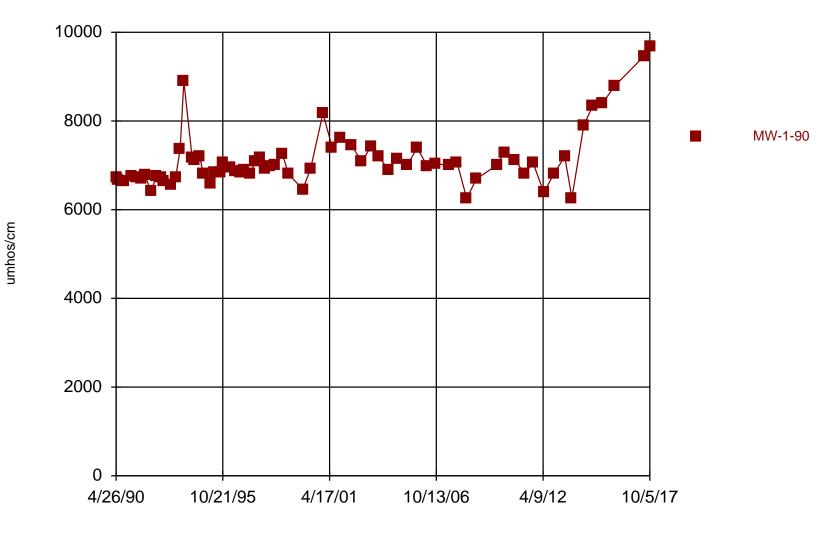
## **Time Series**


Hd

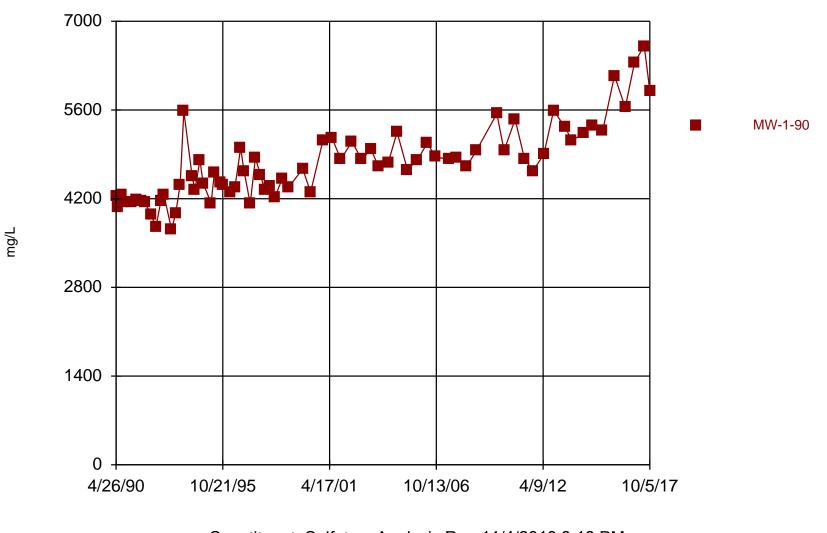


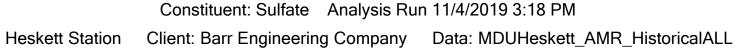



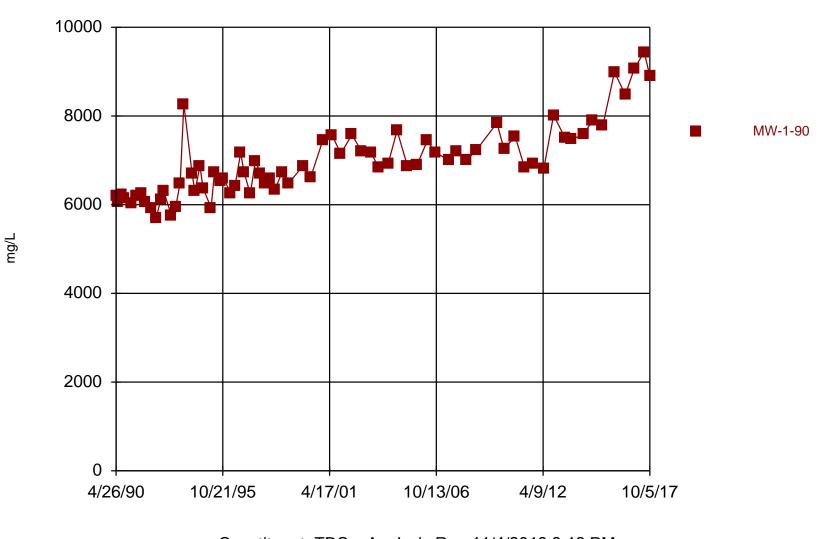

Sanitas[™] v.9.6.23 For the statistical analyses of ground water by Barr Engineering Company only. UG Hollow symbols indicate censored values.

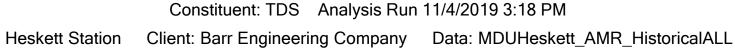


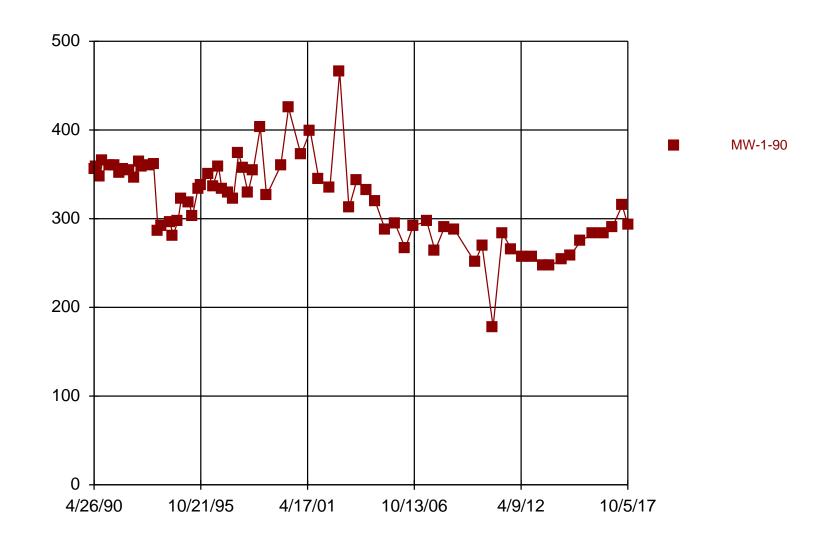




Constituent: Sodium Analysis Run 11/4/2019 3:17 PM Heskett Station Client: Barr Engineering Company Data: MDUHeskett_AMR_HistoricalALL
















# Appendix E

**Geochemist's Workbench Results** 

જ 8 00, 4 × C/ S S, ъ 2 ŝ 2 80 80 *CO, *CO, Na * K Ş ъ 60 60 s0, ** ON ଡ S V 40 40 જી 20 20 S S В В Ŷ \$ ଡ ô Ca⁺⁺ < C۲ ⇒

% meq/kg

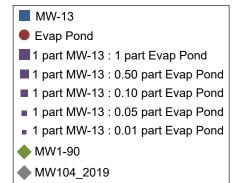
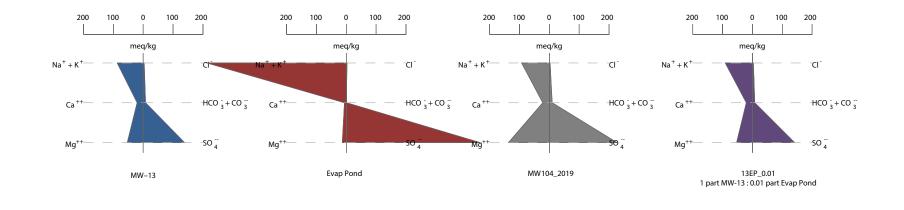




Figure E.1 Piper Plot for Mixing Evaporation Pond into MW-13 R.M. Heskett Station Alternative Source Demonstration April 2019 Event Montana Dakota Utilities Mandan, North Dakota .com/projects/Mpis/34 ND303430014 Heskett Station Ash Management(WorkFiles/Grundwater Monitoring)Statistical Evaluation/2019_DME1ASDASD ReportAppxAppx E - GWB Results):E 2 13EP_Stiff Mixing.pdf" User: AKS3 \Barr.



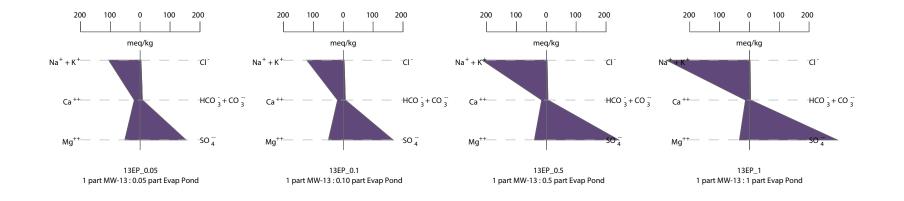



Figure E.2 Stiff Plot for Mixing Evaporation Pond into MW-13 R.M. Heskett Station Alternative Source Demonstration April 2019 Event Montana Dakota Utilities Mandan, North Dakota

\$0 \$ \$ \$ \$ \$ ъ 2 ð 80 80 بردن من بردن بردن Na*** \$ Ъ 60 60 10+* ⁰0 જ ଡ V 40 40 S 20 20 S S ъ 20 Ŷ \$ 8 ò Ca⁺⁺ < -> Cl

% meq/kg

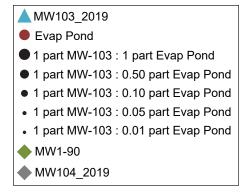
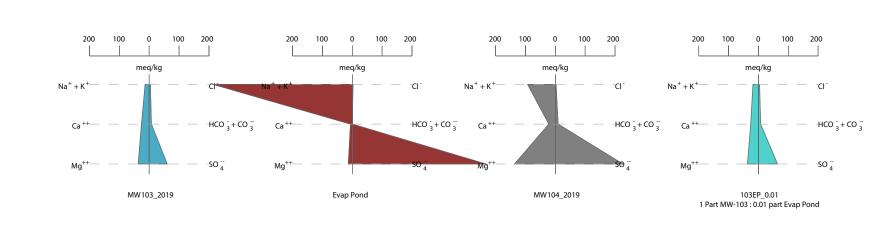




Figure E.3 Piper Plot for Mixing Evaporation Pond into MW-103 R.M. Heskett Station Alternative Source Demonstration April 2019 Event Montana Dakota Utilities Mandan, North Dakota



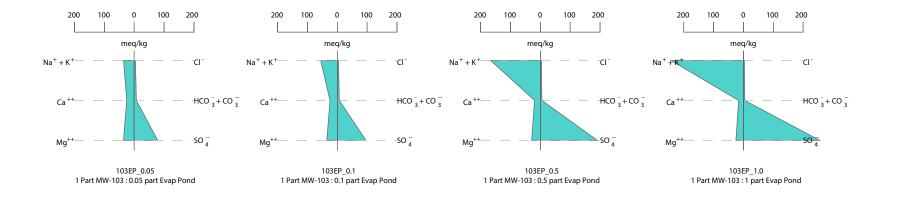



Figure E.4 Stiff Plot for Mixing Evaporation Pond into MW-103 R.M. Heskett Station Alternative Source Demonstration April 2019 Event Montana Dakota Utilities Mandan, North Dakota

Table E.1	
Geochemist's Workbench Mixing Model Results	

Description Upg		Upgradie	ent Wells	Evap Pond	Mixing Ratio MW-13 : Evaporation Pond					Mixing Ratio MW-103 : Evaporation Pond					Downgradient Wells	
Sample ID		MW-13 MW103 E		Evap Pond	1:0.01	1:0.05	1:0.1	1:0.5	1:1	1:0.01 1:0.05 1:0.1 1:0.5 1:1		1:1	MW1-90	MW-104		
HCO3-	mg/l	482	457	20	477.4	460	440	328	251	452.7	436.2	417.3	311.3	238.5	259	591
Ca++	mg/l	418	530	125	415.1	404	391.4	320.3	271.5	526	510.7	493.2	395	327.5	453	448
Cl-	mg/l	109	142	79.8	108.7	107.6	106.3	99.28	94.42	141.4	139	136.3	121.3	110.9	57.4	87.6
F-	mg/l	0.73	0.15	0.1	0.7237	0.7	0.6727	0.52	0.415	0.1495	0.1476	0.1455	0.1334	0.125	1.07	0.55
Mg++	mg/l	660	458	165	655.1	636.4	615	495	412.5	455.1	444.1	431.4	360.4	311.5	775	1700
рН	SU	7.1	6.5	10.7	7.106	7.133	7.17	7.62	8.435	6.502	6.511	6.523	6.643	6.854	7.1	6.8
K+	mg/l	29.4	18.8	734	36.38	62.97	93.48	264.4	381.9	25.88	52.87	83.85	257.3	376.6	25.2	37
Na+	mg/l	2020	311	10600	2105	2429	2800	4882	6312	412.9	801.2	1247	3742	5458	1090	2160
SO4	mg/l	6750	2930	22100	6902	7481	8146	11869.8	14429.8	3120	3843	4674	9323	12520	5350	11100
TDS	mg/kg	10300	4860	34000	10537.2	11440.3	12476	18257.4	22214.5	5152	6265	7541	14660.2	19527.5	7910	17700