2020 Annual Groundwater Monitoring and Corrective Action Report

CCR Landfill

R.M. Heskett Station Mandan, North Dakota

Prepared for Montana-Dakota Utilities Co.

January 2021

2020 Annual Groundwater Monitoring and Corrective Action Report

CCR Landfill

R.M. Heskett Station Mandan, North Dakota

Prepared for Montana-Dakota Utilities Co.

January 2021

4300 MarketPointe Drive, Suite 200 Minneapolis, MN 55435 952.832.2600 www.barr.com

2020 Annual Groundwater Monitoring and Corrective Action Report

CCR Landfill

R.M. Heskett Station Mandan, North Dakota

January 31, 2021

Table of Contents

1.0	In	troduction1
1.1		Purpose1
1.2	<u>)</u>	CCR Rule Requirements1
2.0	G	roundwater Monitoring Program4
2.1		Executive Summary4
2.2	<u>)</u>	Groundwater Monitoring System4
2.3	3	Actions Completed/Problems Encountered4
2.4	ŀ	Data and Collection Summary4
	2.4.1	September 2019 Detection Monitoring Event4
	2.4.2	April 2020 Detection Monitoring Event5
	2.4.3	September 2020 Detection Monitoring Event5
2.5	5	Activities for Upcoming Year5
3.0	R	eferences6

List of Tables

 Table 1
 CCR Rule Requirements and Compliance

List of Figures

Figure 1 Site Layout and CCR Monitoring Well Network

List of Appendices

- Appendix A Laboratory Reports and Field Sheets
- Appendix BAlternative Source Demonstration: September 2019 EventAlternative Source Demonstration: April 2020 Event

Acronyms

Acronym	Description
ASD	Alternative Source Demonstration
CCR	Coal Combustion Residuals
CFR	Code of Federal Regulations
MDU	Montana Dakota Utilities Co.
SSI	Statistically Significant Increase
TDS	Total dissolved solids

1.0 Introduction

Montana-Dakota Utilities Co. (MDU) owns and operates R.M. Heskett Station, a coal-fired generating station and a gas fired turbine located in Mandan, North Dakota (Figure 1). One CCR landfill, as defined by 40 CFR 257.53, is located on the property. Wastes contained in the CCR landfill primarily consist of coal combustion by-products, asbestos wastes generated from construction activity associated with MDU-owned facilities, and ash derived from the burning of tire-derived fuel at the facility.

This 2020 Annual Groundwater Monitoring and Corrective Action Report (Annual Report) describes the monitoring program and results for the CCR landfill at MDU's R.M. Heskett Station (Site).

1.1 Purpose

As stated in Section §257.90 (e), the Annual Report must:

- Document the status of groundwater monitoring and any corrective action programs for the CCR unit,
- Summarize key actions completed,
- Describe any problems encountered,
- Discuss actions to resolve the problems, and
- Project key activities for the upcoming year.

1.2 CCR Rule Requirements

Additional requirements for the Annual Report, as outlined in §257.90 (e) of the CCR Rule and this Site's compliance with the CCR Rule, are summarized in Table 1.

Table 1

CCR Rule Requirements and Compliance

CCR Rule Reference	Content Required in Report	Location
§257.90(e)(1)	Monitoring System Figure: A map, aerial image, or diagram showing the CCR unit and all background (or upgradient) and downgradient monitoring wells, to include the well identification numbers, that are part of the groundwater monitoring program for the CCR unit.	Section 2.2 Groundwater Monitoring System; see Figure 1.
§257.90(e)(2)	Monitoring System Adjustments : Identification of any monitoring wells that were installed or decommissioned during the preceding year, along with a narrative description of why those actions were taken.	Section 2.2 Groundwater Monitoring System
§257.90(e)(3)	Data and Collection Summary : In addition to all the monitoring data obtained under §257.90 through §257.98, a summary including the number of groundwater samples that were collected, and whether the sample was required by the detection monitoring or assessment monitoring programs.	Section 2.4 Monitoring and Analytical Results
§257.90(e)(4)	Monitoring Program : A narrative discussion of any transition between monitoring programs (e.g. the date and circumstances for transitioning from detection monitoring to assessment monitoring in addition to identifying the constituent(s) detected at a statistically significant increase over background levels).	Section 2.4 Monitoring and Analytical Results
§257.90(e)(5)	Other Information: Other information required, if applicable, to be included in the annual report as specified in §257.90 through §257.98. - Alternative Monitoring Frequency Demonstration (§257.94(d) and §257.95 (c)(3)) - Appendix III Alternative Source Demonstration Report (§257.94(e)(2)) - Assessment Monitoring Results and Discussion (§257.95(d)(3)) - Appendix IV Alternative Source Demonstration Report (§257.95(g)(3)(ii)) - Demonstration for Additional Time for Assessment or Corrective Measures (§257.96(a))	Section 2.4 Monitoring and Analytical Results

Table 2	CCR Rule Requirements and Compliance (con't)

CCR Rule Reference	Content Required in Report	Location
§257.90(e)(6)	 Executive Summary: A section at the beginning of the annual report that provides an overview of the current status of groundwater monitoring and corrective action programs for the CCR unit. At a minimum, the summary must specify all of the following (as outlined in §257.90(e)(6)(i) through §257.90(e)(6)(vi): If the CCR unit was operating under detection monitoring or assessment monitoring at the start and end of the current annual reporting period If an SSI over background for one or more Appendix III constituents: identify the constituents and monitoring wells associated with the increase; and provide the date when the assessment monitoring program was initiated. If an SSI over groundwater protection standard for one or more Appendix IV constituents: Identify the constituents and monitoring wells associated with the increase, Identify the constituents: Identify the constituents Provide the date when the assessment monitoring the date when the assessment of corrective measures was initiated; Provide the date when the assessment of corrective measures was initiated; Provide the date when the assessment of corrective measures; and Provide the date when the assessment of corrective measures was completed. If a remedy was selected pursuant to §257.97 during the current annual reporting period, and if so, the date of remedy selection; and If remedial activities were initiated or on-going pursuant to §257.98 during the current annual reporting period. 	Section 2.1 Executive Summary

2.0 Groundwater Monitoring Program

This section documents the status of the groundwater monitoring and corrective action program for the CCR unit in 2020. The executive summary is in Section 2.1, followed by a description of the groundwater monitoring system is described in Section 2.2, key actions completed, and problems encountered are described in Section 2.3, the monitoring and analytical results are described in Section 2.4, and key activities planned for 2021 are described in Section 2.5.

2.1 Executive Summary

The CCR unit at the Site operated under detection monitoring throughout 2020. SSIs were identified in April 2020 for chloride at MW-105 and sulfate and TDS at MW-104 and in September 2020 for fluoride at MW2-90, chloride at MW-105, and sulfate and TDS at MW-104. Successful ASDs were conducted for the October 2019 and April 2020 SSIs, therefore allowing the Site to continue operating under detection monitoring; an ASD is forthcoming for the September 2020 event.

2.2 Groundwater Monitoring System

The groundwater monitoring system is consistent with the Groundwater Monitoring System Certification (Barr, 2017a), as seen in Figure 1; no adjustments or changes were made to the groundwater monitoring system in 2020.

2.3 Actions Completed/Problems Encountered

The following actions were completed in 2020:

- **Detection Monitoring Sampling**: Groundwater samples were collected from each well in the groundwater monitoring system on March 31-April 6, 2020 and September 14-15, 2020; samples were analyzed for Appendix III constituents, per the detection monitoring program of the CCR Rule (§257.94).
- **SSI Evaluation:** SSI evaluations were conducted in accordance with the Groundwater Statistical Method Selection Certification (Statistical Certification; Barr, 2017b) for the September 2019 and April 2020, detection monitoring events, both of which resulted in potential SSIs.
- Verification Retesting: No verification retesting was conducted in 2020.
- Alternative Source Demonstration (ASD): ASDs were conducted on the verified SSIs for the September 2019 and April 2020 detection monitoring events. Both ASDs were able to demonstrate an alternative source, as allowed by the CCR rule (§257.94(e)(2)). More details are provided in Section 2.4.

2.4 Data and Collection Summary

2.4.1 September 2019 Detection Monitoring Event

As mentioned in the 2019 Annual Report, an SSI evaluation was to be conducted on the results of the September 2019 detection monitoring event. Four potential SSIs (fluoride at MW2-90, chloride at MW-

105, and sulfate and TDS at MW-104) were identified. Field data sheets and analytical laboratory reports for detection monitoring sampling is included in Appendix A.

An Appendix III ASD was conducted on the verified SSIs and was able to successfully demonstrate that a natural variation in groundwater quality resulted in the SSIs, as allowed by §257.94(e)(4). The Alternative Source Demonstration: September 2019 Event Report is included in Appendix B.

2.4.2 April 2020 Detection Monitoring Event

Groundwater samples were collected from all 12 monitoring wells at the Site on March 30-April 6, 2020. Three potential SSIs (chloride at MW-105 and sulfate and TDS at MW-104) were identified. Field data sheets and analytical laboratory reports for detection monitoring sampling and verification resampling are included in Appendix A.

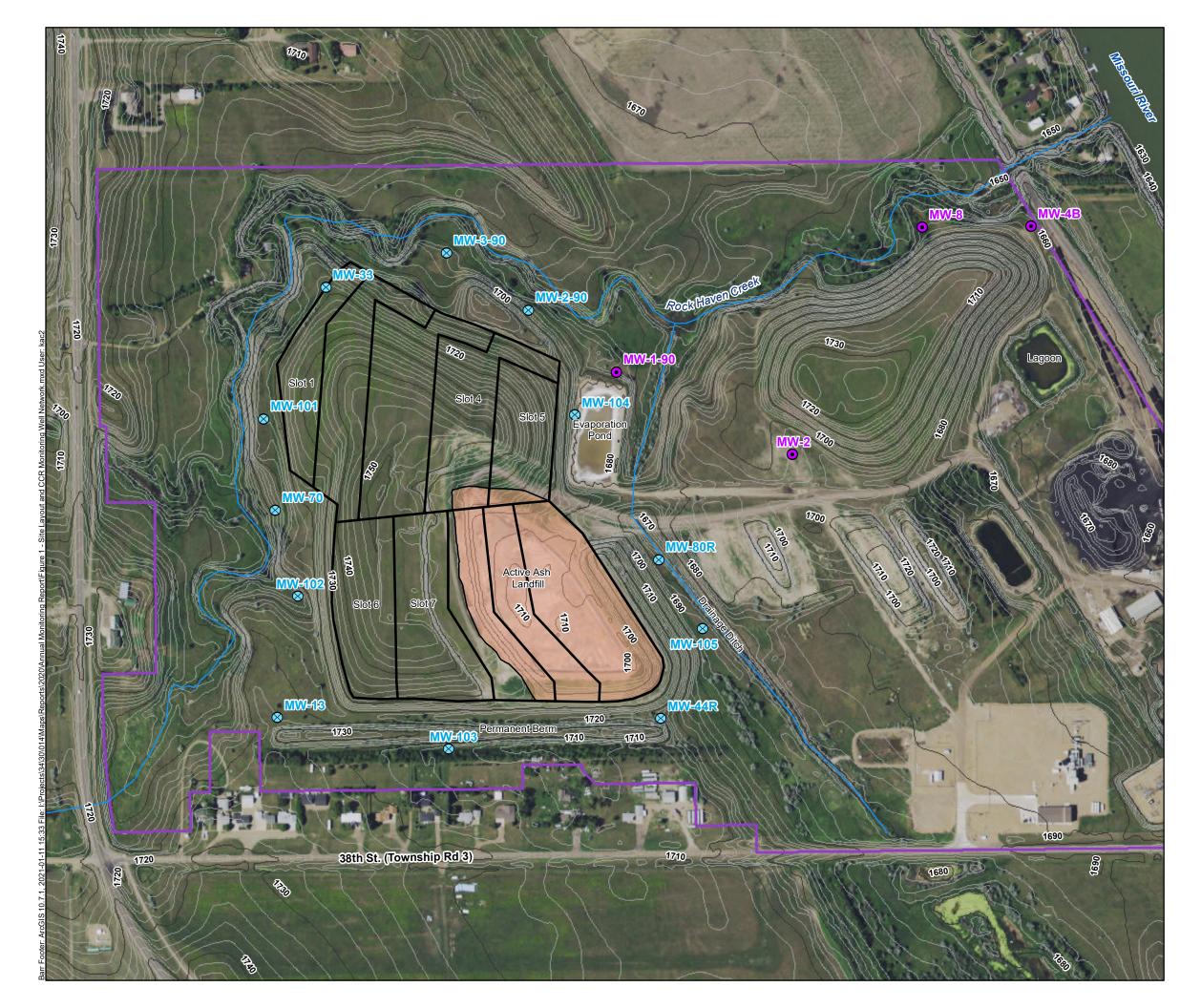
An Appendix III ASD was conducted on the verified SSIs and was able to successfully demonstrate that a natural variation in groundwater quality and/or "a source other than the CCR unit" resulted in the SSIs, as allowed by §257.94(e)(4). The Alternative Source Demonstration: April 2020 Event is included in Appendix B.

2.4.3 September 2020 Detection Monitoring Event

Groundwater samples were collected from all 12 monitoring wells at the Site on September 14-16, 2020. Four potential SSIs (fluoride at MW2-90, chloride at MW-105, and sulfate and TDS at MW-104) were identified. Field data sheets and analytical laboratory reports for detection monitoring sampling are included in Appendix A.

2.5 Activities for Upcoming Year

The following key activities for analytical results and statistical evaluations are planned for 2020:


- Complete ASD evaluation for the September 2020 detection monitoring event in accordance with the Statistical Certification (Barr, 2017b).
- Evaluate analytical results from 2021 semi-annual detection monitoring events for SSIs according to the Statistical Certification (Barr, 2017b).

3.0 References

Barr Engineering Co. (Barr), 2017a, Groundwater Monitoring System Certification, October 2017.

Barr, 2017b, Statistical Method Selection Certification, October 2017.

Figure

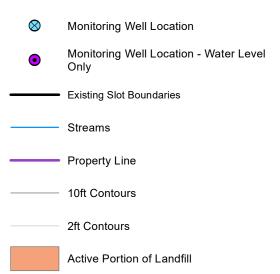
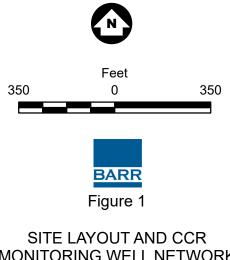



Image Source: 2020 Statewide Imagery (ND GIS Hub)

CAD Data Source: Slot Linework.dwg

MONITORING WELL NETWORK R. M. Heskett Station 2020 Annual Groundwater Monitoring and Corrective Action Report Montana Dakota Utilities Mandan, North Dakota

Appendix A

Laboratory Reports and Field Sheets

APP III

CERTIFICATE of ANALYSIS - CCR

Todd Peterson Montana-Dakota Utilities Co. 400 N 4th St Bismarck ND 58501

Project Name: MDU Heskett Active Ash Sample Description: 13

Event and Year: Spring 2020

Page: 1 of 8

Report Date: 23 Apr 20 Lab Number: 20-W540 Work Order #: 82-0721 Account #: 002800 Date Sampled: 30 Mar 20 9:51 Date Received: 31 Mar 20 14:40 Sampled By: MVTL Field Servies

Temp at Receipt: 1.6C ROI

	As Recei [.] Result	ved	Method RL	Method Reference	Date Analyzed	Analyst
pH - Field pH Temperature - Field Conductivity - Field Fluoride Sulfate Chloride Total Dissolved Solids Calcium - Total Boron - Total	7.01 * 7.2 7.72 10325 0.94 7280 77.5 10700 430 0.54	units Degrees C umhos/cm mg/l mg/l mg/l mg/l mg/l mg/l	NA 0.1 NA 1 0.10 5.00 1.0 10 1.0 0.10	SM 4500 H+ B SM4500 H+ B SM 2550B EPA 120.1 SM4500-F-C ASTM D516-11 SM4500-C1-E I1750-85 6010D 6010D	30 Mar 20 9:51 31 Mar 20 17:00 30 Mar 20 9:53 30 Mar 20 9:53 31 Mar 20 9:51 31 Mar 20 17:00 1 Apr 20 9:47 1 Apr 20 12:09 2 Apr 20 13:45 22 Apr 20 9:12 8 Apr 20 10:22	 HT JSM JSM HT EV EV HT MDE

* Holding time exceeded

Approved by:

(r 29-Ar 2020 Clauditte K. Canto

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

CERTIFICATION: ND # ND-00016

Page: 2 of 8

CERTIFICATE of ANALYSIS - CCR

Todd Peterson Montana-Dakota Utilities Co. 400 N 4th St Bismarck ND 58501

Project Name: MDU Heskett Active Ash Sample Description: Dup1

Event and Year: Spring 2020

Report Date: 23 Apr 20 Lab Number: 20-W541 Work Order #: 82-0721 Account #: 002800 Date Sampled: 30 Mar 20 Date Received: 31 Mar 20 14:40 Sampled By: MVTL Field Servies

Temp at Receipt: 1.6C ROI

	As Receive Result	ed	Method RL	Method Reference	Date Analyzed	Analyst
pH Fluoride Sulfate Chloride Total Dissolved Solids Calcium - Total Boron - Total	* 7.2 0.94 7620 78.4 10700 414 0.55	units mg/l mg/l mg/l mg/l mg/l mg/l	0.1 0.10 5.00 1.0 1.0 1.0 0.10	SM4500 H+ B SM4500-F-C ASTM D516-11 SM4500-C1-E I1750-85 6010D 6010D	31 Mar 20 17:00 31 Mar 20 17:00 1 Apr 20 9:47 1 Apr 20 12:09 2 Apr 20 13:45 3 Apr 20 13:55 8 Apr 20 10:21	HT EV EV HT MDE

* Holding time exceeded

Approved by:

15 K. Canrep 29 Apr 2020 Clauditte

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

CERTIFICATION: ND # ND-00016

Page: 3 of 8

CERTIFICATE of ANALYSIS - CCR

Todd Peterson Montana-Dakota Utilities Co. 400 N 4th St Bismarck ND 58501

Project Name: MDU Heskett Active Ash Sample Description: 102

Event and Year: Spring 2020

Report Date: 23 Apr 20 Lab Number: 20-W542 Work Order #: 82-0721 Account #: 002800 Date Sampled: 31 Mar 20 9:20 Date Received: 31 Mar 20 14:40 Sampled By: MVTL Field Servies

Temp at Receipt: 1.6C ROI

	As Recei Result	ved	Method RL	Method Reference	Date Analyzed	Analyst
pH - Field pH Temperature - Field Conductivity - Field Fluoride Sulfate Chloride Total Dissolved Solids Calcium - Total Boron - Total	6.88 * 7.1 7.35 9149 0.13 6220 5.6 9110 446 1.42	units Units Degrees C umhos/cm mg/l mg/l mg/l mg/l mg/l mg/l	NA 0.1 NA 1 0.10 5.00 1.0 10 1.0 0.10	SM 4500 H+ B SM4500 H+ B SM 2550B EPA 120.1 SM4500-F-C ASTM D516-11 SM4500-C1-E I1750-85 6010D 6010D	31 Mar 20 9:20 31 Mar 20 9:20 31 Mar 20 9:20 31 Mar 20 9:20 31 Mar 20 9:20 1 Apr 20 17:00 1 Apr 20 9:47 1 Apr 20 12:09 2 Apr 20 13:45 3 Apr 20 10:21	HT JSM JSM HT EV EV HT MDE

* Holding time exceeded

Approved by:

C JAA C DO DO Clauditte K. Canto

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

CERTIFICATION: ND # ND-00016

Page: 4 of 8

CERTIFICATE of ANALYSIS - CCR

Todd Peterson Montana-Dakota Utilities Co. 400 N 4th St Bismarck ND 58501

Project Name: MDU Heskett Active Ash Sample Description: 70

Event and Year: Spring 2020

Report Date: 23 Apr 20 Lab Number: 20-W543 Work Order #: 82-0721 Account #: 002800 Date Sampled: 31 Mar 20 10:55 Date Received: 31 Mar 20 14:40 Sampled By: MVTL Field Servies

Temp at Receipt: 1.6C ROI

	As Recei Result	ved	Method RL	Method Reference	Date Analyzed	Analyst
pH - Field pH Temperature - Field Conductivity - Field Fluoride Sulfate Chloride Total Dissolved Solids Calcium - Total Boron - Total	7.04 * 7.3 8.54 4133 0.35 2460 48.4 3970 381 0.45	units units Degrees C umhos/cm mg/l mg/l mg/l mg/l mg/l mg/l	NA 0.1 NA 1 0.10 5.00 1.0 10 1.0 0.10	SM 4500 H+ B SM4500 H+ B SM 2550B EPA 120.1 SM4500-F-C ASTM D516-11 SM4500-C1-E I1750-85 6010D 6010D	31 Mar 20 10:55 31 Mar 20 17:00 31 Mar 20 10:55 31 Mar 20 10:55 31 Mar 20 17:00 1 Apr 20 9:47 1 Apr 20 12:09 2 Apr 20 13:45 3 Apr 20 10:21	HT JSM JSM HT EV EV HT MDE

* Holding time exceeded

Approved by:

OGOG VY Clauditte K. Canto

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

CERTIFICATION: ND # ND-00016

Page: 5 of 8

CERTIFICATE of ANALYSIS - CCR

Todd Peterson Montana-Dakota Utilities Co. 400 N 4th St Bismarck ND 58501

Project Name: MDU Heskett Active Ash Sample Description: 101

Event and Year: Spring 2020

Report Date: 23 Apr 20 Lab Number: 20-W544 Work Order #: 82-0721 Account #: 002800 Date Sampled: 31 Mar 20 13:25 Date Received: 31 Mar 20 14:40 Sampled By: MVTL Field Servies

Temp at Receipt: 1.6C ROI

	As Recei Result	ved	Method RL	Method Reference	Date Analyzed	Analyst
pH - Field pH Temperature - Field Conductivity - Field Fluoride Sulfate Chloride Total Dissolved Solids Calcium - Total Boron - Total	$\begin{array}{c} 6.75 \\ * 7.0 \\ 10.8 \\ 4574 \\ 0.10 \\ 2860 \\ 16.7 \\ 4640 \\ 386 \\ 1.01 \end{array}$	units Units Degrees C umhos/cm mg/l mg/l mg/l mg/l mg/l mg/l	NA 0.1 NA 1 0.10 5.00 1.0 10 1.0 0.10	SM 4500 H+ B SM4500 H+ B SM 2550B EPA 120.1 SM4500-F-C ASTM D516-11 SM4500-CL-E I1750-85 6010D 6010D	31 Mar 20 13:25 31 Mar 20 17:00 31 Mar 20 13:25 31 Mar 20 13:25 31 Mar 20 17:00 1 Apr 20 9:47 1 Apr 20 9:47 2 Apr 20 13:45 3 Apr 20 13:55 8 Apr 20 10:21	HT JSM JSM HT EV EV HT MDE

* Holding time exceeded

Approved by:

29 Apr 2020 Clauditte K. Cantle

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

CERTIFICATION: ND # ND-00016

Page: 6 of 8

CERTIFICATE of ANALYSIS - CCR

Todd Peterson Montana-Dakota Utilities Co. 400 N 4th St Bismarck ND 58501

Project Name: MDU Heskett Active Ash Sample Description: 103

Event and Year: Spring 2020

Report Date: 23 Apr 20 Lab Number: 20-W545 Work Order #: 82-0721 Account #: 002800 Date Sampled: 30 Mar 20 11:36 Date Received: 31 Mar 20 14:40 Sampled By: MVTL Field Servies

Temp at Receipt: 1.6C ROI

	As Recei Result	ved	Method RL	Method Reference	Date Analyzed	Analyst
pH - Field pH Temperature - Field Conductivity - Field Fluoride Sulfate Chloride Total Dissolved Solids Calcium - Total	6.80 * 7.0 9.66 4963 0.13 2790 138 4500 545	units Units Degrees C umhos/cm mg/l mg/l mg/l mg/l	NA 0.1 NA 1 0.10 5.00 1.0 10 1.0	SM 4500 H+ B SM4500 H+ B SM 2550B EPA 120.1 SM4500-F-C ASTM D516-11 SM4500-C1-E I1750-85 6010D	30 Mar 20 11:36 31 Mar 20 17:00 30 Mar 20 11:36 30 Mar 20 11:36 31 Mar 20 17:00 1 Apr 20 9:47 1 Apr 20 12:44 2 Apr 20 13:45 3 Apr 20 13:55	HT EV EV HT
Boron - Total	0.11	mg/l	0.10	6010D	8 Apr 20 10:21	SZ

* Holding time exceeded

Approved by:

for 200 Clauditte K. Canto

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

CERTIFICATION: ND # ND-00016

Page: 7 of 8

CERTIFICATE of ANALYSIS - CCR

Todd Peterson Montana-Dakota Utilities Co. 400 N 4th St Bismarck ND 58501

Project Name: MDU Heskett Active Ash Sample Description: 44R

Event and Year: Spring 2020

Report Date: 23 Apr 20 Lab Number: 20-W546 Work Order #: 82-0721 Account #: 002800 Date Sampled: 30 Mar 20 13:07 Date Received: 31 Mar 20 14:40 Sampled By: MVTL Field Servies

Temp at Receipt: 1.6C ROI

	As Receive Result	ed	Method RL	Method Reference	Date Analyzed	Analyst
pH - Field pH Temperature - Field Conductivity - Field Fluoride	6.62 * 6.9 9.79 9077 0.71	units units Degrees C umhos/cm mg/l	NA 0.1 NA 1 0.10	SM 4500 H+ B SM4500 H+ B SM 2550B EPA 120.1 SM4500-F-C ASTM D516-11	30 Mar 20 13:07 31 Mar 20 17:00 30 Mar 20 13:07 30 Mar 20 13:07 31 Mar 20 17:00 15 Apr 20 8:40	JSM HT JSM JSM HT EV
Sulfate Chloride Total Dissolved Solids Calcium - Total Boron - Total	6870 227 10200 421 < 0.5 @	mg/l mg/l mg/l mg/l mg/l	5.00 1.0 10 1.0 0.10	ASIM D516-11 SM4500-Cl-E I1750-85 6010D 6010D	1 Apr 20 12:44 2 Apr 20 13:45 3 Apr 20 13:55 8 Apr 20 10:21	EV HT

* Holding time exceeded

Approved by:

29 Apr 2020 Clauditte K. Cantle

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

CERTIFICATION: ND # ND-00016

MVTL guarantees the accuracy of the analysis done on the sample submitted for testing. It is not possible for MVTL to guarantee that a test result obtained on a particular sample will be the same on any other sample unless all conditions affecting the sample are the same, including sampling by MVTL. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

(c

Page: 1 of 1

CERTIFICATE of ANALYSIS - CCR

Todd Peterson Montana-Dakota Utilities Co. 400 N 4th St Bismarck ND 58501

Project Name: MDU Heskett Active Ash Sample Description: FB1

Event and Year: Spring 2020

Report Date: 23 Apr 20 Lab Number: 20-W547 Work Order #: 82-0721 Account #: 002800 Date Sampled: 31 Mar 20 Date Received: 31 Mar 20 14:40 Sampled By: MVTL Field Servies

Temp at Receipt: 1.6C ROI

	As Recei Result	ved	Method RL	Method Reference	Date Analyzed	Analyst
рН	* 6.4	units	0.1	SM4500 H+ B	31 Mar 20 17:00	HT
Fluoride	< 0.1	mg/l	0.10	SM4500-F-C	31 Mar 20 17:00	HT
Sulfate	< 5	mg/l	5.00	ASTM D516-11	1 Apr 20 9:47	EV
Chloride	< 1	mg/l	1.0	SM4500-Cl-E	1 Apr 20 12:44	EV
Total Dissolved Solids	< 10	mg/l	10	I1750-85	2 Apr 20 13:45	HT
Calcium - Total	< 1	mg/l	1.0	6010D	3 Apr 20 14:55	MDE
Boron - Total	< 0.1	mg/l	0.10	6010D	8 Apr 20 11:21	SZ

* Holding time exceeded

Approved by:

CC 29 Aur 2120 Clauditte K. Cantlo

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

The reporting limit was elevated for any analyte requiring a dilution as coded below: @ = Due to sample matrix # = Due to concentration of other analytes ! = Due to sample quantity + = Due to internal standard response CERTIFICATION: ND # ND-00016

2616 E. Broadway Ave MVTL Bismarck, ND 58501 (701) 258-9720

Chain of Custody Record

Project Name:					Event:						Work Ord	er Number:	
	MDU Heskett					Spring 2020					82-0721		
Report To:Montana-Dakota UtilitiesAttn:Todd PetersonAddress:400 North 4th St. Bismarck, ND 58501Phone:701-425-2427Email:todd.peterson@mdu.com											Collected		
Lab Number	Sample ID	Date Date	lime	Samor	ant and	Sne Rau	202 11 11	250 Min.	¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹	Spec. Con.	ia. 110		Analysis Required
WS40	13	30 Har 2020	0951	GW		Х	Х	X	7.72	10325	7.01		
W54)	Dup1	30 Mar 2020	NA	GW	X	Х	Х	X	NA	NA	NA		
W542	102	31 Mar 2020	0920	GW	X	X	Х	X	7.35	9149	6.88		
W543	70	31 Mar 2020	1055	GW	X	X	Х	X	8.54	4133	7.04		
W544	101	31 Mar 2020	1325	GW	X	Х	Х	X	10,78	4574	6,75		MDU List AA & MDU List
N545	103	30 Mar 2020	(136	GW	X	Х	Х	X	9.66	4963	6.80		- C
I ICINIA	44R	30 Mar 2020	1307	GW	X	Х	X	X	9,79	9077	6.62		1
WG16													

Comments:

				L		
Relinquished By		Sample (Condition	F	Received By	
Name _n	Date/Time	Location	Temp (°C)	Name		Date/Time
$1 \qquad - 1 \qquad $	31 Mar 2020 1440	رلمو لائر Walk In #2	Po1 66 TNT562/TM805	Eiliden	31100000	
2				y zone		

Groundwater Assessment

Company:	MDU Heskett	
Event:	Spring 2020	
Sample ID:	MW 13	
Sampling Personal:	Jan Hey-	

2616 E. Broadway Ave, Bismarck, ND

Phone: (701) 258-9720

Weather Conditions:	Temp:	35 °F	Wind:	N@ 5=10	Precip:	Sunny /Partly Cloudy / Cloudy
WELL	INFORMATION				SAMPLING I	NFORMATION

WELEINTONNATION										
YES	, NFQ									
(YES)	NO									
(YÉS)	NO									
YES	(NO)	Not Visible								
	~									
g Diameter:	2"									
efore Purge:	29.31	ft								
pth of Well:		ft								
ell Volume:		liters								
op of Pump:	·	ft								
ter Sample:	29.6	り ft								
nt Method:	Electric Wa	ter Level Indicator								
	YES (YES) (YES)	YES NO YES NO YE								

SAMI	PLING II	V
Bladder		
Bladder		
(TES)	NO	
YES	NO	
Duel		
	Bladder Bladder YES	Bladder (TES NO

ON	
Control Settin	ngs:
Purge: 3	Sec.
Recover: 27	Sec.
PSI: 20	

Bottle List:	
1 Liter Raw	
500mL Nitric	
500mL Nitric (filtered)	
250mL Sulfuric	

FIELD READINGS

Stabilization Para	ameters	Temp.	Spec.		DO	ORP	Turbidity	Water Level	Pumping	Liters	Appearance or Comment	
(3 Consecutive)		(°C)	Cond.	рН	(mg/L)	(mV)	(NTU)	water Lever	Rate	Removed	Clarity, Color, Odor, Ect.	
Purge Date	Time	±0.5°	±5%	±0.1	±10%	±10		(ft)	mL/Min		clear, slightly turbid, turbid	
30 Mar 2020	0826	Start of Wel	l Purge		-							
30 100 0000	0331	5.68	10172	698	8,22	258,9	34.9	29,40	100.0	500.0	Clear	
	0901	7.26	10288	7.02	8.60	249.8	7.66	29,59	100,0	3000.0	Clear	
	0921	7.41	10292	7.03	8.09	250,8	8,72	29,65	100,0	2000.0	Clas	
	0931	7.56	10303	7.01	7.80	256.0	5.83	29.69	100.0	1000.0	Clear	
	0936	7.63	10315	7.02	7.86	257.5	5.36	29,72	100.0	500.0	Clear	
	0941	7.67	10314	7.01	8.03	258,6	3.93	29,72	100.0	500.0	Clash	
	0946	7.69	10330	7.01	7.92	256.2	4.11	29.71	100,0	500.0	Clear	
	0951	7.72	10325	7.01	7.87	251.3	4,23	29.72	100,0	500.0	Clean	
	Well St	tabilized?	(FES)	NO				Total Vo	lume Purged:	<u>BS00.0</u>	Liters	
Comula Doto	Time	Temp.	Spec.				Turbidity	Τ	77.		Appearance or Comment	
Sample Date	Time	(°C)	Cond.	рН	1		(NTU)				Clarity, Color, Odor, Ect.	
304202020	6951	7 77	10325	701			423				Clear	

SUPPER LOW	0151	4.10	10307	4.01	7,2	>		~~~	
Comments:									

Groundwater Assessment

Company:	MDU Heskett	
Event:	Spring 2020	
Sample ID:	102	
Sampling Personal:	Jenen Khan	

2616 E. Broadway Ave, Bismarck, ND

Phone: (701) 258-9720

Neather Conditions	5:	Temp:	35	°F	Wind:	N	@ 5-1	U	Precip:	Sunny / R	artly Cloudy / Cloudy
	WELL INF	ORMATIO	N		_			SAN	IPLING IN	FORMATI	ON
Vell Locked?	YES	010				Purging Me	ethod:	Bladder]	Control Settings:
Vell Labeled?	XES	NO				Sampling N		Bladder			Purge: 3 Se
Casing Strait?	VES	NO			1	Dedicated	Equipment?	YES	NO		Recover: 2-7 Se
Grout Seal Intact?	YES	NO	Not	Visible	_	r				-	PSI: 20
Repairs Necessary?						Duplicate S		YES	(No	-	
	ng Diameter		2"		4	Duplicate S	ample ID:			J	
Water Level B			5,01	ft	-					-	
	epth of Well			ft	_		Botti	e List:		4	
	Vell Volume			liters	4	1 Liter Raw					
-	op of Pump			ft	4	500mL Nitrio					
Water Level A			6.48	ft	4	500mL Nitrio	•				
Measurem	ent Method	: Electric	Water Leve	Indicator		250mL Sulfu	ric	<u> </u>]	
					FIE	LD READIN	NGS			mC	
Stabilization Para	meters	Temp.	Spec.	pH	DO	ORP	Turbidity	Water Level	Pumping	Liters	Appearance or Comment
(3 Consecutiv		(°C)	Cond.		(mg/L)	(mV)	(NTU)		Rate	Removed	Clarity, Color, Odor, Ect.
Purge Date	Time	- ±0.5° -	±5%	±0.1	±10%	±10		(ft)	mL/Min		clear, slightly turbid, turbid
3 Mar 2020	0530	Start of We									
2 15 May -	0835	6.64	9392	6.90	5.46	44.9	9.73	15.97	100.0	500.0	Clear
	0905	6.94	924B	6.90	6.23	55.2	292	16.16	100.0	300,0	llear
	6910	7.07	9215	6.89	7.31	59.5	1.97	16.23	100	500.0	Clear
	0915	7.20	9173	6.87	7.29	61.4	2.08	16.25	100.0		Clear
	0920	7,35	9149	6:88	7.32	62,3	1.89	16,29	1000	500.0	Clear
									10		
				+							
	.I Well St	Labilized?	YES	NO	1	I		Total Vol	ume Purged	5000.0	Liters mi
			T		1	1				<u></u>	-
	Time	Temp.	Spec.	рН			Turbidity				Appearance or Comment
Sample Date	1	(°C)	Cond.				(NTU)				Clarity, Color, Odor, Ect.
Sample Date	0120	7.35	9149	6.88			1,89				Clear

Groundwater Assessment

Company:	MDU Heskett
Event:	Spring 2020
Sample ID:	70
Sampling Personal:	Jerry by
	6 · · · ·

2616 E. Broadway Ave, B	lismarck, ND							Sampling F	Personal:	V	long luga
Phone: (701) 258 Weather Conditions		Tompi		°۲	Wind:			0	Dracini	Suppy / D	Suthy Cloudy
weather Conditions	.	Temp:	40	F	wind.		0 10-19	5	Precip:	Sunny / R	artly Cloudy / Cloudy
		ORMATIC	<u>N</u>		-				IPLING IN	FORMATI	ON
Vell Locked?	YES	NO				Purging Me		Bladder			Control Settings:
Well Labeled?	VES	NO			_	Sampling N		Bladder			Purge: 3 See
Casing Strait?	YES	NO			_	Dedicated	Equipment?	YES	NO		Recover: 27 Se
Grout Seal Intact?	(YES)	NO	Not \	Visible	4					-	PSI: 20
Repairs Necessary?		1	- 11		_	Duplicate S		YES	<u>NO</u>	4	
	ng Diameter		2"	- 24	4	Duplicate S	ample ID:			_	
Water Level B			9.43	ft ft	4					7	
	epth of Well Vell Volume			liters	-		Botti	e List:		4	
	op of Pump			ft	-	1 Liter Raw 500mL Nitrio					
Water Level A			0.68	ft	-	500mL Nitrio					
	ent Method		Water Level		-	250mL Sulfu	•				
Measurenn	ent methou		Water Level	malcator]	
Stabilization Para	motors	Toma	- Croc			LD READI	Turbidity	T	Pumping	nL Liters	
(3 Consecutiv		Temp. (°C)	Spec. Cond.	рН	(mg/L)	(mV)	(NTU)	Water Level	Rate	Removed	Appearance or Comment Clarity, Color, Odor, Ect.
Purge Date	Time	±0.5°	±5%	±0.1	±10%	±10	(110)	(ft)	mL/Min	Kennoved	clear, slightly turbid, turbid
31 Mar 2020	1005	Start of We				1	1		,,		
	1010	7.79	4753	7.06	5.65	75.5	3,20	19,75	100.0	500.0	Clier
	1040	8,22	4135	7.07	3.93	149.5	3.84	20.50	1000	3000.0	Clez
	1045	8.28	4125	7.02	3.63	153.3	1.86	20,53	1000	500.0	Clean
	1050	8.44	4135	7.05	3,82	154.9	1.49	20,56	100.0	500.0	clas
	1055	8.54	4133	7,04	3.84	155,0	1,16	20.60	100.0	500.0	Clear
							<i>r</i>				
		ļ									
	l Well St	abilized?	YÈS	INO	<u> </u>			Total Vo	ume Purged:	500.0	Litersm L
		- <u>-</u>	Spec.	1	Τ		Turbidity				-
Sample Date	Time	Temp. (°C)	Cond.	рН			(NTU)				Appearance or Comment Clarity, Color, Odor, Ect.
	1		4133	7.04	1	_	1,16				Cles
31 Ma 2020	1055	8.54	17133	1 7.01	1		1110	1		1	

Groundwater Assessment

Company:	MDU Heskett
Event:	Spring 2020
Sample ID:	101
Sampling Personal:	Jern Man-
	1

2616 E. Broadway Ave, Bismarck, ND

Phone: (701) 258-9720

Weather Conditions:	Temp:	45	°F Wind:	N@ /0	o-15 Precip:	Sunny / Partly Clo	oudy / Cloudy

WELL INFORMATION							
Well Locked?	YES	NO					
Well Labeled?	XES	NÓ					
Casing Strait?	YES	NO					
Grout Seal Intact?	(YES)	NO	Not Visible				
Repairs Necessary?	U						
Casin	g Diameter:	2"					
Water Level Be	efore Purge:	35.2	26 ft				
Total De	pth of Well:		~ ft				
W	/ell Volume:		- liters				
Depth to To	op of Pump:		ft				
Water Level At	fter Sample:		3.91 ft				
Measureme	ent Method:	Electric Water Level Indicator					

Purging Method:	Bladder	
Sampling Method:	Bladder	
Dedicated Equipment?	YES	NO
Duplicate Sample?	YES	(NO
Duplicate Sample ID:		

TIC	ON	
	Control Settings:	
	Purge: 3	Sec.
	Recover: 27	Sec.

PSI: 40

Bottle List:	
1 Liter Raw	
500mL Nitric	
500mL Nitric (filtered)	
250mL Sulfuric	

					FIE	LD READIN	IGS			mc	
Stabilization Para	imeters	Temp.	Spec.	рН	DO	ORP	Turbidity	Water Level	Pumping	Liters-	Appearance or Comment
(3 Consecuti	ve)	(°C)	Cond.	рн	(mg/L)	(mV)	(NTU)	water Level	Rate	Removed	Clarity, Color, Odor, Ect.
Purge Date	Time	±0.5°	±5%	±0.1	±10%	±10		(ft)	mL/Min		clear, slightly turbid, turbid
31 Mar 2020	1140	Start of Wel									
•••	1,45	9,36	4624	6.77	5.67	126.0	61.6	36118	100.0	500.0	Clear
	1215	9.68	4595	6.73	3,34	110.4	18.4	38,12	100.0	300.0	Clear
	1245	9.90	4577	6,73	4.53	110.1	7.11	38,82	100.0	3000.0	Clear
	1300	10.15	4563	6.75	4.30	104.0	5.82	38,86	100.0	1500,0	Clear
	1315	10,52	4570	6,76	4.16	96.9	4.25	38,90	100.0	1500.0	Clear
	1320	10.77	4569	6.75	4.23	95.6	4.37	36,89	100,0	500.0	Clear
	1325	10,78	4574	6.75	4.39	95.1	4,24	38,90	[00.0	500.0	Clear
											· · · · · · · · · · · · · · · · · · ·
	ļ										
			<u> </u>		L						
	Well S	tabilized?	TES	NO				Total Vol	ume Purged:	10,50.0	LitersmL
Sample Date	Time	Temp.	Spec.	pH			Turbidity				Appearance or Comment
Sample Date	Inne	(°C)	Cond.	рп			(NTU)				Clarity, Color, Odor, Ect.
i Mar 2020	1325	10,78	4574	6.75			4.24				
omments:	T										
minents.											

Groundwater Assessment

Company:	MDU Heskett
Event:	Spring 2020
Sample ID:	/03
Sampling Personal:	- Screnny plays -

2616 E. Broadway Ave, Bismarck, ND

Phone: (701) 258-9720

Weather Conditions:	Temp:	40 °F	Wind:	N@5-10	Precip:	Sunny / Partly Cloudy / Cloudy
WELL	INFORMATION	· ·			SAMPLING I	NFORMATION

WELLINFORMATION										
YES										
YES	NO									
YES	NO									
YES	NO	Not Visible								
		The second se								
g Diameter:	2'	1								
efore Purge:	30,2	6 ft								
pth of Well:		、 ft								
/ell Volume:		liters								
op of Pump:		ft								
ter Sample:	31.4	46 ft								
ent Method:	Electric W	/ater Level Indicator								
	YES YES YES YES g Diameter: efore Purge: pth of Well: /ell Volume: op of Pump: ter Sample:	YES NO YES NO YE								

SAM	PLING IN
Bladder	
Bladder	
(YES)	NO
\sim	
YES	(NIO
	Bladder Bladder YES

ON	
Control Setti	ngs:
Purge: 3	Sec.
Recover: 27	Sec.
PSI: 30	

Bottle List:
1 Liter Raw
500mL Nitric
500mL Nitric (filtered)
250mL Sulfuric

FIELD READINGS

Stabilization Para	meters	Temp.	Spec.	рН	DO	ORP	Turbidity	Water Level	Pumping	Liters	Appearance or Comment	
(3 Consecutiv	ve)	(°C)	Cond.	pri	(mg/L)	(mV)	(NTU)	Water Lever	Rate	Removed	Clarity, Color, Odor, Ect.	
Purge Date	Time	-±0.5°	±5%	±0.1	±10%	±10		(ft)	mL/Min		clear, slightly turbid, turbid	
30Mar 2020	1046	Start of Wel	art of Well Purge									
501124 0000	1051	7.63	5940	6.83	626	210.4	4.93	30.79	100.0	500.0	Clear	
	1121	9.26	4988	6,79	6.34	227.6	1,79	31.25	100.0	3000.0	Clas	
	1126	9,13	4996	6.79	5.68	230.B	1.94	31.32	100.0	5000	Clear	
	1131	9.40	4974	6.79	5,79	233,6	1.72	31.38	100.0	500.0	Clim	
	1136	9.66	4963	6,80	5,54	234.9	1.50	31.38	100.0	500.0	Clean	
	Well St	abilized?	YES	NO				Total Vol	ume Purged:	5000,0	Liters	
Sample Date	Time	Temp.	Spec.	nH			Turbidity				Appearance or Comment	
Sample Date	inne	(°C)	Cond.	рН			(NTU)				Clarity, Color, Odor, Ect.	
30 Mz 2020	1136	9.66	4963	6.80			1.50				Clear	
Comments:	1											

Weather Conditions:

Phone: (701) 258-9720

Depth to Top of Pump:

Measurement Method:

Water Level After Sample:

Field Datasheet

Groundwater Assessment

Wind:

aat	Company:		MDU Heskett					
leet	Event:		Spring 2020 44 R					
nt	Sample ID:							
	Sampling F	Personal:	Jerrybyer					
N@ 10-	15	Precip:	Sunny / Partly Cloudy / Clo	budy				
	SAN		NFORMATION					
Purging Method:	Bladder		Control S	ettings:				
Sampling Method:	Bladder		Purge: 3	Sec.				
Dedicated Equipment?	XES	NO	Recover: 27	Sec.				
			PSI: 30					
Duplicate Sample?	YES	TTO						
Duplicate Sample ID:								
Bottl	e List:							
1 Liter Raw								
500mL Nitric								

WELL INFORMATION Well Locked? YES NO YES Well Labeled? NO (YES) Casing Strait? NO Not Visible Grout Seal Intact? YES NO Repairs Necessary? Casing Diameter: 2" Water Level Before Purge: 24,71 ft Total Depth of Well: ft ____ liters Well Volume: -

Temp:

-

24,94

Electric Water Level Indicator

45

°F

ft

ft

		-	•	1
EI	D READIN	IGS		
	250mL Sulfu	ric		·

500mL Nitric (filtered)

					FIEI	LD READIN	IGS			mL	·
Stabilization Para	Stabilization Parameters		Spec.	рH	DO	ORP	Turbidity	Water Level	Pumping	Liters	Appearance or Comment
(3 Consecutiv	/e)	(°C)	Cond.	рп	(mg/L)	(mV)	(NTU)	water Lever	Rate	Removed	Clarity, Color, Odor, Ect.
Purge Date	Time	- <u>±0.5</u> °	±5%	±0.1	±10%	±10		(ft)	mL/Min		clear, slightly turbid, turbid
30 Mar 2020	1222	Start of Wel	l Purge								
301124 2000	1227	10.16	9006	6.7B	6.94	215.3	7.31	24.87	10.0	500.0	Cleer
	1257	9.76	9049	6.64	5.03	228,4	2,83	24,36	(00.0	3000.0	Clear
	1302	9.7B	9-59	6.63	5.25	233.4	2.91	24.BS	100:0	500.0	Clear
	1307	9.79	9059 9077	6.62	5.31	234.8	2.87	24.90	100.0	500.0	Clear
						1					
							·				
		1									
		I									
	Well St	abilized?	YES	NO		1		Total Vol	ume Purged:	4500.0	Liters mL
Sample Date	Time	Temp.	Spec.	Hq			Turbidity				Appearance or Comment
Sample Date	Time	(°C)	Cond.	μu			(NTU)				Clarity, Color, Odor, Ect.
30+12+2020	1307	9.78	9077	6.62			2.87				Clear

Comments:	
comments.	

MVTL

MINNESOTA VALLEY TESTING LABORATORIES, INC.

1126 N. Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 E. Broadway Ave. ~ Bismarck, ND 58502 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Highway ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

MEMBER **ACIL**

Page: 1 of 1

Quality Control Report

Lab IDs: 20-W540 to 20-W	LCS Spike Amt	LCS Rec %	LCS % Rec Limits	Matrix Spike Amt	ett Active Ash Matrix Spike ID	Matrix Spike Orig Result	Work Or Matrix Spike Result	Matrix Spike Rec %	Matrix Spike % Rec Limits	1	MSD/ Dup Result	MSD Rec %	MSD/ Dup RPD	MSD/ Dup RPD Limit (<)	Known Rec (%)	Known % Rec Limits	Method Blank
Boron - Total mg/l	$\begin{array}{c} 0.40\\ 0.40\\ 0.40\\ 0.40\\ 0.40\\ 0.40\\ \end{array}$	100 102 100 98 100	80-120 80-120 80-120 80-120 80-120	$\begin{array}{c} 0.400 \\ 4.00 \\ 0.400 \\ 0.400 \\ 0.400 \\ 0.400 \end{array}$	20-D980 20-M670 20-W543 20-W564 20-W578	0.30 1.49 0.45 0.12 < 0.1	0.68 4.67 0.80 0.46 0.39	95 80 88 85 98	75-125 75-125 75-125 75-125 75-125 75-125	0.68 4.67 0.80 0.46 0.39	0.66 4.59 0.80 0.48 0.39	90 78 88 90 98	3.0 1.7 0.0 4.3 0.0	20 20 20 20 20	- - - - -	- - - - -	
Calcium - Total mg/l	20.0 20.0 20.0 20.0	109 110 114 115	80-120 80-120 80-120 80-120	500 100 500 100 100	20W545q 20W547q 20W565q 20D1209q 20W724q	545 <1 362 50.1 94.8	980 104 910 140 183	87 104 110 90 88	75-125 75-125 75-125 75-125 75-125 75-125	980 104 910 140 183	990 104 865 141 183	89 104 101 91 88	1.0 0.0 5.1 0.7 0.0	20 20 20 20 20			< 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1
Chloride mg/l	30.0 30.0 30.0	92 92 91	80-120 80-120 80-120	30.0 30.0	20-W533 20-W545	1.4 138	28.9 167	92 97	80-120 80-120	28.9 167	28.7 167	91 97	0.7 0.0	20 20			< 1 < 1 < 1
Fluoride mg/l	0.50	106	90-110	0.500 0.500	20-D944 20-W544	1.94 0.10	2.48 0.59	108 98	80-120 80-120	2.48 0.59	2.49 0.59	110 98	0.4 0.0	20 20	-	-	< 0.1 < 0.1
pH units	-	-	-	-	-	-	-	-	-	8.1 7.2	8.1 7.3		0.0 1.4	20 20	-	-	-
Sulfate mg/l	100 100	102 106	80-120 80-120	100	20-W547	< 5	110	110	80-120	110	110	110	0.0	20	-		< 5
Total Dissolved Solids mg/l	-		-	-	-			-	-	1210 7700	1210 9000	-	0.0 15.6	20 20	-	-	< 10

Samples were received in good condition on 31 Mar 2020 at 1440.

Temperature upon receipt at the Bismarck laboratory was 1.6°C.

All samples were properly preserved unless noted here and/or flagged on the individual analytical laboratory report.

With the exception of pH, all holding times were met.

Approved methodology was followed for all sample analyses.

All acceptance criteria were met for calibration, method blanks, laboratory control samples, laboratory fortified matrix/duplicates unless noted here.

For some analytes, the reported results were elevated due to additional dilutions required to minimize the effects of sample matrix. Approved by: 29 Apr 30 30

APP III

CERTIFICATE of ANALYSIS - CCR

Todd Peterson Montana-Dakota Utilities Co. 400 N 4th St Bismarck ND 58501

Project Name: MDU Heskett Active Ash Sample Description: 33

Event and Year: Spring 2020

1 of 4 Page:

Report Date: 15 Apr 20 Lab Number: 20-W563 Work Order #: 82-0754 Account #: 002800 Date Sampled: 1 Apr 20 10:17 Date Received: 2 Apr 20 10:20 Sampled By: MVTL Field Services

Temp at Receipt: 5.3C ROI

	As Recei Result	ved	Method RL	Method Reference	Date Analyzed	Analyst
pH - Field pH Temperature - Field Conductivity - Field Fluoride Sulfate Chloride	6.61 * 7.1 6.65 5180 0.25 3460 14.2	units units Degrees C umhos/cm mg/l mg/l mg/l	NA 0.1 NA 1 0.10 5.00 1.0 10	SM 4500 H+ B SM4500 H+ B SM 2550B EPA 120.1 SM4500-F-C ASTM D516-11 SM4500-C1-E I1750-85	1 Apr 20 10:17 2 Apr 20 17:00 1 Apr 20 10:17 1 Apr 20 10:17 2 Apr 20 10:17 2 Apr 20 17:00 8 Apr 20 9:21 6 Apr 20 8:53 2 Apr 20 13:45	EV EV
Total Dissolved Solids Calcium - Total Boron - Total	5430 510 0.30	mg/l mg/l mg/l	1.0 0.10	6010D 6010D	3 Apr 20 14:55 8 Apr 20 11:21	

* Holding time exceeded

Approved by:

29 Aor 2120 Claudite K. Canto

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

CERTIFICATION: ND # ND-00016

= Due to concentration of other analytes
+ = Due to internal standard response

Page: 2 of 4

CERTIFICATE of ANALYSIS - CCR

Todd Peterson Montana-Dakota Utilities Co. 400 N 4th St Bismarck ND 58501

Project Name: MDU Heskett Active Ash Sample Description: 3-90

Event and Year: Spring 2020

Report Date: 15 Apr 20 Lab Number: 20-W564 Work Order #: 82-0754 Account #: 002800 Date Sampled: 1 Apr 20 11:21 Date Received: 2 Apr 20 10:20 Sampled By: MVTL Field Services

Temp at Receipt: 5.3C ROI

	As Recei Result	ved	Method RL	Method Reference	Date Analyzed	Analyst
pH - Field	6.94	units	NA	SM 4500 H+ B	1 Apr 20 11:21	
Hq	* 7.4	units	0.1	SM4500 H+ B	2 Apr 20 17:00	HT
Temperature - Field	6.50	Degrees C	NA	SM 2550B	1 Apr 20 11:21	JSM
Conductivity - Field	4365	umhos/cm	1	EPA 120.1	1 Apr 20 11:21	JSM
Fluoride	0.13	mg/l	0.10	SM4500-F-C	2 Apr 20 17:00	HT
Sulfate	2190	mg/l	5.00	ASTM D516-11	8 Apr 20 9:21	EV
Chloride	30.8	mg/l	1.0	SM4500-Cl-E	6 Apr 20 8:53	EV
Total Dissolved Solids	3900	mg/l	10	I1750-85	2 Apr 20 13:45	HT
Calcium - Total	386	mg/l	1.0	6010D	3 Apr 20 14:55	MDE
Boron - Total	0.12	mg/l	0.10	6010D	8 Apr 20 11:21	SZ

* Holding time exceeded

Approved by:

Claudite K. Canrep 39 Apr 2020

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

The reporting limit was elevated for any analyte requiring a dilution as coded below: @ = Due to sample matrix # = Due to concentration of other analytes ! = Due to sample quantity + = Due to internal standard response CERTIFICATION: ND # ND-00016

Page: 3 of 4

CERTIFICATE of ANALYSIS - CCR

Todd Peterson Montana-Dakota Utilities Co. 400 N 4th St Bismarck ND 58501

Project Name: MDU Heskett Active Ash Sample Description: Dup2

Event and Year: Spring 2020

Report Date: 15 Apr 20 Lab Number: 20-W565 Work Order #: 82-0754 Account #: 002800 Date Sampled: 1 Apr 20 Date Received: 2 Apr 20 10:20 Sampled By: MVTL Field Services

Temp at Receipt: 5.3C ROI

	As Recei Result	.ved	Method RL	Method Reference	Date Analyzed	Analyst
Н	* 7.4	units	0.1	SM4500 H+ B	2 Apr 20 17:0	0 HT
Fluoride	0.13	mg/l	0.10	SM4500-F-C	2 Apr 20 17:0	0 HT
Sulfate	2160	mg/l	5.00	ASTM D516-11	8 Apr 20 9:2	1 EV
Chloride	30.8	mg/l	1.0	SM4500-Cl-E	6 Apr 20 8:5	3 EV
Total Dissolved Solids	3920	mg/l	10	I1750-85	2 Apr 20 13:4	5 HT
Calcium - Total	362	mg/l	1.0	6010D	3 Apr 20 14:5	5 MDE
Boron - Total	0.12	mg/l	0.10	6010D	8 Apr 20 11:2	1 SZ

* Holding time exceeded

Approved by:

29 Apr 2020 Clauditte K. Cantle

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

The reporting limit was elevated for any analyte requiring a dilution as coded below: @ = Due to sample matrix # = Due to concentration of other analytes ! = Due to sample quantity + = Due to internal standard response CERTIFICATION: ND # ND-00016

Page: 4 of 4

CERTIFICATE of ANALYSIS - CCR

Todd Peterson Montana-Dakota Utilities Co. 400 N 4th St Bismarck ND 58501

Project Name: MDU Heskett Active Ash Sample Description: 2-90

Event and Year: Spring 2020

Report Date: 15 Apr 20 Lab Number: 20-W566 Work Order #: 82-0754 Account #: 002800 Date Sampled: 1 Apr 20 12:46 Date Received: 2 Apr 20 10:20 Sampled By: MVTL Field Services

Temp at Receipt: 5.3C ROI

	As Received Result		Method RL	Method Reference	Date Analyzed	Analyst
pH - Field	6.92	units	NA	SM 4500 H+ B	1 Apr 20 12:46	JSM
H	* 7.4	units	0.1	SM4500 H+ B	2 Apr 20 17:00	HT
Temperature - Field	6.54	Degrees C	NA	SM 2550B	1 Apr 20 12:46	JSM
Conductivity - Field	7245	umhos/cm	1	EPA 120.1	1 Apr 20 12:46	JSM
Fluoride	0.98	mg/l	0.10	SM4500-F-C	2 Apr 20 17:00	HT
Sulfate	5150	mg/l	5.00	ASTM D516-11	8 Apr 20 9:21	EV
Chloride	64.2	mg/l	1.0	SM4500-Cl-E	6 Apr 20 8:53	EV
Total Dissolved Solids	7700	mg/l	10	I1750-85	2 Apr 20 13:45	HT
Calcium - Total	477	mg/l	1.0	6010D	3 Apr 20 15:55	MDE
Boron - Total	< 0.5 @	mg/l	0.10	6010D	8 Apr 20 11:21	SZ

* Holding time exceeded

Approved by:

Anr 2020 Clauditte K. Canrel

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

2616 E. Broadway Ave Bismarck, ND 58501 (701) 258-9720

Chain of Custody Record

Project Name:	Project Name:										Work Ord	er Number:	
	MDU H	leskett		Spring 2020					82-0754				
Report To: Attn: Address: Phone: Email:	ort To: Montana-Dakota Utilities n: Todd Peterson lress: 400 North 4th St. Bismarck, ND 58501 one: 701-425-2427				CC: CC: Collected By:					·			
Lab Number	Sample ID	Date	lime	Sample.	11. The	Son Ram	Son Min.	250 milling	^{Tentro} (°C)	Spec. Con.	in Ha		Analysis Required
W5103	33	1 Apr 2020	1017	GW	Х		X		6.65	5180	6.61		
NSGA	3-90	1 Ap- 2020	1121	GW	Х	X	X	X	6.50	4365	6.94]
W565	Dup2	1 Ap-2020	NA	GW	Х	X	Х	X	NA	NA	NA]
wsuce	2-90	1 Apr 2020	1246	GW	Х	Х	Х	X	6.54	7245	6.92		MDU List AA & MDU List
													- c
													-

Comments:

Relinquished By	Sample (e Condition Received By				
Name	Date/Time	Location	Temp (°C)	Name		Date/Time
1 - ch	2 Apr 2020 1020	∠Log-In` Walk In #2	ροι 5.3 TM562/TM805	Elyddam	2AD 22	1020
2				5		

Groundwater Assessment

MDU Heskett
Spring 2020
33
Jen Hon-

2616 E. Broadway Ave, Bismarck, ND

Neather Conditions:	:	Temp:	35	°F	Wind:	2	@ 5-10	>	Precip:	Sunny / Pa	artly Cloudy / Cloudy
		ORMATIO					· · ·		IPLING IN	FORMATI	ON
Well Locked?	YES	NÔ			7	Purging Me	thod:	Bladder		1	Control Settings:
Well Labeled?	¥ES	ŇÔ			1	Sampling N		Bladder			Purge: 3 Se
Casing Strait?	YES	NO					Equipment?	YES	NO		Recover: 27 Se
Grout Seal Intact?	YES	NO Not Visible								-	PSI: 3つ
Repairs Necessary?			<u></u>			Duplicate S	ample?	YES	NØ]	
Casin	g Diameter:	2	2"			Duplicate S	ample ID:				
Water Level Be	fore Purge:	39,0	05	ft							
Total De	pth of Well:	<u> </u>	<u>`</u>	ft			Bottl	e List:			
	'ell Volume:	<u> </u>	•	liters		1 Liter Raw					
Depth to To	op of Pump:		-	ft		500mL Nitrio					
Water Level Af	Water Level After Sample: 39.16 ft 500mL Nitric (filtered)										
Measureme	nt Method:	Electric V	Water Level	Indicator		250mL Sulfu	ric			J	
					FIE	LD READIN	IGS				
Stabilization Paran	neters	Temp.	Spec.	T	DO	ORP	Turbidity		Pumping	Litersm	Appearance or Comment
(3 Consecutive	2)	(°C)	Cond.	рН	(mg/L)	(mV)	(NTU)	Water Level	Rate	Removed	Clarity, Color, Odor, Ect.
Purge Date	Time	±0.5°	±5%	±0.1	±10%	±10		(ft)	mL/Min		clear, slightly turbid, turbid
1 Apr 2020		Start of Well									
(//(*	0632	7.04	5195	6.60	8.03	103.4	42.4	39,16	(<i>0</i> 0.7	500.0	Cleer
	0902	6.57	51B2	662	7.81	107.1	Zullo	39,13	100.0	3002.0	Clan
	0932	6.78	5165	6.63	9.17	109.9	16.6	39,11	100.0	3000.0	Clea
	1002	6.75	5180	6.62	8.27	117.3	11.9	39.16	100.0	3000.0	Clea
	1007	6.59	5183	6.62	8.21	118.6	6.59	39.15	100.0	500.0	Clan
	1012	6.63	5184	6.60	8,33	120.1	6.25	39,17	1000	500.0	clas
	1017	6.65	5180	6.61	6,55	120.9	6.33	39,16	100.0	500.0	Clean
}											
	Well Sta	abilized?	TES	NO		.1	I	Total Vol	ume Purged:	11,000.0	-titersme
Sample Date	Time	Temp.	Spec.	рН			Turbidity	:			Appearance or Comment
Jampie Date		(°C)	Cond.				(NTU)				Clarity, Color, Odor, Ect.
Apr 2020	1017	6.65	5180	6.61	1	1	6.33	1 1		1	Cles

1 Apr 2020	1017	6.65	SIBO	6.61	6:33	Cles .
Comments:						

Field Datasheet

Groundwater Assessment

Company:	MDU Heskett
Event:	Spring 2020
Sample ID:	3-90
Sampling Personal:	Joremy Ver-

2616 E. Broadway Ave, Bismarck, ND

Weather Conditions	:	Temp:	40	°F	Wind:	N	<u>, </u>	-10	Precip:	Sunny / Pa	artly Cloudy / Cloudy
	WELL INF	ORMATIO	N					SAN	IPLING IN	FORMATI	ON
Well Locked?	YES	NO>			7	Purging Method: Bladder				Control Settings:	
Well Labeled?	YES	NO				Sampling N	lethod:	Bladder			Purge: 3 Se
Casing Strait?	(YES)	NO	-			Dedicated	Equipment?	YES	NO		Recover: 27 Se
Grout Seal Intact?	YES	NO	Not V	Visible						-	PSI:
Repairs Necessary?						Duplicate S		VES	NO		
Casin	ng Diameter:		2"			Duplicate S	ample ID:	Dup 2	-		
Water Level B			1.53	ft				L		-	
	pth of Well:	-		ft			Bott	le List:			
	Vell Volume:	-		liters		1 Liter Raw					
	op of Pump:			ft		500mL Nitrio					
Water Level A			7.62	ft	4	500mL Nitrio					
Measureme	ent Method:	Electric	Water Level	Indicator		250mL Sulfu	ric				
					FIE	LD READIN	IGS				
Stabilization Parar	meters	Temp.	Spec.		DO	ORP	Turbidity	Water Level	Pumping	Liters Removed	Appearance or Comment
(3 Consecutiv	re)	(°C)	Cond.	рН	(mg/L)	(mV)	(NTU)		Rate	Removed	Clarity, Color, Odor, Ect.
Purge Date	Time	<u>⁺±0.5</u> °	±5%	±0.1	±10%	±10		(ft)	mL/Min		clear, slightly turbid, turbid
Apr 2020	1051	Start of Wel			_						
	1056	6.15	4456	6.97	7.10	134.6	4.42	17.56	100.0	500.0	Cleer
	1106	6.40	4386	6.95	6.99	113.0	5,09	17.60	100.0	5000.0	cles
	1116	6.44	4365	6.94	7.16	108.8	4.95	17.58	100.0	(000. 0	Clear
	1121	6.50	4365	6.94	7.12	105.5	4.86	17.60	100.0	500.0	Cles
		<u> </u>	\bot		<u> </u>						111
	Well Sta	abilized?	YES	NO				lotal vol	ume Purged:	3000.0	Liters mc
Sample Date	Time	Temp.	Spec.	pН			Turbidity				Appearance or Comment
Sample Date	Tune	(°C)	Cond.	l :			(NTU)				Clarity, Color, Odor, Ect.
1 Apr 2020	1121	6.50	4365	6.94			4.86			1	Cles

Field Datasheet

Groundwater Assessment

Company:	MDU Heskett
Event:	Spring 2020
Sample ID:	2-90
Sampling Personal:	Jerry Maya

2616 E. Broadway Ave, Bismarck, ND

	WELL INFO	ORMATIO	N					SAM	PLING IN	FORMATIC	ON .
Vell Locked?	YES	NØ			1	Purging Method: Bladde					Control Settings:
Vell Labeled?	YES	NO			1	Sampling N		Bladder			Purge: ? Se
Casing Strait?	YES	NO				Dedicated I	quipment?	\YES ∕	NO		Recover: 27 Se
Grout Seal Intact?	YES	NO	Not	Tisible						-	PSI: 20
Repairs Necessary?						Duplicate S		YES	(NO)]	
	ng Diameter:) ¹¹			Duplicate S	ample ID:		-	J	
Water Level B			48	ft				<u></u>		•	
Total De	epth of Well:		-	ft			Bottl	e List:			
	Vell Volume:			liters		1 Liter Raw					
	op of Pump:			ft		500mL Nitric					
Water Level A			1.08	ft		500mL Nitric	• •				
Measurem	ent Method:	Electric V	Water Level	Indicator		250mL Sulfu	ric]	
					FIE	LD READIN	IGS				
Stabilization Para	meters	Temp.	Spec.		DO	ORP	Turbidity	Water Level	Pumping	Liters Removed	Appearance or Comment
(3 Consecutiv	/e)	(°C)	Cond.	рН	(mg/L)	(mV)	(NTU)		Rate	Removed	Clarity, Color, Odor, Ect.
Purge Date	Time	±0.5°	±5%	±0.1	±10%	±10		(ft)	mL/Min	<u> </u>	clear, slightly turbid, turbid
1 Apr 2020	10.0	Start of Well	Purge					<u> </u>			
(, ((, , , , , , , , , , , , , , , , ,	1221	5.52	7152	7.04	10,76	130.2	6.45	20,80	100.00	5000	Clez
	1231	6.73	7293	6.92	10.05	153.6	3,37	21.01	100.0	1000,0	Clear
	1236	6.67	7279	6.92	9.92	137.9	2.28	21.15	100 C	500.0	clear
	1241	6154	7261	6.92	10.05	135.2	1.87	21.07	1020	500.0	Chiza
	1246	6.54	7245	6.92	10.13	129.8	1.82	21.06	10.0	500.0	Clean
										ļ	
		L						 		ļ	
											<u> </u>
	ļ			<u> </u>		-	<u> </u>				
	1	<u> </u>		<u> </u>				Tatal)(a)	una Durgad	2	Liters m L
	Well St	abilized?	YES	NO				IOT ISTOL	ume Purged:	5000.0	
Sample Date	Time	Temp.	Spec.	рН			Turbidity				Appearance or Comment
Samue Date	1246	(°C)	Cond.				(NTU)				Clarity, Color, Odor, Ect.
		6.54	7-245	6.92		1	1.82	1		1	

MVTL

MINNESOTA VALLEY TESTING LABORATORIES, INC.

1126 N. Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 E. Broadway Ave. ~ Bismarck, ND 58502 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Highway ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

MEMBER ACIL

Page: 1 of 1

Quality Control Report

Lab IDs: 20-W563 to 20-W Analyte	LCS Spike Amt	LCS Rec %	LCS % Rec Limits	Matrix Spike Amt	Matrix Spike ID	Matrix Spike Orig Result	Matrix Spike Result	Matrix Spike Rec %	Matrix Spike % Rec Limits	MSD/ Dup Orig Result	MSD/ Dup Result	MSD Rec %	MSD/ Dup RPD	MSD/ Dup RPD Limit (<)	Known Rec (%)	Known % Rec Limits	Method Blank
Boron - Total mg/l	0.40 0.40	98 100	80-120 80-120	0.400 0.400	20-W564 20-W578	0.12 < 0.1	0.46 0.39	85 98	75-125 75-125	0.46 0.39	0.48 0.39	90 98	4.3 0.0	20 20			< 0.1 < 0.1 < 0.1
Calcium - Total mg/l	20.0 20.0	115 117	80-120 80-120	100 500 500	20W547q 20W565q 20W566q	< 1 362 477	104 910 960	104 110 97	75-125 75-125 75-125	104 910 960	104 865 970	104 101 99	0.0 5.1 1.0	20 20 20	- - -	- - -	< 1 < 1 < 1 < 1 < 1
Chloride mg/l	30.0 30.0	91 91	80-120 80-120	30.0	20-W570	25.6	55.2	99	80-120	55.2	54.8	97	0.7	20	-	-	< 1 < 1
Fluoride mg/l	0.50	106	90-110	0.500	20-W566	0.98	1.38	80	80-120	1.38	1.41	86	2.2	20	-	-	< 0.1
pH units	-	-	-	-	-	-		-	-	8.4 7.1	8.4 7.2		0.0 1.4	20 20	-	E 1	-
Sulfate mg/l	100	104	80-120	100	20-W555	18.3	121	103	80-120	121	120	102	0.8	20	-	-	< 5
Total Dissolved Solids mg/l			-	-	-	-				1210 7700	1210 9000		0.0 15.6	20 20	-	-	< 10

Samples were received in good condition on 2 Apr 2020 at 1020.

Temperature upon receipt at the Bismarck laboratory was 5.3°C.

All samples were properly preserved unless noted here and/or flagged on the individual analytical laboratory report.

With the exception of pH, all holding times were met.

Approved methodology was followed for all sample analyses.

All acceptance criteria were met for calibration, method blanks, laboratory control samples, laboratory fortified matrix/duplicates unless noted here.

For some analytes, the reported results were elevated due to additional dilutions required to minimize the effects of sample matrix. .

Approved by: _____ C. Canto MAyr 7770

APP III

CERTIFICATE of ANALYSIS - CCR

Todd Peterson Montana-Dakota Utilities Co. 400 N 4th St Bismarck ND 58501

Project Name: MDU Heskett Sample Description: 104

Event and Year: Spring 2020

Page: 1 of 4

Report Date: 23 Apr 20 Lab Number: 20-W575 Work Order #: 82-0773 Account #: 002800 Date Sampled: 6 Apr 20 11:32 Date Received: 6 Apr 20 12:22 Sampled By: MVTL Field Services

Temp at Receipt: 6.7C ROI

	As Recei Result	ved	Method RL	Method Reference	Date Analyzed	Analyst
pH - Field	6.96	units	NA	SM 4500 H+ B	6 Apr 20 11:32	JSM
pH	* 7.2	units	0.1	SM4500 H+ B	6 Apr 20 17:00	HT
Temperature - Field	8.32	Degrees C	NA	SM 2550B	6 Apr 20 11:32	JSM
Conductivity - Field	13655	umhos/cm	1	EPA 120.1	6 Apr 20 11:32	JSM
Fluoride	0.56	mg/l	0.10	SM4500-F-C	6 Apr 20 17:00	HT
Sulfate	10300	mg/l	5.00	ASTM D516-11	8 Apr 20 9:38	EV
Chloride	84.7	mg/l	1.0	SM4500-Cl-E	13 Apr 20 11:44	EV
Total Dissolved Solids	16500	mg/l	10	I1750-85	9 Apr 20 10:07	HT
Calcium - Total	460	mg/l	1.0	6010D	9 Apr 20 14:34	SZ
Boron - Total	0.82	mg/l	0.10	6010D	8 Apr 20 11:21	SZ

* Holding time exceeded

or 2120 Clauditte K. Cantle 29 Approved by:

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

Page: 2 of 4

CERTIFICATE of ANALYSIS - CCR

Todd Peterson Montana-Dakota Utilities Co. 400 N 4th St Bismarck ND 58501

Project Name: MDU Heskett Sample Description: 80R

Event and Year: Spring 2020

Report Date: 23 Apr 20 Lab Number: 20-W576 Work Order #: 82-0773 Account #: 002800 Date Sampled: 6 Apr 20 10:30 Date Received: 6 Apr 20 12:22 Sampled By: MVTL Field Services

Temp at Receipt: 6.7C ROI

	As Receiv Result	ed	Method RL	Method Reference	Date Analyzed	Analyst
pH - Field	7.10	units	NA	SM 4500 H+ B	6 Apr 20 10:3) JSM
H	* 7.3	units	0.1	SM4500 H+ B	6 Apr 20 17:0) HT
Temperature - Field	6.39	Degrees C	NA	SM 2550B	6 Apr 20 10:3) JSM
Conductivity - Field	5365	umhos/cm	1	EPA 120.1	6 Apr 20 10:3) JSM
Fluoride	0.26	mg/l	0.10	SM4500-F-C	6 Apr 20 17:0) HT
Sulfate	2960	mg/l	5.00	ASTM D516-11	8 Apr 20 9:3	B EV
Chloride	143	mg/l	1.0	SM4500-C1-E	13 Apr 20 11:4	4 EV
Total Dissolved Solids	5460	mg/l	10	I1750-85	9 Apr 20 10:0	7 HT
Calcium - Total	320	mg/l	1.0	6010D	9 Apr 20 14:3	4 SZ
Boron - Total	< 0.5 @	mg/l	0.10	6010D	8 Apr 20 11:2	1 SZ

* Holding time exceeded

Approved by:

or 2130 Clauditte K. Cantle

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

The reporting limit was elevated for any analyte requiring a dilution as coded below: @ = Due to sample matrix # = Due to concentration of other analytes ! = Due to sample quantity + = Due to internal standard response CERTIFICATION: ND # ND-00016

Page: 3 of 4

CERTIFICATE of ANALYSIS - CCR

Todd Peterson Montana-Dakota Utilities Co. 400 N 4th St Bismarck ND 58501

Project Name: MDU Heskett Sample Description: 105

Event and Year: Spring 2020

Report Date: 23 Apr 20 Lab Number: 20-W577 Work Order #: 82-0773 Account #: 002800 Date Sampled: 6 Apr 20 9:10 Date Received: 6 Apr 20 12:22 Sampled By: MVTL Field Services

Temp at Receipt: 6.7C ROI

	As Receiv Result	ed	Method RL	Method Reference	Date Analyzed	Analyst
pH - Field	6.82	units	NA	SM 4500 H+ B	6 Apr 20 9:10	JSM
pH	* 7.0	units	0.1	SM4500 H+ B	6 Apr 20 17:00	HT
Temperature - Field	5.49	Degrees C	NA	SM 2550B	6 Apr 20 9:10	JSM
Conductivity - Field	6201	umhos/cm	1	EPA 120.1	6 Apr 20 9:10	JSM
Fluoride	0.27	mg/l	0.10	SM4500-F-C	6 Apr 20 17:00	HT
Sulfate	4100	mg/l	5.00	ASTM D516-11	8 Apr 20 9:38	EV
Chloride	278	mg/l	1.0	SM4500-Cl-E	13 Apr 20 11:44	EV
Total Dissolved Solids	6400	mg/l	10	I1750-85	9 Apr 20 10:07	HT
Calcium - Total	361	mg/l	1.0	6010D	9 Apr 20 14:34	SZ
Boron - Total	< 0.5 @	mg/l	0.10	6010D	8 Apr 20 11:21	SZ

* Holding time exceeded

Approved by:

Arr DUDO Clauditte K. Cantle

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

CERTIFICATION: ND # ND-00016

Page: 4 of 4

CERTIFICATE of ANALYSIS - CCR

Todd Peterson Montana-Dakota Utilities Co. 400 N 4th St Bismarck ND 58501

Project Name: MDU Heskett Sample Description: FB2

Event and Year: Spring 2020

Report Date: 23 Apr 20 Lab Number: 20-W578 Work Order #: 82-0773 Account #: 002800 Date Sampled: 6 Apr 20 Date Received: 6 Apr 20 12:22 Sampled By: MVTL Field Services

Temp at Receipt: 6.7C ROI

	As Recei Result	ved	Method RL	Method Reference	Date Analyzed	Analyst
рН	* 5.9	units	0.1	SM4500 H+ B	6 Apr 20 17:00	HT
Fluoride	< 0.1	mg/l	0.10	SM4500-F-C	6 Apr 20 17:00	HT
Sulfate	< 5	mg/l	5.00	ASTM D516-11	8 Apr 20 9:38	EV
Chloride	< 1	mg/l	1.0	SM4500-Cl-E	13 Apr 20 11:44	EV
Total Dissolved Solids	< 10	mg/l	10	I1750-85	9 Apr 20 10:07	HT
Calcium - Total	< 1	mg/l	1.0	6010D	9 Apr 20 14:34	SZ
Boron - Total	< 0.1	mg/l	0.10	6010D	8 Apr 20 11:21	SZ

* Holding time exceeded

Approved by:

29 Apr X20 Clauditte K. Cantle

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

CERTIFICATION: ND # ND-00016

2616 Bisma (701)

2616 E. Broadway Ave Bismarck, ND 58501 (701) 258-9720

Chain of Custody Record

Project Name:				Event:							Work Ord	er Number:	
	MDU	leskett		Spring 2020					2020			82.	- (173
Report To:	Montana-Dakota Utilitie	es		CC:	CC:					Collected I			
Attn: Address: Phone: Email:	Todd Peterson 400 North 4th St. Bismarck, ND 58501 701-425-2427 todd.peterson@mdu.com	m									Jer	r hr	
Lab Number	Sample ID	Doite	Time	Samol	11. 100	Son Rain	200 July	250 Minic (m)	^{Tem} o (° _C)	Spec Conn	r, Ha		Analysis Required
WS75	104	6 Ap, 2020	1132	GW	X	X		X	8.32	13655	6.96		
W576	80R	6 Apr 2020	1030	GW	X	X	X	X	6.39	5365	7.10		
W577	105	6 Apr 2020	0910	GW	X	X	Х	X	5.49	6201	6.82		
W573	FB2	6 Apr 2020	NA	GW	X	Х	Х	x	NA	NA	NA		MDU List AA & MDU List
		,				- 1			4				- C
						р. П							
-													_
													4

Comments:

Relinquished By		Sample C	Condition	Re	ceived By
Nam¢	Date/Time	Location	Temp (°C)	Name	Date/Time
	6A1-2020	togh	R016, +	The AD	600000
Γ (γ γ γ γ	1222	Walk In #2	TM562>/ TM805	100 xa	1222
2					

Field Datasheet

Groundwater Assessment

Company:	MDU Heskett
Event:	Spring 2020
Sample ID:	104
Sampling Personal:	Jen May-

2616 E. Broadway Ave, Bismarck, ND

WELL INFORMATION SAMPLING INFORMATION	Weather Conditions:	Temp:	40 °F	Wind:	E@ 5-10	Precip:	Sunny / Partly Cloudy / Cloudy
WELL INFORMATION SAMPLING INFORMATION							
	W	ELL INFORMATION				SAMPLING IN	IFORMATION

Well Locked? YES (NO)											
YES	(NO)										
XES	NO										
YES	NO										
(YES)	NO	Not Visible									
\bigcirc											
g Diameter:	2'	1									
efore Purge:	12.0	₹Ø ft									
pth of Well:		- ft									
ell Volume:		- liters									
op of Pump:		- ft									
ter Sample:	13	,20 ft									
nt Method:	Electric Water Level Indicator										
	g Diameter: efore Purge: pth of Well: 'ell Volume: op of Pump: ter Sample:	YES NO YES NO YES NO g Diameter: 2' efore Purge: 12.0 pth of Well:									

	SAIV	IPLING IN	IFOR						
Purging Method:	Bladder								
Sampling Method:	Bladder								
Dedicated Equipment?	YES	NO							
Duplicate Sample?	YES	(NO							
Duplicate Sample ID:									
Bottle List:									
1 Liter Raw									

Control Setti	ings:
Purge: 3	Sec.
Recover: 27	Sec.
PSI: 20	

······································
Bottle List:
1 Liter Raw
500mL Nitric
500mL Nitric (filtered)
250mL Sulfuric

					FIE	LD READIN	NGS			me	
Stabilization Para	meters	Temp.	Spec.		DO	ORP	Turbidity	Water Level	Pumping	-Liters	Appearance or Comment
(3 Consecutiv	/e)	(°C)	Cond.	рН	(mg/L)	(mV)	(NTU)	water Lever	Rate	Removed	Clarity, Color, Odor, Ect.
Purge Date	Time	. ±0.5°	±5%	±0.1	±10%	±10		(ft)	mL/Min		clear, slightly turbid, turbid
6 Apr 2020	1052 Start of Well Purge										
10 mg	1057	7.84	13739	7.01	5.07	203.9	2.54	13.13	10000	520	Chs
	1117	7.99	13676	6.99	3.87	209.2	0,89	13,19	1.00.0	200.0	Clin
	1122	B113	13659	6.97	3.26	214.8	1.13	3,1B	100.0	520.0	Ckar
	1127	8.33	13660	6.97	3,22	218.0	1.03	13,18	100.0	500.0	Clear
	1132	8.32	13655	6.96	3,30	219.8	1.02	13,19	100.0	500.0	Clez
			1								
	Well St	abilized?	ATES	NO				Total Vo	ume Purged:	400.0	Liters n L
Sample Date	Time	Temp.	Spec.	рН			Turbidity				Appearance or Comment
Sample Date		(°C)	Cond.				(NTU)				Clarity, Color, Odor, Ect.
6 Apr 2020	1132	8.32	13655	6.96			1.02				Cles
Comments:											

2

Field Datasheet

Groundwater Assessment

Company:	MDU Heskett	
Event:	Spring 2020	
Sample ID:	BOR	
Sampling Personal:	Jang Klag	
	· · · · · ·	

2616 E. Broadway Ave, Bismarck, ND

Weather Conditions		Temp:	40	°F	Wind:	E	@ 5-1	U	Precip:	Sunny	artly Cloudy / Cloudy	/
· · · · · · · · · · · · · · · · · · ·		ORMATIO	N					SAN	IPLING IN	FORMATI	ON	
Well Locked?	YES	<u>∕</u> NĐ				Purging Me	thod:	Bladder]	Control Settin	igs:
Well Labeled?	YES/	NO				Sampling N	lethod:	Bladder			Purge: 3	Sec
Casing Strait?	YES	NO				Dedicated I	Equipment?	YES	NO]	Recover: 27	Sec
Grout Seal Intact?	/YES>	NO	Not \	Visible						-	PSI: 20	
Repairs Necessary?						Duplicate S		YES	NØ			
	g Diameter:		2"			Duplicate S	ample ID:		-			
Water Level Be			72	ft						-		
	pth of Well:			ft			Bottl	e List:				
	ell Volume:		<u> </u>	liters		1 Liter Raw						
Depth to To				ft		500mL Nitric						
Water Level After Sample: 14.05 ft						500mL Nitric						
Measureme	nt Method:	Electric	Water Level	Indicator		250mL Sulfu	ric					
					FIE	LD READIN	IGS			m		
Stabilization Paran	neters	Temp.	Spec.		DO	ORP	Turbidity	Water Level	Pumping	Liters	Appearance or Cor	nment
(3 Consecutive	e)	(°C)	Cond.	рН	(mg/L)	(mV)	(NTU)	water Level	Rate	Removed	Clarity, Color, Odo	or, Ect.
Purge Date	Time	~ <u>±0.5</u> °	±5%	±0.1	±10%	±10		(ft)	mL/Min		clear, slightly turbid	l, turbid
6 Ar 2020	0955	Start of We										
6 / 1(1 00	1000	5.SB	5721	7.22	8.49	204.5	1.98	13,85	100.0	520.0	Clear	
	1020	6,28	5371	7.12	5.61	199,7	1.97	13,96	100.0	2000.0	Cles	
	1025	6.28	5372	7.10	5.46	190.5	1.83	14.02	[00.0	500.0	Ula	
	1030	6.39	5365	7.10	5,34	191.6	1.78	14,03	100.0	500.0	Clas	
		ļ										
			_	L	1							
		ļ		<u> </u>								
			\bot_{Δ}			<u></u>						
	Well St	abilized?	YES	NO				Total Vol	ume Purged:	3500.0	Liters mL	
Sample Date	Time	Temp.	Spec.	рН			Turbidity				Appearance or Cor	
6 Apr 2020	Inne	(°C)	Cond.				(NTU)				Clarity, Color, Odo	or, Ect.
	1030	6.39	5365	7.10			1.78				Cles	

Field Datasheet

Groundwater Assessment

Company:	MDU Heskett	
Event:	Spring 2020	
Sample ID:	105,	
Sampling Personal:	Jug Phy-	
	· · · · ·	_

2616 E. Broadway Ave, Bismarck, ND

	WELL INF	ORMATIO	N					SAN	/IPLING IN	FORMATI	ON
Vell Locked?	YES	NÔ			7	Purging Me	ethod:	Bladder		1	Control Settings:
Vell Labeled?	XES	NO				Sampling N		Bladder		1	Purge: 3 Se
asing Strait?	YES	NO		æ.			Equipment?	(YES)	NO	1	Recover: 27 Se
irout Seal Intact?	YES 7	NO	Not V	/isible						-	PSI: 20
epairs Necessary?						Duplicate S	Sample?	YES	MO)	7	
Casir	ng Diameter:		2"			Duplicate S	Sample ID:				
Water Level B	efore Purge:	: 12	.08	ft							
	epth of Well:			ft			Bottl	e List:]	
	Vell Volume			liters		1 Liter Raw					
	op of Pump			ft		500mL Nitri	c				
Water Level A			2.33	ft		500mL Nitri					
Measurem	ent Method	Electric	Water Level	Indicator		250mL Sulfu	iric			J	
					FIE	LD READI	NGS			in L	
Stabilization Para	Stabilization Parameters Temp. Spec.		DO	ORP	Turbidity	Water Level	Pumping	_Liters-	Appearance or Comment		
(3 Consecutiv		(°C)	Cond.	рН	(mg/L)	(mV)	(NTU)	water Level	Rate	Removed	Clarity, Color, Odor, Ect.
Purge Date	Time	- <u>+0.5</u>	±5%	±0.1	±10%	±10		(ft)	mL/Min		clear, slightly turbid, turbid
6 Apr 2020	0740	Start of Wel									
	0745	5.43	3658	6.90	6.41	255.3	6.62	12.46	100.0	500	clear
	0755	4.95	3347	6.98	4.60	230.6	3.78	12.38	1020	1000.0	Cler
	0600	4.94	3872	6.95	4.76	221.0	2.25	12.35	100.0	500.0	Clean
	OBUS	15,21	4482	6.92	5.15	213.7	2,29	12.34	100.0	502.0	Clear
	0810	5,16	4859	6.92	6.42	206.3	2,10	12.32	100.0	500.0	Clem
	0815	5,15	5075	6.90	6.00	203.3	221	12,35	100.0	500.0	Clea
	0830	5.09	5555	6.65	5,73	199,3	1.79	12.34	100.0	1500.0	den
	0900	5,19	6094	6.82	7.04	200.9	2.25	12,33	100.0	1500.0	close
	0905	5,31	6147	6,86	7.14	201.6	2.14	12.34	100.0	500.7	Oles
	0910	5.49	6201	6,82	7.19	203.5	1.99	12.35	100.0	5000	Chen
		anuzedz	(YES/	NO				I otal Vo	lume Purged:	500,0	Liters wh
	Well St							I	1 ····		
Sample Date	Well St	Temp.	Spec.	pH			Turbidity				Appearance or Comment
Sample Date		1		pH 6.62			Turbidity (NTU)				Clarity, Color, Odor, Ect.

MVTL

MINNESOTA VALLEY TESTING LABORATORIES, INC.

1126 N. Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 E. Broadway Ave. ~ Bismarck, ND 58502 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Highway ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

MEMBER ACIL

Page: 1 of 1

Ouality Control Report

Lab IDs: 20-W575 to 20-W	578	Pr	oject: MI	DU Heske	ett		Work Oı	der: 202	082-077	3							
Analyte	LCS Spike Amt	LCS Rec %	LCS % Rec Limits	Matrix Spike Amt	Matrix Spike ID	Matrix Spike Orig Result	Matrix Spike Result	Matrix Spike Rec %	Matrix Spike % Rec Limits	MSD/ Dup Orig Result	MSD/ Dup Result	MSD Rec %	MSD/ Dup RPD	MSD/ Dup RPD Limit (<)	Known Rec (%)	Known % Rec Limits	Method Blank
Boron - Total mg/l	0.40 0.40	98 100	80-120 80-120	0.400 0.400	20-W564 20-W578	0.12 < 0.1	0.46 0.39	85 98	75-125 75-125	0.46 0.39	0.48 0.39	90 98	4.3 0.0	20 20		- -	< 0.1 < 0.1 < 0.1
Calcium - Total mg/l	20.0	110	80-120	2000 1000 500	20M705q 20M707q 20W576q	2140 1220 320	4160 2240 840	101 102 104	75-125 75-125 75-125	4160 840	4120 835	99 103	1.0 0.6	20 20	- - -	- -	< 1 < 1
Chloride mg/l	30.0 30.0	93 93	80-120 80-120	30.0	20-W598	< 1	27.4	91	80-120	27.4	27.6	92	0.7	20		-	< 1 < 1
Fluoride mg/l	0.50 0.50	106 106	90-110 90-110		20-W576	0.26	0.73	94	80-120	0.73	0.73	94	0.0	20		-	< 0.1 < 0.1
pH units	-	-	-	-	-	-	-	-	-	6.6	6.7	-	1.5	20	-	-	-
Sulfate mg/l	100	97	80-120	100	20-W578	< 5	99.0	99	80-120	99.0	99.2	99	0.2	20	-	-	< 5
Total Dissolved Solids mg/l	-	-	-	-	-	-	-	-	-	6400	6840	-	6.6	20	-	-	< 10

Samples were received in good condition on 6 Apr 2020 at 1222.

Temperature upon receipt at the Bismarck laboratory was 6.7°C.

All samples were properly preserved unless noted here and/or flagged on the individual analytical laboratory report.

With the exception of pH, all holding times were met.

Approved methodology was followed for all sample analyses.

All acceptance criteria were met for calibration, method blanks, laboratory control samples, laboratory fortified matrix/duplicates unless noted here.

For some analytes, the reported results were elevated due to additional dilutions required to minimize the effects of sample matrix. .

Approved by:

C. Genill 29 Apr 2020

Page: 1 of 5 AP

APP III

CERTIFICATE of ANALYSIS - CCR

Todd Peterson Montana-Dakota Utilities Co. 400 N 4th St Bismarck ND 58501

Project Name: MDU Heskett

Sample Description: 33

Event and Year: Fall 2020

Report Date: 28 Sep 20 Lab Number: 20-W3472 Work Order #: 82-2544 Account #: 002800 Date Sampled: 14 Sep 20 9:22 Date Received: 14 Sep 20 15:35 Sampled By: MVTL Field Services

PO #: 180609 OP

Temp at Receipt: 5.8C ROI

	As Receiv Result	ved	Method RL	Method Reference	Date Analyzed	Analyst
pH - Field pH Temperature - Field Conductivity - Field Fluoride Sulfate Chloride	6.53 * 6.8 9.70 4544 0.22 3000 11.1 4650	units Units Degrees C umhos/cm mg/l mg/l mg/l mg/l	NA 0.1 NA 1 0.10 5.00 1.0 10	SM 4500 H+ B SM4500-H+-B-11 SM 2550B EPA 120.1 SM4500-F-C ASTM D516-11 SM4500-C1-E-11 USGS I1750-85	14 Sep 20 1	9:22 DJN 9:22 DJN 7:00 CC 9:38 EV 1:10 EV
Total Dissolved Solids Calcium - Total Boron - Total	4530 458 0.30	mg/l mg/l	1.0 0.10	6010D 6010D	18 Sep 20 1 17 Sep 20	0:17 MDE

* Holding time exceeded

Approved by:

CC SOCTODO Clauditte K. Canto

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

CERTIFICATION: ND # ND-00016

Page: 2 of 5

CERTIFICATE of ANALYSIS - CCR

Todd Peterson Montana-Dakota Utilities Co. 400 N 4th St Bismarck ND 58501

Project Name: MDU Heskett

Sample Description: 3-90

Event and Year: Fall 2020

Report Date: 28 Sep 20 Lab Number: 20-W3473 Work Order #: 82-2544 Account #: 002800 Date Sampled: 14 Sep 20 10:33 Date Received: 14 Sep 20 15:35 Sampled By: MVTL Field Services

PO #: 180609 OP

Temp at Receipt: 5.8C ROI

	As Receive Result	As Received Result		Method Reference	Date Analyzed	Analyst
pH - Field	6.88	units	NA	SM 4500 H+ B	14 Sep 20 10:33	DJN
pH	* 7.0	units	0.1	SM4500-H+-B-11	14 Sep 20 17:00	CC
Temperature - Field	8.75	Degrees C	NA	SM 2550B	14 Sep 20 10:33	DJN
Conductivity - Field	5144	umhos/cm	1	EPA 120.1	14 Sep 20 10:33	DJN
Fluoride	0.13	mg/l	0.10	SM4500-F-C	14 Sep 20 17:00	CC
Sulfate	3120	mg/l	5.00	ASTM D516-11	16 Sep 20 9:38	EV
Chloride	36.5	mg/l	1.0	SM4500-C1-E-11	16 Sep 20 11:10	EV
Total Dissolved Solids	4990	mg/l	10	USGS 11750-85	15 Sep 20 9:55	CC
Calcium - Total	486	mg/l	1.0	6010D	18 Sep 20 10:17	MDE
Boron - Total	< 0.5 @	mg/l	0.10	6010D	17 Sep 20 9:54	MDE

* Holding time exceeded

Approved by:

SOCTOON Clauditte K. Canto

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

The reporting limit was elevated for any analyte requiring a dilution as coded below: @ = Due to sample matrix # = Due to concentration of other analytes ! = Due to sample quantity + = Due to internal standard response CERTIFICATION: ND # ND-00016

Page: 3 of 5

CERTIFICATE of ANALYSIS - CCR

Todd Peterson Montana-Dakota Utilities Co. 400 N 4th St Bismarck ND 58501

Project Name: MDU Heskett

Sample Description: Dup2

Event and Year: Fall 2020

Report Date: 28 Sep 20 Lab Number: 20-W3474 Work Order #: 82-2544 Account #: 002800 Date Sampled: 14 Sep 20 Date Received: 14 Sep 20 15:35 Sampled By: MVTL Field Services

PO #: 180609 OP

Temp at Receipt: 5.8C ROI

	As Receive Result	ed	Method RL	Method Reference	Date Analyzed	Analyst
pH Fluoride Sulfate Chloride Total Dissolved Solids Calcium - Total Boron - Total	* 7.0 0.13 2970 36.7 5130 486 < 0.5 @	units mg/l mg/l mg/l mg/l mg/l mg/l	0.1 0.10 5.00 1.0 10 1.0 0.10	SM4500-H+-B-11 SM4500-F-C ASTM D516-11 SM4500-C1-E-11 USGS I1750-85 6010D 6010D	14 Sep 20 17:00 14 Sep 20 17:00 16 Sep 20 10:03 16 Sep 20 11:10 15 Sep 20 9:55 18 Sep 20 10:17 17 Sep 20 9:54	CC EV EV CC MDE

* Holding time exceeded

Approved by:

1C 150(52020 Clauditte K. Cantle

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

CERTIFICATION: ND # ND-00016

Page: 4 of 5

CERTIFICATE of ANALYSIS - CCR

Todd Peterson Montana-Dakota Utilities Co. 400 N 4th St Bismarck ND 58501

Project Name: MDU Heskett

Sample Description: 2-90

Event and Year: Fall 2020

Report Date: 28 Sep 20 Lab Number: 20-W3475 Work Order #: 82-2544 Account #: 002800 Date Sampled: 14 Sep 20 11:57 Date Received: 14 Sep 20 15:35 Sampled By: MVTL Field Services

PO #: 180609 OP

Temp at Receipt: 5.8C ROI

	As Receive Result	As Received Result		Method Reference	Date Analyzed	Analyst
pH - Field pH Temperature - Field Conductivity - Field Fluoride Sulfate Chloride Total Dissolved Solids Calcium - Total	6.93 * 7.1 11.0 8082 1.01 5980 76.8 9180 510	units Units Degrees C umhos/cm mg/l mg/l mg/l mg/l mg/l	NA 0.1 NA 1 0.10 5.00 1.0 10 1.0	SM 4500 H+ B SM4500-H+-B-11 SM 2550B EPA 120.1 SM4500-F-C ASTM D516-11 SM4500-C1-E-11 USGS I1750-85 6010D	14 Sep 20 11:57 14 Sep 20 17:00 14 Sep 20 11:57 14 Sep 20 11:57 14 Sep 20 11:57 14 Sep 20 11:57 16 Sep 20 17:00 16 Sep 20 10:03 15 Sep 20 9:55 18 Sep 20 10:17	EV EV CC MDE
Boron - Total	< 0.5 @	mg/l	0.10	6010D	17 Sep 20 9:54	MDE

* Holding time exceeded

Approved by:

150(T2020 Clauditte K. Canto

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

CERTIFICATION: ND # ND-00016

Page: 5 of 5

CERTIFICATE of ANALYSIS - CCR

Todd Peterson Montana-Dakota Utilities Co. 400 N 4th St Bismarck ND 58501

Project Name: MDU Heskett

Sample Description: MW-104

Event and Year: Fall 2020

Report Date: 28 Sep 20 Lab Number: 20-W3476 Work Order #: 82-2544 Account #: 002800 Date Sampled: 14 Sep 20 14:31 Date Received: 14 Sep 20 15:35 Sampled By: MVTL Field Services

PO #: 180609 OP

Temp at Receipt: 5.8C ROI

	As Receiv Result	As Received Result		Method Reference	Date Analyzed	Analyst
pH - Field pH Temperature - Field Conductivity - Field Fluoride Sulfate Chloride Total Dissolved Solids	6.90 * 7.0 13.8 13948 0.55 10700 93.9 17900	units Degrees C umhos/cm mg/l mg/l mg/l mg/l	NA 0.1 NA 1 0.10 5.00 1.0 1.0 1.0	SM 4500 H+ B SM4500-H+-B-11 SM 2550B EPA 120.1 SM4500-F-C ASTM D516-11 SM4500-C1-E-11 USGS 11750-85 6010D	14 Sep 20 14:31 14 Sep 20 17:00 14 Sep 20 14:31 14 Sep 20 14:31 14 Sep 20 14:31 14 Sep 20 17:00 16 Sep 20 10:03 16 Sep 20 11:10 15 Sep 20 9:55 18 Sep 20 10:17	CC DJN DJN CC EV EV CC
Calcium - Total Boron - Total	444 0.84	mg/l mg/l	0.10	6010D	17 Sep 20 9:54	

* Holding time exceeded

Approved by:

Cr 150CT 2020 Clauditte K. Cantlo

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

CERTIFICATION: ND # ND-00016

MVTL

MINNESOTA VALLEY TESTING LABORATORIES, INC.

Page: 1 of 1

1126 N. Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 E. Broadway Ave. ~ Bismarck, ND 58502 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Highway ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

MEMBER ACIL

Quality Control Report – Appendix III

Lab IDs: 20-W3472 to 20-W		Pro	oject: MI	DU Heske	ett		Work Or	der: 202	082-254	4							
Analyte	LCS Spike Amt	LCS Rec %	LCS % Rec Limits	Matrix Spike Amt	Matrix Spike ID	Matrix Spike Orig Result	Matrix Spike Result	Matrix Spike Rec %	Matrix Spike % Rec Limits	MSD/ Dup Orig Result	MSD/ Dup Result	MSD Rec %	MSD/ Dup RPD	MSD/ Dup RPD Limit (<)	Known Rec (%)	Known % Rec Limits	Method Blank
Boron - Total mg/l	$\begin{array}{c} 0.40 \\ 0.40 \\ 0.40 \\ 0.40 \\ 0.40 \end{array}$	98 98 98 98	80-120 80-120 80-120 80-120	0.400 2.00	20-D2967 20-W3492	0.28 0.62	0.64 2.40	90 89	75-125 75-125	0.64 2.40	0.63 2.36	88 87	1.6 1.7	20 20	- - -	- - - -	< 0.1 < 0.1
Calcium - Total mg/l	20.0	112	80-120	500 500	20M1686q 20W3472q	258 458	745 985	97 105	75-125 75-125	745 985	750 985	98 105	0.7 0.0	20 20	-	-	< 1 < 1
Chloride mg/l	30.0 30.0	98 101	80-120 80-120	30.0	20-W3481	4.4	36.4	107	80-120	36.4	36.5	107	0.3	20	-	-	<1 <1
Fluoride mg/l	0.50 0.50	102 104	90-110 90-110	0.500	20-W3474	0.13	0.61	96	80-120	0.61	0.62	98	1.6	20	-	-	< 0.1 < 0.1
pH units	-	-	-	-	-	-	-	-	-	6.8	6.8	-	0.0	20	-	-	-
Sulfate mg/l	100	103	80-120	1000	20-W3445	1080	1850	77	80-120	1850	1850	77	0.0	20	-	-	< 5
Total Dissolved Solids mg/l	-	-	-	-	-	-	-	-	-	4650	4640	-	0.2	20	-	-	< 10

Samples were received in good condition on 14 Sep 2020 at 1535.

Temperature upon receipt at the Bismarck laboratory was 5.8°C. Samples were received on ice and evidence of cooling had begun.

All samples were properly preserved unless noted here and/or flagged on the individual analytical laboratory report.

With the exception of pH, all holding times were met.

Approved methodology was followed for all sample analyses.

All acceptance criteria were met for calibration, method blanks, laboratory control samples, laboratory fortified matrix/duplicates unless noted here.

For some analytes, the reported results were elevated due to additional dilutions required to minimize the effects of sample matrix.

• The recoveries for one sulfate matrix spike/matrix spike duplicate were outside the acceptable limits. RPD for the recoveries was within limits. Poor recoveries were determined to be due to sample matrix. LCS was acceptable. No further action was taken.

Approved by: ______

2616 E. Broadway Ave MVTL Bismarck, ND 58501 (701) 258-9720

Chain of Custody Record

Project Name:				Event:							Work Order Number:					
	MDU H	leskett					Fa	II 202	0		82-2544					
Report To:	Montana-Dakota Utilitie	S		CC:							Collected By:					
Attn: Address:	Bismarck, ND 58501										Darren Niesnars					
Phone: 701-425-2427 Email: todd.peterson@mdu.com					Nieswars											
Lab Number	Sample ID	Date	line	Sample	<u>1115</u>	500 F. Pan		20 m minice () 11/10-10, Minice ()	lemp (°C)	Spec. Com.			Analysis Required			
W3472	33	145002020	0922	GW	X		хx	9	,70	4544	6.53					
W3473	3-90	1458072020	1033	GW	X	X	хx	BA	75	5144	6=88					
W3474	Dup2	1454012020	NA	GW	X	X	x x		NA	NA	ŇĂ					
W2475	2-90	145072020	1157	GW	X	X	хх		297	8082	6-93		MDU List AA & MDU List			
W3476	mw-104	145072020	1431	Gw	X	X	$\frac{4}{1}$	13	3.74	13948	6.90		- C			
						\top										

Comments:

Relinquished By	·	Sample	Condition	Receiv	ed By
Name	Date/Time	Location	Temp (°C)	/ Name	Date/Time
1/2	14 Sipterio		_	TAIDEXIM	14 Sept 2020
Ferra	1535	Walk In #2	TM562 / XM805		1535
2			ROISIR		

Page: 1 of 3 APP III_REV1

CERTIFICATE of ANALYSIS - CCR

Todd Peterson Montana-Dakota Utilities Co. 400 N 4th St Bismarck ND 58501

Project Name: MDU Heskett

Sample Description: 80R

Event and Year: Fall 2020

Report Date: 2 Oct 20 Lab Number: 20-W3489 Work Order #: 82-2559 Account #: 002800 Date Sampled: 15 Sep 20 13:05 Date Received: 15 Sep 20 13:50 Sampled By: MVTL Field Services

PO #: 180609 OP

Temp at Receipt: 0.9C ROI

	As Receiv Result	ed	Method RL	Method Reference	Date Analyzed	Analyst
pH - Field	7.09	units	NA	SM 4500 H+ B	15 Sep 20 13:05	JSM
Hq	* 7.2	units	0.1	SM4500-H+-B-11	15 Sep 20 16:30	CC
Temperature - Field	10.5	Degrees C	NA	SM 2550B	15 Sep 20 13:05	JSM
Conductivity - Field	5562	umhos/cm	1	EPA 120.1	15 Sep 20 13:05	JSM
Fluoride	0.27	mg/l	0.10	SM4500-F-C	15 Sep 20 16:30	CC
Sulfate	2970	mg/l	5.00	ASTM D516-11	16 Sep 20 10:23	EV
Chloride	147	mg/l	1.0	SM4500-Cl-E-11	16 Sep 20 11:10	EV
Total Dissolved Solids	5540	mg/l	10	USGS I1750-85	16 Sep 20 14:05	CC
Calcium - Total	322	mg/l	1.0	6010D	18 Sep 20 11:17	MDE
Boron - Total	< 0.5 @	mg/l	0.10	6010D	17 Sep 20 9:54	MDE

* Holding time exceeded

1Ċ, Claudite K. Canrep 50172020 Approved by:

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

CERTIFICATION: ND # ND-00016

Page: 2 of 3

CERTIFICATE of ANALYSIS - CCR

Todd Peterson Montana-Dakota Utilities Co. 400 N 4th St Bismarck ND 58501

Project Name: MDU Heskett

Sample Description: 105

Event and Year: Fall 2020

Report Date: 2 Oct 20 Lab Number: 20-W3490 Work Order #: 82-2559 Account #: 002800 Date Sampled: 15 Sep 20 12:10 Date Received: 15 Sep 20 13:50 Sampled By: MVTL Field Services

PO #: 180609 OP

Temp at Receipt: 0.9C ROI

	As Received Result		Method RL	Method Reference	Date Analyzed	Analyst
pH - Field	6.78	units	NA	SM 4500 H+ B	15 Sep 20 12:10	JSM
pH	* 6.9	units	0.1	SM4500-H+-B-11	15 Sep 20 16:30	CC
Temperature - Field	10.0	Degrees C	NA	SM 2550B	15 Sep 20 12:10	JSM
Conductivity - Field	6966	umhos/cm	1	EPA 120.1	15 Sep 20 12:10	JSM
Fluoride	0.27	mg/l	0.10	SM4500-F-C	15 Sep 20 16:30	CC
Sulfate	4540	mg/l	5.00	ASTM D516-11	16 Sep 20 10:23	EV
Chloride	339	mq/1	1.0	SM4500-Cl-E-11	16 Sep 20 11:10	EV
Total Dissolved Solids	7370	mg/1	10	USGS 11750-85	16 Sep 20 14:05	CC
Calcium - Total	374	mg/1	1.0	6010D	18 Sep 20 11:17	MDE
Boron - Total	< 0.5 @	mg/l	0.10	6010D	17 Sep 20 9:54	MDE

* Holding time exceeded

10 SOCT 2020 Approved by: Claudite K. Canrep

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

The reporting limit was elevated for any analyte requiring a dilution as coded below: @ = Due to sample matrix # = Due to concentration of other analytes ! = Due to sample quantity + = Due to internal standard response

CERTIFICATION: ND # ND-00016

Page: 3 of 3

CERTIFICATE of ANALYSIS - CCR

Todd Peterson Montana-Dakota Utilities Co. 400 N 4th St Bismarck ND 58501

Project Name: MDU Heskett

Sample Description: FB2

Event and Year: Fall 2020

Report Date: 2 Oct 20 Lab Number: 20-W3491 Work Order #: 82-2559 Account #: 002800 Date Sampled: 15 Sep 20 Date Received: 15 Sep 20 13:50 Sampled By: MVTL Field Services

PO #: 180609 OP

Temp at Receipt: 0.9C ROI

	As Received Result		Method RL	Method Reference	Date Analyzed	Analyst
Н	* 5.7	units	0.1	SM4500-H+-B-11	15 Sep 20 16:30	
Fluoride	< 0.1	mg/1	0.10	SM4500-F-C	15 Sep 20 16:30	
Sulfate	< 5	mq/1	5,00	ASTM D516-11	16 Sep 20 10:23	EV
Chloride	< 1	mg/l	1.0	SM4500-Cl-E-11	16 Sep 20 11:10	EV
Total Dissolved Solids	< 10	mg/l	10	USGS I1750-85	16 Sep 20 14:05	CC
Calcium - Total	< 1	mg/1	1.0	6010D	18 Sep 20 11:17	MDE
Boron - Total	< 0.1	mg/1	0.10	6010D	17 Sep 20 9:54	MDE

* Holding time exceeded

(C 150CT 2020 Approved by: Clauditte K. Canrep

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

The reporting limit was elevated for any analyte requiring a dilution as coded below: @ = Due to sample matrix # = Due to concentration of other analytes 1 = Due to sample quantity + = Due to internal standard response CERTIFICATION: ND # ND-00016

MVTL

MINNESOTA VALLEY TESTING LABORATORIES, INC.

1126 N. Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 E. Broadway Ave. ~ Bismarck, ND 58502 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Highway ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

MEMBER ACIL

Quality Control Report – Appendix III

Lab IDs: 20-W3489 to 20-W	/3491	Pr	oject: MI	DU Heske	ett		Work Oi	der: 202	082-255	9							
Analyte	LCS Spike Amt	LCS Rec %	LCS % Rec Limits	Matrix Spike Amt	Matrix Spike ID	Matrix Spike Orig Result	Matrix Spike Result	Matrix Spike Rec %	Matrix Spike % Rec Limits	MSD/ Dup Orig Result	MSD/ Dup Result	MSD Rec %	MSD/ Dup RPD	MSD/ Dup RPD Limit (<)	Known Rec (%)	Known % Rec Limits	Method Blank
Boron - Total mg/l	$\begin{array}{c} 0.40 \\ 0.40 \\ 0.40 \\ 0.40 \\ 0.40 \end{array}$	98 98 98 98	80-120 80-120 80-120 80-120	0.400 2.00	20-D2967 20-W3492	0.28 0.62	0.64 2.40	90 89	75-125 75-125		0.63 2.36	88 87	1.6 1.7	20 20	- - -	- - -	< 0.1 < 0.1
Calcium - Total mg/l	20.0 22.6	112 113	80-120 80-120	500	20W3494q	478	960	96	75-125	960	960	96	0.0	20	-	-	< 1 < 1
Chloride mg/l	30.0 30.0	98 101	80-120 80-120	30.0	20-W3481	4.4	36.4	107	80-120	36.4	36.5	107	0.3	20			< 1 < 1
Fluoride mg/l	0.50 0.50 0.50 0.50	104 104 104 104	90-110 90-110 90-110 90-110	0.500 0.500	20-W3486 20-W3494	3.27 0.19	3.84 0.67	114 96	80-120 80-120	3.84 0.67	3.84 0.67	114 96	0.0 0.0	20 20			< 0.1 < 0.1
pH units	-				-	-	-			7.2 7.4	7.3 7.5		1.4 1.3	20 20	-	-	_
Sulfate mg/l	100	99	80-120	100	20-W3491	< 5	93.7	94	80-120	93.7	92.6	93	1.2	20	-	-	< 5
Total Dissolved Solids mg/l	-		-	-	-			-	-	10300 < 10	10400 < 10	-	1.0 0.0	20 *			< 10

* Data reported based on acceptance criteria of Absolute Difference of \pm 3 mg/L.

Samples were received in good condition on 15 Sep 2020 at 1350.

Temperature upon receipt at the Bismarck laboratory was 0.9°C. Samples were received on ice and evidence of cooling had begun.

All samples were properly preserved unless noted here and/or flagged on the individual analytical laboratory report.

With the exception of pH, all holding times were met.

Approved methodology was followed for all sample analyses.

All acceptance criteria were met for calibration, method blanks, laboratory control samples, laboratory fortified matrix/duplicates unless noted here.

• For some analytes, the reported results were elevated due to additional dilutions required to minimize the effects of sample matrix.

Approved by: <u>(. (anit)</u> Amended 10 NOV 2020

Page: 1 of 1

-

Field Datasheet

Groundwater Assessment

Company:	MDU Heskett
Event:	Fall 2020
Sample ID:	bor ,
Sampling Personal:	Ja Man-

2616 E. Broadway Ave, Bismarck, ND

Phone: (701) 258-				×					~		
Weather Conditions	:	Temp:	62	°F	Wind:	>	<u>@ 5-10</u>	>	Precip:	Sunny / Pa	rtly Cloudy / Cloudy
	WELL INF	ORMATIO	N					SAM	IPLING IN	FORMATIO	ON
Well Locked?	YES	NO			1	Purging Me	thod:	Bladder]	Control Settings:
Well Labeled?	YES	NO]	Sampling M	lethod:	Bladder			Purge: 了 Se
Casing Strait?	YES	NO			1	Dedicated E	quipment?	(YES)	NO		Recover: 2_3 Se
Grout Seal Intact?	YES	NO	Not V	isible	1						PSI: ZO
Repairs Necessary?]	Duplicate S	ample?	YES	(NO)]	
Casin	g Diameter:	2	31]	Duplicate S	ample ID:]	
Water Level Be	efore Purge:	14,2	в	ft]					_	
Total De	pth of Well:			ft]		Botti	e List:]		
N	/ell Volume:	-		liters]	1 Liter Raw					
Depth to Te	op of Pump:			ft]	500mL Nitric	;				
Water Level A	fter Sample:	14.	73	ft]	500mL Nitric	(filtered)				
Measureme	ent Method:	Electric \	Water Level	Indicator]	250mL Sulfu	rīc				
					FIE	LD READIN	IGS				
Stabilization Parar	neters	Temp.	Spec.	pН	DO	ORP	Turbidity	Water Level	Pumping	Liters	Appearance or Comment
(3 Consecutiv	e)	(°C)	Cond.	Ч	(mg/L)	(mV)	(NTU)	water tever	Rate	Removed	Clarity, Color, Odor, Ect.
Purge Date	Time	±0.5°	±5%	±0.1	±10%	±10		(ft)	mL/Min		clear, slightly turbid, turbid
15 Sept 2020	1225	Start of Well	Purge								4
1	1230	11.49	5567	7.10	1.91	240,0	3.42	14.50	10000	500,0	Cles

221.9

223.4

220.9

220.0

0,49

0.15

0.91

0.16

14.63

14.68

14,70

14.7-1

Well Stabilized? (YES

10.77

10.77

10.96

10.51

5633

5556

5572

5562

7.09

7.08

7.09

7.09

NO

1.18

1,20

1.29

1,32

1250

1255

1300

1305

Total Volume Purged: 4000.0 Liters

120

100,0

100.0

(00.0

Z000.0

500,2 500,2

500.0

Clear

Clear

Cles

Clean

Sample Date	Time	Temp. (°C)	Spec. Cond.	рН	Turbidity (NTU)	Appearance or Comment Clarity, Color, Odor, Ect.
ISSotzozo	1305	10.51	5562	7.09	0.16	Clesur
Comments:		<u></u>				

عع:

Field Datasheet

Groundwater Assessment

Company:	MDU Heskett
Event:	Fall 2020
Sample ID:	105.
Sampling Personal:	In the
	· · · · · · · · · · · · · · · · · · ·

Purge: 3

PSI:

Recover: 27

20

Control Settings:

Sec.

Sec.

2616 E. Broadway Ave, Bismarck, ND

Phone: (701) 258-9720

	the second se		
Weather Conditions:	Temp:	k∂°F	Wind:

~	6	5	10	Precin:
2	e	2		i i cup.

Precip: Sunny / Partly Cloudy / Cloudy SAMPLING INFORMATION

WELL INFORMATION										
Well Locked?	YES	NO-								
Well Labeled?	YES	NO								
Casing Strait?	YES	NO								
Grout Seal Intact?	YES	NO	Not Visible							
Repairs Necessary?										
Casin	g Diameter:	2"								
Water Level Be	efore Purge:	13.2	3 ft							
Total De	pth of Well:		ft							
N	/ell Volume:		liters							
Depth to To	op of Pump:		ft							
Water Level At	fter Sample:	13.6	3 ft							
Measureme	ent Method:	Electric W	ater Level Indicator							

	SAN	IPLING
Purging Method:	Bladder	
Sampling Method:	Bladder	
Dedicated Equipment?	YES >	NO
Duplicate Sample?	YES	(NO)
Duplicate Sample ID:	123	

Bottle List:	
1 Liter Raw	
500mL Nitric	
500mL Nitric (filtered)	
250mL Sulfuric	

FIELD READINGS

			····		1 5 4 4 5 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5			· · · · · · · · · · · · · · · · · · ·		····	·····
Stabilization Parar		Temp.	Spec.	pH	DO	ORP	Turbidity	Water Level	Pumping	Liters	Appearance or Comment
(3 Consecutiv		(°C)	Cond.	pii pii	(mg/L)	(mV)	(NTU)	Water Lever	Rate	Removed	Clarity, Color, Odor, Ect.
Purge Date	Time	±0.5°	±5%	±0.1	±10%	±10		(ft)	mL/Min		clear, slightly turbid, turbid
15 Sept 2000	1115	Start of Wel	l Purge							•	· · · · · · · · · · · · · · · · · · ·
12 20. 00	1120	10.06	39.08	6:91	0.68	211.3	5.51	13.60	1000	500.0	Clean
	1140	10.01	5758	6,83	0.67	203.2	1.52	13.53	100.0	2020.0	Clin
	1145	9.93	5945	6.82	0.64	204.8	1.60	13.62	1000	500.0	Clean
	1150	9,74	6372	GBI	0,89	206.6	1.74	13,56	100.00	500.0	Clean
	1155	10.03	6543	6.80	1.07	211.9	0.91	13,56	102.0	500.0	Chin
	1200	9.91	6874	6.80	1.34	212,3	0,74	3.57	100.0	500.0	year
	1205	10.06	6961	6.79	1.10	216.3	0.97	13.56	100.0	500.0	Clear
	1210	10.01	6966	6.78	1.0S	216.2	0.61	13,61	100.0	500,0	Cleer
	Well St	abilized?	TES	NO	1			Total Vol	ume Purged:	5502,0	Liters
Sample Date	Time	Temp.	Spec.	рН	<i>_</i>		Turbidity	1			Appearance or Comment
		(°C)	Cond.				(NTU)				/ Clarity, Color, Odor, Ect.
Setzoz	1210	10.01	6966	6.79	1		0.61				Clear

2616 E. Broadway Ave Bismarck, ND 58501 (701) 258-9720

Chain of Custody Record

Project Name:	Project Name:				Event:						Work Order Number:		
	MDU Heskett					Fall 2020						82-2559	
Report To: Attn: Address: Phone: Email:	Montana-Dakota Utilitie Todd Peterson 400 North 4th St. Bismarck, ND 58501 701-425-2427 todd.peterson@mdu.com	-		CC:							Collected E		_
Lab Number	Sample ID	Date	lime	Sample	111 ma	500 Raw	200 111.	Some in the second second	¹ ////////////////////////////////////	Spec. Com	n ia		Analysis Required
	104			_GW	X	X	X	X				-	
W3489	80R	155ept2020	1305	GW	X	X	X	X	10.51	556Z	7.09		
W3490	105	155ept2020	1210	GW	X	X	x	X	10.01	6966	6.78		
W2491	FB2	15507202D	NA	GW	X	X	X	x	NA	NA	NA		MDU List AA & MDU List
													c c

Comments: # 15 Sept 2020 1

Relinguished By	Sample	Condition	Received By		
Name	Date/Time	Location	Temp (°C)	Name	Date/Time
1 Smithen	15 Sapt 2320	Valk In #2	Rol 0.9 TM562 TM805	Eily Alan	1550077000 1350
2				<u> </u>	

Page: 1 of 8 APP III

CERTIFICATE of ANALYSIS - CCR

Todd Peterson Montana-Dakota Utilities Co. 400 N 4th St Bismarck ND 58501

Project Name: MDU Heskett

Sample Description: 13

Event and Year: Fall 2020

Report Date: 2 Oct 20 Lab Number: 20-W3492 Work Order #: 82-2560 Account #: 002800 Date Sampled: 14 Sep 20 9:39 Date Received: 15 Sep 20 13:50 Sampled By: MVTL Field Services

PO #: 180609 OP

Temp at Receipt: 0.9C ROI

	As Recei Result	ved	Method RL	Method Reference	Date Analyzed	Analyst
pH - Field	7.08	units	NA	SM 4500 H+ B	14 Sep 20 9:39	JSM
Н	* 7.4	units	0.1	SM4500-H+-B-11	15 Sep 20 16:30	CC
Temperature - Field	9.34	Degrees C	NA	SM 2550B	14 Sep 20 9:39	JSM
Conductivity - Field	9792	umhos/cm	1	EPA 120.1	14 Sep 20 9:39	JSM
Fluoride	0.98	mg/l	0.10	SM4500-F-C	15 Sep 20 16:30	CC
Sulfate	6570	mg/l	5.00	ASTM D516-11	16 Sep 20 10:23	EV
Chloride	77.8	mg/l	1.0	SM4500-Cl-E-11	16 Sep 20 11:10	EV
Total Dissolved Solids	10500	mg/l	10	USGS I1750-85	16 Sep 20 14:05	CC
Calcium - Total	402	mg/l	1.0	6010D	18 Sep 20 11:17	MDE
Boron - Total	0.62	mg/l	0.10	6010D	17 Sep 20 9:54	MDE

* Holding time exceeded

Approved by:

Clauditte TRORU K. Canto

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

CERTIFICATION: ND # ND-00016

Page: 2 of 8

CERTIFICATE of ANALYSIS - CCR

Todd Peterson Montana-Dakota Utilities Co. 400 N 4th St Bismarck ND 58501

Project Name: MDU Heskett

Sample Description: Dup1

Event and Year: Fall 2020

Report Date: 2 Oct 20 Lab Number: 20-W3493 Work Order #: 82-2560 Account #: 002800 Date Sampled: 14 Sep 20 Date Received: 15 Sep 20 13:50 Sampled By: MVTL Field Services

PO #: 180609 OP

Temp at Receipt: 0.9C ROI

	As Recei Result	ved	Method RL	Method Reference	Date Analyzed	Analyst
рН	* 7.2	units	0.1	SM4500-H+-B-11	15 Sep 20 16:30	
Fluoride	1.00	mg/l	0.10	SM4500-F-C	15 Sep 20 16:30	CC
Sulfate	6730	mg/l	5.00	ASTM D516-11	16 Sep 20 10:23	EV
Chloride	77.5	mg/l	1.0	SM4500-Cl-E-11	16 Sep 20 11:10	EV
Total Dissolved Solids	10400	mg/l	10	USGS I1750-85	16 Sep 20 14:05	CC
Calcium - Total	418	mg/l	1.0	6010D	18 Sep 20 11:17	MDE
Boron - Total	0.62	mg/l	0.10	6010D	17 Sep 20 10:54	MDE

* Holding time exceeded

Approved by:

SACTZOZO Clauditte K. Canto

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

CERTIFICATION: ND # ND-00016

Page: 3 of 8

CERTIFICATE of ANALYSIS - CCR

Todd Peterson Montana-Dakota Utilities Co. 400 N 4th St Bismarck ND 58501

Project Name: MDU Heskett

Sample Description: 102

Event and Year: Fall 2020

Report Date: 2 Oct 20 Lab Number: 20-W3494 Work Order #: 82-2560 Account #: 002800 Date Sampled: 15 Sep 20 8:40 Date Received: 15 Sep 20 13:50 Sampled By: MVTL Field Services

PO #: 180609 OP

Temp at Receipt: 0.9C ROI

	As Receiv Result	ed	Method RL	Method Reference	Date Analyzed	Analyst
pH - Field pH Temperature - Field Conductivity - Field Fluoride Sulfate Chloride	6.88 * 7.1 8.95 8165 0.19 5340 5.6	units units Degrees C umhos/cm mg/l mg/l mg/l	NA 0.1 NA 1 0.10 5.00 1.0 10	SM 4500 H+ B SM4500-H+-B-11 SM 2550B EPA 120.1 SM4500-F-C ASTM D516-11 SM4500-C1-E-11 USGS 11750-85	15 Sep 20 8:40 15 Sep 20 16:30 15 Sep 20 8:40 15 Sep 20 8:40 15 Sep 20 16:30 16 Sep 20 16:30 16 Sep 20 10:23 16 Sep 20 11:10 16 Sep 20 14:05	EV EV
Total Dissolved Solids Calcium - Total Boron - Total	8130 478 1.28	mg/l mg/l mg/l	1.0 0.10	6010D 6010D	18 Sep 20 11:17 17 Sep 20 10:54	MDE

* Holding time exceeded

Approved by:

Clauditte 150(72020 K. Cantle

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

CERTIFICATION: ND # ND-00016

Page: 4 of 8

CERTIFICATE of ANALYSIS - CCR

Todd Peterson Montana-Dakota Utilities Co. 400 N 4th St Bismarck ND 58501

Project Name: MDU Heskett

Sample Description: 70

Event and Year: Fall 2020

Report Date: 2 Oct 20 Lab Number: 20-W3495 Work Order #: 82-2560 Account #: 002800 Date Sampled: 15 Sep 20 9:40 Date Received: 15 Sep 20 13:50 Sampled By: MVTL Field Services

PO #: 180609 OP

Temp at Receipt: 0.9C ROI

	As Recei Result	ved	Method RL	Method Reference	Date Analyzed	Analyst
pH - Field pH Temperature - Field Conductivity - Field Fluoride Sulfate Chloride Total Dissolved Solids Calcium - Total	7.08 * 7.3 9.41 4643 0.34 2500 52.0 4350 416	units Units Degrees C umhos/cm mg/l mg/l mg/l mg/l	NA 0.1 NA 1 0.10 5.00 1.0 1.0 1.0	SM 4500 H+ B SM4500-H+-B-11 SM 2550B EPA 120.1 SM4500-F-C ASTM D516-11 SM4500-C1-E-11 USGS 11750-85 6010D	15 Sep 20 9:40 15 Sep 20 16:30 15 Sep 20 9:40 15 Sep 20 9:40 15 Sep 20 16:30 16 Sep 20 16:30 16 Sep 20 10:23 16 Sep 20 11:47 16 Sep 20 14:05 18 Sep 20 12:17	JSM CC JSM JSM CC EV EV CC MDE
Boron - Total	0.50	mg/l	0.10	6010D	17 Sep 20 10:54	MDE

* Holding time exceeded

Approved by:

Clauditte K. Cantle 15 OCT 2120

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

The reporting limit was elevated for any analyte requiring a dilution as coded below: @ = Due to sample matrix # = Due to concentration of other analytes ! = Due to sample quantity + = Due to internal standard response

CERTIFICATION: ND # ND-00016

Page: 5 of 8

CERTIFICATE of ANALYSIS - CCR

Todd Peterson Montana-Dakota Utilities Co. 400 N 4th St Bismarck ND 58501

Project Name: MDU Heskett

Sample Description: 101

Event and Year: Fall 2020

Report Date: 2 Oct 20 Lab Number: 20-W3496 Work Order #: 82-2560 Account #: 002800 Date Sampled: 15 Sep 20 10:40 Date Received: 15 Sep 20 13:50 Sampled By: MVTL Field Services

PO #: 180609 OP

Temp at Receipt: 0.9C ROI

	As Recei Result	ved	Method RL	Method Reference	Date Analyzed	Analyst	
pH - Field	6.74	units	NA 0.1	SM 4500 H+ B SM4500-H+-B-11	15 Sep 20 10:40 15 Sep 20 16:30		
pH Temperature - Field	* 7.0 11.2	units Degrees C	NA	SM4500-H+-B-11 SM 2550B	15 Sep 20 10:40	JSM	
Conductivity - Field	5217 0.21	umhos/cm mg/l	1 0.10	EPA 120.1 SM4500-F-C	15 Sep 20 10:40 15 Sep 20 16:30		
Fluoride Sulfate	3160	mg/l	5.00	ASTM D516-11	16 Sep 20 10:23	EV	
Chloride	21.7 5530	mg/l mg/l	1.0 10	SM4500-Cl-E-11 USGS I1750-85	16 Sep 20 11:47 16 Sep 20 14:05		
Total Dissolved Solids Calcium - Total	429	mg/l	1.0	6010D	18 Sep 20 12:17	MDE	
Boron - Total	0.68	mg/l	0.10	6010D	17 Sep 20 10:54	MDE	

* Holding time exceeded

Approved by:

ISACT DO DO Claudette K. Cantle

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

The reporting limit was elevated for any analyte requiring a dilution as coded below: @ = Due to sample matrix # = Due to concentration of other analytes ! = Due to sample quantity + = Due to internal standard response

CERTIFICATION: ND # ND-00016

Page: 6 of 8

CERTIFICATE of ANALYSIS - CCR

Todd Peterson Montana-Dakota Utilities Co. 400 N 4th St Bismarck ND 58501

Project Name: MDU Heskett

Sample Description: 103

Event and Year: Fall 2020

Report Date: 2 Oct 20 Lab Number: 20-W3497 Work Order #: 82-2560 Account #: 002800 Date Sampled: 14 Sep 20 11:30 Date Received: 15 Sep 20 13:50 Sampled By: MVTL Field Services

PO #: 180609 OP

Temp at Receipt: 0.9C ROI

	As Recei Result	ved	Method RL	Method Reference	Date Analyzed	Analyst	
pH - Field	6.80	units	NA	SM 4500 H+ B	14 Sep 20 11:30	JSM	
Hq	* 7.0	units	0.1	SM4500-H+-B-11	15 Sep 20 16:30	CC	
Temperature - Field	9.81	Degrees C	NA	SM 2550B	14 Sep 20 11:30	JSM	
Conductivity - Field	4977	umhos/cm	1	EPA 120.1	14 Sep 20 11:30	JSM	
Fluoride	0.14	mg/l	0.10	SM4500-F-C	15 Sep 20 16:30	CC	
Sulfate	2740	mg/l	5.00	ASTM D516-11	16 Sep 20 10:23	EV	
Chloride	139	mg/l	1.0	SM4500-Cl-E-11	16 Sep 20 11:47	EV	
Total Dissolved Solids	4930	mg/l	10	USGS I1750-85	16 Sep 20 14:05	CC	
Calcium - Total	580	mg/l	1.0	6010D	18 Sep 20 12:17	MDE	
Boron - Total	0.12	mg/l	0.10	6010D	17 Sep 20 10:54	MDE	

* Holding time exceeded

Approved by:

10 Clauditte K. Canto 190(+ 2020

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

CERTIFICATION: ND # ND-00016

Page: 7 of 8

CERTIFICATE of ANALYSIS - CCR

Todd Peterson Montana-Dakota Utilities Co. 400 N 4th St Bismarck ND 58501

Project Name: MDU Heskett

Sample Description: 44R

Event and Year: Fall 2020

Report Date: 2 Oct 20 Lab Number: 20-W3498 Work Order #: 82-2560 Account #: 002800 Date Sampled: 14 Sep 20 10:30 Date Received: 15 Sep 20 13:50 Sampled By: MVTL Field Services

PO #: 180609 OP

Temp at Receipt: 0.9C ROI

	As Receive Result	ed	Method RL	Method Reference	Date Analyzed	Analyst
pH - Field pH Temperature - Field Conductivity - Field Fluoride Sulfate Chloride Total Dissolved Solids	6.66 * 6.9 9.63 9115 0.67 6660 223 10300	units units Degrees C umhos/cm mg/l mg/l mg/l mg/l	NA 0.1 NA 1 0.10 5.00 1.0 10	SM 4500 H+ B SM4500-H+-B-11 SM 2550B EPA 120.1 SM4500-F-C ASTM D516-11 SM4500-C1-E-11 USGS 11750-85	14 Sep 20 10:30 15 Sep 20 16:30 14 Sep 20 10:30 14 Sep 20 10:30 15 Sep 20 10:30 15 Sep 20 16:30 16 Sep 20 10:42 16 Sep 20 11:47 16 Sep 20 14:05	CC EV EV CC
Calcium - Total Boron - Total	444 < 0.5 @	mg/l mg/l	1.0 0.10	6010D 6010D	18 Sep 20 12:17 17 Sep 20 10:54	

* Holding time exceeded

Approved by:

1C 150CT 2020 Clauditte K. Canto

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

CERTIFICATION: ND # ND-00016

Page: 8 of 8

CERTIFICATE of ANALYSIS - CCR

Todd Peterson Montana-Dakota Utilities Co. 400 N 4th St Bismarck ND 58501

Project Name: MDU Heskett

Sample Description: FB1

Event and Year: Fall 2020

Report Date: 2 Oct 20 Lab Number: 20-W3499 Work Order #: 82-2560 Account #: 002800 Date Sampled: 14 Sep 20 Date Received: 15 Sep 20 13:50 Sampled By: MVTL Field Services

PO #: 180609 OP

Temp at Receipt: 0.9C ROI

	As Recei Result	ved	Method RL	Method Reference	Date Analyzed	Analyst	
pH Fluoride Sulfate Chloride Total Dissolved Solids Calcium - Total Boron - Total	* 5.7 < 0.1 < 5 < 1 < 10 < 1 < 0.1	units mg/l mg/l mg/l mg/l mg/l	0.1 0.10 5.00 1.0 10 1.0 0.10	SM4500-H+-B-11 SM4500-F-C ASTM D516-11 SM4500-Cl-E-11 USGS I1750-85 6010D 6010D		CC EV EV CC MDE	

* Holding time exceeded

Approved by:

150CT 2020 Clauditte K. Cantle

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

1C

CERTIFICATION: ND # ND-00016

MVTL

MINNESOTA VALLEY TESTING LABORATORIES, INC.

1126 N. Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 E. Broadway Ave. ~ Bismarck, ND 58502 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Highway ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

MEMBER ACIL

Quality Control Report – Appendix III

Lab IDs: 20-W3492 to 20-V			oject: MI	– DU Hesko	ett	•	Work Or	der: 202	082-2560)							
Analyte	LCS Spike Amt	LCS Rec %	LCS % Rec Limits	Matrix Spike Amt	Matrix Spike ID	Matrix Spike Orig Result	Matrix Spike Result	Matrix Spike Rec %	Matrix Spike % Rec Limits	MSD/ Dup Orig Result	MSD/ Dup Result	MSD Rec %	MSD/ Dup RPD	MSD/ Dup RPD Limit (<)	Known Rec (%)	Known % Rec Limits	Method Blank
Boron - Total mg/l	0.40 0.40 0.40 0.40 0.50	98 98 98 98 98 80	80-120 80-120 80-120 80-120 80-120 80-120	0.400 2.00 2.00	20-D2967 20-W3492 20-W3499	0.28 0.62 < 0.1	0.64 2.40 1.96	90 89 98	75-125 75-125 75-125	0.64 2.40 1.96	0.63 2.36 1.92	88 87 96	1.6 1.7 2.1	20 20 20		- - - - -	< 0.1 < 0.1 < 0.1 < 0.1
Calcium - Total mg/l	20.0 20.0 20.0 20.0	112 109 109 113	80-120 80-120 80-120 80-120	500 500 500	20W3494q 20W3508q 20W3537q	478 174 318	960 690 805	96 103 97	75-125 75-125 75-125	960 690 805	960 680 815	96 101 99	0.0 1.5 1.2	20 20 20	- - - - -	- - - - -	< 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1
Chloride mg/l	30.0 30.0 30.0 30.0 30.0	98 101 101 102	80-120 80-120 80-120 80-120	30.0 30.0	20-W3481 20-W3509	4.4 5.5	36.4 38.7	107 111	80-120 80-120	36.4 38.7	36.5 38.9	107 111	0.3 0.5	20 20		- - -	< 1 < 1 < 1 < 1 < 1
Fluoride mg/l	0.50 0.50 0.50 0.50	104 104 104 104	90-110 90-110 90-110 90-110	0.500 0.500	20-W3486 20-W3494	3.27 0.19	3.84 0.67	114 96	80-120 80-120	3.84 0.67	3.84 0.67	114 96	0.0 0.0	20 20	-	- - -	< 0.1 < 0.1
pH units		-	-	-			-	-		7.2 7.4	7.3 7.5		1.4 1.3	20 20	-	-	-
Sulfate mg/l	100 100	99 98	80-120 80-120	100 100	20-W3491 20-W3499	< 5 < 5	93.7 96.6	94 97	80-120 80-120	93.7 96.6	92.6 97.8	93 98	1.2 1.2	20 20			< 5 < 5
Total Dissolved Solids mg/l			-	-	-		-			10300 < 10	10400 < 10		1.0 0.0	20 *		-	< 10

Page: 1 of 2

MVTL

MINNESOTA VALLEY TESTING LABORATORIES, INC.

Page: 2 of 2

1126 N. Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 E. Broadway Ave. ~ Bismarck, ND 58502 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Highway ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

MEMBER ACIL

Quality Control Report – Appendix III Lab IDs: 20-W3492 to 20-W3499

Project: MDU Heskett

Work Order: 202082-2560

* Data reported based on acceptance criteria of Absolute Difference of \pm 3 mg/L.

Samples were received in good condition on 15 Sep 2020 at 1350.

Temperature upon receipt at the Bismarck laboratory was 0.9°C. Samples were received on ice and evidence of cooling had begun. All samples were properly preserved unless noted here and/or flagged on the individual analytical laboratory report.

With the exception of pH, all holding times were met.

Approved methodology was followed for all sample analyses.

All acceptance criteria were met for calibration, method blanks, laboratory control samples, laboratory fortified matrix/duplicates unless noted here.

For some analytes, the reported results were elevated due to additional dilutions required to minimize the effects of sample matrix.

• For some analytes, the reported results were elevated due to matrix effect on the response of the internal standard.

Approved by: <u>Cantel</u> 150CT 2020

.

Field Datasheet

Groundwater Assessment

	Company	:	MDU Heskett
	Event:		Fall 2020
	Sample ID):	13 ,
	Sampling	Personal:	In Man-
5-10	>	Precip:	Sunny / Partly Cloudy / Cloudy
	SAI	MPLING IN	NFORMATION
	Bladder		Control Settings:
d:	Bladder		Purge: 3 Sec
ment?	VES	NO	Recover: 27 Sec

2616 E. Broadway Ave, Bismarck, ND

Phone: (701) 258- Weather Conditions		Temp:	55	°C	Wind:	<u> </u>	@ 5-10	<u> </u>	Precip:	Suppy / D	artly Cloudy / Cloudy
				F	winu.						-
		ORMATIO	N		-			the second s	IPLING IN	FORMATI	
Vell Locked?	YES	NO		<u></u>	4	Purging Me		Bladder		1	Control Settings:
Vell Labeled?	YES	ŇÔ			4	Sampling M		Bladder		1	Purge: 3 Sec
Casing Strait?	YES	NO			1	Dedicated B	quipment?	VES	NO	1	Recover: 27 Sec
Frout Seal Intact?	(YES)	NO	Not V	/isible	1					-	PSI: 30
epairs Necessary?					1	Duplicate S		YES	NO		
	g Diameter:		2"		4	Duplicate S	ample ID:	Dig 1		l	
Water Level B				ft	4					1	
	pth of Well:			ft	1		Bottl	e List:		ł	
	Vell Volume:			liters	1	1 Liter Raw					
	op of Pump:			ft	1	500mL Nitric				ł	
Water Level A			1.29	ft	1	500mL Nitric	• •				
Measureme	ent Method:	Electric	Water Level	Indicator]	250mL Sulfu	ic			1	
					FIE	LD READIN	IGS				
Stabilization Para	neters	Temp.	Spec.	pН	DO	ORP	Turbidity	Water Level	Pumping	Liters	Appearance or Comment
(3 Consecutiv	e)	(°C)	Cond.	рп	(mg/L)	(mV)	(NTU)		Rate	Removed	Clarity, Color, Odor, Ect.
Purge Date	Time	±0.5°	±5%	±0.1	±10%	±10		(ft)	mL/Min		clear, slightly turbid, turbid
1-1 Sept 2020	0824	Start of Well	l Purge								·
, i sept to to	0829	9.46	9809	7.03	4.04	3617	7.43	31.23	100.0	500.0	Clean
	0859	9.88	9899	7.02	5.00	271.3	9.66	31,10	100.0	3000.0	Clear
	0919	9.64	9850	7.08	4.41	165.4	5.93	31.21	100.0	2000	Clear
	09729	949	9881	7.08	4.51	144.9	3.03	31,15	100.0	1000.0	Clear
	0934	9,44	9879	7.09	4.47	1359	1.39	31.23	100.0	500.0	Clier
	0939	9,34	9792	7.09	4.45	1361	1.77	31.25	1000	50.0	alex
										ļ	
						<u> </u>				L	
						l					
	L	1	L			1	L	<u> </u>		L	
	Well St	abilized?	YES	NO				Total Vol	ume Purged:	7500.0	Liters
Sample Date	Time	Temp.	Spec.	рН			Turbidity				Appearance or Comment
-		(°C)	Cond.			-	(NTU)				Clarity, Color, Odor, Ect.
14 Sept 2020	0939	9.34	9792	7.03			1.77				Clear
omments:											
	1										

Field Datasheet

Groundwater Assessment

Company:	MDU Heskett							
Event:	Fall 2020							
Sample ID:	102,							
Sampling Personal:	In the							
	/ 2							
> Precip:	Sunny / Partly Cloudy / Cloudy							
SAMPLING INFORMATION								
Bladder	ladder Control Settings:							
Bladder	Purge: ?	Sec.						

2616 E. Broadway Ave, Bismarck, ND

Phone: (701) 258-9720

Weather Conditions:		Temp:	60	°F	Wind:	5	@ < -10)	Precip:	Sunny / Pa	artly Cloudy / Clou	dy
١	WELL INFC	RMATIO	N					SAN	IPLING IN	FORMATI	ON	
Well Locked?	YES	NÒ		·····]	Purging M	ethod:	Bladder		Control Settings:		tings:
Well Labeled?	XES	NO		1	Sampling I	Method:	Bladder]	Purge: 3	Sec.	
Casing Strait?	YES	NO]	Dedicated	Equipment?	YES	NO]	Recover: 2구	Sec.	
Grout Seal Intact?	VES)	NO	Not V	/isible]					_	PSI: 20	
Repairs Necessary?]	Duplicate	Sample?	YES	NO]		
Casing	g Diameter:	2	11]	Duplicate :	Sample ID:		-]		
Water Level Be	fore Purge:	l^{7}	38	ft]					_		
Total Dep	oth of Well:	~	-	ft]		Bottl	e List:				
W	ell Volume:		•	liters]	1 Liter Raw						
Depth to To	p of Pump:		-	ft]	500mL Nitri	ic					
Water Level Af	ter Sample:	ZO.	42	ft]	500mL Nitri	ic (filtered)					
Measureme	nt Method:	Electric V	Water Level	Indicator]	250mL Sulfi	uric					
					FIE	LD READI	NGS					
Stabilization Param	neters	Temp.	Spec.	_11	DO	ORP	Turbidity	Water Level	Pumping	Liters	Appearance or (Comment
(3 Consecutive	2)	(°C)	Cond.	рН	(mg/L)	(mV)	(NTU)	water Level	Rate	Removed	Clarity, Color, O	dor, Ect.
Purge Date	Time	±0.5°	±5%	±0.1	±10%	±10		(ft)	mL/Min		clear, slightly tur	oid, turbid
15 Sept 2020	0800	Start of Well	Purge	•								
1	0605	8,91	9324	6.90	9.55	6.2	10,50	18.90	100.0	500.0	Clear	
	0825	8.77	PSB1	6.84	1.63	5.4	2.36	19.96	100.0	2020	Clear	
	0630	8.83	8196	6.87	1.30	61	0.23	20.16	100.D	500.0	Clear	
	0635	8.87	13007	6.57	1,31	3.0	0.33	20.22	100.0	500.0	Clear	
	OBUO	8.95	8165	6,88	1,41	9,B	0,41	20.28	100.0	500.0	Cer	
[
1	1		1	1	1	1	L	1		1	1	

Well Stabilized? YES

NO

Total Volume Purged: 400.0 Liters

Sample Date	Time	Temp. (°C)	Spec. Cond.	рН	Turbidity (NTU)	Appearance or Comment Clarity, Color, Odor, Ect.
15 Sept 2020	0840	8.93	8165	6.83	0.41	Cler
Comments:	I					

.

Field Datasheet

Groundwater Assessment

Company:	MDU Heskett	
Event:	Fall 2020	
Sample ID:	70	
Sampling Personal:	In the	
	-to Inthy	

-

2616 E. Broadway Ave, Bismarck, ND

Phone: (701) 258-9720

Phone: (701) 258- Weather Conditions		Temp:	60	°F	Wind:	S	@ 5-10	<u>ර</u>	Precip:	Sunny / Pa	artly Cloudy / Cloudy
	WELL INF	ORMATIO	N					SAN	APLING IN	FORMATI	ON
Vell Locked?	YES	NO]	Purging Method: Bladder]	Control Settings:	
Well Labeled?	YES	NO				Sampling N	/lethod:	Bladder			Purge: 3 Sec
Casing Strait?	(YES)	NO			Dedicated	Equipment?	XES)	NO]	Recover: 27 Sec	
Grout Seal Intact?	(YES)	NO	Not \	/isible						_	PSI: 20
Repairs Necessary?						Duplicate S	ample?	YES	NQ]	
	ng Diameter:		2 ¹¹			Duplicate S	ample ID:		-]	
Water Level B		21.1	5	ft						-	
Total De	epth of Well:			ft]		Bottl	le List:			
	Vell Volume:	[liters		1 Liter Raw					
	op of Pump:		-	ft		500mL Nitrio					
Water Level A	fter Sample:		.85	ft		500mL Nitrio	c (filtered)				
Measurem	ent Method:	Electric	Water Level	Indicator		250mL Sulfu	iric				
					FIE	LD READIN	NGS				
Stabilization Para	meters	Temp.	Spec.		DO	ORP	Turbidity		Pumping	Liters	Appearance or Comment
(3 Consecutiv	/e)	(°C)	Cond.	рH	(mg/L)	(mV)	(NTU)	Water Level	Rate	Removed	Clarity, Color, Odor, Ect.
Purge Date	Time	±0.5°	±5%	±0.1	±10%	±10		(ft)	mL/Min		clear, slightly turbid, turbid
15 Sept 2020	0900	Start of Wel									
12 2010 2010	0905	9.69	4555	7.12	1,69	103,2	0.75	21.76	100,0	5020	Clear
	0925	9.40	4674	7.03	1.26	95.9	0.14	22,72	100.0	2000.0	Cher
	0930	9.39	4670	7,08	0.75	91.5	0.30	22.80	100.0	500.0	Clea
	0935	9.43	4663	7.08	0.77	92.5	0.27	22.70	100.0	5000	Clear
	0940	9.41	4643	7.08	0.75	101.3	0.32	22.61	100,0	500.0	Clea
	Well St	abilized?	YES	NO				Total Vo	lume Purged:	: 4000.0	Liters
	Trees	Temp.	Spec.	рН	1	T	Turbidity				Appearance or Comment
Sample Data			1	1 50	1		(NTU)		1	1	Clarity, Color, Odor, Ect.
Sample Date	Time 0940	<u>(°C)</u> १.५(Cond. 4643	7.08							Cler

.

Field Datasheet

Groundwater Assessment

Compa	ny:	MDU Heskett
Event:		Fall 2020
Sample	ID:	101
Samplir	ig Personal:	I'm Man-
······		
-10	Precip:	Sunny / Partly Cloudy / Cloudy

2616 E. Broadway Ave, Bismarck, ND

Phone: (701) 258-9720

Weather Conditions:		Temp:	65	°F	Wind:	5	0 5-1	0	Precip:	Sunny / Pa	artly Cloudy / Cloudy
I I I I I I I I I I I I I I I I I I I	WELL INFO	ORMATIO	N			SAMPLING INFORMATION					
Well Locked?	YES	NO]	Purging Method: Blac		Bladder		1	Control Settings:
Well Labeled?	YES	NO]	Sampling M	ethod:	Bladder			Purge: 🕄 Sec.
Casing Strait?	YES'	NO	NO]	Dedicated E	quipment?	YES	NO		Recover: 27 Sec.
Grout Seal Intact?	(YES)	NO	Not V	/isible							PSI: 30
Repairs Necessary?]	Duplicate Sa	ample?	YES	(NO>		
	g Diameter:		11]	Duplicate Sa	ample ID:				
Water Level Be		36		ft							
	oth of Well:			ft			Bottl	e List:			
	ell Volume:			liters		1 Liter Raw					
Depth to To				ft]	500mL Nitric					
Water Level Af			•••	ft	ł	500mL Nitric	• •				
Measureme	nt Method:	Electric \	Nater Level	Indicator	ļ	250mL Sulfur	ic				
FIELD READINGS											
Stabilization Param	neters	Temp.	Spec.	рН	DO	ORP	Turbidity	Water Level	Pumping	Liters	Appearance or Comment
(3 Consecutive	2)	(°C)	Cond.	ри	(mg/L)	(mV)	(NTU)		Rate	Removed	Clarity, Color, Odor, Ect.
Purge Date	Tîme	±0.5°	±5%	±0.1	±10%	±10		(ft)	mL/Min		clear, slightly turbid, turbid
15 Sept 2020	The second second	Start of Well									
	1005	(1.69	4909	6.86	4.57	233:0	6.90	36,79	100.0	500,0	Clear
	1025	10.99	5207	6,74	1.52	221.8	1.09	37.99	100,0	2000.0	Aeor
	1030	11.23	5213	6.75	1.96	224.1	0.65	38.16	100.0	500.0	Clus_
	1035	11.14	5209	6.75	1.84	223,3	0,59	38.28	100.0	500.00	Clux
	1040	11.23	5217	6.74	1.79	223.7	0.84	38148	100.0	500. 0	Client
					l						
	Well Sta	ibilized?	(YES)	NO				Total Vol	ume Purged:	4000,2	Liters
Sample Date	Time	Temp.	Spec.	рН	-		Turbidity				Appearance or Comment
-		(°C)	Cond.				(NTU)				Clarity, Color, Odor, Ect.
15 Set 2020	1040	11.23	5217	6,74	l		0.24				Clisv
Comments:								······································			

Field Datasheet

Groundwater Assessment

Company:	MDU Heskett
Event:	Fall 2020
Sample ID:	103,
Sampling Personal:	- by by

2616 E. Broadway Ave, Bismarck, ND

Phone: (701) 258 Weather Conditions		Temp:	60	°C	Wind:		0 -	~	Precip:	Suppy / D	ertly Cloudy / Cloudy	
Weather Conditions				<u>Г</u>	wind.	<u> </u>	@ 5-10					
	WELL INF		N		7	I			IPLING IN	FORMATIO		
Vell Locked?	YES	NO			4	Purging Method: Bladder				4	Control Setting	
Vell Labeled?	(YES)	NO			4	Sampling M		Bladder		· ·	Purge: 3	Sec.
Lasing Strait?	YES	NO	NI-LY	Cathla	4	Dedicated E	quipment?	(ES)	NO	J	Recover: 27	Sec.
Grout Seal Intact?	YES	NO	NOT	/isible	4			·····		-	PSI: SO	
lepairs Necessary?				-	Duplicate Sa		YES	(ND	4			
	ng Diameter:		2"		-	Duplicate Sa	ample ID:		-	J		
Water Level B			6	ft	4					-		
	epth of Well:			ft	4		Bottl	e List:				
	Vell Volume:			liters	1	1 Liter Raw						
	op of Pump:			ft	4	500mL Nitric						
Water Level A			N I N	ft	1	500mL Nitric	• •					
Measurem	ent Method:	Electric	Water Level	Indicator		250mL Sulfur	ric			J		
					FIE	LD READIN	IGS					
Stabilization Para	meters	Temp.	Spec.		DO	ORP	Turbidity	Water Level	Pumping	Liters	Appearance or Com	ment
(3 Consecutiv	re)	(°C)	Cond.	рН	(mg/L)	(mV)	(NTU)	water Level	Rate	Removed	Clarity, Color, Odor	; Ect.
Purge Date	Time	±0.5°	±5%	±0.1	±10%	±10		(ft)	mL/Min		clear, slightly turbid,	turbid
14 Sept 2020	1050	Start of Wel										
1 (sequer of the	1055	9,72	4969	678	1.05	247.8	0.33	32.02	100.0	502.0	(leav	
	1115	9.63	4853	6.00	1.06	2465	0.28	32.55	100.0	2000.0	Clim	
	1120	9.76	4954	6.80	0.92	242.9	0.16	32.68	100.0	500.0	Clear	
	#33	9,95	5042	6.80	1.06	249.1	0.27	32.67	100.0	500.0	Char	
	1130	9.61	4977	6.80	1.00	239.7	0.35	32,69	100.0	5220	Ula	
•		1				1		/				
		1										
	Well St	abilized?	YES	NO				Total Vol	lume Purged:	4000.0	Liters	
Sampla Data	Time	Temp.	Spec.	pН	1		Turbidity				Appearance or Com	ment
Sample Date	Tune	(°C)	Cond.	hu			(NTU)	:			Clarity, Color, Odor	, Ect.
14 Sept 2020	(130	9.81	4977	6.60			0,33				Clea	
omments:	T		· · · · · · · · · · · · · · · · · · ·									
ommento.												

Field Datasheet

Groundwater Assessment

Company:	MDU Heskett
Event:	Fall 2020
Sample ID:	44R
Sampling Personal:	John-

2616 E. Broadway Ave, Bismarck, ND

Weather Condition	58-9720 ns:	Temp:	60	°F	Wind:	2	@ 5-1	0	Precip:	Sunny / Ra	artly Cloudy / Cloudy
	WELL INF	ORMATIO				à-		****		FORMATIO	
Well Locked? YES		7	Purging Me	thod:	Bladder		Control Settings:				
Well Labeled?	XES	NO			1	Sampling M		Bladder			Purge: 3 Se
Casing Strait?	YES	NO			1	The second se	quipment?	YES	NO	1	Recover: 27 Se
Grout Seal Intact?	YES	NO	Not \	/isible	7						PSI: 30
Repairs Necessary?					7	Duplicate Sa	ample?	YES	(NQ]	<u></u>
Cas	sing Diameter:	2	2"	<u> </u>	7	Duplicate Sa				1	
Water Level	Before Purge:	27.	Bb	ft						-	
Total I	Depth of Well:			ft			Bottl	e List:]	
	Well Volume:		·····	liters]	1 Liter Raw]	
Depth to	Top of Pump:	1		ft		500mL Nitric					
Water Level	After Sample:	28,	.05	ft]	500mL Nitric	(filtered)				
Measurer	ment Method:	Electric V	Water Level	Indicator]	250mL Sulfur	ric			1	
					FIE	LD READIN	IGS				
Stabilization Par	ameters	Temp.	Spec.	pH	DO	ORP	Turbidity	Water Level	Pumping	Liters	Appearance or Comment
(3 Consecut	tîve)	(°C)	Cond.	hu	(mg/L)	(mV)	(NTU)	Water Lever	Rate	Removed	Clarity, Color, Odor, Ect.
Purge Date	Time	±0.5°	±5%	±0.1	±10%	±10		(ft)	mL/Min		clear, slightly turbid, turbid
14 Sept 2020		Start of Well	Purge								
										500.0	Clear
11 apr	1010	9,54	9108	6.67	1.85	276.1	Z.40	28.0Q	100.0	-	Vicon
1(ap(1010	9.51	9143	6.66	1.55	266.0	1.59	28,08	100.5 100,0	200.0	Clear
11 27(9.51 9.67		6.66	1.55	268.0 262.9	1.59 0,76			-	Clear
1(ap (1020	9.51	9143	6.66	1.55	266.0	1.59	28,08	100.0	2000,0	
1(ap (1020	9.51 9.67	9143	6.66	1.55	268.0 262.9	1.59 0,76	28,08	100,0 100.0	2000,0 500.0	Clear Clear
1(ap (1020	9.51 9.67	9143	6.66	1.55	268.0 262.9	1.59 0,76	28,08	100,0 100.0	2000,0 500.0	Clear Clear
1(ap (1020	9.51 9.67	9143	6.66	1.55	268.0 262.9	1.59 0,76	28,08	100,0 100.0	2000,0 500.0	Clear Clear
1(ap (1020	9.51 9.67	9143	6.66	1.55	268.0 262.9	1.59 0,76	28,08	100,0 100.0	2000,0 500.0	Clear Clear
1(ap (1020	9.51 9.67	9143	6.66	1.55	268.0 262.9	1.59 0,76	28,08	100,0 100.0	2000,0 500.0	Clear Clear

Well Stabilized? (YES) NO

Total Volume Purged: ろうのこう Liters

Sample Date	Time	Temp. (°C)	Spec. Cond.	рH	Turbidity (NTU)	Appearance or Comment Clarity, Color, Odor, Ect.
14 Sept 2020	1030	9.63	9113	6.66	0.61	Cler
Comments:						

2616 E. Broadway Ave MVTL Bismarck, ND 58501 (701) 258-9720

Chain of Custody Record

Project Name:				Event:							Work Ord	Work Order Number:		
	MDU Heskett				Fall 2020						82-2560			
Report To:	Montana-Dakota Utilitie	S	·····	CC:							Collected		<u> </u>	
Attn: Address:	Todd Peterson 400 North 4th St.													
	Bismarck, ND 58501										e.c.	my the		
Phone:	701-425-2427											i cu	pa	
Email:	todd.peterson@mdu.con	n		<u> </u>							<u> </u>			
			/		7		/	7	13/1	/ /	/	/	/ /	
				/	/	. /	/ /	/ /						
				Samor	يم م	Son Rau.		ë/ ‡	8/98/90/		s /			
		/ o,				/ <u>~</u>	ž	1		<u>`</u> / `S				
Lab Number	Sample ID	Date	lime	1 5	/:	\$]\$	¥\$	¥\$	Themp of the	Spec. Com.	170		Analysis Required	
W3492	13	14 Sept 2020	0939	GW		X	X	X	9.34	9792	7.08	f		
W3493	Dup1	14 Sept 2020	NA	GW	X	X	Х	Х	NA	NA	NA			
W3494	102	155et2020		GW			X		8-95	8165	6.88			
W3495	70	15 Sept 2020		GW	X			Х	9.41	4643	7.08		MDU List AA & MDU List	
W3496	101	15 Sept 2020		GW				X	11.23	5217	6.74			
63497	103	14 Sept 2020		GW				X	9.81	4977	6.80			
W3498	44R	14 Sept 2020	1030	GW				X	9.63	9115	6.66			
W3499	FB1	14 Sept 2020	NA	GW	X	X	X	X	NA	NA	NA			
	L									<u> </u>	L			

Comments:

Relinquished E	Зу	Sample	Condition	Rece	ived By
Name	Date/Time	Location	Temp (°C)	Name	Date/Time
1 July	15 Sept2020	Log In Walk In #2	TM562/TM805	la Delan	15 Sept 2020 1560
2 /				5	

*455 G B

Appendix B

Alternative Source Demonstration Reports

Alternative Source Demonstration: September 2019 Event

R.M. Heskett Station

Prepared for Montana-Dakota Utilities Co.

May 2020

Alternative Source Demonstration: September 2019 Event

R.M. Heskett Station

Prepared for Montana-Dakota Utilities Co.

May 2020

4300 MarketPointe Drive, Suite 200 Minneapolis, MN 55435 952.832.2600 www.barr.com

Alternative Source Demonstration September 2019 Event

May 2020

Contents

1.0	In	troduction1
2.0		ptember 2019 SSIs2
2.1		September Sampling Event
2.2		Verification Sampling
3.0	Al	ternative Source Demonstration4
3.1		Source Hypothesis #1: CCR Unit Release4
3.2		Source Hypothesis #2: Natural Variations of Pre-Landfill or Regional Groundwater Quality5
3.	2.1	Chloride at MW-1055
3.	2.2	Fluoride at MW2-905
3.	2.3	Sulfate and TDS at MW-1046
3.3		Source Hypothesis #3: Evaporation Pond Release
3.	3.1	TDS and Sulfate at MW-1047
4.0	Сс	onclusions11
5.0	Re	eferences

List of Tables

- Table 1
 Detection Monitoring Results for Potential SSI Well-Parameter Pairs
- Table 2Verification Sampling Results
- Table 3
 Fluoride Concentrations in Morton County, North Dakota
- Table 4Summary of SSIs and Alternative Sources

List of Figures

- Figure 1 Site Layout and CCR Monitoring Well Network
- Figure 2 Piper Plot
- Figure 3 Sulfate Concentrations
- Figure 4 TDS Concentrations

List of Appendices

- Appendix A Ash SPLP Laboratory Report (2011)
- Appendix B Aerial Photo (March 30, 1988)
- Appendix C Boring Logs
- Appendix D MW1-90 Time Series Plots
- Appendix E Geochemist's Workbench Results

Certifications

I hereby certify that I, or my agent, have examined this written demonstration and attest that this Coal Combustion Residuals Facility Alternative Source Demonstration (ASD) is accurate and has been prepared in accordance with good engineering practice, including consideration of applicable industry standards and the requirements of 40 CFR §257.94. I further certify that this report was prepared by me or under my direct supervision and that I am a duly Licensed Professional Engineer under the laws of the state of North Dakota.

Revision	Date	Summary of Revisions
0	5/7/2020	Initial Alternative Source Demonstration

Thomas J. Radue, P.E.

Thomas J. Radue, P.E. Barr Engineering Co. ND Registration Number PE – 3632

1.0 Introduction

Montana-Dakota Utilities Co. (MDU) owns and operates R.M. Heskett Station (Site), a coal-fired generating station and a gas-fired turbine located in Mandan, Morton County, North Dakota (Figure 1). One CCR (coal combustion residual) unit, as defined by 40 CFR 257.53, is located on the property. The CCR unit contains coal combustion by-products, asbestos wastes generated from construction activity associated with MDU-owned facilities, and ash derived from burning tire-derived fuel (TDF) at the facility.

The CCR Rule (US EPA, 2015) §257.94(e)(2) allows for an alternative source demonstration (ASD) in the event of an identified statistically significant increase (SSI) in a water quality parameter in a downgradient monitoring well over background levels:

The owner or operator may demonstrate that a source other than the CCR unit caused the statistically significant increase over background levels for a constituent or that the statistically significant increase resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. The owner or operator must complete the written demonstration within 90 days of detecting a statistically significant increase over background levels to include obtaining a certification from a qualified professional engineer verifying the accuracy of the information in the report.

The purpose of this work is to evaluate the data collected as part of the September 2019 monitoring event, along with historical data, to demonstrate if the potential SSIs are the results of a "source other than the CCR unit" or due to natural variation in groundwater quality, an error in sampling, analysis, or statistical evaluation.

2.0 September 2019 SSIs

Sampling for the second detection monitoring event in 2019 was conducted on September 16-18. Four potential SSIs over background were identified: chloride at MW-105, sulfate and total dissolved solids (TDS) at MW-104, and fluoride at MW-2-90.

Evaluations were undertaken to review potential alternative sources for the SSIs. These evaluations included comparing the following:

- Leaching tests of on-site CCR materials;
- Leachate collected in the Evaporation Pond (non-CCR unit);
- Regional (background) groundwater quality data; and
- Groundwater quality collected at the site prior to construction of the CCR unit.

Several characteristics of the CCR unit site geology, groundwater monitoring well locations, and historic groundwater quality data prompted consideration of potential alternative sources for the potential SSIs, including:

- Elevated water quality parameters in pre-landfill groundwater monitoring data;
- Site-specific geologic conditions; and
- Leakage from the Evaporation Pond (non-CCR unit).

A successful alternative source demonstration for the potential SSIs is discussed in Section 3.0.

2.1 September Sampling Event

Methods used to evaluate potential alternative sources as the basis for water quality parameter concentrations over background from the September 2019 detection monitoring event are discussed below. Concentrations for potential SSIs observed in September 2019 are similar to those observed during prior detection monitoring events (Table 1).

		Interwell Prediction	Detection Monitoring Results							
Well	Parameter	Limit (mg/L)	April 2018 (mg/L)	October 2018 (mg/L)	April 2019 (mg/L)	September 2019 (mg/L)				
MW-105	Chloride	271	333	384	282	290				
MW-104	Sulfate	7,300	10,700	11,000	11,100	11,300				
MW-104	TDS	10,400	17,400	18,000	17,700	17,200				
MW-2-90	Fluoride	0.98	1.03	1.00	1.02	1.03				

Bolded values indicate concentrations exceed the associated interwell predication limits.

2.2 Verification Sampling

No verification sampling was conducted on the potential SSIs.

3.0 Alternative Source Demonstration

Successful demonstrations of alternative sources have previously been documented for the four potential SSIs. The associated ASD Reports (Barr, 2018a; Barr, 2018b; Barr, 2019a; Barr, 2019b) documented that each of the SSIs could be explained by natural groundwater quality variability based on concentrations that were either present at the Site before the landfill was constructed, consistent with regional groundwater quality data, and/or associated with a release from the Evaporation Pond (non-CCR unit).

The purpose of this ASD Report is to validate the results of prior findings with the September 2019 data. For each potential SSI, three hypotheses regarding the potential source of the SSI are assessed: 1) a release of leachate from the CCR unit is the source of one or more of the potential SSIs; 2) natural variations of pre-landfill or regional groundwater quality is the source of one or more of the potential SSIs; or 3) a release of leachate from the Evaporation Pond (non-CCR unit) is the source of one or more of the potential SSIs.

3.1 Source Hypothesis #1: CCR Unit Release

To accept the hypothesis that a release of leachate from the CCR unit is the source of one or more of the potential SSIs, it would be assumed that groundwater chemistry at one or more of the potentially impacted wells (MW-2-90, MW-104, and MW-105) would be geochemically similar to impacted water from the CCR unit represented by leach tests results. However, if they are geochemically dissimilar, this indicates that a source "other than the CCR unit" may be responsible for the potential SSI. Therefore, major ion chemistry from the CCR monitoring locations (upgradient and downgradient) was compared to CCR Synthetic Precipitation Leaching Procedure (SPLP; EPA Method 1312) data collected July 2011 (Appendix A).

In order to test this hypothesis, Piper diagrams were used to visually compare the CCR SPLP results (Appendix A) and the measured groundwater quality at the Site (Figure 2). Piper diagrams are plots of major ion chemistry of water samples (calcium, magnesium, potassium, sodium, chloride, sulfate, and alkalinity) that are used to differentiate between water types and to identify potential mixing of water types. This method is a means to identify or "fingerprint" water samples by their common characteristics (major ions) to assess which types of water are similar or dissimilar to potential source water types (Helsel and Hirsch, 2002). On the Piper diagram depicted in Figure 2, downgradient well compositions are shown as circular points, CCR SPLP compositions as red triangles, and the range of upgradient compositions as a blue polygon.

Downgradient water quality (including the potential SSI parameter-well pairs) is characterized as a Mg-SO₄ type water, whereas the ash SPLP results are Na-SO₄ type water. The major difference observed between the downgradient water quality and the SPLP results is the dominant cation concentration (magnesium vs. sodium). Because water quality data from SSI well-parameter pairs are clustered with data from that of the upgradient wells, which are Na-Mg-SO₄ to Mg-SO₄ type water, rather than near the SPLP results, it indicates that the water chemistry at those locations are more like upgradient groundwater than a potential release from the CCR unit. **Therefore, we reject the hypothesis that the CCR unit is the** source of the fluoride observed at MW-2-90, sulfate and TDS observed at MW-104, and chloride at MW-105.

3.2 Source Hypothesis #2: Natural Variations of Pre-Landfill or Regional Groundwater Quality

As Source Hypothesis #1 (CCR Unit Release) was rejected as a potential source of the SSIs, natural variations of pre-landfill conditions and/or regional groundwater quality were evaluated for each of the potential SSIs. The second hypothesis evaluated is that concentrations of fluoride at MW-2-90, sulfate and TDS at MW-104, and chloride at MW-105 are consistent with historical (pre-landfill) or regional (background) groundwater data. To test this hypothesis, results of September 2019 Detection Monitoring were compared to pre-landfill data and/or regional groundwater quality data from the Cannonball Formation and associated units to determine if natural variation is a potential alternative source for the SSIs.

3.2.1 Chloride at MW-105

Results from groundwater samples collected in 1986 were included in the 1989 Special Use Disposal Site Permit Application (Permit Application; MDU, 1989). The 1986 samples were collected prior to construction of the CCR unit; an aerial photograph from March 30, 1988 shows the area of the CCR unit, which appears undisturbed (Appendix B).

Pre-landfill chloride concentrations collected from groundwater at the Site were measured as high as 558 mg/L (Well 44, 1986), indicating that high chloride concentrations pre-date construction of the CCR unit. Additionally, the North Dakota State Water Commission conducted a groundwater study in Morton County (Ackerman, 1980); 45 wells screened in the Cannonball and Ludlow Formations were sampled for various parameters including chloride. Chloride concentrations ranged from 0 to 500 mg/L (37% of which had concentrations greater than 250 mg/L).

Historic data shows that concentrations of chloride in groundwater at the Site measured prior to the construction of the CCR unit (558 mg/L) as well as regional groundwater quality data (0 to 500 mg/L) are consistent with and/or higher than chloride measured at MW-105 in September 2019 (290 mg/L). This supports the hypothesis that the SSI for chloride at MW-105 is due to a "source other than the CCR unit." **Therefore, we accept the hypothesis that chloride concentrations observed at MW-105 are consistent with regional (background) groundwater data**.

3.2.2 Fluoride at MW2-90

Source Hypothesis #2 was tested by comparing fluoride concentrations collected as part of several regional groundwater quality studies on the Cannonball Formation and associated units. A summary of the range of fluoride concentrations in the Cannonball Formation and associated units are included in the table below.

Table 3. Fluoride Concentrations in Morton County, North Dakota

Reference	Fluoride Conc. Range	Formation/Units	Data Source Location
Ackerman, D.J., 1980. Ground-Water Resources of Morton County, North Dakota. North Dakota Geological Survey Bulletin 72, Part III. 51 p.	0.0 to 4.0 mg/L	Cannonball and Ludlow formations, undifferentiated	Morton County
Crosby, O.A. and Klausing, R.L., 1984. Hydrology of Area 47, Northern Great Plains and Rocky Mountain Coal Provinces, North Dakota, South Dakota, and Montana. USGS Water- Resources Investigations Open-File Report 83-221, 93 p.	0.1 to 6.3 mg/L	Entire Fort Union Formation (includes Cannonball Formation)	Morton County

The Ackerman study provides summary statistics for the fluoride concentrations observed in Morton County. Forty-six samples were analyzed for fluoride; of those, 20 (or 43%) had concentrations greater than 1.3 mg/L (Ackerman, 1980). The fluoride concentration observed at MW-2-90 in September 2019 (1.03 mg/L) is within the range of values consistent with naturally-occurring concentrations of fluoride associated with the Cannonball Formation in Morton County. **Therefore, we accept the hypothesis that fluoride concentrations observed at MW-2-90 are consistent with regional (background) groundwater data.**

3.2.3 Sulfate and TDS at MW-104

Analyses of groundwater samples collected prior to construction of the CCR unit included in the Permit Application notes that high sulfate and TDS was observed at the Site. Maximum sulfate and TDS concentrations reported in 1986 were 11,632 mg/L and 14,917 mg/L, respectively, in Well 60 (approximately 700 feet southwest of MW-104), with similar concentrations observed two years later. Sulfate concentrations reported in September 2019 (11,300 mg/L) at MW-104 are within range of historically observed concentrations, but TDS concentrations are somewhat higher than historically observed (17,200 mg/L). Figures 3 and 4 show the range of sulfate and TDS concentrations, respectively, across the Site, including recent and historical monitoring well data.

The mineralogy of the underlying Fort Union Formation may yield an explanation for the elevated sulfate concentrations (which leads to elevated TDS concentrations). The dominant lithology observed at the Site is unconsolidated silt in a clay matrix with interspersed fine to medium-grained sand (10% to 30%). Small gypsum crystals are documented discontinuously throughout the upper 30 feet of the surface materials, which have been presumed to be the result of diagenetic processes which occur above the water table during alternating wetting and drying cycles (Groenewold et al., 1983). Gypsum is a hydrated calcium sulfate mineral that can be a source of high sulfate concentrations in groundwater.

The boring log for MW-104 (Appendix C) notes gypsum present throughout the upper layer of the screened interval. Boring logs for other CCR wells and pre-landfill wells note gypsum occurrences across the Site (Appendix C). The water level and screened interval in MW-104 are within the gypsum-bearing unit. In other wells with lower sulfate and TDS concentrations, the water levels and/or screened units are

below the documented gypsum occurrences. As groundwater fluctuates and surface water infiltration occurs, periodic dissolution of gypsum into the water column may occur, resulting in elevated sulfate concentrations (and therefore elevated TDS, too).

Based on presence of gypsum in native subsurface deposits and documentation of elevated sulfate and TDS in pre-landfill groundwater, the hypothesis that the SSI for sulfate and TDS at MW-104 may be due to natural conditions (a "source other than the CCR unit.") is possible. However, a statistically significant increasing trend for TDS at MW-104 was observed. Although natural/background groundwater can be affected by seasonality and/or site-wide aquifer changes, resulting in trending data, no other monitoring wells at the Site has observed trends for TDS (or sulfate). Additionally, seasonality was not detected in TDS or sulfate at MW-104. **Sulfate and TDS concentrations at MW-104 may be due to natural conditions, however additional source considerations were evaluated.**

3.3 Source Hypothesis #3: Evaporation Pond Release

Two conditions are necessary in order to accept the hypothesis that a release of Evaporation Pond water is the source of one or more of the potential SSIs:

- Mechanism of release (such as an issue with Evaporation Pond liner integrity) and
- Geochemically similar groundwater chemistry at one or more of the potentially impacted wells with water from the Evaporation Pond.

Based on proximity, only the SSIs observed at MW-104 (TDS and sulfate) are being evaluated for this potential source.

3.3.1 TDS and Sulfate at MW-104

A statistically significant increasing trend in TDS was observed at MW-104 following the September 2019 detection monitoring event. No other statistically significant trends were observed for other Appendix III parameters at this location. Past ASD Reports (Barr, 2019b) attributed elevated sulfate and TDS concentrations at MW-104 to either natural conditions or a release from the Evaporation Pond. MW-104 is located between the CCR unit and the Evaporation Pond (a non-CCR unit). The Evaporation Pond was constructed to collect surface water run-off from the Site as well as leachate from the CCR Unit. Due to the relative proximity of MW-104 to the Evaporation Pond, an evaluation was conducted to assess the Evaporation Pond liner integrity, potential impacts to downgradient wells, and determine the geochemical feasibility of Evaporation Pond water contributing to the conditions observed at MW-104.

Liner Integrity Evaluation

In the 2010 Annual Report for the Special Waste Disposal Permit (SP-087), it was noted that erosion was encountered at the Evaporation Pond. More specifically, "cuts in the banks of the pond ranged from 8 to 24-inches. Erosion was caused from storm water running into the evaporation pond from closed Slots and the haul road" (MDU, 2011). No repairs were made at that time due to standing water in the pond. Similar erosional features were noted in the 2011 and 2012 Annual Reports, citing erosion cuts of 8 to 48-inches (MDU, 2012 and MDU, 2013). These erosion cuts were repaired in 2013 during the construction of Slot 10. Additionally, the 2013 Annual Report stated that "the west wall of the evaporation pond was raised and

graded to reroute storm water that accumulates outside of the ash disposal area from the cover of Phase I ash disposal site away from the pond during rain events" (MDU, 2014).

These reports did not specify if the erosional cuts were 8 to 48-inches wide or 8 to 48-inches deep. Based on the Phase I Development "as-constructed" Plan Sheets (January and November 1990), the Evaporation Pond was built with a 3-foot-thick compacted clay liner (MDU, 1989 Exhibit 6-B). If the erosional cuts were up to 48-inches deep, then the cuts would extend through the entirety of the liner thickness, creating a conduit for Evaporation Pond water to enter the groundwater. Additionally, no details were provided on the materials used for repairing the Evaporation Pond (i.e. if the liner was impacted, were the erosion cuts filled in with a comparable clay liner material).

Additionally, the integrity of the Evaporation Pond liner may have been compromised due to cation exchange. Time series plots of groundwater quality at nearby well MW1-90 (Appendix D) show an increase in sodium; this increase is most apparent at MW1-90 between 2012 and 2019. The Evaporation Pond liner may be composed of a clay with sodium as its main interlayer cation (e.g., sodium-montmorillonite and/or sodium-bentonite, which are common in the area (Groenewold et al., 1983)), and cation exchange processes can occur between the sodium in the clay and positively charged cations concentrated in the evaporation pond water (calcium, magnesium, potassium, and aluminum), increasing the concentration of dissolved sodium as it is released from the clay structure. Over time this exchange may decrease swelling potential and increase hydraulic conductivity of the clay constituting the pond liner, resulting in increased leakage of Evaporation Pond water.

Downgradient Impacts

The base of the Evaporation Pond sits at approximately 1675 feet above MSL whereas the most recent groundwater elevations in MW-104 and MW1-90 were measured at roughly 1670 feet above MSL and 1665 feet above MSL, respectively. Therefore, any water leaking from the Evaporation Pond would report radially downward into the groundwater, toward both MW-104 and MW1-90, making both wells downgradient of the Pond.

As MW-104 was installed on August 20, 2015, it is not possible to determine if the erosional cuts observed in the early 2010s impacted the water quality at this location. However, data has consistently been collected from nearby well MW1-90, also downgradient of the Evaporation Pond. As seen in the time series plots (Appendix D; 1990-2019), in approximately 2010 concentrations of chloride, sulfate, TDS, magnesium, sodium, and specific conductance at MW1-90 began increasing more rapidly. To a lesser extent, changes in concentrations were observed around this same time for potassium, nitrogen, and total alkalinity. This timing corresponds to when the erosional cuts at the Evaporation Pond were first observed in the Annual Monitoring Reports. The increasing trends have since continued, despite reports of the erosional cuts being repaired in 2013, except for chloride, which has since leveled off and is now decreasing.

Geochemical Feasibility

A simple mixing model was developed in April, 2019 (Barr, 2019b) to determine the potential of producing a similar water quality observed at MW-104 (and MW1-90, as a historical analogue) when mixing Evaporation Pond water with unimpacted upgradient water. This mixing model was conducted in Geochemist's Workbench® v.12.0, using a water sample collected from the Evaporation Pond in September 2014 and a water sample from upgradient monitoring wells MW-13 and MW-103 in September 2014 and April 2019, respectively. Both wells are hydraulically upgradient of MW-104, which has consistently exhibited Mg-SO₄ type groundwater. The mixing model assumes a starting concentration equal to the upgradient groundwater concentrations and then iteratively mixes it with incremental amounts of Evaporation Pond water.

It should be noted that this is not a perfect model, as the groundwater quality in the upgradient monitoring wells has slightly different major ion chemistry than downgradient wells, due to heterogeneity of the geology at the Site. Due to the lack of historical (pre-landfill) data at MW-104, it was decided to use upgradient (non-impacted) water. Therefore, the ultimate purpose of this model was to evaluate the potential to produce a similar water sample to what has been observed at MW-104, not an identical match.

The results of the April 2019 model, using Stiff and Piper plots, are provided in Appendix E. Figures E.1 and E.3 show the results of the mixing model on a stiff diagram for MW-13 and MW-103, respectively. Downgradient wells MW-104 and MW1-90 are shown as gray and green diamonds, respectively, in each figure. The blue line in each figure represents the various possible outcomes when mixing the upgradient water quality with the Evaporation Pond. The purple squares (E.1) or black circles (E.3) represent specific proportions (1-part upgradient water to 0.01-, 0.05-, 0.1-, 0.5-, and 1-part Evaporation Pond water). Figures E.2 and E.4 show the results as Stiff plots. Table E.1 provides the numerical inputs and results of the various mixing proportions.

As shown on Figure E.3, the downgradient well compositions are similar to the chemistry anticipated if the Evaporation Pond is mixing with upgradient groundwater emanating from the proximity of monitoring well MW-103. However, mixing of the upgradient monitoring well MW-13 with the Evaporation Pond water did not result in a composition that appears chemically similar to MW-104, as the path of the mixing reaction does not intersect the location of the MW-104 sample. However, the difference in composition is almost entirely due to the difference in Na:Mg ratio, which can be affected by additional processes such as those described in previous sections. The geometry of the Stiff plots in Figures E.2 and E.4 shows the similarity in anionic concentrations and calcium in the mixing models. As seen in Figure E.3, the path of the mixing reaction from MW-103 to the Evaporation Pond transects MW-104 when 1-part upgradient (MW-103) water is mixed with as little as 0.05-part Evaporation Pond water. Therefore, it appears plausible that a relatively small portion of Evaporation Pond water would be needed to "impact" upgradient groundwater to get a similar chemistry as observed in MW-104.

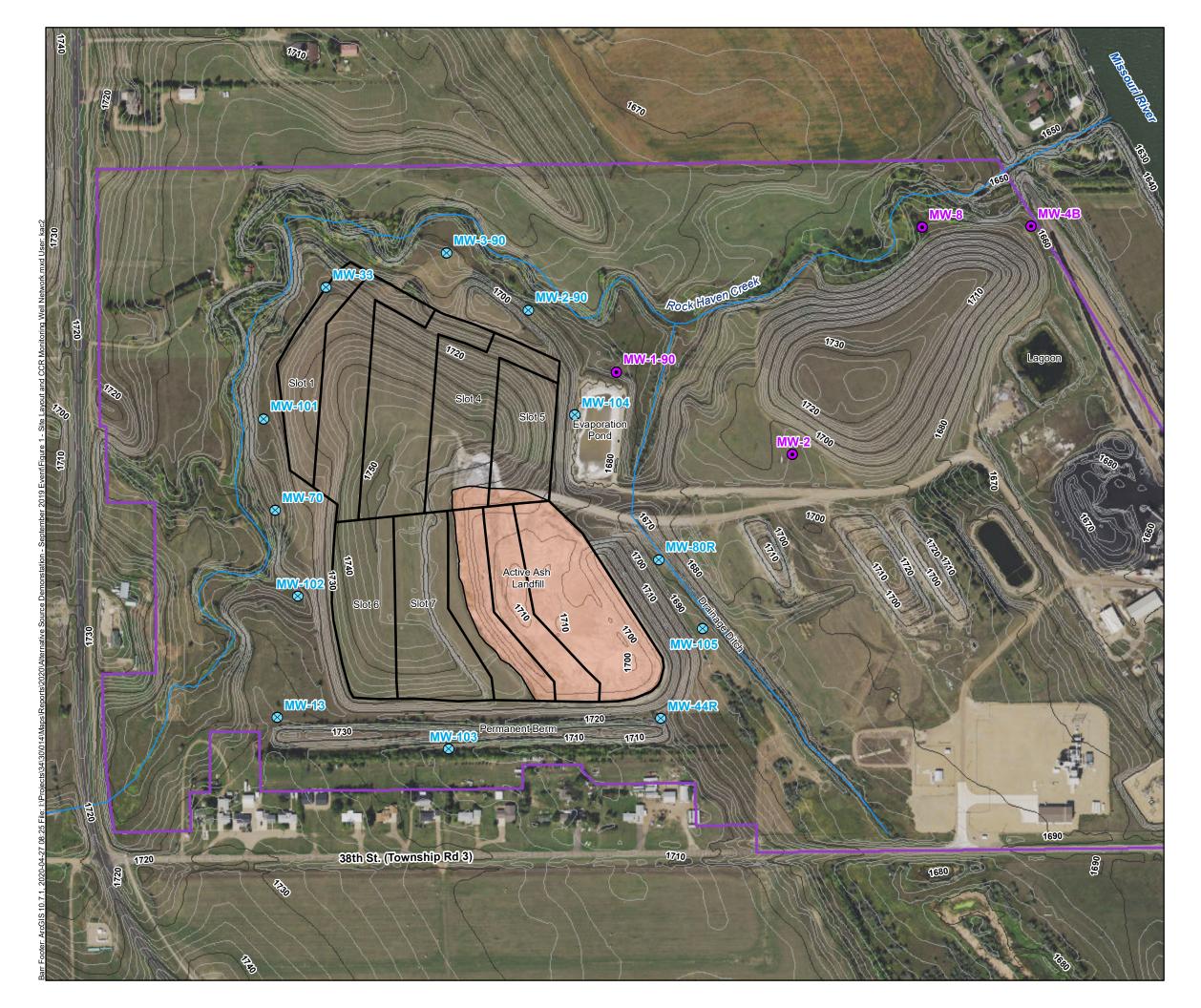
Based on the description of erosional features extending upwards of 48 inches in the liner of the Evaporation Pond in 2010-2013 corresponding with the increased concentrations of several parameters observed in downgradient monitoring well MW1-90, it is possible that a release from the Evaporation

Pond occurred starting in approximately 2011. Furthermore, the results of the geochemical model along with the general proximity and hydraulic position of MW-104 relative to the Evaporation Pond supports the hypothesis that the SSI for TDS and sulfate at MW-104 is due to a "source other than the CCR unit." **Therefore, we accept the hypothesis that TDS and sulfate concentrations observed at MW-104 are consistent with a potential release from the Evaporation Pond, a non CCR unit.**

4.0 Conclusions

Four SSIs were identified from the September 2019 detection monitoring event. This report demonstrates that a "source other than the CCR unit" caused the potential SSIs (natural variation in regional and/or prelandfill groundwater quality and the Evaporation Pond), as allowed by §257.94(e)(2). The results of this alternative source demonstration are summarized in the table below.

Well	Parameter	Report Section	Evidence for Alternative Source
MW-105	Chloride	3.2.1	Natural variability (pre-landfill values and geologic background)
MW-104	Sulfate	3.3.1	Natural variability and/or Other (Evaporation Pond, a non CCR unit)
MW-104	Total Dissolved Solids	3.3.1	Natural Variability or Other (Evaporation Pond, a non CCR unit)
MW-2-90	Fluoride	3.2.2	Natural variability (pre-landfill values and geologic background)

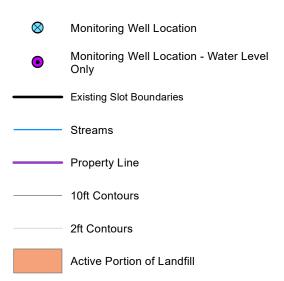
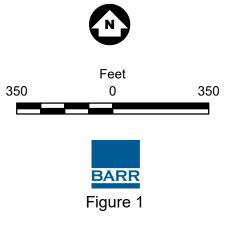
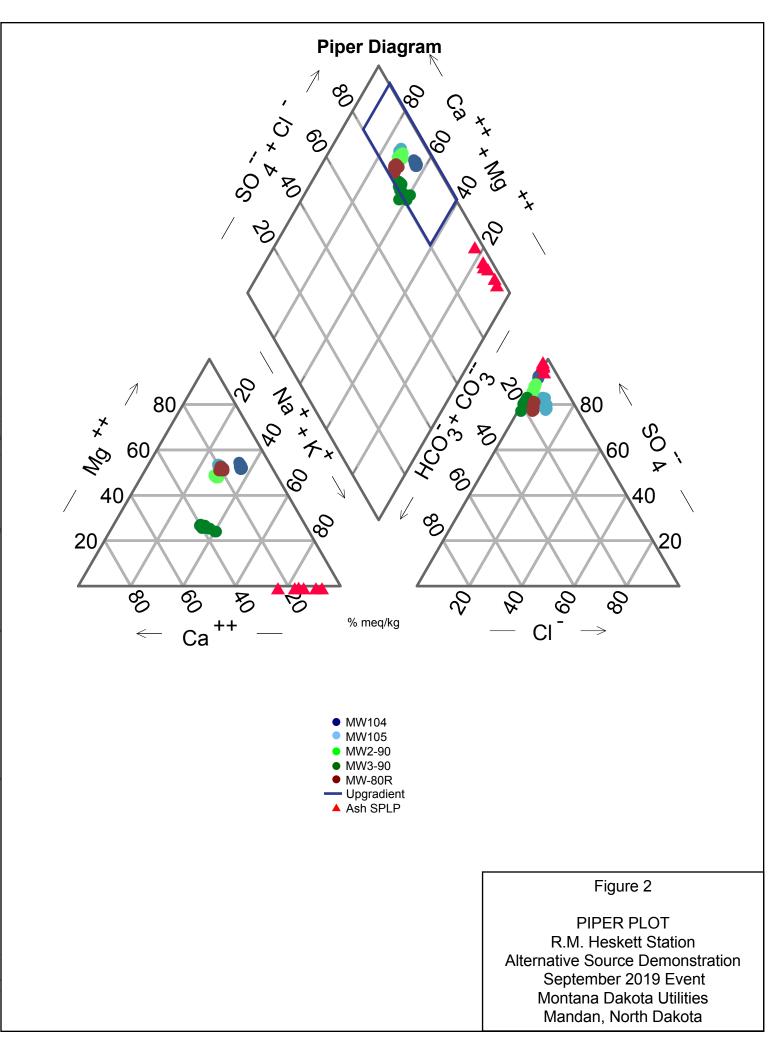

Table 4. Summary of SSIs and Alternative Sources

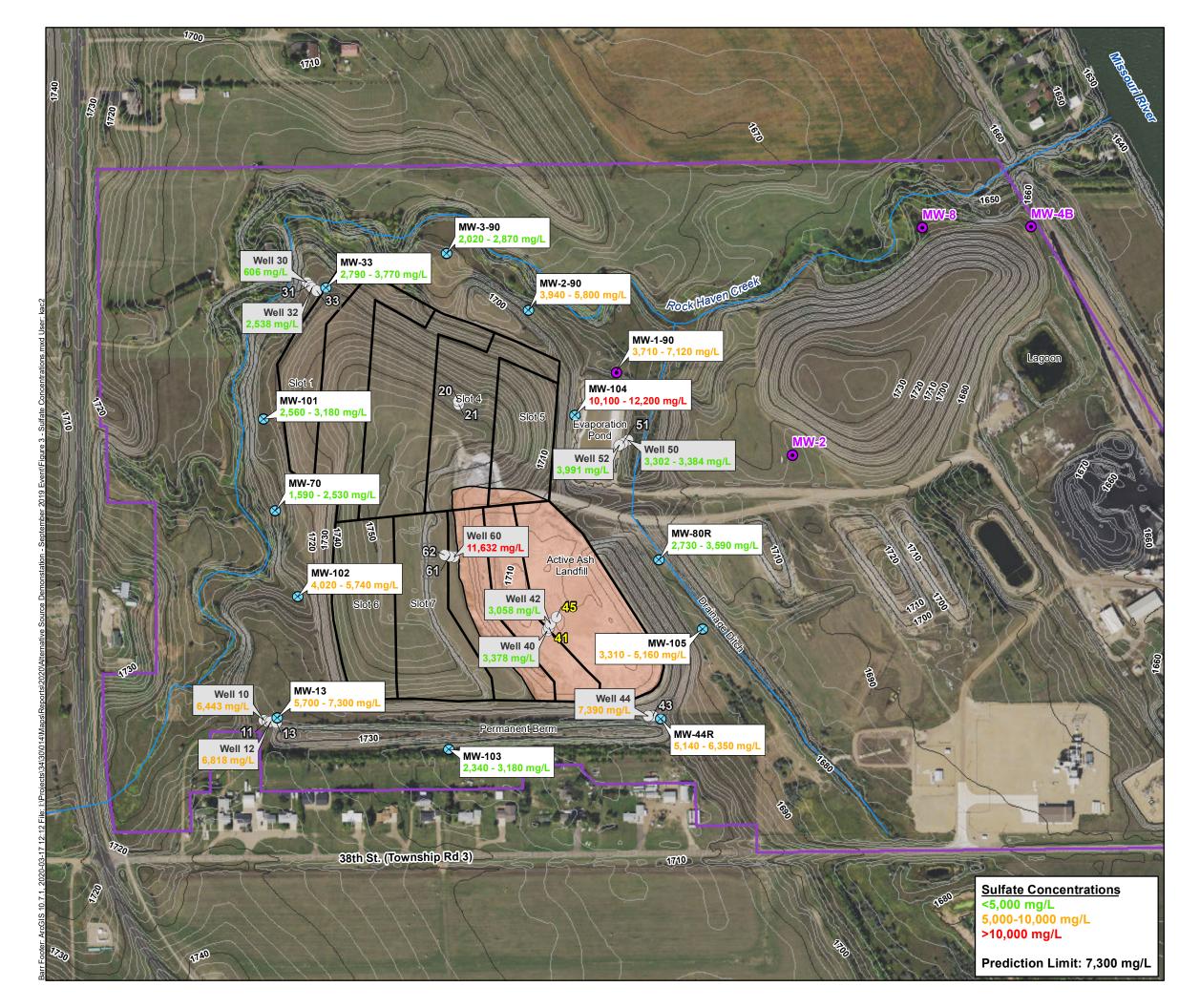
Based on the foregoing, the alternative source demonstration presented herein meets the requirements of CCR Rule §257.94(e)(2). As coal unit operations will cease around March 2022, MDU will work with the North Dakota Department of Environmental Quality (NDDEQ) on closure options for the Evaporation Pond as it is regulated under a permit through the NDDEQ.

5.0 References

- Ackerman, D.J., 1980. Ground-Water Resources of Morton County, North Dakota. North Dakota Geological Survey Bulletin 72, Part III. 51 p.
- Barr Engineering Co., 2019a. Alternative Source Demonstration: October 2018 Event. R.M. Heskett Station. Prepared for Montana-Dakota Utilities Co. April 2019.
- Barr Engineering Co., 2019b. Alternative Source Demonstration: April 2019 Event. R.M. Heskett Station. Prepared for Montana-Dakota Utilities Co. November 2019.
- Crosby, O.A. and Klausing, R.L., 1984. Hydrology of Area 47, Northern Great Plains and Rocky Mountain Coal Provinces, North Dakota, South Dakota, and Montana. USGS Water-Resources Investigations Open-File Report 83-221, 93 p.
- Groenewold, G.H., Koob, G.J., McCarthy, B.W., and Peterson, W.M., 1983, Geologic and Geochemical Controls on the Chemical Evolution of Subsurface Water in Undisturbed and Surface-Mined Landscapes on Western North Dakota, North Dakota Geological Survey Report of Investigation 79, 151 p.
- Helsel, D.R. and R. M. Hirsch, 2002. Statistical Methods in Water Resources Techniques of Water Resources Investigations, Book 4, chapter A3. U.S. Geological Survey. 522 pages.
- Montana-Dakota Utilities Co. (MDU), 1989, R.M. Heskett Station Special Use Disposal Site Permit Application. Submitted to North Dakota State Department of Health, March 1, 1989.
- MDU, 2011, R.M. Heskett Station Special Waste Disposal Permit SP-087 2010 Annual Report. February 2011.
- MDU, 2012, R.M. Heskett Station Special Waste Disposal Permit SP-087 2011 Annual Report. February 2012.
- MDU, 2013, R.M. Heskett Station Special Waste Disposal Permit SP-087 2012 Annual Report. February 2013.
- MDU, 2014, R.M. Heskett Station Special Waste Disposal Permit SP-087 2013 Annual Report. February 2014.
- US EPA, 2015, Hazardous and Solid Waste Management Systems; Management of Coal Combustion Residuals from Electric Utility, CFR Parts 257 and 261, Federal Register, Vol. 80, No. 74, April 17, 2015

Figures


Image Source: 2019 Statewide Imagery (ND GIS Hub)

CAD Data Source: Slot Linework.dwg

SITE LAYOUT AND CCR MONITORING WELL NETWORK R. M. Heskett Station Alternative Source Demonstration: September 2019 Event Montana Dakota Utilities Mandan, North Dakota

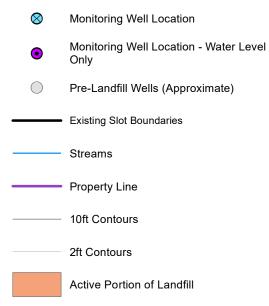


Image Source: 2018 Statewide Imagery (ND GIS Hub)

CAD Data Source: Slot Linework.dwg Pre-Landfill well concentrations are from 9/11/1986, 11/21/1986 (MDU, 1989), and CCR Rule monitoring well concentrations are from 2016-2019.

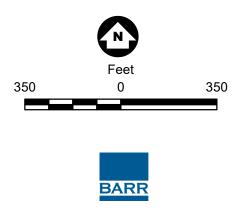
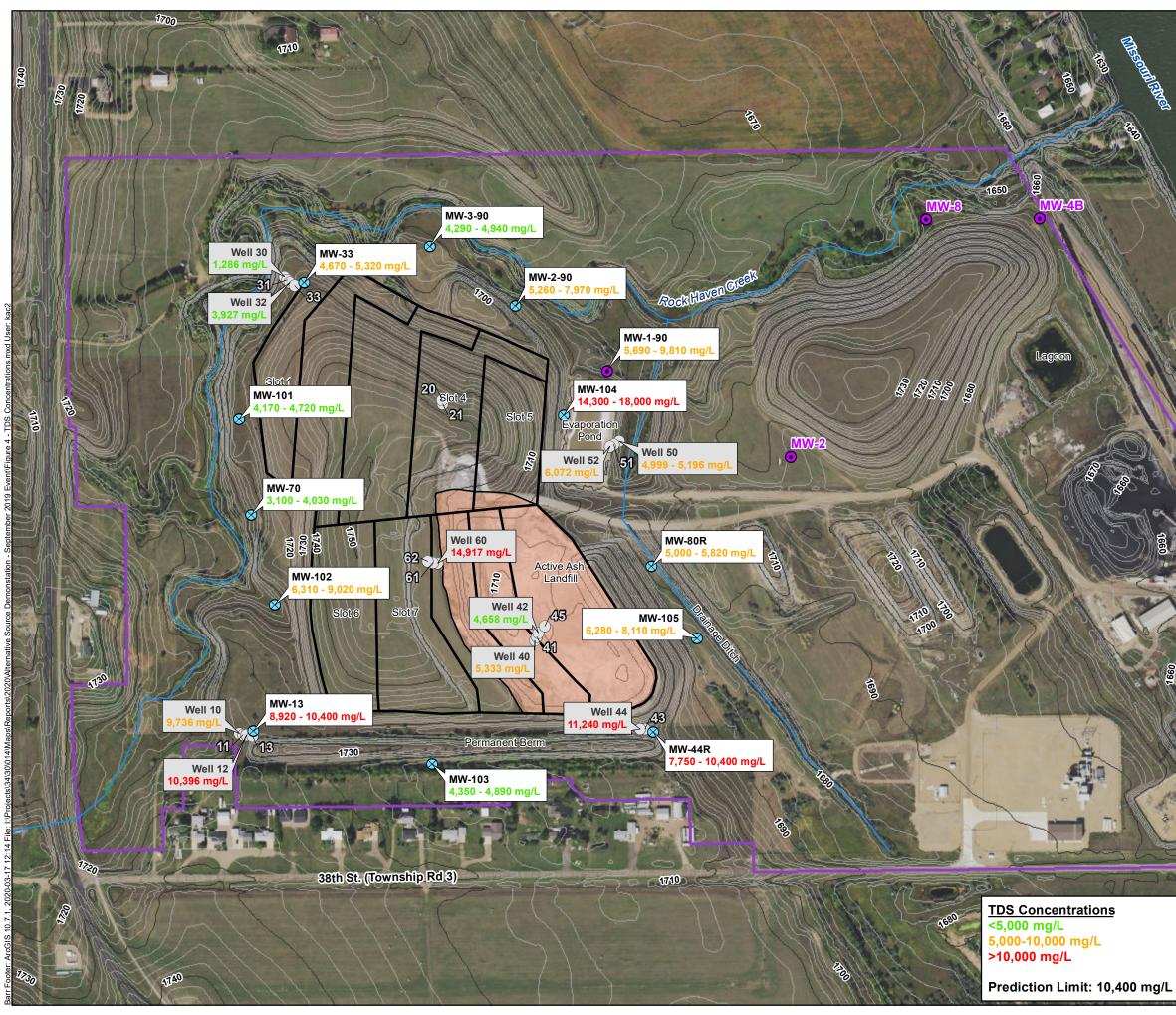



Figure 3

SULFATE CONCENTRATIONS R. M. Heskett Station Alternative Source Demonstration: September 2019 Event Montana Dakota Utilities Mandan, North Dakota

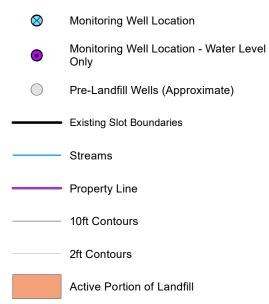


Image Source: 2018 Statewide Imagery (ND GIS Hub)

CAD Data Source: Slot Linework.dwg Pre-Landfill well concentrations are from 9/11/1986, 11/21/1986 (MDU, 1989), and CCR Rule monitoring well concentrations are from 2016-2019.

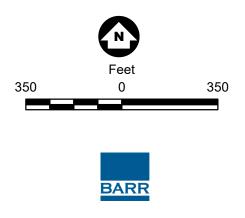


Figure 4

TDS CONCENTRATIONS R. M. Heskett Station Alternative Source Demonstration: September 2019 Event Montana Dakota Utilities Mandan, North Dakota

Appendix A

Ash SPLP Laboratory Report (2011)

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 51 West Lincoln Way ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

Page: 1 of 2

Report Date: 8 Sep 11 Lab Number: 11-M2450 Work Order #:81-818 Account #: 013479 Date Sampled: Date Received: 28 Jun 11 9:00 PO #: 131460 OP

Duane Leingang Montana Dakota Utilities PO Box 40 Mandan ND 58554

Sample Description: Unit I Bottom Ash Sample Site: MDU Heskett

	As Receive Result	ed	Method RL	Method Reference	Date Analyzed	Analyst
SPLP Extraction				1312	22 Jul 11	SS
рН	12.2	units	N/A	SM4500 H+ B	22 Jul 11 17:00	
Specific Conductance	8778	umhos/cm	N/A	SM2510-B	22 Jul 11 17:00	
Total Suspended Solids	3	mg/l	1	SM2540-D	22 Jul 11 14:00	
Total Alkalinity	1120	mg/l CaCO3	4	SM2320-B	22 Jul 11 17:00	
Phenolphthalein Alk	1090	mg/l CaCO3	4	SM2320-B	22 Jul 11 17:00	
Bicarbonate	< 4	mg/l CaCO3	4	SM2320-B	22 Jul 11 17:00	
Carbonate	60	mg/l CaCO3	4	SM2320-B	22 Jul 11 17:0	
Hydroxide	1060	mg/l CaCO3	0	SM2320-B	22 Jul 11 17:00	
Tot Dis Solids (Summation)	4860	mg/l	NA	SM1030-F	3 Aug 11 8:4	2
Total Hardness as CaCO3	524	mg/l	NA	SM2340-B	3 Aug 11 8:4	
Hardness in grains/gallon	30.7	gr/gal	NA	SM2340-B	3 Aug 11 8:4	
Cation Summation	74.3	meg/L	NA	SM1030-F	3 Aug 11 8:4	
Anion Summation	74.6	meq/L	NA	SM1030-F	28 Jul 11 14:3	
Percent Error	-0.24	8	NA	SM1030-F	3 Aug 11 8:4	
Sodium Adsorption Ratio	27.1		NA	USDA 20b	3 Aug 11 8:4	
Gross Alpha Radiation	Attached	pCi/l			22 Aug 11 2:0	
Radon 222	Attached				28 Jul 11 4:3	
Radium 226	Attached	pCi/l			22 Aug 11 22:2	
Radium 228	Attached	pCi/l			16 Aug 11 16:5	
Total Organic Carbon	0.7	mg/l	0.5	SM5310-C	1 Aug 11 8:0	
Fluoride	< 0.1	mg/l	0.10	SM4500-F-C	4 Aug 11 17:0	
Sulfate	2440	mg/l	5.00	ASTM D516-02	27 Jul 11 9:0	
Chloride	50.5	mg/l	1.0	SM4500-Cl-E	27 Jul 11 14:0	
Nitrate-Nitrite as N	0.21	mg/l	0.10	EPA 353.2	28 Jul 11 14:3	
Ammonia-Nitrogen as N	0.32	mg/l	0.10	EPA 350.1	28 Jul 11 10:4	
Phosphorus as P - Total	< 0.1	mg/l	0.10	EPA 365.1	28 Jul 11 13:0	
Mercury - Total	< 0.0002	mg/l	0.0002	EPA 245.1	28 Jul 11 8:0	
Chemical Oxygen Demand	< 5	mg/l	5.0	HACH 8000	1 Aug 11 8:3	· · · · · · · · · · · · · · · · · · ·
Calcium - Total	210	mg/l	1.0	6010	3 Aug 11 8:4	-
Magnesium - Total	< 2.5	mg/l	1.0	6010	3 Aug 11 8:4	
Sodium - Total	1440	mg/l	1.0	6010	3 Aug 11 8:4	4
Potassium - Total	44.8	mg/l	1.0	6010	3 Aug 11 8:4	
Aluminum - Total	< 0.5	mg/l	0.10	6010	2 Aug 11 9:3	-
Iron - Total	< 0.5	mg/l	0.10	6010	2 Aug 11 9:3	-
Strontium - Total	28.2	mg/l	0.10	6010	2 Aug 11 9:3	-
Titanium - Total	< 0.5	mg/l	0.10	6010	2 Aug 11 9:3	4
Boron - Total	< 0,5	mg/l	0.10	6010	11 Aug 11 8:4	0 Stacy

RL = Method Reporting Limit

Elevated "Less Than Result" (<): @ = Due to sample matrix ! = Due to sample quantity # = Due to sample concentration

CERTIFICATION: MN LAB # 038-999-267 ND # ND-00016

+ = Due to extract volume

MVTL guarantees the accuracy of the analysis done on the sample submitted for testing. It is not possible for MVTL to guarantee that a test result obtained on a particular sample will be the same on any other sample unless all conditions affecting the sample are the same, including sampling by MVTL. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 51 West Lincoln Way ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

Page: 2 of 2

Report Date: 8 Sep 11 Lab Number: 11-M2450 Work Order #:81-818 Account #: 013479 Date Sampled: Date Received: 28 Jun 11 9:00 PO #: 131460 OP

Duane Leingang Montana Dakota Utilities PO Box 40 Mandan ND 58554

Sample Description: Unit I Bottom Ash Sample Site: MDU Heskett

	As Receive Result	ed	Method RL	Method Reference	Date Analyzed	Analyst
Antimony - Total	< 0.002	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Arsenic - Total	0.0044	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Barium - Total	0.1135	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Beryllium - Total	< 0.001	mg/l	0.0010	6020	25 Jul 11 16:18	Claudette
Cadmium - Total	0.00164	mg/l	0.00100	6020	25 Jul 11 16:18	Claudette
Chromium - Total	0.0065	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Cobalt - Total	< 0.002	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Copper - Total	0.0213	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Lead - Total	< 0.002	mg/l	0.0020	6020	25 Jul 11 16:18	
Manganese - Total	0.0027	mg/l	0.0010	6020	25 Jul 11 16:18	
Molybdenum - Total	0.6860	mg/l	0.0020	6020	26 Jul 11 12:46	7.
Nickel - Total	0.0074	mg/l	0.0020	6020	25 Jul 11 16:18	
Selenium - Total	0.0133	mg/l	0.0020	6020	26 Jul 11 9:46	Claudette
Silver - Total	< 0.001	mg/l	0.0010	6020	25 Jul 11 16:18	Claudette
Thallium - Total	< 0.002	mg/1	0.0020	6020	25 Jul 11 16:18	Claudette
Tin - Total	< 0.05	mg/l	0.0500	6020	25 Jul 11 16:18	Claudette
Vanadium - Total	0.0189	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Zinc - Total	0.0151	mg/l	0.0100	6020	25 Jul 11 16:18	Claudette
Uranium	< 0.002	mg/l	0.002	6020	25 Jul 11 16:18	Claudette

All analyses were performed on the extract from Method 1312 (SPLP) with a modified solution to solids ratio of 4:1.

A Tander Approved by:

RL = Method Reporting Limit

CERTIFICATION: MN LAB # 038-999-267

Elevated "Less Than Result" (<): @ = Due to sample matrix | = Due to sample quantity

= Due to sample concentration
+ = Due to extract volume

MVTL guarantees the accuracy of the analysis done on the sample submitted for testing. It is not possible for MVTL to guarantee that a test result obtained on a particular sample will be the same on any other sample unless all conditions affecting the sample are the same, including sampling by MVTL. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

ND # ND-00016

l

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 51 West Lincoln Way ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

Page: 1 of 2

Report Date: 8 Sep 11 Lab Number: 11-M2451 Work Order #:81-818 Account #: 013479 Date Sampled: Date Received: 28 Jun 11 9:00 PO #: 131460 OP

Duane Leingang Montana Dakota Utilities PO Box 40 Mandan ND 58554

Sample Description: Unit II Sand Ash Sample Site: MDU Heskett

	As Receiv Result	ed	Method RL	Method Reference	Date Analyzed	Analyst
SPLP Extraction				1312	22 Jul 11	SS
pH	11.1	units	N/A	SM4500 H+ B	22 Jul 11 17:00	Claudette
Specific Conductance	20110	umhos/cm	N/A	SM2510-B	22 Jul 11 17:00	Claudette
Total Suspended Solids	21	mg/l	1	SM2540-D	22 Jul 11 14:00	CLB
Total Alkalinity	203	mg/l CaCO3	4	SM2320-B	22 Jul 11 17:00	Claudette
Phenolphthalein Alk	171	mg/l CaCO3	4	SM2320-B	22 Jul 11 17:00	Claudette
Bicarbonate	< 4	mg/l CaCO3	4	SM2320-B	22 Jul 11 17:00	Claudette
Carbonate	64	mg/l CaCO3	4	SM2320-B	22 Jul 11 17:00	Claudette
Hydroxide	139	mg/l CaCO3	0	SM2320-B	22 Jul 11 17:00	Claudette
Tot Dis Solids (Summation)	22500	mg/l	NA	SM1030-F	3 Aug 11 8:40	Calculated
Total Hardness as CaCO3	1200	mg/l	NA	SM2340-B	3 Aug 11 8:40	Calculated
Hardness in grains/gallon	70.2	gr/gal	NA	SM2340-B	3 Aug 11 8:40	Calculated
Cation Summation	318	meg/L	NA	SM1030-F	3 Aug 11 8:40	Calculated
Anion Summation	314	meg/L	NA	SM1030-F	28 Jul 11 14:30	Calculated
Percent Error	0.65	8	NA	SM1030-F	3 Aug 11 8:40	Calculated
Sodium Adsorption Ratio	80.9		NA	USDA 20b	3 Aug 11 8:40	Calculated
Gross Alpha Radiation	Attached	pCi/l			22 Aug 11 2:03	
Radon 222	See Attac	hed			28 Jul 11 4:37	
Radium 226	Attached	pCi/l			22 Aug 11 22:20	
Radium 228	Attached	pCi/l			16 Aug 11 16:50	
Total Organic Carbon	< 0.5	mg/l	0.5	SM5310-C	1 Aug 11 8:00	Eric
Fluoride	< 0.1	mg/l	0.10	SM4500-F-C	4 Aug 11 17:00	CLB
Sulfate	14900	mg/l	5.00	ASTM D516-02	27 Jul 11 9:00	KMP
Chloride	2.0	mg/l	1.0	SM4500-Cl-E	27 Jul 11 14:00	KMP
Nitrate-Nitrite as N	< 0.1	mg/l	0.10	EPA 353.2	28 Jul 11 14:30	KMP
Ammonia-Nitrogen as N	0.10	mg/l	0.10	EPA 350.1	28 Jul 11 10:45	KMP
Phosphorus as P - Total	< 0.1	mg/l	0.10	EPA 365.1	28 Jul 11 13:00	KMP
Mercury - Total	< 0.0002	mg/l	0.0002	EPA 245.1	28 Jul 11 8:00	Eric
Chemical Oxygen Demand	< 5	mg/l	5.0	HACH 8000	1 Aug 11 8:30	Wayne
Calcium - Total	481	mg/l	1.0	6010	3 Aug 11 8:40	Stacy
Magnesium - Total	< 5	mg/l	1.0	6010	3 Aug 11 8:40	Stacy
Sodium - Total	6500	mg/l	1.0	6010	3 Aug 11 8:40	Stacy
Potassium - Total	459	mg/l	1.0	6010	3 Aug 11 8:40	Stacy
Aluminum - Total	1.09	mg/l	0.10	6010	2 Aug 11 9:30	Stacy
Iron - Total	< 1	mg/l	0.10	6010	2 Aug 11 9:30	Stacy
Strontium - Total	66.0	mg/l	0.10	6010	2 Aug 11 9:30	Stacy
Titanium - Total	< 1	mg/l	0.10	6010	2 Aug 11 9:30	Stacy
Boron - Total	5.96	mg/l	0.10	6010	11 Aug 11 8:40	Stacy

RL = Method Reporting Limit

Elevated "Less Than Result" (<): \circledast = Due to sample matrix ! = Due to sample quantity # = Due to sample concentration

CERTIFICATION: MN LAB # 038-999-267 ND # ND-00016

+ = Due to extract volume

MVTL guarantees the accuracy of the analysis done on the sample submitted for testing. It is not possible for MVTL to guarantee that a test result obtained on a particular sample will be the same on any other sample unless all conditions affecting the sample are the same, including sampling by MVTL. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

I.

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 51 West Lincoln Way ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

Page: 2 of 2

Report Date: 8 Sep 11 Lab Number: 11-M2451 Work Order #:81-818 Account #: 013479 Date Sampled: Date Received: 28 Jun 11 9:00 PO #: 131460 OP

Duane Leingang Montana Dakota Utilities PO Box 40 Mandan ND 58554

.

Sample Description: Unit II Sand Ash Sample Site: MDU Heskett

	As Receive Result	ed.	Method RL	Method Reference	Date Analyzed	Analyst
Antimony - Total	< 0.002	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Arsenic - Total	0.0822	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Barium - Total	0.0930	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Beryllium - Total	< 0.001	mg/l	0.0010	6020	25 Jul 11 16:18	Claudette
Cadmium - Total	0.00182	mg/l	0.00100	6020	25 Jul 11 16:18	Claudette
Chromium - Total	0.0244	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Cobalt - Total	< 0.002	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Copper - Total	0.1108	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Lead - Total	< 0.002	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Manganese - Total	0.0052	mg/l	0.0010	6020	25 Jul 11 16:18	Claudette
Molybdenum - Total	0.1000	mg/l	0.0020	6020	26 Jul 11 12:46	Claudette
Nickel - Total	0.0136	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Selenium - Total	0.0937	mg/l	0.0020	6020	26 Jul 11 9:46	Claudette
Silver - Total	< 0.001	mg/l	0.0010	6020	25 Jul 11 16:18	Claudette
Thallium - Total	< 0.002	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Tin - Total	< 0.05	mg/l	0.0500	6020	25 Jul 11 16:18	Claudette
Vanadium - Total	0.3026	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Zinc - Total	0,0327	mg/l	0.0100	6020	25 Jul 11 16:18	Claudette
Uranium	< 0.002	mg/l	0.002	6020	25 Jul 11 16:18	Claudette

All analyses were performed on the extract from Method 1312 (SPLP) with a modified solution to solids ratio of 4:1.

Tonde Approved by:

Elevated "Less Than Result" (<): @ = Due to sample matrix ! = Due to sample quantity

RL = Method Reporting Limit

= Due to sample concentration
+ = Due to extract volume

CERTIFICATION: MN LAB # 038-999-267 ND # ND-00016

MVTL guarantees the accuracy of the analysis done on the sample submitted for testing. It is not possible for MVTL to guarantee that a test result obtained on a particular sample will be the same on any other sample unless all conditions affecting the sample are the same, including sampling by MVTL. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

1

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 51 West Lincoln Way ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

Page: 1 of 2

Report Date: 8 Sep 11 Lab Number: 11-M2452 Work Order #:81-818 Account #: 013479 Date Sampled: Date Received: 28 Jun 11 9:00 PO #: 131460 OP

Duane Leingang Montana Dakota Utilities PO Box 40 Mandan ND 58554

Sample Description: Unit I Fly Ash Sample Site: MDU Heskett

	As Receive Result	ed	Method RL	Method Reference	Date Analyzed	Analyst
SPLP Extraction				1312	22 Jul 11	SS
pH	12.9	units	N/A	SM4500 H+ B	22 Jul 11 17:00	
Specific Conductance	50660	umhos/cm	N/A	SM2510-B	22 Jul 11 17:00	
Total Suspended Solids	30	mg/l	1	SM2540-D	22 Jul 11 14:00	
Total Alkalinity	7020	mg/l CaCO3	4	SM2320-B	25 Jul 11 17:00	
Phenolphthalein Alk	6900	mg/l CaCO3	4	SM2320-B	25 Jul 11 17:00	
Bicarbonate	< 4	mg/l CaCO3	4	SM2320-B	25 Jul 11 17:00	
Carbonate	240	mg/l CaCO3	4	SM2320-B	25 Jul 11 17:00	
Hydroxide	6780	mg/l CaCO3	0	SM2320-B	25 Jul 11 17:00	
Tot Dis Solids (Summation)	42200	mg/l	NA	SM1030-F	3 Aug 11 8:40	
Total Hardness as CaCO3	1750	mg/l	NA	SM2340-B	3 Aug 11 8:40	
Hardness in grains/gallon	102	gr/gal	NA	SM2340-B	3 Aug 11 8:40	
Cation Summation	663	meq/L	NA	SM1030-F	3 Aug 11 8:40	
Anion Summation	613	meq/L	NA	SM1030-F	28 Jul 11 14:30	
Percent Error	3.99	8	NA	SM1030-F	3 Aug 11 8:40	
Sodium Adsorption Ratio	143		NA	USDA 20b	3 Aug 11 8:40	
Gross Alpha Radiation	Attached	pCi/l			22 Aug 11 2:03	
Radon 222	Attached				28 Jul 11 4:37	
Radium 226	Attached	pCi/l			22 Aug 11 22:20	
Radium 228	Attached	pCi/l			16 Aug 11 16:50	
Total Organic Carbon	1.5	mg/l	0.5	SM5310-C	1 Aug 11 8:00	
Fluoride	5.60	mg/l	0.10	SM4500-F-C	10 Aug 11 17:00	
Sulfate	22600	mg/l	5.00	ASTM D516-02	27 Jul 11 9:00	
Chloride	53.8	mg/l	1.0	SM4500-Cl-E	27 Jul 11 14:00	
Nitrate-Nitrite as N	0.68	mg/l	0.10	EPA 353.2	28 Jul 11 14:30	
Ammonia-Nitrogen as N	7.22	mg/l	0.10	EPA 350.1	28 Jul 11 10:45	
Phosphorus as P - Total	< 0.1	mg/l	0.10	EPA 365.1	28 Jul 11 13:00	
Mercury - Total	< 0.0002	mg/l	0.0002	EPA 245.1	28 Jul 11 8:00	
Chemical Oxygen Demand	22.4	mg/l	5.0	HACH 8000	1 Aug 11 8:30	1
Calcium - Total	700	mg/l	1.0	6010	3 Aug 11 8:40	
Magnesium - Total	< 25	mg/l	1.0	6010	3 Aug 11 8:40	-
Sodium - Total	14100	mg/l	1.0	6010	3 Aug 11 8:40	
Potassium - Total	580	mg/l	1.0	6010	3 Aug 11 8:40	-
Aluminum - Total	< 5	mg/l	0.10	6010	2 Aug 11 9:30	
Iron - Total	< 5	mg/l	0.10	6010	2 Aug 11 9:30	-
Strontium - Total	59.5	mg/l	0.10	6010	2 Aug 11 9:30	-
Titanium - Total	< 5	mg/l	0.10	6010	2 Aug 11 9:30	
Boron - Total	1.89	mg/l	0.10	6010	11 Aug 11 8:40) Stacy

RL = Method Reporting Limit

CERTIFICATION: MN LAB # 038-999-267

Elevated "Less Than Result" (<): @ = Due to sample matrix ! = Due to sample quantity

= Due to sample concentration
+ = Due to extract volume

ND # ND-00016

MVTL guarantees the accuracy of the analysis done on the sample submitted for testing. It is not possible for MVTL to guarantee that a test result obtained on a particular sample will be the same on any other sample unless all conditions affecting the sample are the same, including sampling by MVTLi As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

MINNESOTA VALLEY TESTING LABORATORIES, INC.

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 51 West Lincoln Way ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

Page: 2 of 2

Report Date: 8 Sep 11 Lab Number: 11-M2452 Work Order #:81-818 Account #: 013479 Date Sampled: Date Received: 28 Jun 11 9:00 PO #: 131460 OP

Duane Leingang Montana Dakota Utilities PO Box 40 Mandan ND 58554

Sample Description: Unit I Fly Ash Sample Site: MDU Heskett

	As Receiv Result	ed	Method RL	Method Reference	Date Analyzed	Analyst
Antimony - Total	< 0.002	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Arsenic - Total	0.1128	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Barium - Total	0.0906	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Beryllium - Total	< 0.001	mg/l	0.0010	6020	25 Jul 11 16:18	Claudette
Cadmium - Total	0.00244	mg/l	0.00100	6020	25 Jul 11 16:18	Claudette
Chromium - Total	0.0270	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Cobalt - Total	< 0.002	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Copper - Total	0.2934	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Lead - Total	0.0161	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Manganese - Total	0.0102	mg/l	0.0010	6020	25 Jul 11 16:18	Claudette
Molybdenum - Total	0,9246	mg/l	0.0020	6020	26 Jul 11 12:46	
Nickel - Total	0.0175	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Selenium - Total	0.1959	mg/l	0.0020	6020	26 Jul 11 9:46	Claudette
Silver - Total	< 0.001	mg/l	0.0010	6020	25 Jul 11 16:18	Claudette
Thallium - Total	< 0.002	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Tin - Total	< 0.05	mg/l	0.0500	6020	25 Jul 11 16:18	Claudette
Vanadium - Total	0.0158	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Zinc - Total	0.3984	mg/l	0.0100	6020	25 Jul 11 16:18	Claudette
Uranium	< 0.002	mg/l	0.002	6020	25 Jul 11 16:18	Claudette

All analyses were performed on the extract from Method 1312 (SPLP) with a modified solution to solids ratio of 4:1.

Approved by:

Torda

RL = Method Reporting Limit

CERTIFICATION: MN LAB # 038-999-267

Elevated "Less Than Result" (c): @ = Due to sample matrix $\frac{1}{2}$ = Due to sample quantity

ND # ND-00016

= Due to sample concentration
+ = Due to extract volume

MVTL guarantees the accuracy of the analysis done on the sample submitted for testing. It is not possible for MVTL to guarantee that a test result obtained on a particular sample will be the same on any other sample unless all conditions affecting the sample are the same, including sampling by MVTL. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

MINNESOTA VALLEY TESTING LABORATORIES, INC.

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 51 West Lincoln Way ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

1 of 2 Page:

Report Date: 8 Sep 11 Lab Number: 11-M2453 Work Order #:81-818 Account #: 013479 Date Sampled: Date Received: 28 Jun 11 9:00 PO #: 131460 OP

Duane Leingang Montana Dakota Utilities PO Box 40 Mandan ND 58554

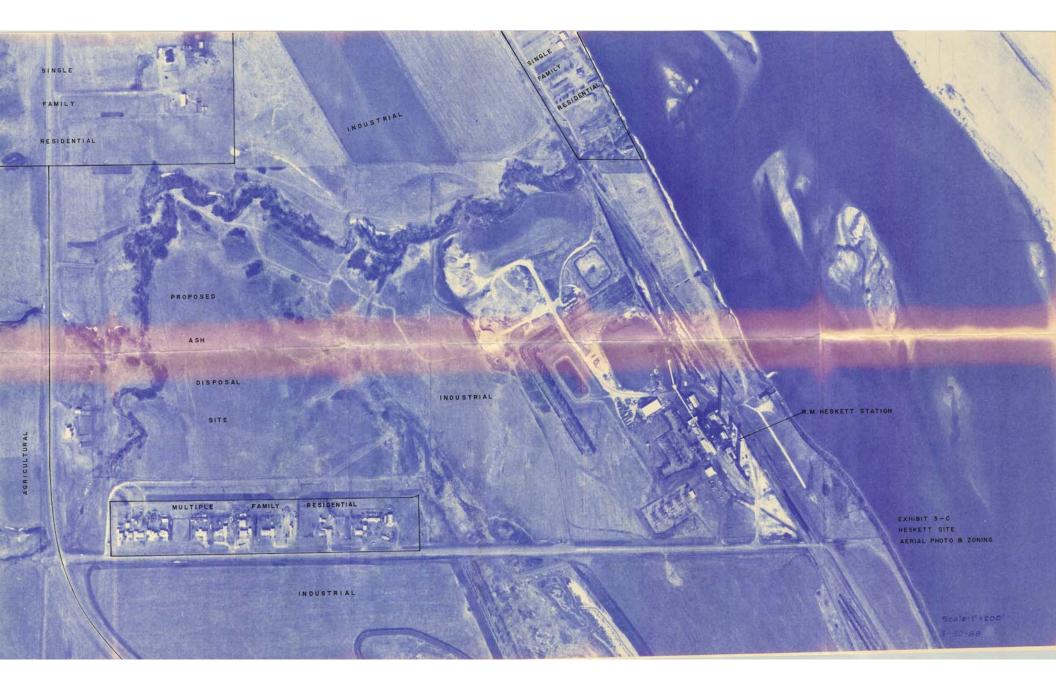
Sample Description: Unit II Fly Ash Sample Site: MDU Heskett

	As Receivo Result	ed	Method RL	Method Reference	Date Analyzed	Analyst
SPLP Extraction				1312	22 Jul 11	SS
рн	12.8	units	N/A	SM4500 H+ B	22 Jul 11 17:00	Claudette
Specific Conductance	27240	umhos/cm	N/A	SM2510-B	22 Jul 11 17:00	Claudette
Total Suspended Solids	13	mg/l	1	SM2540-D	22 Jul 11 14:00	CLB
Total Alkalinity	4570	mg/l CaCO3	4	SM2320-B	22 Jul 11 17:00	Claudette
Phenolphthalein Alk	4520	mg/l CaCO3	4	SM2320-B	22 Jul 11 17:00	Claudette
Bicarbonate	< 4	mg/l CaCO3	4	SM2320-B	22 Jul 11 17:00	Claudette
Carbonate	100	mg/l CaCO3	4	SM2320-B	22 Jul 11 17:00	Claudette
Hydroxide	4470	mg/l CaCO3	0	SM2320-B	22 Jul 11 17:00	Claudette
Tot Dis Solids (Summation)	16000	mg/l	NA	SM1030-F	3 Aug 11 8:40	Calculated
Total Hardness as CaCO3	1960	mg/l	NA	SM2340-B	3 Aug 11 8:40	Calculated
Hardness in grains/gallon	115	gr/gal	NA	SM2340-B	3 Aug 11 8:40	Calculated
Cation Summation	252	meg/L	NA	SM1030-F	9 Aug 11 9:09	Calculated
Anion Summation	247	meq/L	NA	SM1030-F	28 Jul 11 14:30	Calculated
Percent Error	1.00	do	NA	SM1030-F	9 Aug 11 9:09	Calculated
Sodium Adsorption Ratio	46.1		NA	USDA 20b	3 Aug 11 8:40	Calculated
Gross Alpha Radiation	Attached	pCi/l			22 Aug 11 2:03	
Radon 222	Attached				28 Jul 11 4:37	
Radium 226	Attached	pCi/l			22 Aug 11 22:20	
Radium 228	Attached	pCi/l			16 Aug 11 16:50	
Total Organic Carbon	1.6	mg/l	0.5	SM5310-C	1 Aug 11 8:00	Eric
Fluoride	3.60	mg/l	0.10	SM4500-F-C	4 Aug 11 17:00	CLB
Sulfate	7400	mg/l	5.00	ASTM D516-02	27 Jul 11 9:00	KMP
Chloride	66.0	mg/l	1.0	SM4500-Cl-E	27 Jul 11 14:00	KMP
Nitrate-Nitrite as N	0.38	mg/l	0.10	EPA 353.2	28 Jul 11 14:30	KMP
Ammonia-Nitrogen as N	15.0	mg/l	0.10	EPA 350.1	28 Jul 11 10:45	KMP
Phosphorus as P - Total	< 0.1	mg/l	0.10	EPA 365.1	28 Jul 11 13:00	KMP
Mercury - Total	< 0.0002	mg/l	0.0002	EPA 245.1	28 Jul 11 8:00	Eric
Chemical Oxygen Demand	9.4	mg/l	5.0	HACH 8000	1 Aug 11 8:30	Wayne
Calcium - Total	785	mg/l	1.0	6010	3 Aug 11 8:40	Stacy
Magnesium - Total	< 5	mg/l	1.0	6010	3 Aug 11 8:40	Stacy
Sodium - Total	4720	mg/l	1.0	6010	3 Aug 11 8:40	Stacy
Potassium - Total	275	mg/l	1.0	6010	3 Aug 11 8:40	Stacy
Aluminum - Total	< 1	mg/l	0.10	6010	9 Aug 11 9:09	Stacy
Iron - Total	< 1	mg/l	0.10	6010	9 Aug 11 9:09	Stacy
Strontium - Total	85.0	mg/l	0.10	6010	9 Aug 11 9:09	Stacy
Titanium - Total	< 1	mg/l	0.10	6010	9 Aug 11 9:09	Stacy
Boron - Total	< 1	mg/l	0.10	6010	11 Aug 11 8:40	Stacy

RL = Method Reporting Limit

CERTIFICATION: MN LAB # 038-999-267

Elevated "Less Than Result" (<): @ = Due to sample matrix ! = Due to sample quantity


ND # ND-00016

= Due to sample concentration + = Due to extract volume

MVTL guarantees the accuracy of the analysis done on the sample submitted for testing. It is not possible for MVTL to guarantee that a test result obtained on a particular sample will be the same on any other sample unless all conditions affecting the sample are the same, including sampling by MVTL. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

Appendix B

Aerial Photo (March 30, 1988)

Appendix C

Boring Logs

EXHIBIT 5-E

LITHOLOGIC LOGS

Wells 10, 11, 12 and 13

- 0-1 Top soil, silty, clayey, sandy, brown, calcareous; with some limestone pebbles.
- 1-11 Silt, clayey, brownish-tan, slightly indurated, very dry, calcareous; with thin coarse-grained, clean silt lenses and a few small (less than .5 in.) iron oxide concretions. Abundant small gypsum crystals (less than .13 in. long). Some small, black flakes of organic plant material. Cannonball-Ludlow Formations.
- 11-14 Silt, as above, with some (less than 20%) very fine- to fine-grained sand interspersed.
- 14-30 Silt, as above, clayey, less sand than above interval, oxidized; with very fine-grained silty sand lenses and very few gypsum crystals.
- 30-41 Silt, very clayey, with some (less than 20%) very fine-grained sand interspersed, steel-gray (color change), moderately indurated; with fewer small gypsum crystals than above intervals.
- 41-59 Silt, as above, very clayey, with some (less than 20%) fine- to medium-grained sand interspersed in a silt and clay matrix.
- 59-65 Silt, as above, with abundant (more than 20%) fine- to medium-grained sand interspersed.
- 65-81 Silt, clayey, steel-gray to bluish, moderately indurated; with thin coarse-grained silt to very fine-grained sand lenses in an otherwise fine silt to clay matrix.
- 81-84 Clay, silty, steel-gray to bluish, moderately indurated, dense.
- 84-91 Siltstone, sandy, clayey, steel-gray to bluish, slightly indurated; with small fine-grained sand lenses and abundant (more than 20%) sand interspersed in the matrix.
- 91-110 Silt, clayey, bluish-gray, moderately indurated; with thin (less than 1 foot) mudstone lenses.
- 110-120 Silt, very clayey, steel-gray to bluish, moderately indurated, very dense. Cannonball-Ludlow Formations.

Wells 20 and 21

1	Top soil, silty,	sandy, clayey,	dark-brown,
	calcareous; with	some limestone	and granite
	pebbles.		

- 1-21 Silt, clayey, with minor amounts (less than 10%) of very fine-grained sand interspersed, brownish-tan, slightly indurated, calcareous, oxidized; with small iron oxide concretions and abundant small gypsum crystals. Cannonball-Ludlow Formations.
- 21-26 Silt, as above, steel-gray (color change).
- 26-49 Silt, clayey, with some (less than 20%) very fine- to medium-grained sand interspersed, steel-gray to bluish, slightly indurated; with very few small gypsum crystals and some thin (less than 1 foot) siltstone lenses.
- 49-53 Silt, as above, with abundant (more than 20%) fine- to medium-grained sand interspersed.
- 53-63 Silt, as above, clayey, less sand, with thin (less than 1 foot) siltstone to mudstone lenses.
- 63-80 Silt, very clayey, steel-gray to bluish, moderately indurated, very dense. Cannonball-Ludlow Formations.

Wells 30, 31, 32 and 33

- 0-1 Top soil, silty, sandy, brownish, calcareous; with some granite and limestone pebbles.
- 1-2 Pebble-loam (glacial till), silty, sandy, clayey, yellowish-brown, dry, calcareous.
- 2-31 Silt, clayey, with minor amounts (less than 10%) of very fine-grained sand interspersed, brownish-tan, slightly indurated, calcareous, oxidized; with small iron oxide concretions. Some small, black flakes organic plant material. Cannonball-Ludlow Formations.
- 31-44 Silt, clayey, steel-gray (color change), slightly indurated, calcareous; with small iron oxide concretions, thin coarse silt lenses, small gypsum crystals and gray to reddish-brown mottling.

- 44-61 Silt, as above, with some (less than 20%) fineto medium-grained sand interspersed.
- 61-65 Silt, as above, with abundant (more than 20%) fine- to medium-grained sand interspersed, dense.
- 65-76 Silt, as above, clayey, less sand, some thin (less than 1 foot) lenses of siltstone to mudstone.
- 76-80 Siltstone, sandy, clayey, steel-gray to bluish, slightly indurated; with small fine-grained sand lenses and abundant (more than 20%) fine-grained sand interspersed in the matrix.
- 80-92 Silt, clayey, steel-gray to bluish, moderately indurated, with some (less than 20%) very fine- to fine grained sand interspersed.
- 92-120 Silt, very clayey, steel-gray to bluish, moderately indurated, very dense. Cannonball-Ludlow Formations.
- Well 40
- 0-1 Top soil, sandy, silty, brownish-tan, calcareous; with some granite and limestone pebbles.
- 1-5 Pebble-loam (glacial till), sandy, silty, with detrital lignite and organic matter, yellowish-brown, very dry, calcareous.
- 5-22 Sand, very fine- to medium-grained, unconsolidated, with thin lenses of clay and detrital lignite, brownish-yellow, calcareous.
- 22-40 Silt, clayey, with minor amounts (less than 10%) very fine-grained sand interspersed, brownish-tan, slightly indurated, calcareous, oxidized; with small iron oxide concretions and small gypsum crystals; Cannonball-Ludlow Formations.
- 40-51 Silt, clayey, with minor amounts (less than 10%) of very fine-grained sand interspersed, steel-gray (color change), moderately indurated; with some reddish-brown mottling and some very thin (less than 6 inches) mudstone lenses.
- 51-58 Silt, as above, with abundant (more than 20%) fine-grained sand and thin silty-clay lenses.

- 58-62 Siltstone, sandy, clayey, steel-gray to bluish, moderately indurated; with small fine-grained sand lenses and abundant (more than 20%) sand interspersed in the matrix.
- 62-70 Silt, clayey, with some (less than 20%) fine- to medium-grained sand interspersed, steel-gray to bluish, moderately indurated; with thin (less than 2 feet) sandy lenses.
- 70-80 Silt, as above, very clayey, some (less than 10%) fine-grained sand interspersed; less sand than above interval.
- 80-120 Silt, as above, dark-steel-gray. Cannonball-Ludlow Formations.
- Wells 41, 42 and 43
- 0-1 Top soil, sandy, silty, dark-brown, calcareous; with some granite and limestone pebbles.
- 1-4 Pebble-loam (glacial till), sandy, silty, clayey, yellowish-brown, very dry, calcareous.
- 4-40 Silt, clayey, with some (less than 20%) very fine-grained sand interspersed, brownish-tan, unconsolidated, noncompacted, calcareous to 25 feet, oxidized; with small iron oxide concretions and abundant small gypsum crystals. Cannonball-Ludlow Formations.
- 40-51 Silt, clayey, with minor amounts (less than 10%) of very fine-grained sand interspersed, steel-gray (color change), moderately indurated; with some reddish-brown mottling and some very thin (less than 6 inches) mudstone lenses.
- 51-58 Silt, as above, with abundant (more than 20%) fine-grained sand and thin silty-clay lenses.
- 58-62 Siltstone, sandy, clayey, steel-gray to bluish, moderately indurated; with small fine-grained sand lenses and abundant (more than 20%) sand interspersed in the matrix.
- 62-70 Silt, clayey, with some (less than 20%) fine- to medium-grained sand interspersed, steel-gray to bluish, moderately indurated; with thin (less than 2 feet) sandy lenses.

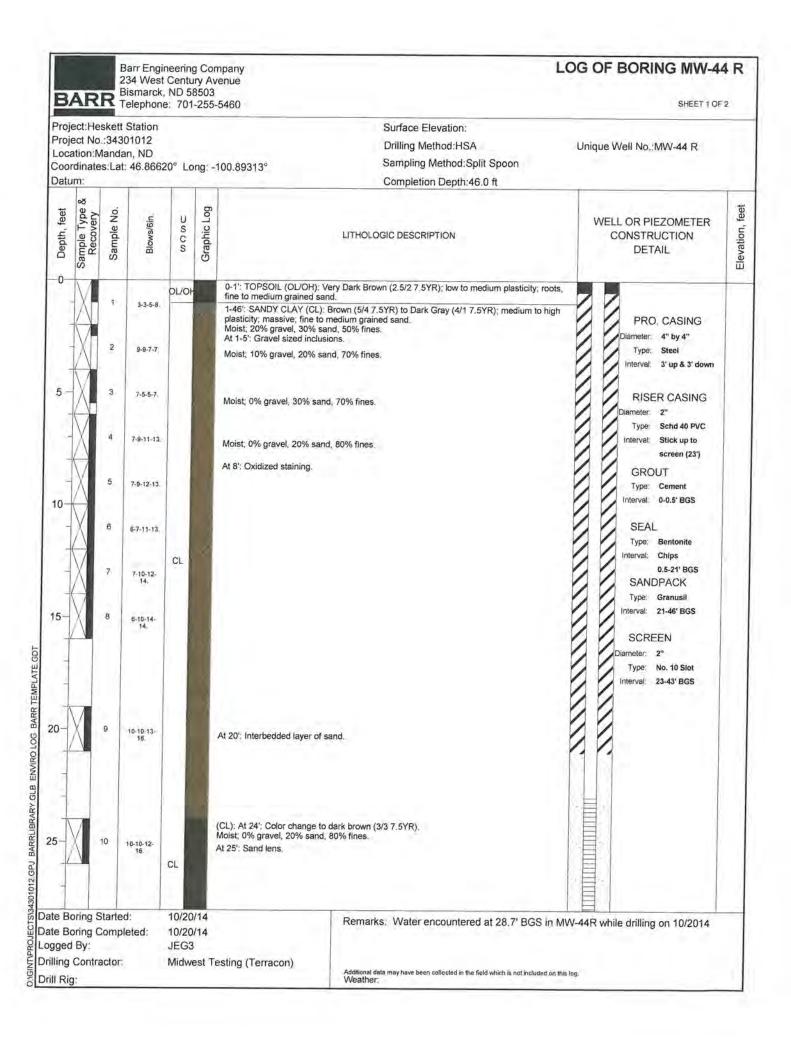
- 70-80 Silt, as above, very clayey, some (less than 10%) fine-grained sand interspersed; less sand than above interval.
- Wells 43 and 44
- 0-2 Top soil, clayey, silty, some sand, brownish-tan to light-gray, calcareous.
- 2-20 Silt, clayey, with some (less than 20%) fine-grained sand interspersed, brownish-tan, slightly indurated, very dry, calcareous; with small iron oxide concretions, abundant small gypsum crystals and occasional thin silt lenses. Cannonball-Ludlow Formations.
- 20-25 Silt, as above, very clayey, oxidized, with minor amounts (less than 10%) of fine-grained sand.
- 25-35 Silt, as above, dark-brownish-tan to bluish-gray (color change), with thin very fine-grained sand lenses.
- 35-60 Silt, clayey, with some (less than 20%) fine- to medium-grained sand interspersed, steel-gray to bluish, moderately indurated; with some indurated silty sand lenses. Cannonball-Ludlow Formations.

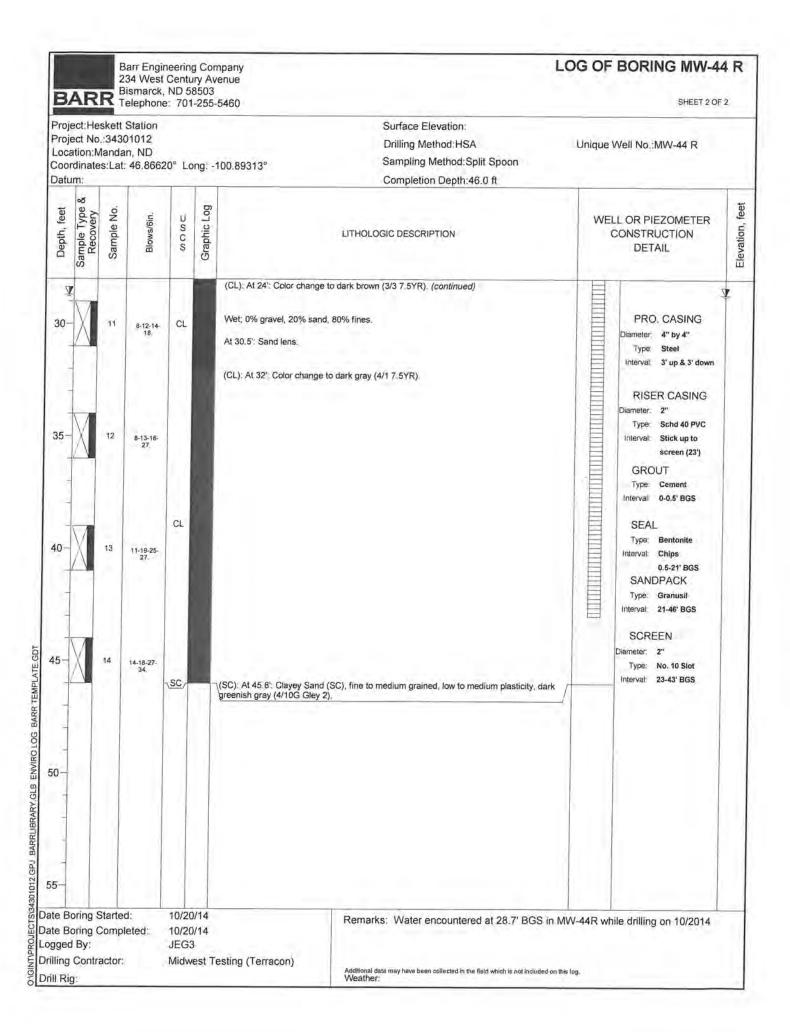
Wells 50, 51 and 52

- 0-4 Top soil, clayey, silty, very dark-brown.
- 4-10 Clay, silty, with some (less than 20%) fine-grained sand, dark-brownish-tan, soft, cohesive, wet, sticky; with some pebbles.
- 10-22 Silt, very clayey, with some (less than 20%) very fine-grained sand interspersed, brownish-tan, slightly indurated, calcareous, dense; with abundant small gypsum crystals and very thin silt and sand lenses; Cannonball-Ludlow Formations.
- 22-23 Sandstone, fine-grained, silty, indurated, oxidized, dark-brown.
- 23-30 Silt, very clayey, with some (less than 20%) very fine-grained sand interspersed, steel-gray (color change), moderately indurated; with thin medium grained sand lenses.

- 30-40 Silt, as above, very clayey, less sand than above interval, dark-steel-gray. Cannonball-Ludlow Formations.
- Wells 53 and 54
- 0-4 Top soil, clayey, silty, very dark-brown, wet, sticky.
- 4-15 Clay, silty, with some (less than 20%) fine- to medium-grained sand interspersed, brownish-tan, slightly indurated, dry, calcareous; with small iron oxide concretions, small gypsum crystals and occasional reddish-brown mottling; Cannonball-Ludlow Formations.
- 15-20 Sand, very fine-grained to medium-grained, silty, clayey, unconsolidated, yellowish-brown, oxidized.
- 20-30 Silt, clayey, with some (less than 20%) fine-grained sand interspersed, steel-gray (color change), slightly indurated; with clay and sand lenses, some small concretions and some small gypsum crystals.
- 30-45 Silt, as above, very clayey.
- 45-60 Silt, as above, clayey, brownish-gray, moderately indurated, some reddish-brown mottling. Cannonball-Ludlow Formations.
- Wells 55 and 56
- 0-5 Sandy-loam (glacial), with fine- to medium-grained sand, silty, calcareous; with small granite and limestone pebbles.
- 5-26 Clay, silty, with minor amounts (less than 10%) of very fine-grained sand, dark-brownish-tan, moderately indurated, brittle, very dry, calcareous; with small iron oxide concretions, small gypsum crystals and occasional thin sandstone laminae. Some small, black flakes of organic plant material. Cannonball-Ludlow Formations.
- 26-35 Clay, as above, very silty, sandy, brownish-tan, oxidized.

35-40 Silt, clayey, with some (less than 20%) very fine- to fine-grained sand interspersed, steel-gray (color change) moderately indurated; with small gypsum crystals and occasional clay lenses.

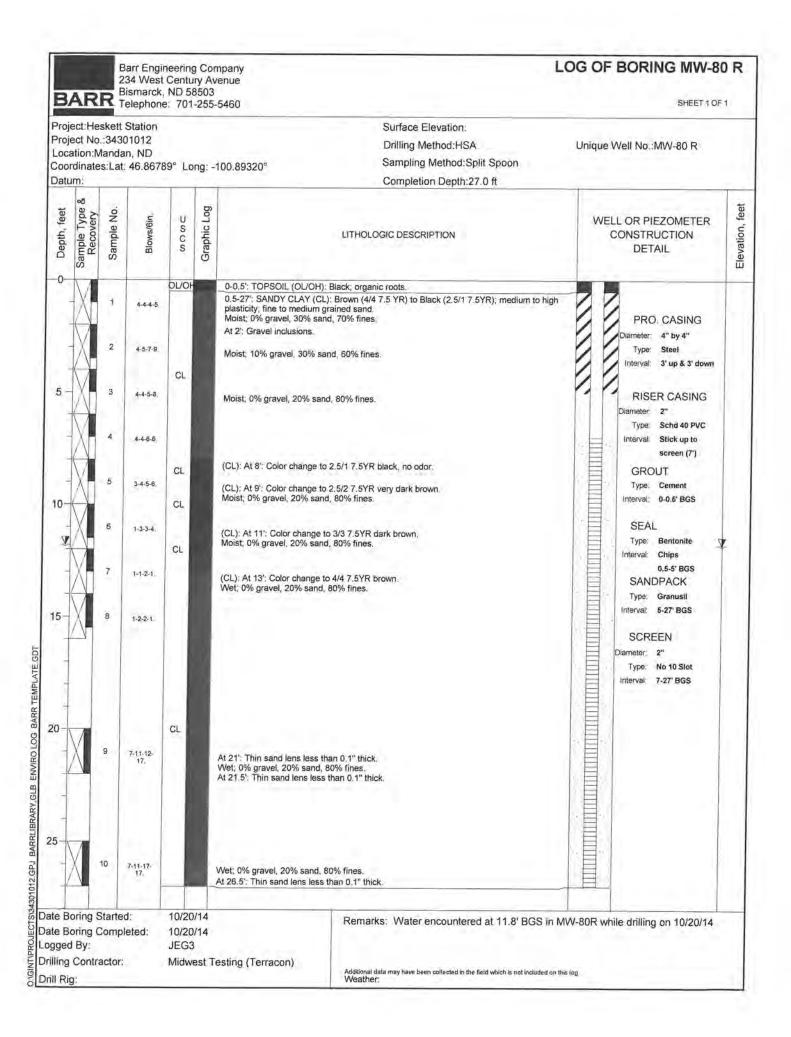

ة ريد


- 40-60 Silt, as above, with minor amounts (less than 10%) of fine-grained sand interspersed.
- 60-85 Silt, as above, clayey, less sand than above interval.
- 85-100 Silt, as above, very clayey, with minor amounts (less than 10%) of sand interspersed, light-gray. Cannonball-Ludlow Formations.
- Wells 60, 61 and 62
- 0-2 Top soil, silty, clayey, dark-brown to tanish-brown, calcareous.
- 2-25 Silt, very clayey, with some minor amounts (less than 10%) of very fine- to fine-grained sand interspersed, brownish-tan, slightly indurated, dry, calcareous; with abundant small gypsum crystals and thin silt and sand lenses; Cannonball-Ludlow Formations.
- 25-29 Silt, as above, with abundant (more than 20%) fine- to medium-grained sand interspersed.
- 29-36 Silt, as above, clayey, less sand than above interval, dark-brownish-tan, oxidized.
- 36-60 Silt, very clayey, with some (less than 20%) very fine-grained sand interspersed, steel-gray (color change), moderately indurated; with thin (less than 1 foot) sandy-silt lenses. Cannonball-Ludlow Formations.
- Well 70 0-2 Pebble-loam (glacial till), clayey, sandy, yellowish-brown, unconsolidated, damp, calcareous.
- 2-21 Silty, clayey, with some (less than 20%) fine-grained sand interspersed, brownish-tan, moderately indurated, very dry, calcareous, oxidized; with small iron oxide concretions and abundant small gypsum crystals. Cannonball-Ludlow Formations.

- 21-24 Shale, silty, steel- to dark-gray (color change), indurated, fissile, very dry; with occasional thin silt and sand lenses.
- 24-31 Silt, clayey, with abundant (more than 30%) sand, steel-gray, moderately indurated.
- 31-62 Silt, clayey, with some (less than 20%) very fine- to fine- grained sand interspersed, steel-gray, moderately indurated; with some small gypsum crystals and small iron oxide concretions.
- 62-76 Silt, as above, with some (less than 20%) fine-grained sand interspersed.
- 76-82 Silt, as above, with abundant (more than 20%) fine- to medium-grained sand.
- 82-100 Silt, as above, clayey, with some (less than 20%) fine-grained sand interspersed, dark-gray. Cannonball-Ludlow Formations.

The lithologic logs for wells 1-4 were described by personal from Water Supply Incorporated (WS), Bismarck, North Dakota. The wells were installed during a previous ground water investigation at Heskett Station.

Well WS 2 0-1 1-4	Top soil, silty, black. Pebble-loam(glacial till), silty, clayey, some cobbles, yellowish-brown.
4-7	Gravel, sand and rocks.
7-21	Sand, fine- to coarse-grained, some pebbles.
21-39	Clay, silty, sandy, yellowish-brown to gray.
39-52	Clay, silty, sandy, gray.
52-67	Sand, fine-grained, bluish, with some clay
	layers.
67-89	Clay, silty, sandy, brown to gray.
Wells WS 1,	A and IR
<u>0-1</u>	
1-4	Top soil, silty, black
T T	Clay, (glacial), silty, with pebbles, yellowish-brown.
4-21	Sand, fine- to medium-grained, yellowish-brown;
	with clay and silt lenses.
21-25	Clay, silty, yellowish-brown.
25-30	Sand, fine-grained, yellowish-brown, some
ана. 	indurated layers.
30-35	Clay, silty, yellowish-brown.
35-45	Sand, fine-grained, yellowish-brown.
45-50	Clay, silty, sandy, gray, about 50 percent shale.
50-56	Sand, fine-grained, with clay layers.
56-73	Clay, silty, sandy, gray.
WE11s WS 4, 4	A and AB
0-13	
0 10	Pebble-loam (glacial till), silty, sandy, with
13-23	some cobbles, yellowish-brown.
23-25	Sand, fine- to medium-grained, yellowish-brown.
25-27	Slay, silty, sandy, yellowish-brown.
27-30	Sandstone, indurated.
30-36	Clay, sandy, silty, gray.
36-52	Sand, fine-grained, gray.
30-32	Clay, silty, sandy, gray; with some sand layers.
Wells WS 3 an	d 3A
0-1	Top soil, silty, black.
1-12	Pebble-loam, clayey, silty, with some cobbles,
10.10	yellowish-brown.
12-16	Clay, silty, gray; with some shale layers.
16-18	Limestone, indurated.
18-23	Clay, silty, yellowish-brown; with some sand
00:00	layers.
23-44	Sand, fine- to medium-grained, gray; with some
14 50	clay layers.
44-50	Clay, silty, medium-gray.

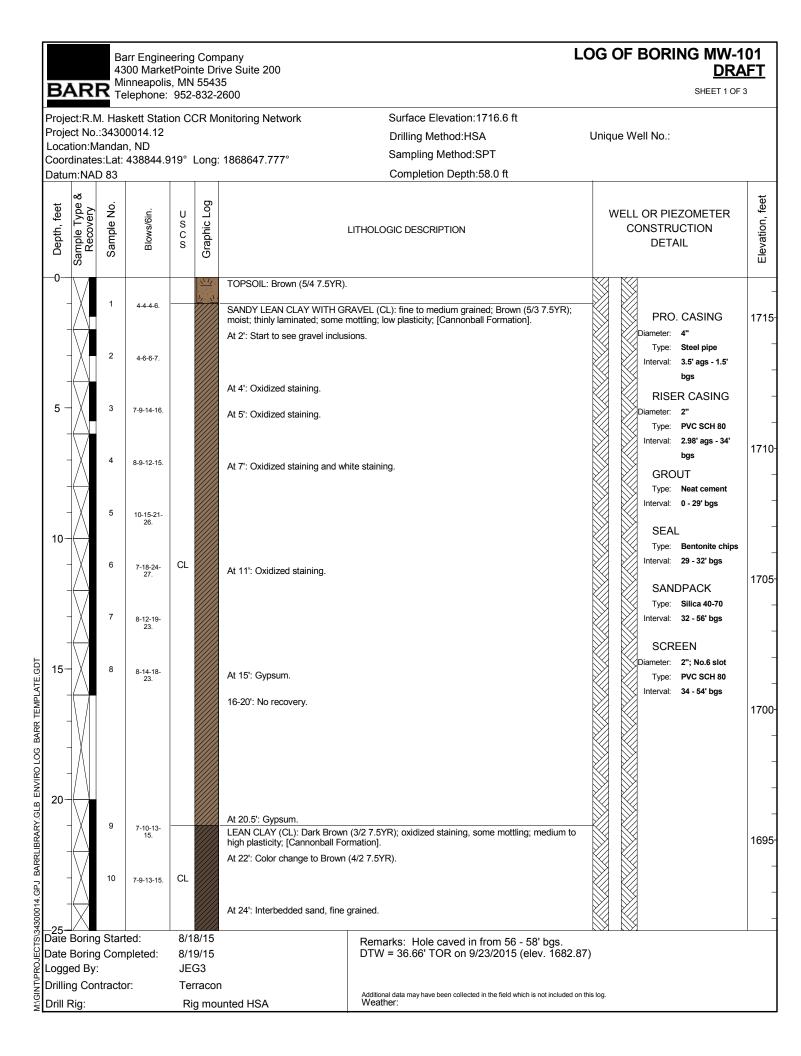


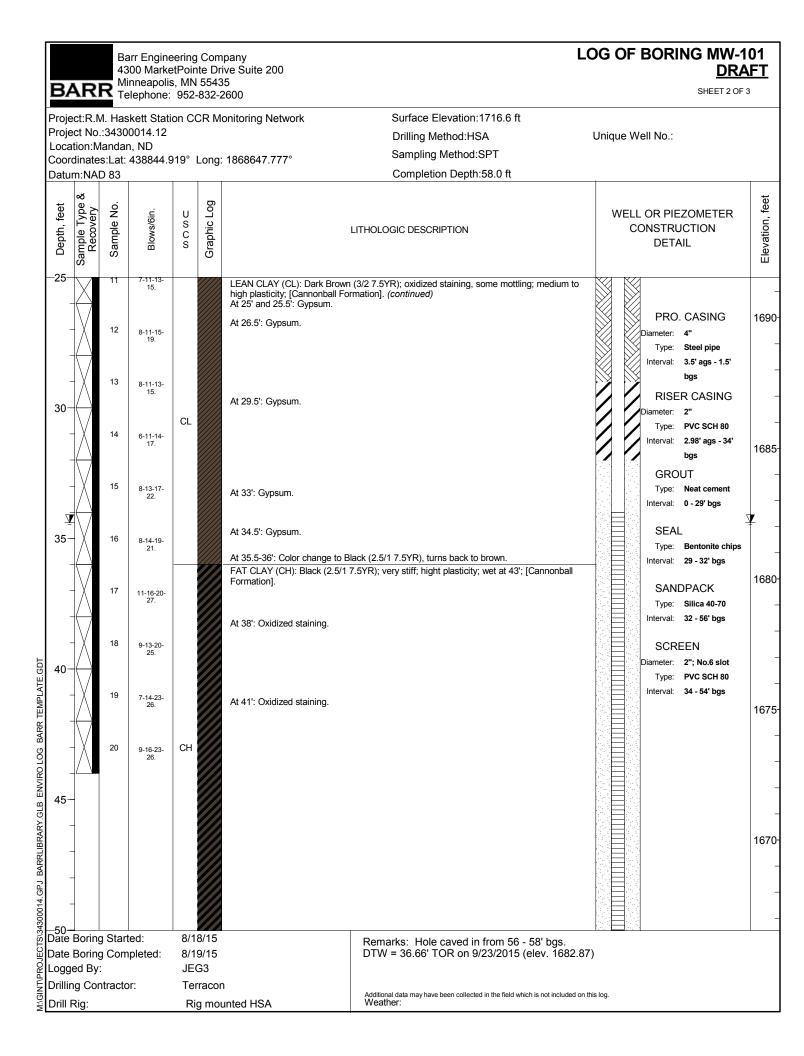
State of North Dakota BOARD OF WATER WELL CONTRACTORS

900 E. BOULEVARD • BISMARCK, NORTH DAKOTA 58505

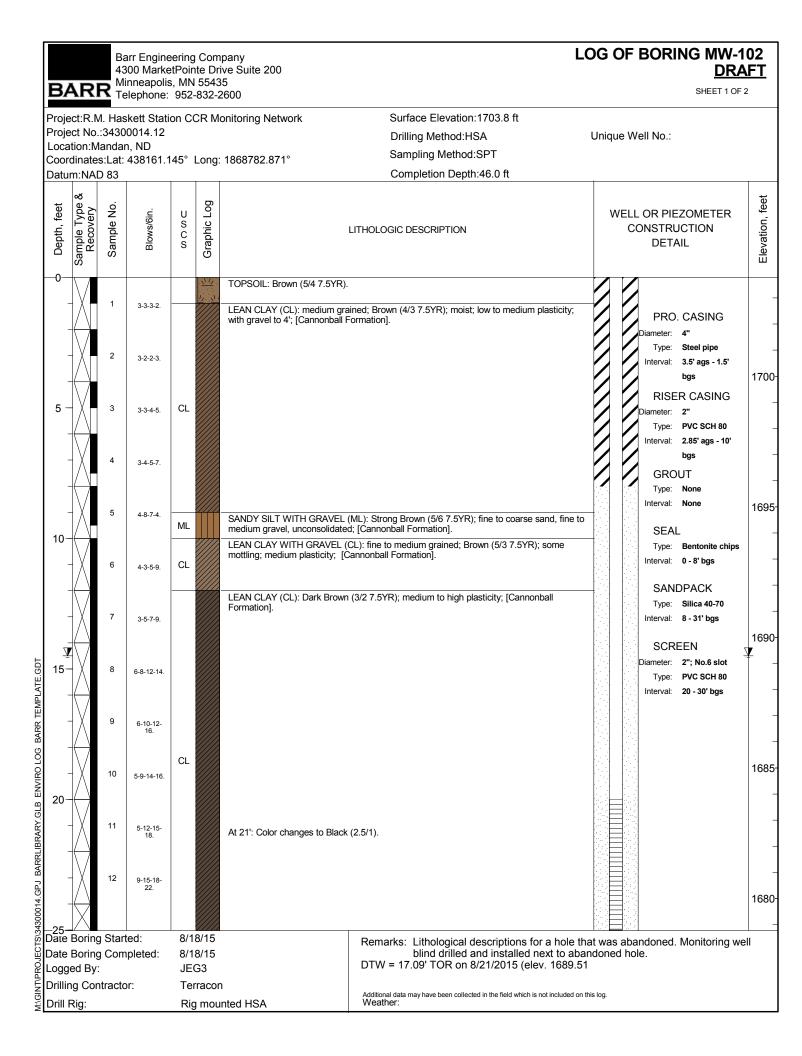
MONITORING WELL REPORT

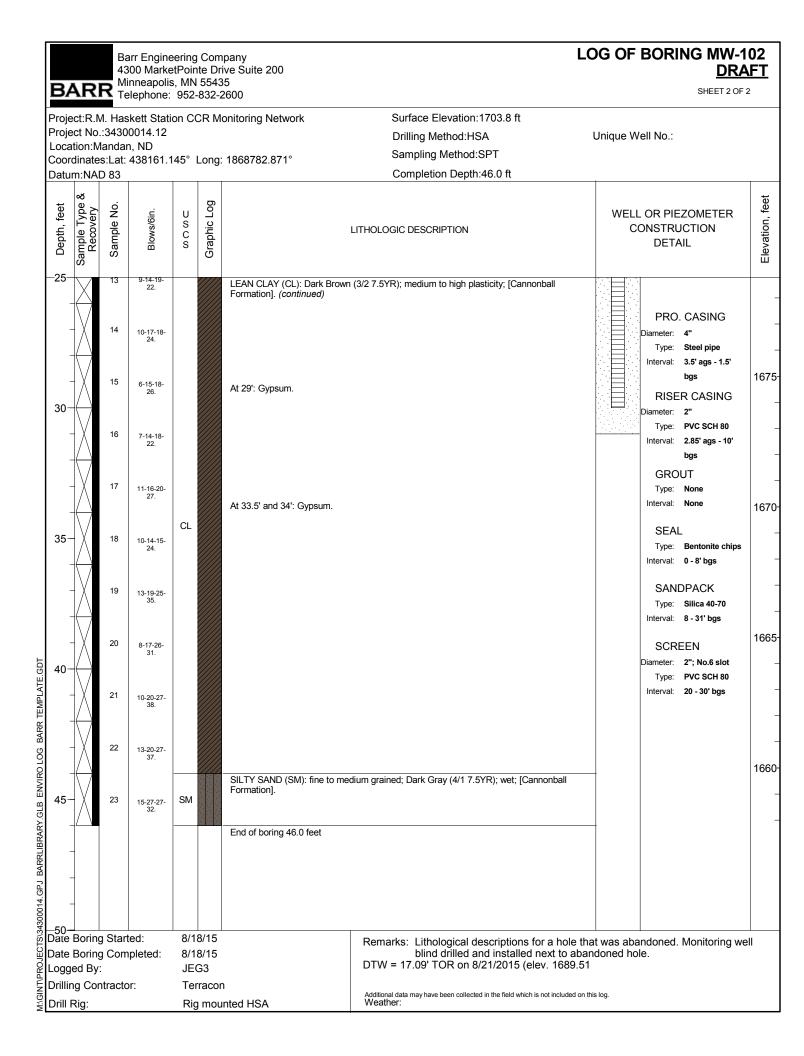
State law requires that this report be filed with the State Board of Water Well Cont	ractors within 30 days after completion or abandonment of the well.				
1. WELL OWNER	Well head completion:				
	24" above grade Other x				
Name <u>MDU-Heskett Station</u>	- If other, specify <u>4" x 4" x 5' steel cover</u>				
Address 2025 38 th Street	Was protective casing installed? ■ Yes □ No				
Mandan, North Dakota	Was well disinfected upon completion? □ Yes ■ No				
2. WELL LOCATION (MW-44R)					
Address (if in city) (see attached drawing)	5. WATER LEVEL				
	Static water level 28.5 feet below surface				
County Morton	If flowing: closed in pressure psi or ft. above land surface				
<u>SE ¼ SE ¼ SW ¼</u> Sec. <u>10</u> Twp. <u>139</u> N. Rge. <u>81</u> W.	6. WELL LOG Depth (Ft.)				
Lat. <u>46.86620</u> Long.: <u>-100.89313</u>					
Altitude:	Formation From To				
3. METHOD DRILLED	Topsoil 0 0.5				
Auger Other	Sandy lean clay 0.5 5				
4. WELL CONSTRUCTION	Sandy fat clay 5 46				
Diameter of Hole <u>8</u> inches Depth <u>46</u> feet					
Riser: ■ PVC □ Other					
■ Threaded □ Solvent □ Other					
Riser rating SDR Schedule40					
Diameter <u>2.0</u> inches					
From <u>+2</u> ft. to <u>23</u> ft.					
Was a well screen installed? ■ Yes □ No					
Material <u>Schedule 40 PVC</u> Diameter <u>2.0</u> inches					
Slot Size <u>#10</u> set from <u>23</u> feet to <u>43</u> feet					
Sand packed from21 ft to46 ft	(Use separate sheet if necessary)				
Depth grouted from <u>1</u> ft to <u>21</u> ft	7. WAS THE HOLE PLUGGED OR ABANDONED?				
Grouting Material	□ Yes ■ No				
Bentonite Other	If so, how?				
If other explain:					
One foot concrete collar at surface	8. REMARKS				
	3 steel bumpers installed around well head				
	9. DATE COMPLETED <u>10-21-14</u>				
	10. CONTRACTOR CERTIFICATION				
	This well was drilled under my jurisdiction and this report is true to the				
	best of my knowledge. Midwest Testing Laboratory, Inc. 444				
	Monitoring Well Contractor Certificate No.				
	P.O. Box 2084, Bismarck, ND 58502-2084				
	Address				
	10-22-14				
	Signature Date				

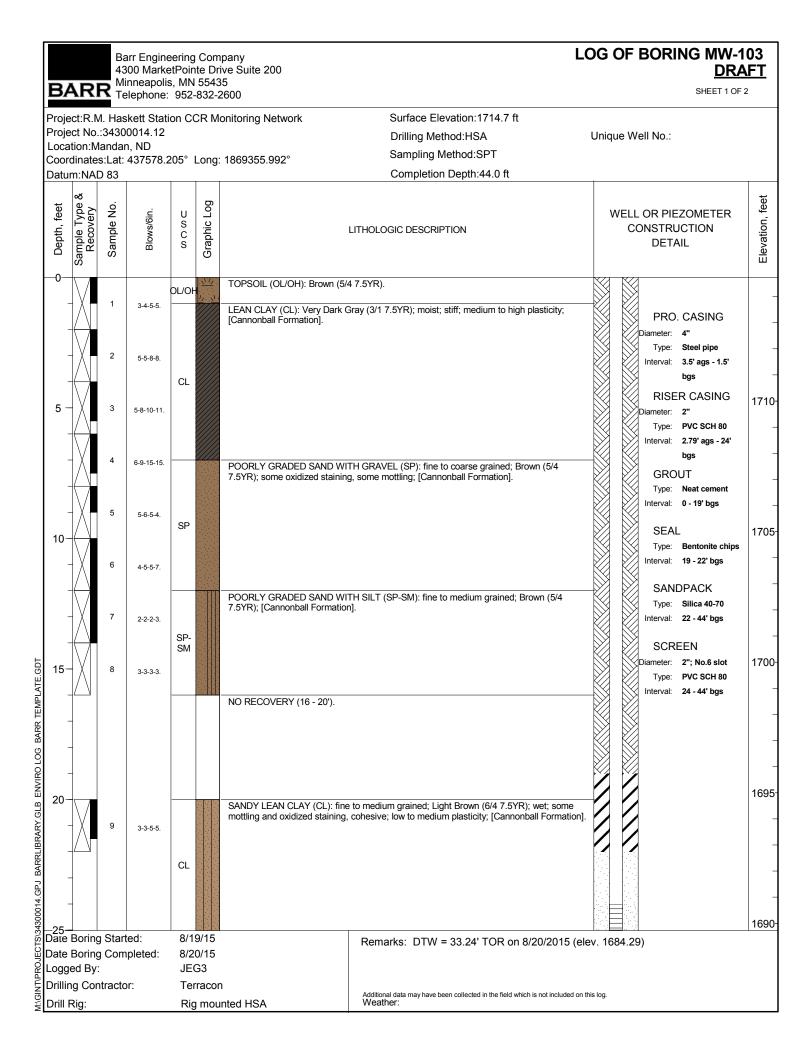

State of North Dakota BOARD OF WATER WELL CONTRACTORS

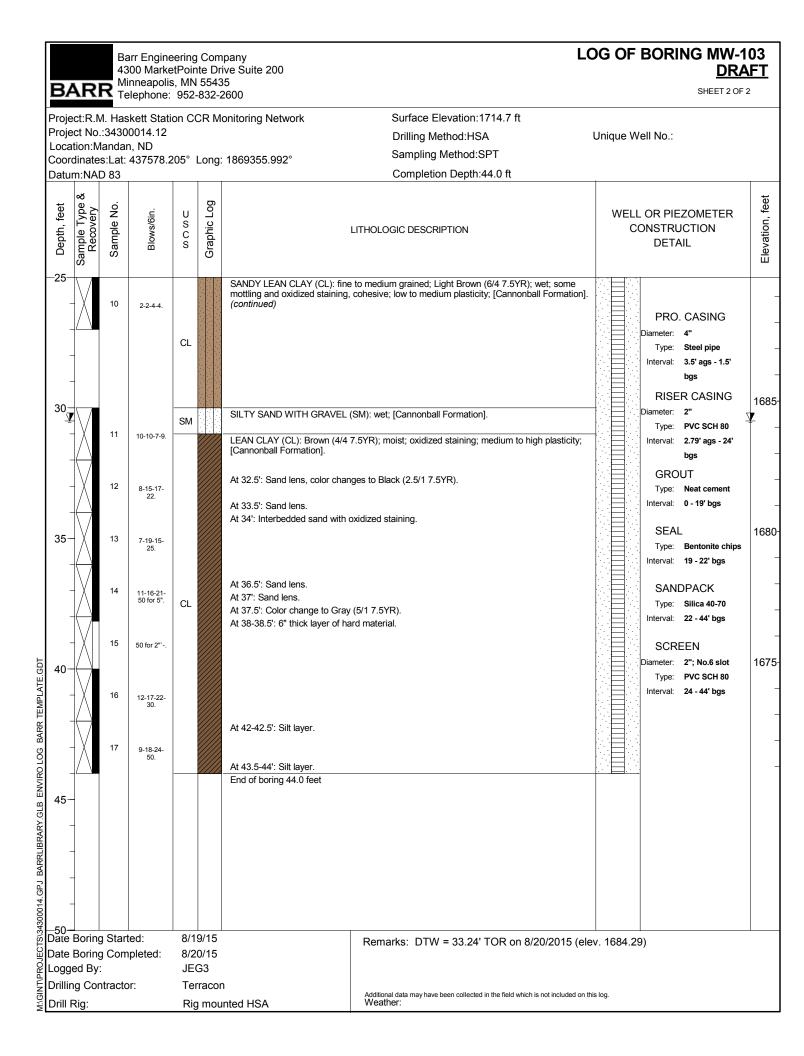

e

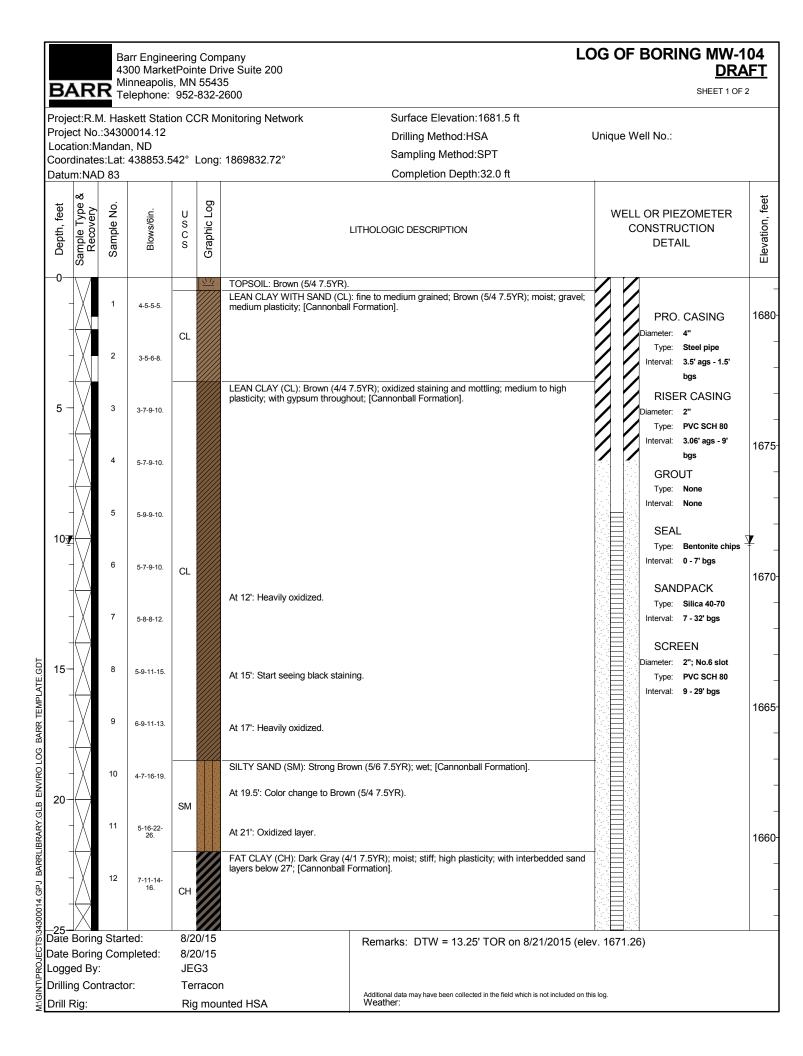
900 E. BOULEVARD • BISMARCK, NORTH DAKOTA 58505

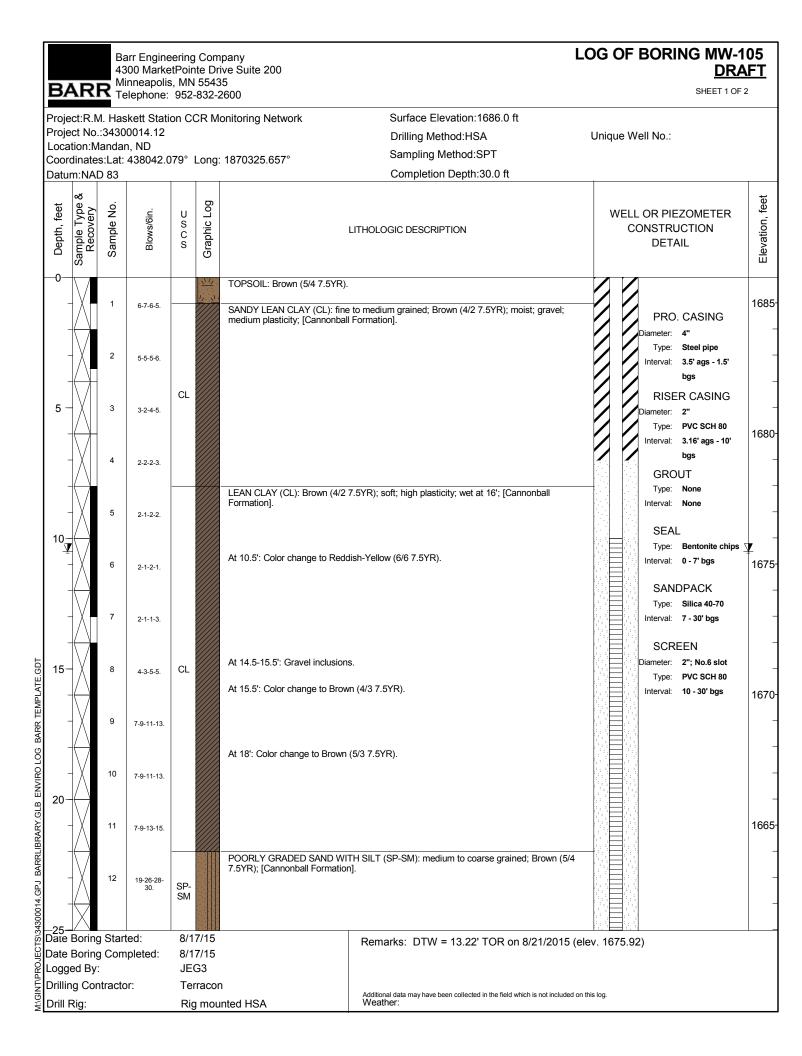

MONITORING WELL REPORT

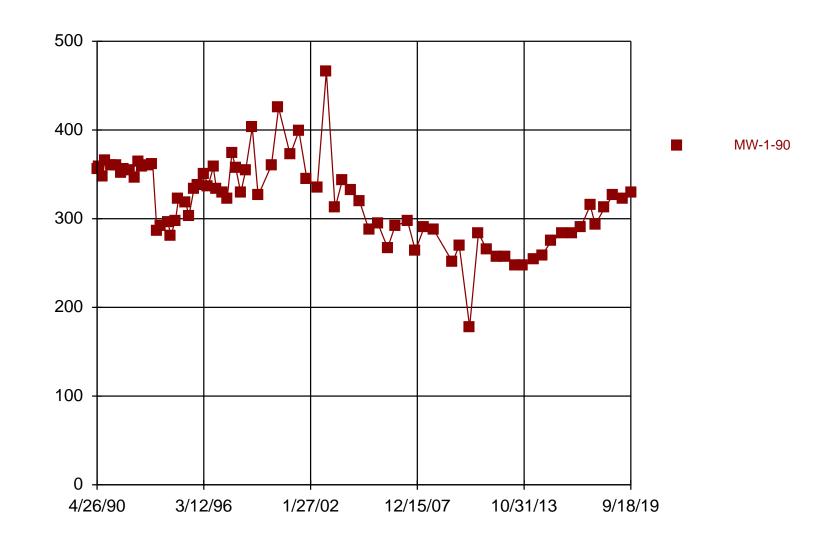

State law requires that this report be filed with the State Board of Water Well Cont	ractors within 30 days after completion or abandonment of the well.					
1. WELL OWNER	Well head completion:					
	24" above grade Other					
Name MDU-Heskett Station	- If other, specify <u>4" x 4" x 5' steel cover</u>					
Address 2025 38 th Street	Was protective casing installed? ■ Yes □ No					
Mandan, North Dakota	Was well disinfected upon completion? □ Yes ■ No					
2. WELL LOCATION (MW-80R)	-					
Address (if in city) (see attached drawing)	5. WATER LEVEL					
	Static water level 12 feet below surface					
County Morton	If flowing: closed in pressure psi or ft. above land surface					
<u>NE ¼ SE ¼ SW ¼</u> Sec. <u>10</u> Twp. <u>139</u> N. Rge. <u>81</u> W.	6. WELL LOG Depth (Ft.)					
Lat. <u>46.86789</u> Long.: <u>-100.89320</u>						
Altitude:	Formation To					
3. METHOD DRILLED	Topsoil 0 0.5					
Auger Other	Sandy lean clay 0.5 27					
4. WELL CONSTRUCTION						
Diameter of Hole <u>8</u> inches Depth <u>27</u> feet						
Riser: ■ PVC □ Other						
■ Threaded □ Solvent □ Other						
Riser rating SDR Schedule40						
Diameter <u>2.0</u> inches						
From $+2.5$ ft. to 7 ft.						
Was a well screen installed? ■ Yes □ No						
Material <u>Schedule 40 PVC</u> Diameter <u>2.0</u> inches						
Slot Size <u>#10</u> set from <u>7</u> feet to <u>27</u> feet						
Sand packed from <u>5</u> ft to <u>27</u> ft	(Use separate sheet if necessary)					
Depth grouted from <u>1</u> ft to <u>5</u> ft	7. WAS THE HOLE PLUGGED OR ABANDONED?					
Grouting Material	🗆 Yes 🔳 No					
Bentonite Other	If so, how?					
If other explain:						
One foot concrete collar at surface	8. REMARKS					
	3 steel bumpers installed around well head					
	9. DATE COMPLETED 10-21-14					
	10. CONTRACTOR CERTIFICATION					
	This well was drilled under my jurisdiction and this report is true to the					
	best of my knowledge.					
	Midwest Testing Laboratory, Inc. 444					
	Monitoring Well Contractor Certificate No.					
	P.O. Box 2084, Bismarck, ND 58502-2084					
	Address					
	MAJAN 10-22-14					
	Signature Date Date					





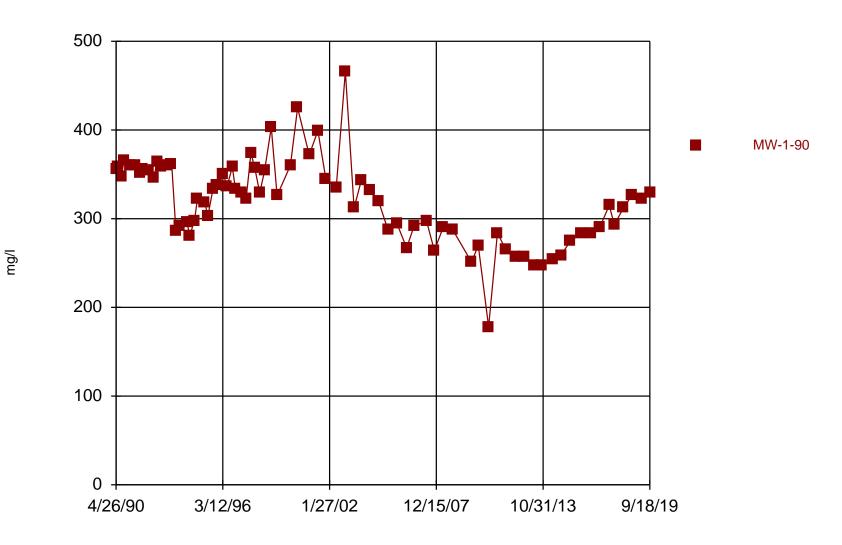

4300 M	gineering Company arketPointe Drive Suite 200 polis, MN 55435		LOG OF BORING MW-101 <u>DRAFT</u>
BARR Minnea Teleph	one: 952-832-2600		SHEET 3 OF 3
Project No.:34300014 Location:Mandan, ND		Surface Elevation:1716.6 ft Drilling Method:HSA Sampling Method:SPT Completion Depth:58.0 ft	Unique Well No.:
Depth, feet Sample Type & Recovery Sample No.	s s s c s Graphic Log	LITHOLOGIC DESCRIPTION	WELL OR PIEZOMETER CONSTRUCTION DETAIL
-50 	CH End of boring 58.0 feet	I 7.5YR); very stiff; hight plasticity; wet at 43'; [Cannonball	PRO. CASING 1665- Diameter: 4" Type: Steel pipe - Interval: 3.5' ags - 1.5' bgs - RISER CASING - Diameter: 2" Type: PVC SCH 80 - Interval: 2.98' ags - 34' bgs 1660- GROUT - Type: Neat cement Interval: 0 - 29' bgs
60			SEAL Type: Bentonite chips Interval: 29 - 32' bgs SANDPACK Type: Silica 40-70 Interval: 32 - 56' bgs SCREEN Diameter: 2"; No.6 slot Type: PVC SCH 80 Interval: 34 - 54' bgs
Date Boring Started: Date Boring Complete Logged By:	8/18/15 d: 8/19/15 JEG3	Remarks: Hole caved in from 56 - 58' bgs. DTW = 36.66' TOR on 9/23/2015 (elev. 1682	.87)
Drilling Contractor: Drill Rig:	Terracon Rig mounted HSA	Additional data may have been collected in the field which is not included Weather:	on this log.




4300	Engineering Company MarketPointe Drive S		LOG OF BORING MW-104 <u>DRAFT</u>
BARR Minn Telep	eapolis, MN 55435 phone: 952-832-2600		SHEET 2 OF 2
Project:R.M. Haske Project No.:343000 Location:Mandan, N	tt Station CCR Monito 14.12	Drilling Method:HSA	Unique Well No.:
Depth, feet Sample Type & Recovery Sample No.	Blows/6in. ∽ ∩ ∽ ⊂ Graphic Log	LITHOLOGIC DESCRIPTION	WELL OR PIEZOMETER CONSTRUCTION DETAIL
	5-12-16- 17. FAT laye 3-12-16- 21. CH 3-12-16- 20.	CLAY (CH): Dark Gray (4/1 7.5YR); moist; stiff; high plasticity; with interbedded sa s below 27'; [Cannonball Formation]. <i>(continued)</i>	PRO. CASING Diameter: 4" Type: Steel pipe Interval: 3.5' ags - 1.5' bgs RISER CASING
		r notes: sluff. of boring 32.0 feet	Diameter: 2" Type: PVC SCH 80 Interval: 3.06' ags - 9' bgs GROUT Type: None Interval: None SEAL Type: Bentonite chips Interval: 0 - 7' bgs
40			SANDPACK Type: Silica 40-70 Interval: 7 - 32' bgs SCREEN Diameter: 2"; No.6 slot Type: PVC SCH 80 Interval: 9 - 29' bgs
45			
Date Boring Started Date Boring Comple Logged By:		Remarks: DTW = 13.25' TOR on 8/21/2015	(elev. 1671.26)
Drilling Contractor: Drill Rig:	Terracon Rig mounted	Additional data may have been collected in the field which is not included Weather:	l on this log.

Barr Engineering Company 4300 MarketPointe Drive Suite 200 Minneapolis, MN 55435 Telephone: 952-832-2600					te Dr	ive Suite 200		LOG OF	BORING MW-10 DRA	
BA	٩R	R Te	elephone:	952-	832-	2600			SHEET 2 OF 2	2
Proje Loca Coor	ect No. tion:M	:3430 andar s:Lat:	0014.12 n, ND			onitoring Network : 1870325.657°	Surface Elevation:1686.0 ft Drilling Method:HSA Sampling Method:SPT Completion Depth:30.0 ft	Unique W	/ell No.:	
Depth, feet	Sample Type & Recovery	Sample No.	Blows/6in.	U S C S	Graphic Log		LITHOLOGIC DESCRIPTION		OR PIEZOMETER ONSTRUCTION DETAIL	Elevation, feet
-25- - - - - - - - - - - - - - - - - - -		13	15-25-31- 40. 10-15-18- 30. 11-16-22- 32.	CL		FAT CLAY (CL): Dark Brown (Formation]. At 26': Color change to Gray (End of boring 30.0 feet	3/4 7.5YR); high plasticity; sand lens at 26.5'; [Cannonba		PRO. CASING Diameter: 4" Type: Steel pipe Interval: 3.5' ags - 1.5' bgs RISER CASING Diameter: 2" Type: PVC SCH 80	1660-
35-	-								Interval: 3.16' ags - 10' bgs GROUT Type: None Interval: None SEAL Type: Bentonite chips Interval: 0 - 7' bgs SANDPACK Type: Silica 40-70 Interval: 7 - 30' bgs SCREEN	
									Diameter: 2"; No.6 slot Type: PVC SCH 80 Interval: 10 - 30' bgs	
Date	Boring Boring Boring ed By:	g Com	ted: pleted:		7/15 7/15 73		Remarks: DTW = 13.22' TOR on 8/21/2015	 (elev. 1675.92	2)	
Drill Rig: Rig mounted HSA		Additional data may have been collected in the field which is not included on this log. Weather:								

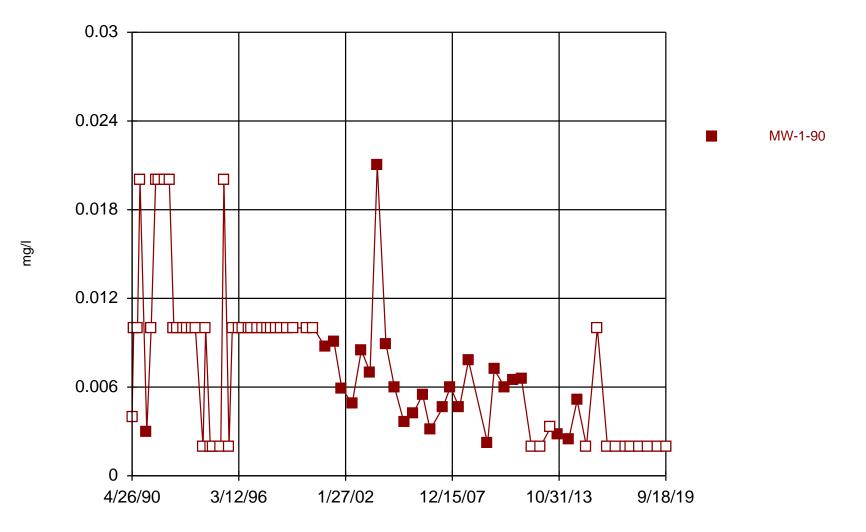
Appendix D

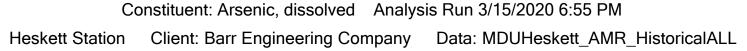

MW1-90 Time Series Plots

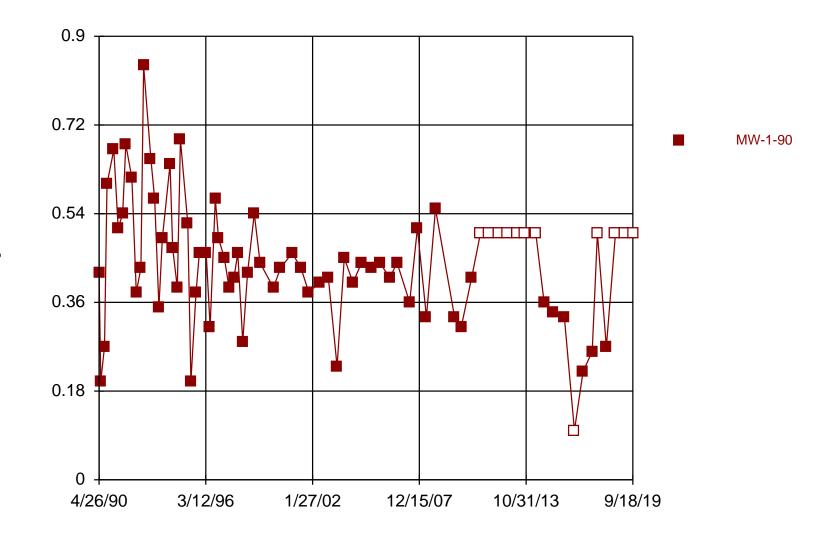
Time Series

Constituent: Alkalinity, bicarbonate, as CaCO3 Analysis Run 3/15/2020 6:55 PM Heskett Station Client: Barr Engineering Company Data: MDUHeskett_AMR_HistoricalALL

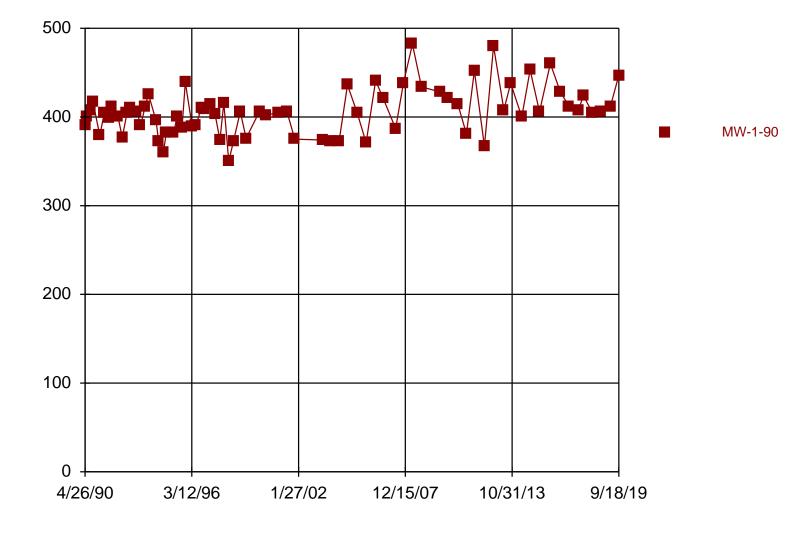
mg/l

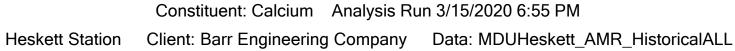


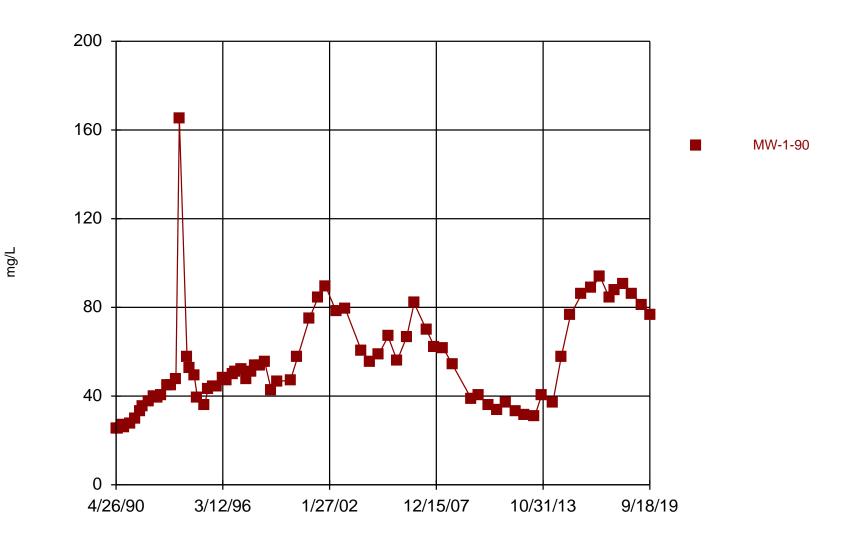

Time Series

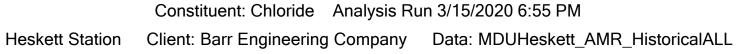

Sanitas[™] v.9.6.25 For the statistical analyses of ground water by Barr Engineering Company only. UG Hollow symbols indicate censored values.

Sanitas[™] v.9.6.25 For the statistical analyses of ground water by Barr Engineering Company only. UG Hollow symbols indicate censored values.

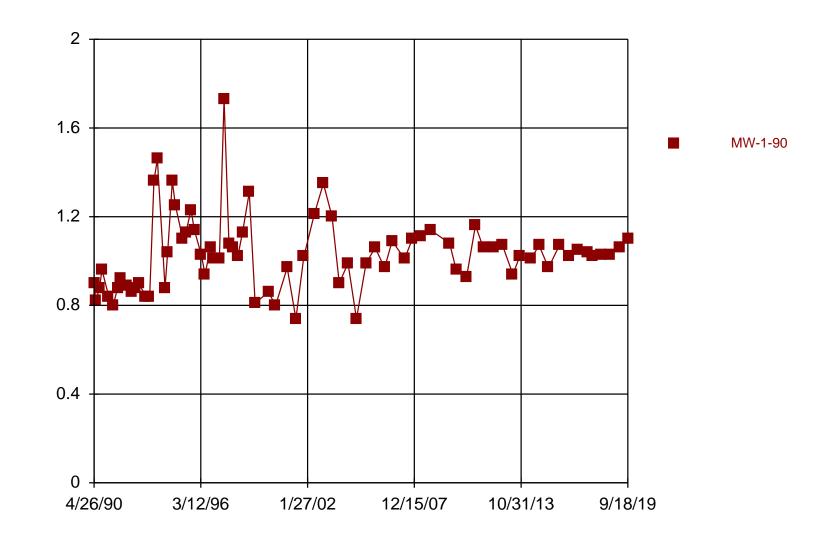


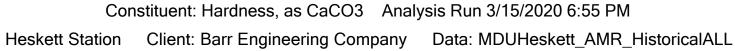

Time Series

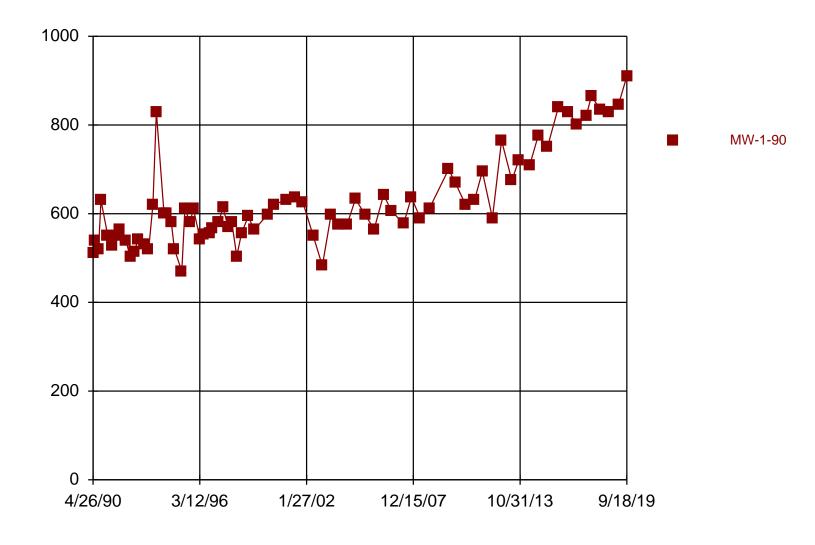

Constituent: Boron, dissolved Analysis Run 3/15/2020 6:55 PM Heskett Station Client: Barr Engineering Company Data: MDUHeskett_AMR_HistoricalALL


mg/l

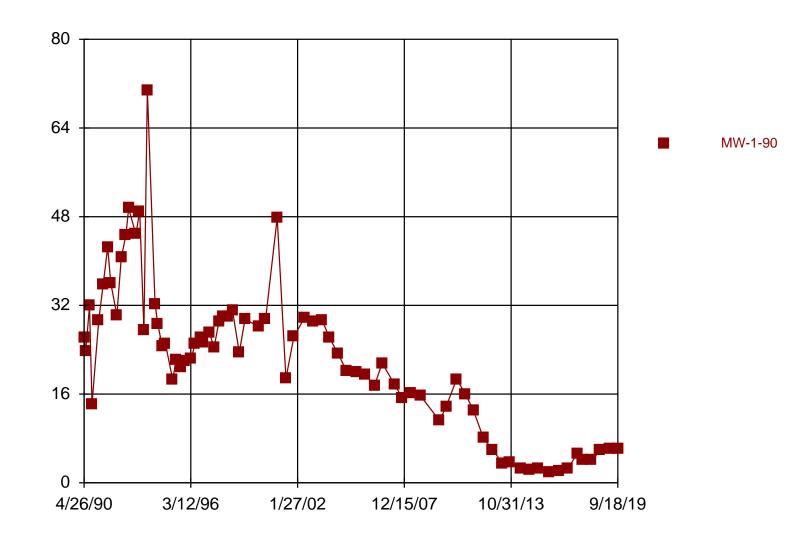
mg/L

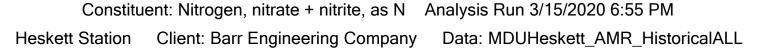


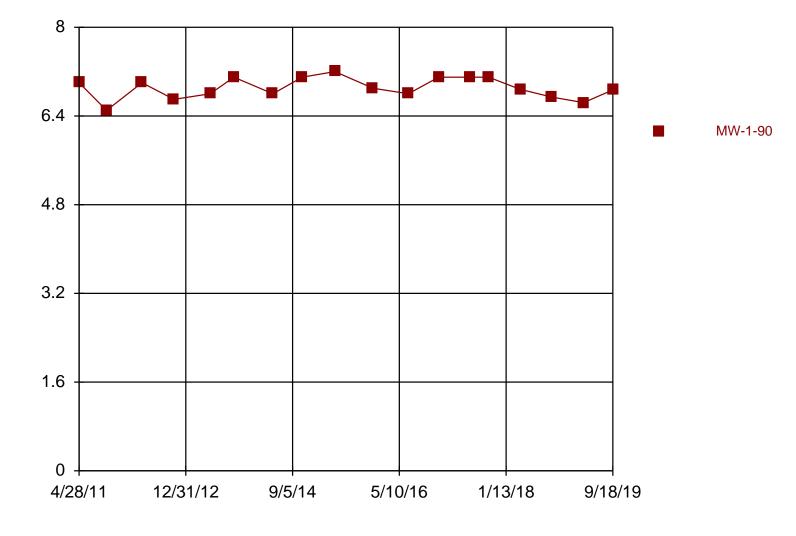



mg/L

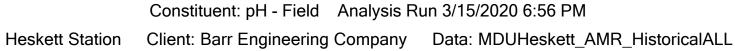
Constituent: Fluoride Analysis Run 3/15/2020 6:55 PM Heskett Station Client: Barr Engineering Company Data: MDUHeskett_AMR_HistoricalALL

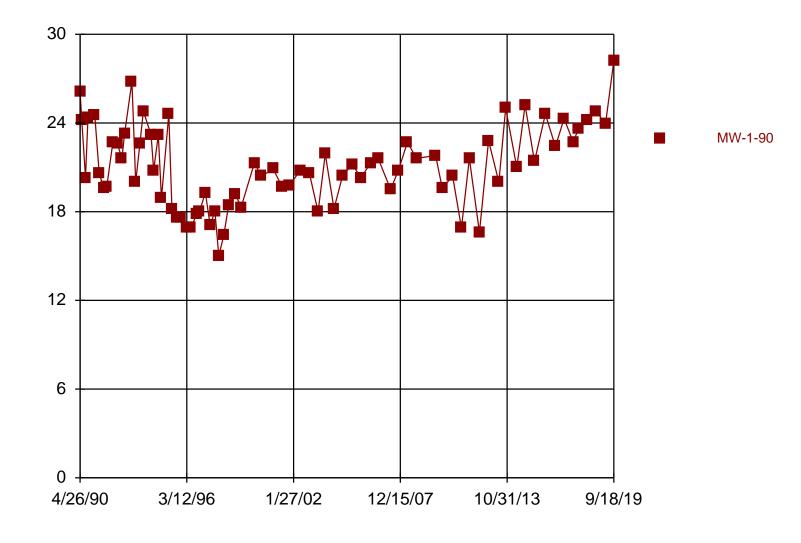




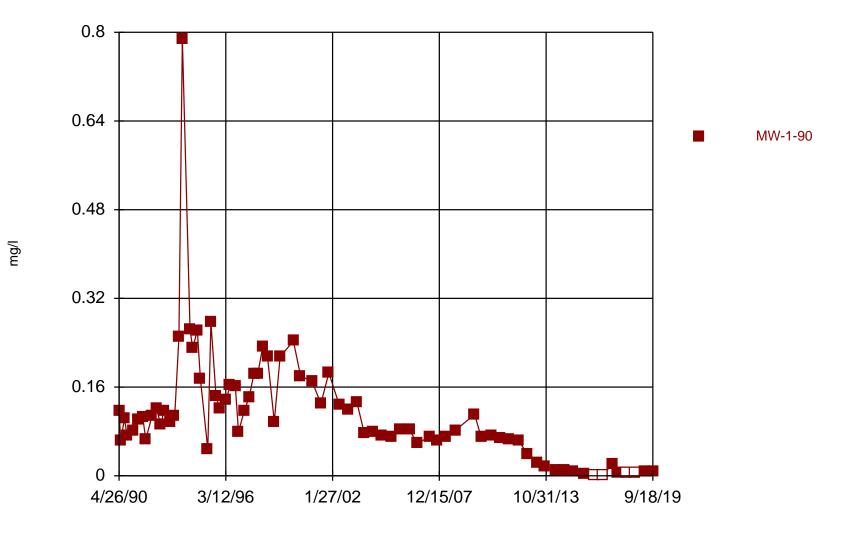

mg/l

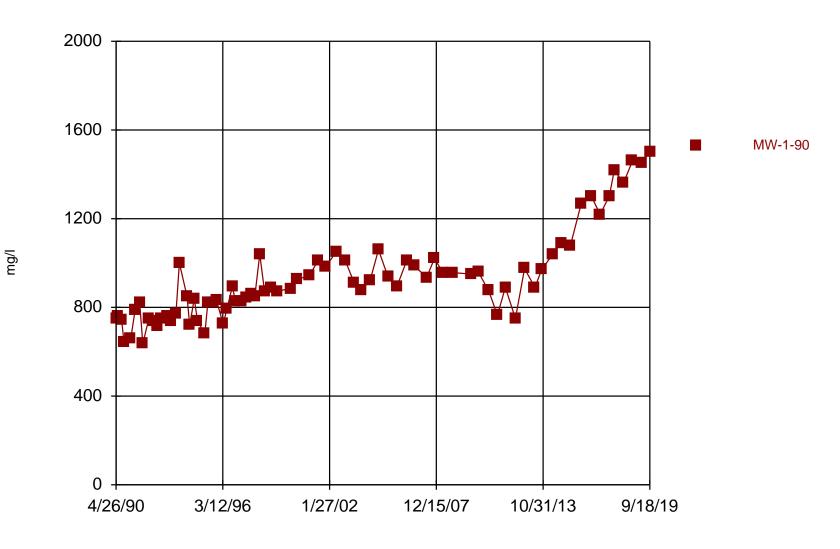
mg/l



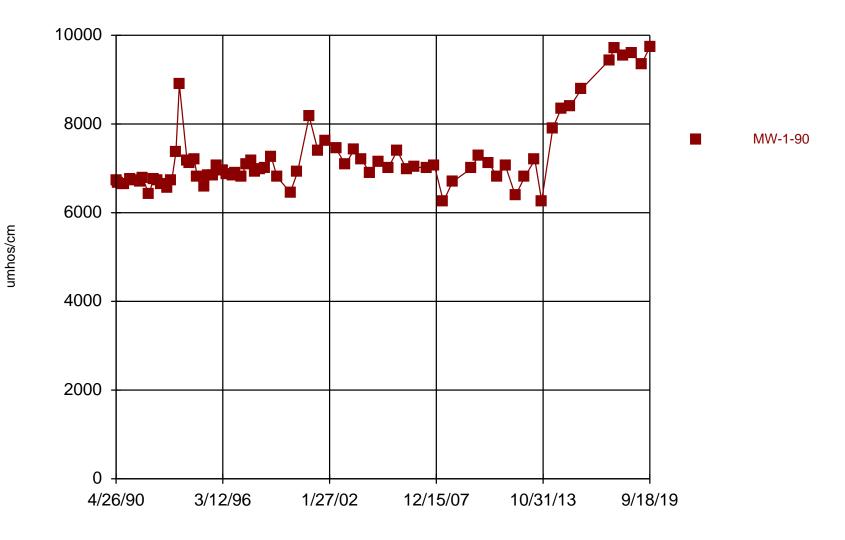


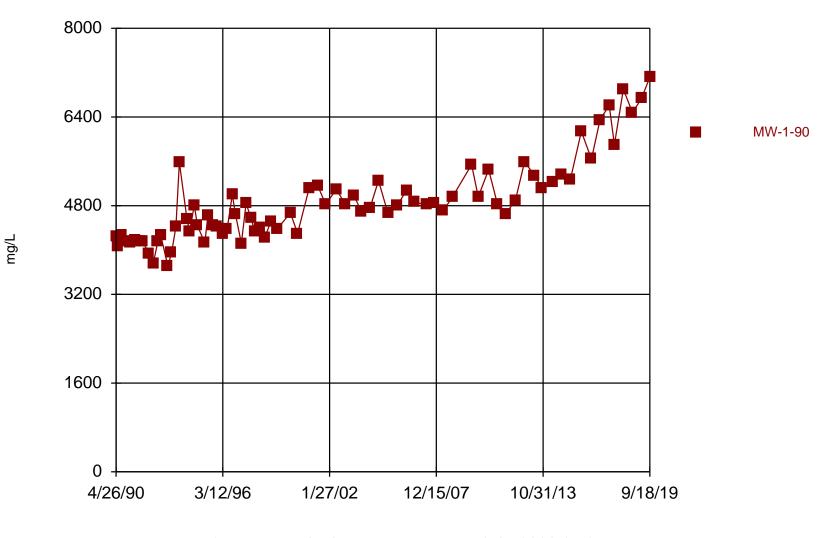
pH units

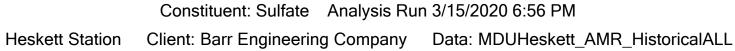


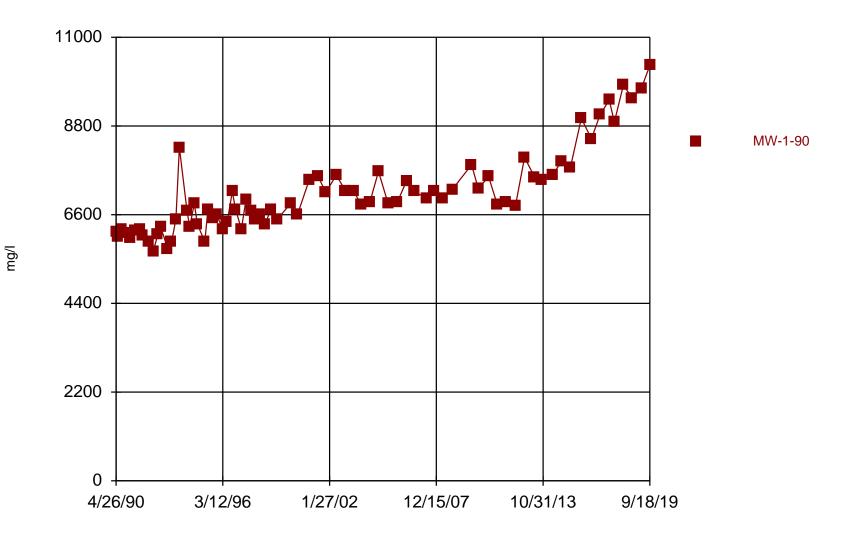

mg/l

Sanitas[™] v.9.6.25 For the statistical analyses of ground water by Barr Engineering Company only. UG Hollow symbols indicate censored values.




Constituent: Selenium, dissolved Analysis Run 3/15/2020 6:56 PM Heskett Station Client: Barr Engineering Company Data: MDUHeskett_AMR_HistoricalALL




Constituent: Sodium, total Analysis Run 3/15/2020 6:56 PM Heskett Station Client: Barr Engineering Company Data: MDUHeskett_AMR_HistoricalALL

Constituent: Specific conductance @ 25C, field Analysis Run 3/15/2020 6:56 PM Heskett Station Client: Barr Engineering Company Data: MDUHeskett_AMR_HistoricalALL

Appendix E

Geochemist's Workbench Results

જ 8 00, 4 × C/ S S, ъ 2 ŝ 2 80 80 *CO, *CO, Na * K Ş ъ 60 60 s0, ** ON ଡ S V 40 40 જી 20 20 S S В В Ŷ \$ ଡ ô Ca⁺⁺ < C۲ ⇒

% meq/kg

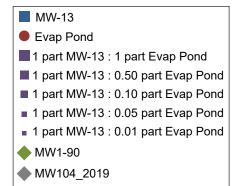
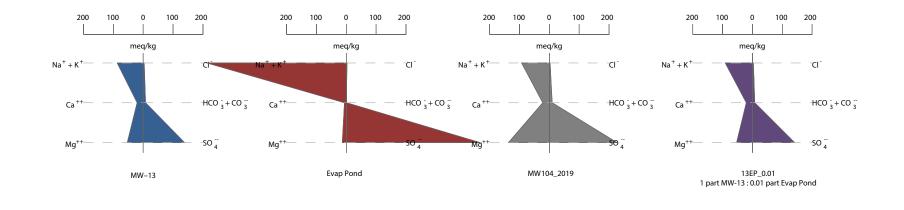



Figure E.1 Piper Plot for Mixing Evaporation Pond into MW-13 R.M. Heskett Station Alternative Source Demonstration April 2019 Event Montana Dakota Utilities Mandan, North Dakota .com/projects/Mpis/34 ND303430014 Heskett Station Ash Management(WorkFiles/Grundwater Monitoring)Statistical Evaluation/2019_DME1ASDASD ReportAppxAppx E - GWB Results):E 2 13EP_Stiff Mixing.pdf" User: AKS3 \Barr.

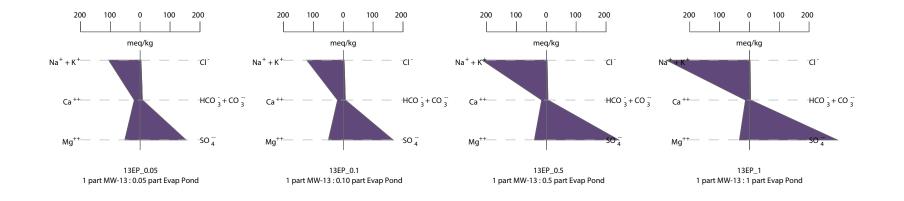


Figure E.2 Stiff Plot for Mixing Evaporation Pond into MW-13 R.M. Heskett Station Alternative Source Demonstration April 2019 Event Montana Dakota Utilities Mandan, North Dakota

\$0 \$ \$ \$ \$ \$ ъ 2 ð 80 80 بردن من بردن بردن Na*** \$ Ъ 60 60 10+* ⁰0 જ ଡ V 40 40 S 20 20 S S ъ 20 Ŷ \$ 8 ò Ca⁺⁺ < -> Cl

% meq/kg

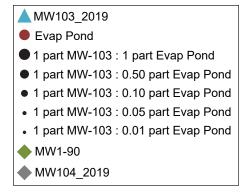
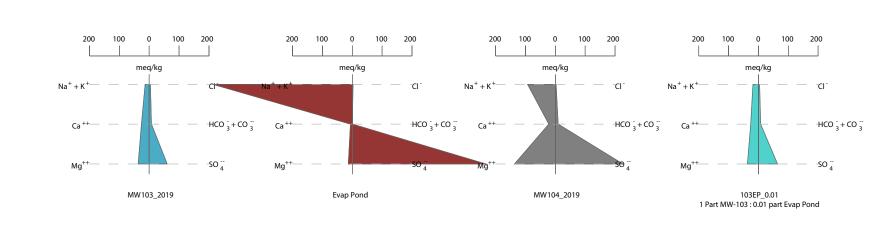



Figure E.3 Piper Plot for Mixing Evaporation Pond into MW-103 R.M. Heskett Station Alternative Source Demonstration April 2019 Event Montana Dakota Utilities Mandan, North Dakota

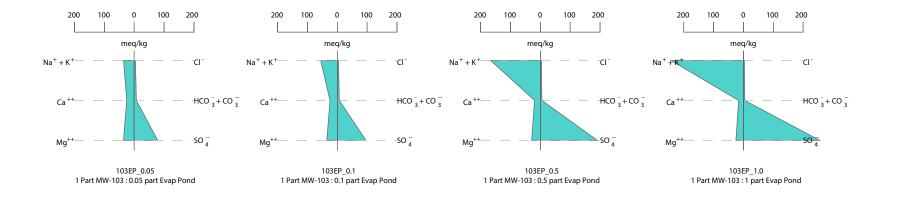


Figure E.4 Stiff Plot for Mixing Evaporation Pond into MW-103 R.M. Heskett Station Alternative Source Demonstration April 2019 Event Montana Dakota Utilities Mandan, North Dakota

Table E.1	
Geochemist's Workbench Mixing Model Results	

Descr	iption	Upgradie	ent Wells	Evap Pond	Mixing Ratio MW-13 : Evaporation Pond					Mixing Ratio MW-103 : Evaporation Pond				Downgradient Wells		
Sam	ole ID	MW-13	MW103	Evap Pond	1:0.01	1:0.05	1:0.1	1:0.5	1:1	1:0.01	1:0.05	1:0.1	1:0.5	1:1	MW1-90	MW-104
HCO3-	mg/l	482	457	20	477.4	460	440	328	251	452.7	436.2	417.3	311.3	238.5	259	591
Ca++	mg/l	418	530	125	415.1	404	391.4	320.3	271.5	526	510.7	493.2	395	327.5	453	448
Cl-	mg/l	109	142	79.8	108.7	107.6	106.3	99.28	94.42	141.4	139	136.3	121.3	110.9	57.4	87.6
F-	mg/l	0.73	0.15	0.1	0.7237	0.7	0.6727	0.52	0.415	0.1495	0.1476	0.1455	0.1334	0.125	1.07	0.55
Mg++	mg/l	660	458	165	655.1	636.4	615	495	412.5	455.1	444.1	431.4	360.4	311.5	775	1700
рН	SU	7.1	6.5	10.7	7.106	7.133	7.17	7.62	8.435	6.502	6.511	6.523	6.643	6.854	7.1	6.8
K+	mg/l	29.4	18.8	734	36.38	62.97	93.48	264.4	381.9	25.88	52.87	83.85	257.3	376.6	25.2	37
Na+	mg/l	2020	311	10600	2105	2429	2800	4882	6312	412.9	801.2	1247	3742	5458	1090	2160
SO4	mg/l	6750	2930	22100	6902	7481	8146	11869.8	14429.8	3120	3843	4674	9323	12520	5350	11100
TDS	mg/kg	10300	4860	34000	10537.2	11440.3	12476	18257.4	22214.5	5152	6265	7541	14660.2	19527.5	7910	17700

Alternative Source Demonstration: April 2020 Event

R.M. Heskett Station

Prepared for Montana-Dakota Utilities Co.

October 2020

Alternative Source Demonstration: April 2020 Event

R.M. Heskett Station

Prepared for Montana-Dakota Utilities Co.

October 2020

4300 MarketPointe Drive, Suite 200 Minneapolis, MN 55435 952.832.2600 www.barr.com

Alternative Source Demonstration April 2020 Event

October 2020

Contents

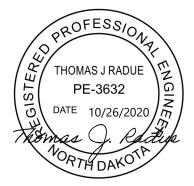
1.0	Introduction	1
2.0	April 2020 SSIs	2
2.1	September Sampling Event	2
2.2	Verification Sampling	2
3.0	Alternative Source Demonstration	3
3.1	Source Hypothesis #1: CCR Unit Release	3
3.2	Source Hypothesis #2: Natural Variations of Pre-Landfill or Regional Groundwater Quality	4
3.2	2.1 Chloride at MW-105	4
3.2	2.2 Sulfate and TDS at MW-104	4
3.3	Source Hypothesis #3: Evaporation Pond Release	5
3.3	3.1 TDS and Sulfate at MW-104	5
4.0	Conclusions	8
5.0	References	9

List of Tables

- Table 1
 Detection Monitoring Results for Potential SSI Well-Parameter Pairs
- Table 2Verification Sampling Results
- Table 3Summary of SSIs and Alternative Sources

List of Figures

- Figure 1 Site Layout and CCR Monitoring Well Network
- Figure 2 Piper Plot
- Figure 3 Sulfate Concentrations
- Figure 4 TDS Concentrations


List of Appendices

- Appendix A Appendix III Time Series Plots
- Appendix B April 2020 Prediction Limit Plots
- Appendix C Ash SPLP Laboratory Report (2011)
- Appendix D Aerial Photo (March 30, 1988)
- Appendix E Boring Logs
- Appendix F MW1-90 Time Series Plots
- Appendix G Geochemist's Workbench Results

Certifications

I hereby certify that I, or my agent, have examined this written demonstration and attest that this Coal Combustion Residuals Facility Alternative Source Demonstration (ASD) is accurate and has been prepared in accordance with good engineering practice, including consideration of applicable industry standards and the requirements of 40 CFR §257.94. I further certify that this report was prepared by me or under my direct supervision and that I am a duly Licensed Professional Engineer under the laws of the state of North Dakota.

Revision	Date	Summary of Revisions
0		Initial Alternative Source Demonstration

1.0 Introduction

Montana-Dakota Utilities Co. (MDU) owns and operates R.M. Heskett Station (Site), a coal-fired generating station and a gas-fired turbine located in Mandan, Morton County, North Dakota (Figure 1). One CCR (coal combustion residual) unit, as defined by 40 CFR 257.53, is located on the property. The CCR unit contains coal combustion by-products, asbestos wastes generated from construction activity associated with MDU-owned facilities, and ash derived from burning tire-derived fuel (TDF) at the facility.

The CCR Rule (US EPA, 2015) §257.94(e)(2) allows for an alternative source demonstration (ASD) in the event of an identified statistically significant increase (SSI) in a water quality parameter in a downgradient monitoring well over background levels:

The owner or operator may demonstrate that a source other than the CCR unit caused the statistically significant increase over background levels for a constituent or that the statistically significant increase resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. The owner or operator must complete the written demonstration within 90 days of detecting a statistically significant increase over background levels to include obtaining a certification from a qualified professional engineer verifying the accuracy of the information in the report.

The purpose of this work is to evaluate the data collected as part of the April 2020 monitoring event, along with historical data, to demonstrate if the potential SSIs are the results of a "source other than the CCR unit" or due to natural variation in groundwater quality, an error in sampling, analysis, or statistical evaluation.

2.0 April 2020 SSIs

Sampling for the first detection monitoring event in 2020 was conducted March 30 through April 6. Three potential SSIs over background were identified: sulfate and total dissolved solids (TDS) at MW-104 and chloride at MW-105 (see time series plots in Appendix A and prediction limit plots in Appendix B).

Evaluations were undertaken to review potential alternative sources for the SSIs. These evaluations included comparing leaching tests of on-site CCR materials, leachate collected in the Evaporation Pond (non-CCR unit), regional (background) groundwater quality data, and groundwater quality collected at the site prior to construction of the CCR unit.

Several characteristics of the CCR unit site geology, groundwater monitoring well locations, and historic groundwater quality data prompted consideration of potential alternative sources for the potential SSIs, including elevated water quality parameters in pre-landfill groundwater monitoring data, site-specific geologic conditions, and/or leakage from the Evaporation Pond (non-CCR unit).

A successful demonstration of alternative source(s) for the potential SSIs are discussed in Section 3.0.

2.1 September Sampling Event

Methods used to evaluate potential alternative sources as the basis for water quality parameter concentrations over background from the April 2020 detection monitoring event are discussed below. Concentrations for potential SSIs observed in April 2020 are less than those observed during the prior four detection monitoring events (Table 1).

			Detection Monitoring Results (mg/L)						
Well	Parameter	Prediction Limit (mg/L)	April 2018	October 2018	April 2019	September 2019	April 2020		
MW-105	Chloride	271	333	384	282	290	278		
MW-104	Sulfate	7,300	10,700	11,000	11,100	11,300	10,300		
MW-104	TDS	10,400	17,400	18,000	17,700	17,200	16,500		

Table 1. Detection Monitoring Results for Potential SSI Well-Parameter Pairs

Bolded values indicate concentrations exceed the associated interwell predication limits.

Trend analysis results indicate chloride at MW-105 has a statistically significant decreasing trend (95% confidence level) whereas TDS at MW-104 has a statistically significant increasing trend (95% confidence level).

2.2 Verification Sampling

No verification sampling was conducted on the potential SSIs.

3.0 Alternative Source Demonstration

Successful demonstrations of alternative sources have previously been documented for the three potential SSIs. The associated ASD Reports (Barr, 2018a; Barr, 2018b; Barr, 2019a; Barr, 2019b; Barr, 2020) documented that each of the SSIs could be explained by natural groundwater quality variability based on concentrations that were either present at the Site before the landfill was constructed, consistent with regional groundwater quality data, and/or associated with a release from the Evaporation Pond (non-CCR unit).

The purpose of this ASD Report is to validate the results of prior findings with the April 2020 data. For each potential SSI, three hypotheses regarding the potential source of the SSI are assessed: 1) a release of leachate from the CCR unit is the source of one or more of the potential SSIs; 2) natural variations of pre-landfill or regional groundwater quality is the source of one or more of the potential SSIs; or 3) a release of leachate from the Evaporation Pond (non-CCR unit) is the source of one or more of the potential SSIs.

3.1 Source Hypothesis #1: CCR Unit Release

To accept the hypothesis that a release of leachate from the CCR unit is the source of one or more of the potential SSIs, it would be assumed that groundwater chemistry at one or both of the potentially impacted wells (MW-104 and MW-105) would be geochemically similar to impacted water from the CCR unit represented by leach tests results. However, if they are geochemically dissimilar, this indicates that a source "other than the CCR unit" may be responsible for the potential SSI. Therefore, major ion chemistry from the CCR monitoring locations (upgradient and downgradient) was compared to CCR Synthetic Precipitation Leaching Procedure (SPLP; EPA Method 1312) data collected July 2011 (Appendix C).

In order to test this hypothesis, Piper diagrams were used to visually compare the CCR SPLP results (Appendix C) and the measured groundwater quality at the Site (Figure 2). Piper diagrams are plots of major ion chemistry of water samples (calcium, magnesium, potassium, sodium, chloride, sulfate, and alkalinity) that are used to differentiate between water types and to identify potential mixing of water types. This method is a means to identify or "fingerprint" water samples by their common characteristics (major ions) to assess which types of water are similar or dissimilar to potential source water types (Helsel and Hirsch, 2002). On the Piper diagram depicted in Figure 2, downgradient well compositions are shown as circular points, CCR SPLP compositions as red triangles, and the range of upgradient compositions as a blue polygon.

Downgradient water quality (including the potential SSI parameter-well pairs) is characterized as a Mg-SO₄ type water, whereas the ash SPLP results are Na-SO₄ type water. The major difference observed between the downgradient water quality and the SPLP results is the dominant cation concentration (magnesium vs. sodium). Because water quality data from SSI well-parameter pairs are clustered with data from that of the upgradient wells, which are Na-Mg-SO₄ to Mg-SO₄ type water, rather than near the SPLP results, it indicates that the water chemistry at those locations are more like upgradient groundwater than a potential release from the CCR unit. **Therefore, we reject the hypothesis that the CCR unit is the source of the sulfate and TDS observed at MW-104 and chloride at MW-105**.

3.2 Source Hypothesis #2: Natural Variations of Pre-Landfill or Regional Groundwater Quality

As Source Hypothesis #1 (CCR Unit Release) was rejected as a potential source of the SSIs, natural variations of pre-landfill conditions and/or regional groundwater quality were evaluated for each of the potential SSIs. The second hypothesis evaluated is that concentrations of sulfate and TDS at MW-104 and chloride at MW-105 are consistent with historical (pre-landfill) or regional (background) groundwater data. To test this hypothesis, results of April 2020 detection monitoring event were compared to pre-landfill data and/or regional groundwater quality data from the Cannonball Formation and associated units to determine if natural variation is a potential alternative source for the SSIs.

3.2.1 Chloride at MW-105

Results from groundwater samples collected in 1986 were included in the 1989 Special Use Disposal Site Permit Application (Permit Application; MDU, 1989). The 1986 samples were collected prior to construction of the CCR unit; an aerial photograph from March 30, 1988 shows the area of the CCR unit, which appears undisturbed (Appendix D).

Pre-landfill chloride concentrations collected from groundwater at the Site were measured as high as 558 mg/L (Well 44, 1986), indicating that high chloride concentrations pre-date construction of the CCR unit. Additionally, the North Dakota State Water Commission conducted a groundwater study in Morton County (Ackerman, 1980); 45 wells screened in the Cannonball and Ludlow Formations were sampled for various parameters including chloride. Chloride concentrations ranged from 0 to 500 mg/L (37% of which had concentrations greater than 250 mg/L).

Historic data shows that concentrations of chloride in groundwater at the Site measured prior to the construction of the CCR unit (558 mg/L) as well as regional groundwater quality data (0 to 500 mg/L) are consistent with and/or higher than chloride measured at MW-105 in April 2020 (278 mg/L). This supports the hypothesis that the SSI for chloride at MW-105 is due to a "source other than the CCR unit." **Therefore, we accept the hypothesis that chloride concentrations observed at MW-105 are consistent with regional (background) groundwater data.**

3.2.2 Sulfate and TDS at MW-104

Analyses of groundwater samples collected prior to construction of the CCR unit included in the Permit Application notes that high sulfate and TDS was observed at the Site. Maximum sulfate and TDS concentrations reported in 1986 (pre-landfill) were 11,632 mg/L and 14,917 mg/L, respectively, in Well 60 (approximately 700 feet southwest of MW-104), with similar concentrations observed two years later. Sulfate concentrations reported in April 2020 at MW-104 (10,300 mg/L) are within range of historically observed concentrations (Figure 3), but TDS concentrations (16,500 mg/L) are somewhat higher than historically observed (Figure 4). Figures 3 and 4 show the range of sulfate and TDS concentrations, respectively, across the Site, including recent and historical monitoring well data.

The mineralogy of the underlying Fort Union Formation may yield an explanation for the elevated sulfate concentrations (which leads to elevated TDS concentrations). The dominant lithology observed at the Site

is unconsolidated silt in a clay matrix with interspersed fine to medium-grained sand (10% to 30%). Small gypsum crystals are documented discontinuously throughout the upper 30 feet of the surface materials, which have been presumed to be the result of diagenetic processes which occur above the water table during alternating wetting and drying cycles (Groenewold et al., 1983). Gypsum is a hydrated calcium sulfate mineral that can be a source of high sulfate concentrations in groundwater.

The boring log for MW-104 (Appendix E) notes gypsum present throughout the upper layer of the screened interval. Boring logs for other CCR wells and pre-landfill wells note gypsum occurrences across the Site (Appendix E). The water level and screened interval in MW-104 are within the gypsum-bearing unit. In other wells with lower sulfate and TDS concentrations, the water levels and/or screened units are below the documented gypsum occurrences. As groundwater fluctuates and surface water infiltration occurs, periodic dissolution of gypsum into the water column may occur, resulting in elevated sulfate concentrations (and therefore elevated TDS, too).

Based on presence of gypsum in native subsurface deposits and documentation of elevated sulfate and TDS in pre-landfill groundwater, the hypothesis that the SSI for sulfate and TDS at MW-104 may be due to natural conditions (a "source other than the CCR unit.") is possible. However, a statistically significant increasing trend for TDS at MW-104 was observed. Natural/background groundwater can be affected by seasonality and/or site-wide aquifer changes, resulting in trending data; two other monitoring wells at the site have statistically significant increasing trends at the site: upgradient well MW-13 and downgradient well MW2-90 (conversely, MW-13 has a long-term (late 1980s to present) statistically significant decreasing trend). Seasonality was not detected in TDS or sulfate at MW-104. **Sulfate and TDS concentrations at MW-104 may be due to natural conditions, however additional source considerations were evaluated.**

3.3 Source Hypothesis #3: Evaporation Pond Release

Two conditions are necessary in order to accept the hypothesis that a release of Evaporation Pond water is the source of one or more of the potential SSIs: (1) mechanism of release (such as an issue with Evaporation Pond liner integrity) and (2) geochemically similar groundwater chemistry at one or more of the potentially impacted wells with water from the Evaporation Pond. Based on proximity, only the SSIs observed at MW-104 (TDS and sulfate) are being evaluated for this potential source.

3.3.1 TDS and Sulfate at MW-104

A statistically significant increasing trend in TDS was observed at MW-104 following the April 2020 detection monitoring event. No other statistically significant trends were observed for other Appendix III parameters at this location. Past ASD Reports (Barr, 2019b and Barr, 2020) attributed elevated sulfate and TDS concentrations at MW-104 to either natural conditions or a release from the Evaporation Pond. MW-104 is located between the CCR unit and the Evaporation Pond (a non-CCR unit). The Evaporation Pond was constructed to collect surface water run-off from the Site as well as leachate from the CCR Unit. Due to the relative proximity of MW-104 to the Evaporation Pond, an evaluation was conducted to assess the Evaporation Pond liner integrity, potential impacts to downgradient wells, and determine the geochemical feasibility of Evaporation Pond water contributing to the conditions observed at MW-104.

Liner Integrity Evaluation

In the 2010 Annual Report for the Special Waste Disposal Permit (SP-087), it was noted that erosion was encountered at the Evaporation Pond. More specifically, "cuts in the banks of the pond ranged from 8 to 24-inches. Erosion was caused from storm water running into the evaporation pond from closed Slots and the haul road" (MDU, 2011). No repairs were made at that time due to standing water in the pond. Similar erosional features were noted in the 2011 and 2012 Annual Reports, citing erosion cuts of 8 to 48-inches (MDU, 2012 and MDU, 2013). These erosion cuts were repaired in 2013 during the construction of Slot 10. Additionally, the 2013 Annual Report stated that "the west wall of the evaporation pond was raised and graded to reroute storm water that accumulates outside of the ash disposal area from the cover of Phase I ash disposal site away from the pond during rain events" (MDU, 2014).

These reports did not specify if the erosional cuts were 8 to 48-inches wide or 8 to 48-inches deep. Based on the Phase I Development "as-constructed" Plan Sheets (January and November 1990), the Evaporation Pond was built with a 3-foot-thick compacted clay liner (MDU, 1989 Exhibit 6-B). If the erosional cuts were up to 48-inches deep, then the cuts would extend through the entirety of the liner thickness, creating a conduit for Evaporation Pond water to enter the groundwater. Additionally, no details were provided on the materials used for repairing the Evaporation Pond (i.e. if the liner was impacted, were the erosion cuts filled in with a comparable clay liner material).

Additionally, the integrity of the Evaporation Pond liner may have been compromised due to cation exchange. Time series plots of groundwater quality at nearby well MW1-90 (Appendix F) show an increase in sodium; this increase is most apparent at MW1-90 between 2012 and 2019. The Evaporation Pond liner may be composed of a clay with sodium as its main interlayer cation (e.g., sodium-montmorillonite and/or sodium-bentonite, which are common in the area (Groenewold et al., 1983)), and cation exchange processes can occur between the sodium in the clay and positively charged cations concentrated in the evaporation pond water (calcium, magnesium, potassium, and aluminum), increasing the concentration of dissolved sodium as it is released from the clay structure. Over time this exchange may decrease swelling potential and increase hydraulic conductivity of the clay constituting the pond liner, resulting in increased leakage of Evaporation Pond water.

Downgradient Impacts

The base of the Evaporation Pond sits at approximately 1675 feet above MSL whereas the most recent groundwater elevations in MW-104 and MW1-90 were measured at roughly 1672 feet above MSL and 1665 feet above MSL, respectively. Therefore, any water leaking from the Evaporation Pond would report radially downward into the groundwater, toward both MW-104 and MW1-90, reaching both wells downgradient of the Pond.

As MW-104 was installed on August 20, 2015, it is not possible to determine if the erosional cuts observed in the early 2010s impacted the water quality at this location. However, data has consistently been collected from nearby well MW1-90, also downgradient of the Evaporation Pond. As seen in the time series plots (Appendix F; 1990-2020), in approximately 2010 concentrations of chloride, sulfate, TDS, magnesium, sodium, and specific conductance at MW1-90 began increasing more rapidly. To a lesser extent, changes in concentrations were observed around this same time for potassium, nitrogen, and total alkalinity. This timing corresponds to when the erosional cuts at the Evaporation Pond were first observed in the Annual Monitoring Reports. The increasing trends have since continued, despite reports of the erosional cuts being repaired in 2013, except for chloride, which has since leveled off and is now decreasing.

Geochemical Feasibility

A simple mixing model was developed in April 2019 (Barr, 2019b) to determine the potential of producing a similar water quality observed at MW-104 (and MW1-90, as a historical analogue) when mixing Evaporation Pond water with unimpacted upgradient water. This mixing model was conducted in Geochemist's Workbench® v.12.0, using a water sample collected from the Evaporation Pond in September 2014 and a water sample from upgradient monitoring well MW-103 in April 2019. The mixing model assumes a starting concentration equal to the upgradient groundwater concentrations and then iteratively mixes it with incremental amounts of Evaporation Pond water.

The results of the April 2019 model are provided in Appendix G. Figure G.1 shows the results of the mixing model on a stiff diagram for MW-103. Downgradient wells MW-104 and MW1-90 are shown as gray and green diamonds, respectively. The blue line represents the various possible outcomes when mixing the upgradient water quality with the Evaporation Pond. The black circles (G.3) represent specific proportions (1-part upgradient water to 0.01-, 0.05-, 0.1-, 0.5-, and 1-part Evaporation Pond water). Figure G.2 shows the results as Stiff plots. Table E.1 provides the numerical inputs and results of the various mixing proportions.

As shown on Figure G.1, the downgradient well compositions are similar to the chemistry anticipated if the Evaporation Pond is mixing with upgradient groundwater emanating from the proximity of monitoring well MW-103. The path of the mixing reaction from MW-103 to the Evaporation Pond transects MW-104 when 1-part upgradient (MW-103) water is mixed with as little as 0.05-part Evaporation Pond water. Therefore, it appears plausible that a relatively small portion of Evaporation Pond water would be needed to "impact" upgradient groundwater to get a similar chemistry as observed in MW-104. The geometry of the Stiff plots in Figure G.2 show the similarity in anionic concentrations and calcium in the mixing models.

Based on the description of erosional features extending upwards of 48 inches in the liner of the Evaporation Pond in 2010-2013 corresponding with the increased concentrations of several parameters observed in downgradient monitoring well MW1-90, it is possible that a release from the Evaporation Pond occurred starting in approximately 2011. Furthermore, the results of the geochemical model along with the general proximity and hydraulic position of MW-104 relative to the Evaporation Pond supports the hypothesis that the SSI for TDS and sulfate at MW-104 is due to a "source other than the CCR unit." **Therefore, we accept the hypothesis that TDS and sulfate concentrations observed at MW-104 are consistent with a potential release from the Evaporation Pond, a non CCR unit.**

4.0 Conclusions

Three SSIs were identified from the April 2020 detection monitoring event. This report demonstrates that a "source other than the CCR unit" caused the potential SSIs (natural variation in regional and/or prelandfill groundwater quality and the Evaporation Pond), as allowed by §257.94(e)(2). The results of this alternative source demonstration are summarized in the table below.

Well	Parameter Report Section		Evidence for Alternative Source
MW-105	Chloride	3.2.1	Natural variability (pre-landfill values and geologic background)
MW-104	Sulfate	3.2.2, 3.3.1	Natural variability and/or Other (Evaporation Pond, a non CCR unit)
MW-104	Total Dissolved Solids	3.2.2, 3.3.1	Natural Variability and/or Other (Evaporation Pond, a non CCR unit)

Table 3. Summary of SSIs and Alternative Sources

Based on the foregoing, the alternative source demonstration presented herein meets the requirements of CCR Rule §257.94(e)(2). As coal unit operations will cease around March 2022, MDU will work with the North Dakota Department of Environmental Quality (NDDEQ) on closure options for the Evaporation Pond as it is regulated under a permit through the NDDEQ.

5.0 References

- Ackerman, D.J., 1980. Ground-Water Resources of Morton County, North Dakota. North Dakota Geological Survey Bulletin 72, Part III. 51 p.
- Barr Engineering Co., 2019a. Alternative Source Demonstration: October 2018 Event. R.M. Heskett Station. Prepared for Montana-Dakota Utilities Co. April 2019.
- Barr Engineering Co., 2019b. Alternative Source Demonstration: April 2019 Event. R.M. Heskett Station. Prepared for Montana-Dakota Utilities Co. November 2019.
- Barr Engineering Co., 2020. Alternative Source Demonstration: September 2019 Event. R.M. Heskett Station. Prepared for Montana-Dakota Utilities Co. April 2020.
- Crosby, O.A. and Klausing, R.L., 1984. Hydrology of Area 47, Northern Great Plains and Rocky Mountain Coal Provinces, North Dakota, South Dakota, and Montana. USGS Water-Resources Investigations Open-File Report 83-221, 93 p.
- Groenewold, G.H., Koob, G.J., McCarthy, B.W., and Peterson, W.M., 1983, Geologic and Geochemical Controls on the Chemical Evolution of Subsurface Water in Undisturbed and Surface-Mined Landscapes on Western North Dakota, North Dakota Geological Survey Report of Investigation 79, 151 p.
- Helsel, D.R. and R. M. Hirsch, 2002. Statistical Methods in Water Resources Techniques of Water Resources Investigations, Book 4, chapter A3. U.S. Geological Survey. 522 pages.
- Montana-Dakota Utilities Co. (MDU), 1989, R.M. Heskett Station Special Use Disposal Site Permit Application. Submitted to North Dakota State Department of Health, March 1, 1989.
- MDU, 2011, R.M. Heskett Station Special Waste Disposal Permit SP-087 2010 Annual Report. February 2011.
- MDU, 2012, R.M. Heskett Station Special Waste Disposal Permit SP-087 2011 Annual Report. February 2012.
- MDU, 2013, R.M. Heskett Station Special Waste Disposal Permit SP-087 2012 Annual Report. February 2013.
- MDU, 2014, R.M. Heskett Station Special Waste Disposal Permit SP-087 2013 Annual Report. February 2014.
- US EPA, 2015, Hazardous and Solid Waste Management Systems; Management of Coal Combustion Residuals from Electric Utility, CFR Parts 257 and 261, Federal Register, Vol. 80, No. 74, April 17, 2015

Figures

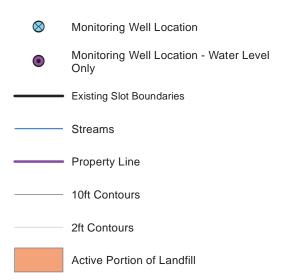


Image Source: 2019 Statewide Imagery (ND GIS Hub)

CAD Data Source: Slot Linework.dwg

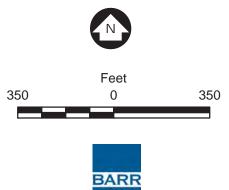
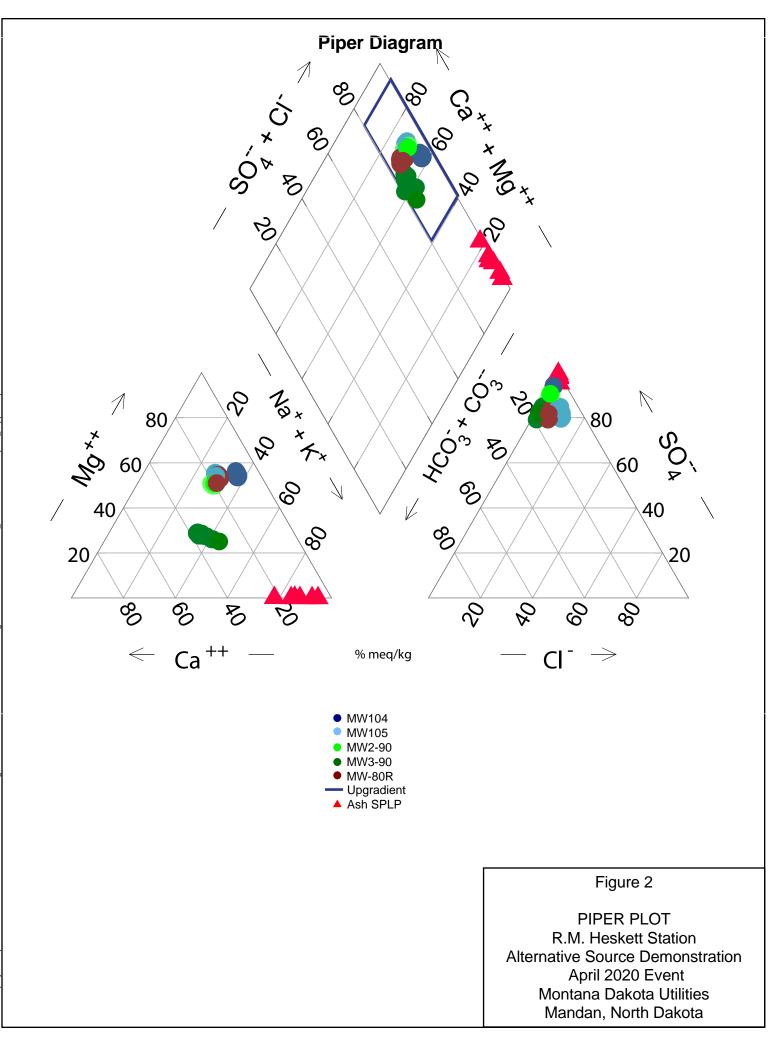
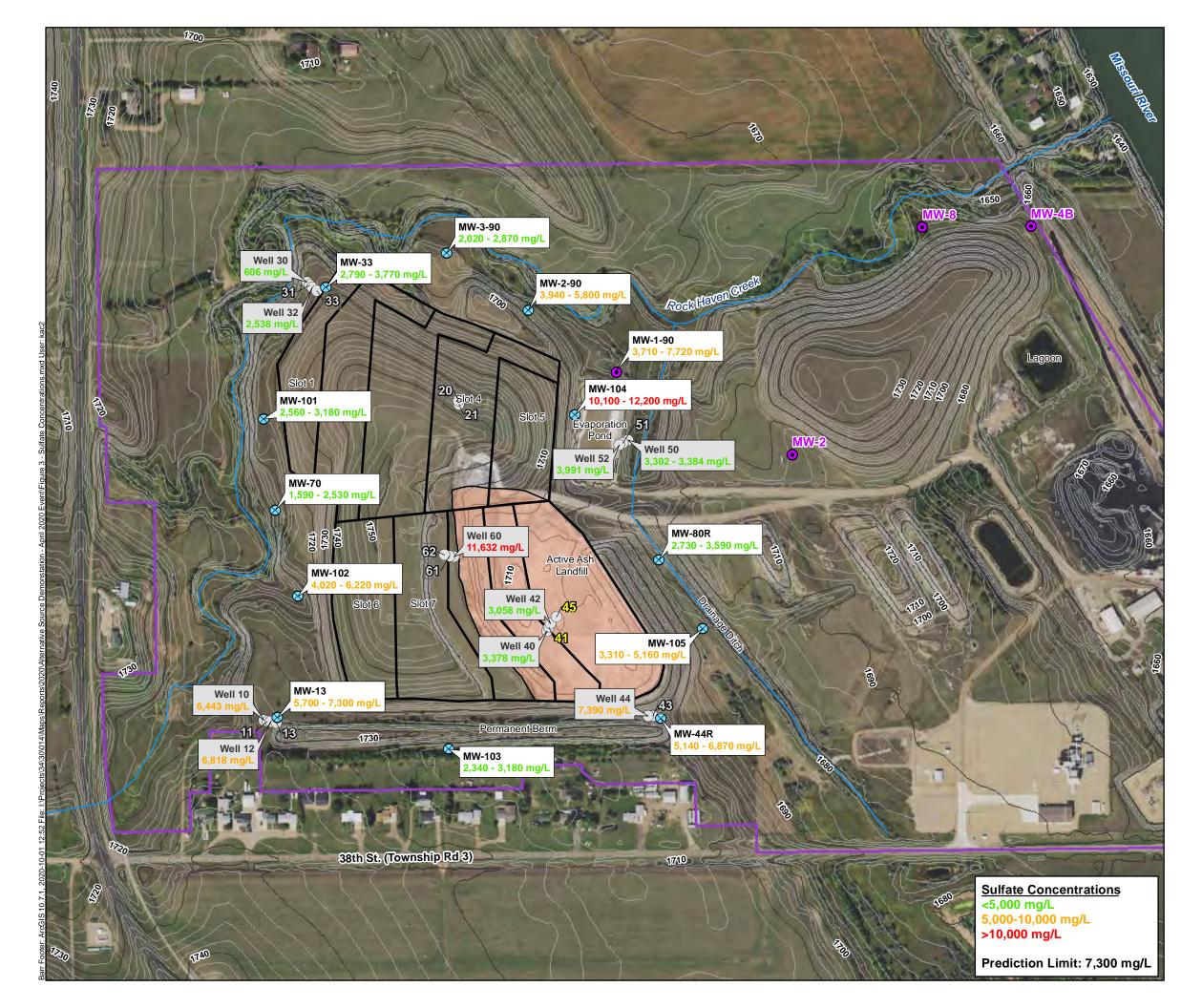




Figure 1

SITE LAYOUT AND CCR MONITORING WELL NETWORK R. M. Heskett Station Alternative Source Demonstration: April 2020 Event Montana Dakota Utilities Mandan, North Dakota

 Monitoring Well Location
 Monitoring Well Location - Water Level Only
 Pre-Landfill Wells
 Existing Slot Boundaries
 Streams
 Property Line
 10ft Contours
 2ft Contours
 Active Portion of Landfill

Image Source: 2018 Statewide Imagery (ND GIS Hub)

CAD Data Source: Slot Linework.dwg Pre-Landfill well concentrations are from 9/11/1986, 11/21/1986 (MDU, 1989), and CCR Rule monitoring well concentrations are from 2016-2019.

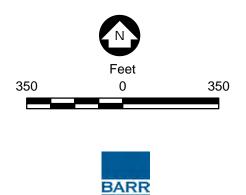
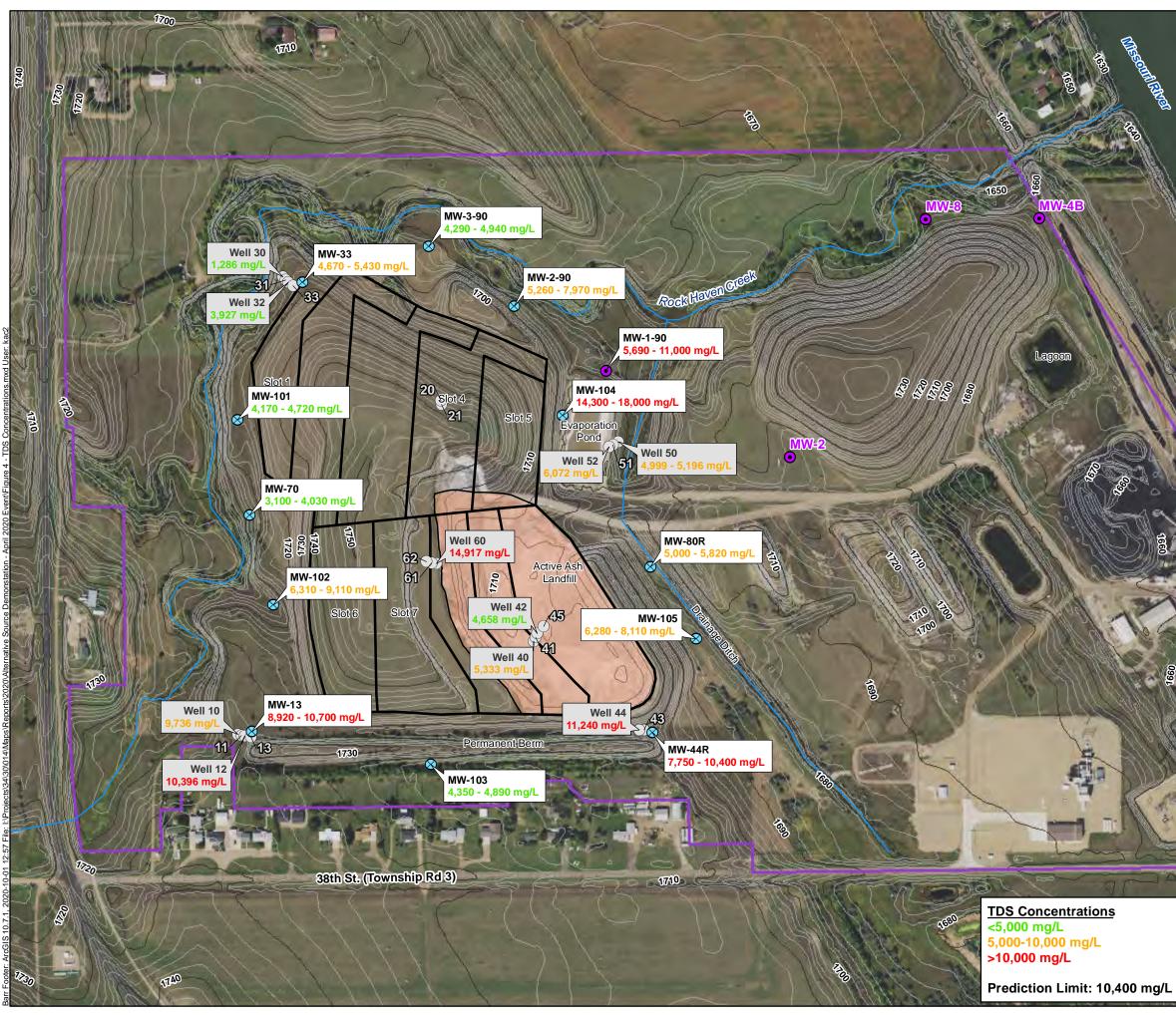



Figure 3

SULFATE CONCENTRATIONS R. M. Heskett Station Alternative Source Demonstration: April 2020 Event Montana Dakota Utilities Mandan, North Dakota

 \otimes Monitoring Well Location

Monitoring Well Location - Water Level Only

 \bigcirc Pre-Landfill Wells (Approximate)

Existing Slot Boundaries

Streams

Property Line

10ft Contours

2ft Contours

Active Portion of Landfill

Image Source: 2018 Statewide Imagery (ND GIS Hub)

CAD Data Source: Slot Linework.dwg Pre-Landfill well concentrations are from 9/11/1986, 11/21/1986 (MDU, 1989), and CCR Rule monitoring well concentrations are from 2016-2019.

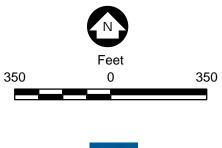
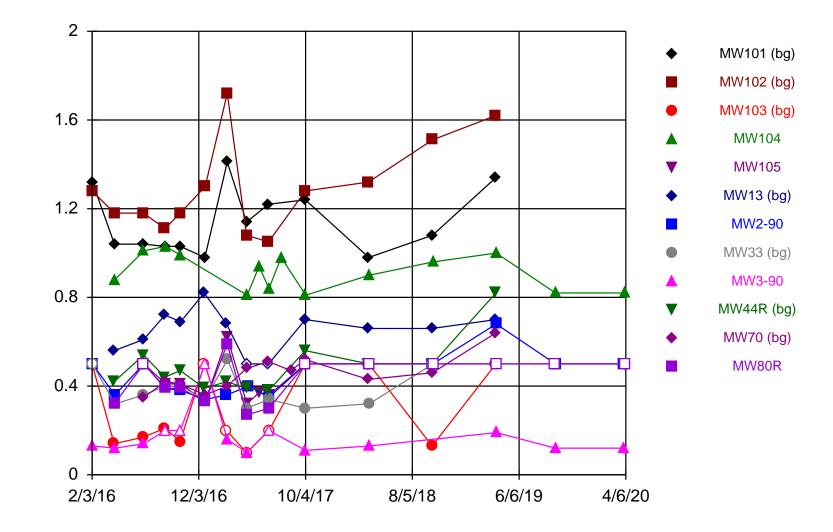


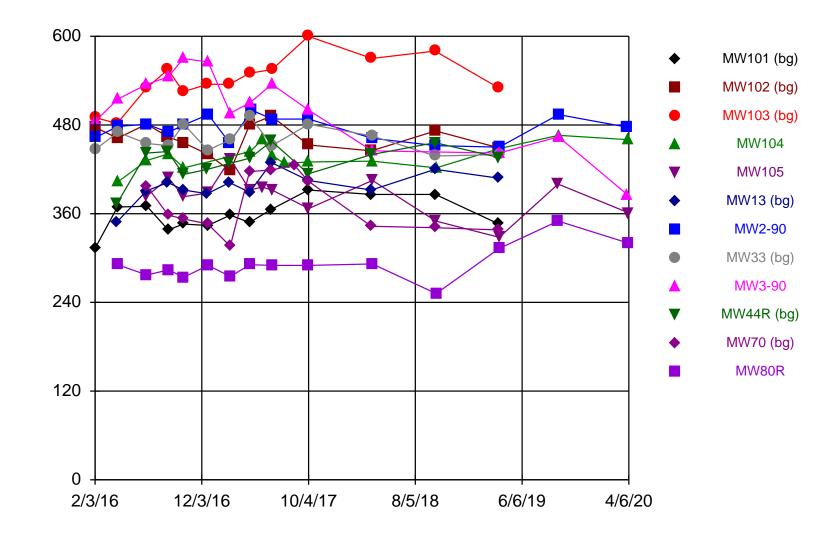
Figure 4

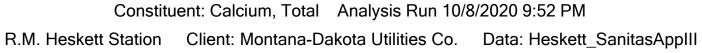

TDS CONCENTRATIONS R. M. Heskett Station Alternative Source Demonstration: April 2020 Event Montana Dakota Utilities Mandan, North Dakota

Appendix A

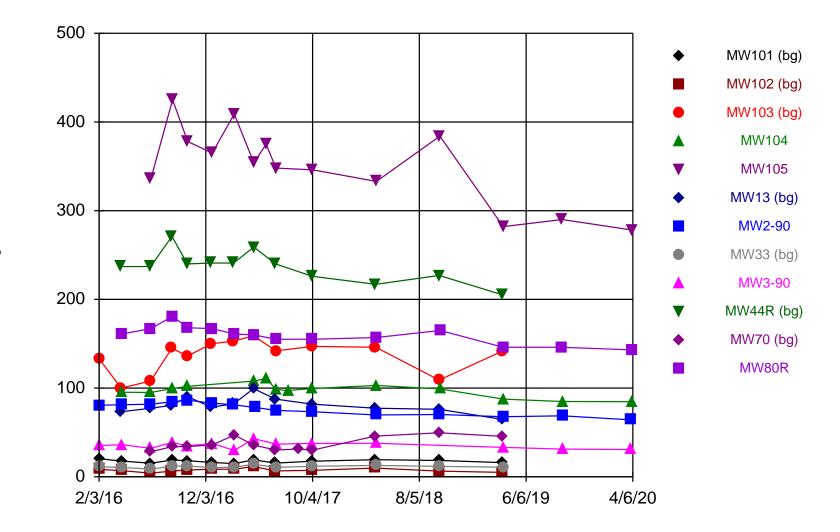
Appendix III Time Series Plots

Sanitas[™] v.9.6.27 For the statistical analyses of ground water by Barr Engineering Company only. UG Hollow symbols indicate censored values.


Time Series

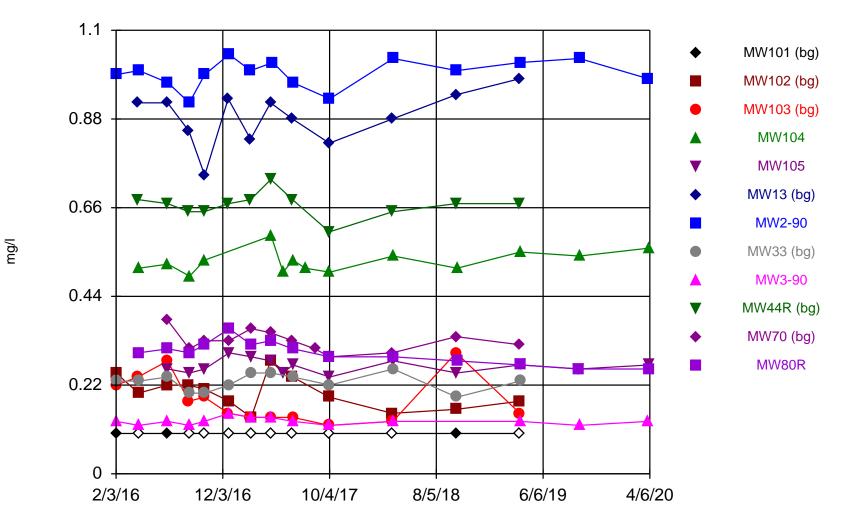

Constituent: Boron, Total Analysis Run 10/8/2020 9:52 PM R.M. Heskett Station Client: Montana-Dakota Utilities Co. Data: Heskett_SanitasAppIII

mg/l

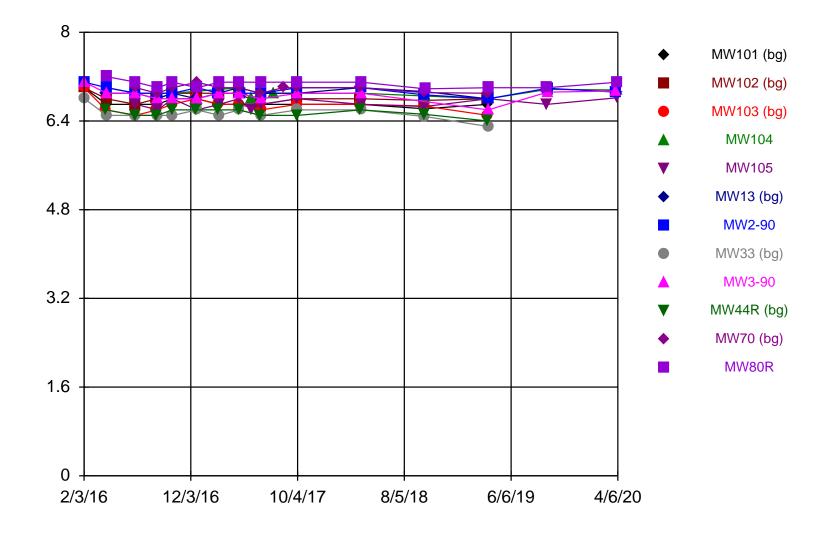

Sanitas™ v.9.6.27 For the statistical analyses of ground water by Barr Engineering Company only. UG

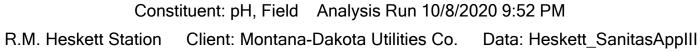
Time Series

mg/l

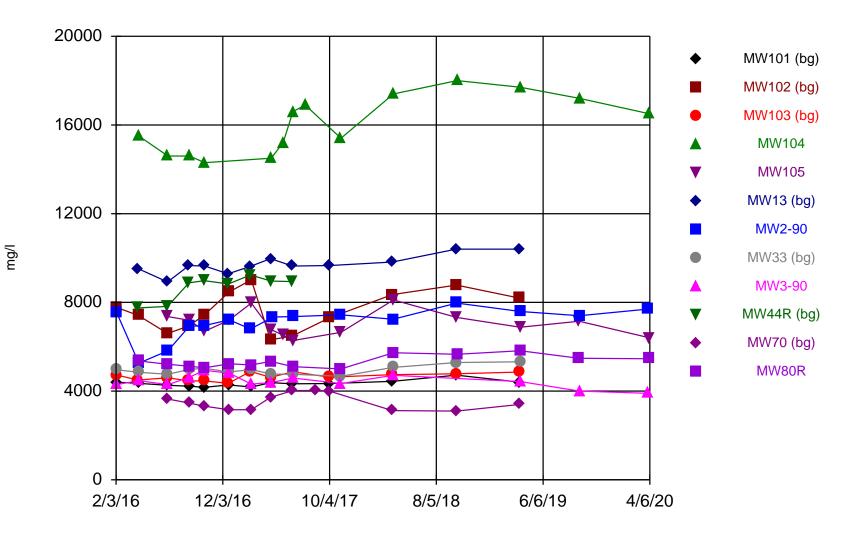


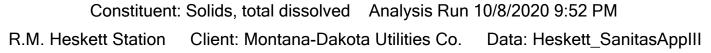
Constituent: Chloride Analysis Run 10/8/2020 9:52 PM R.M. Heskett Station Client: Montana-Dakota Utilities Co. Data: Heskett_SanitasAppIII

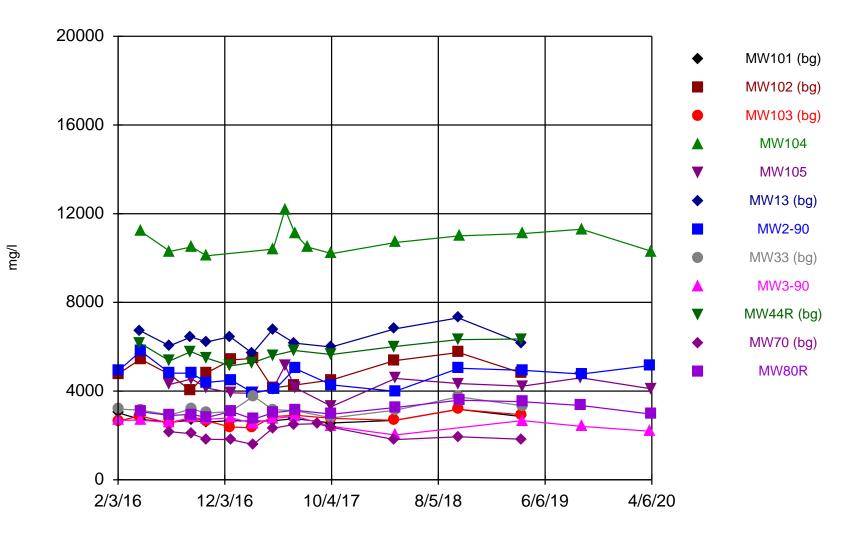

mg/l

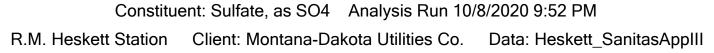

Sanitas[™] v.9.6.27 For the statistical analyses of ground water by Barr Engineering Company only. UG Hollow symbols indicate censored values.

Time Series

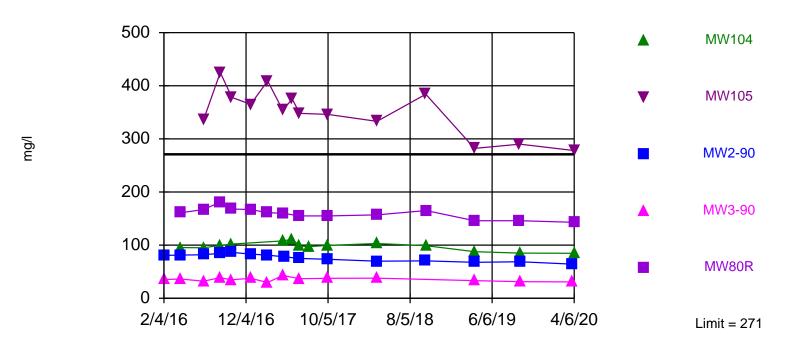



Constituent: Fluoride Analysis Run 10/8/2020 9:52 PM R.M. Heskett Station Client: Montana-Dakota Utilities Co. Data: Heskett_SanitasAppIII





pH units

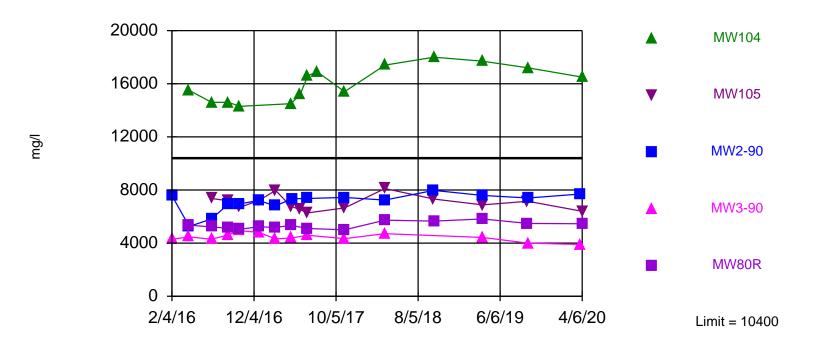

Appendix B

April 2020 Prediction Limit Plots

Sanitas™ v.9.6.27 For the statistical analyses of ground water by Barr Engineering Company only. UG

Exceeds Limit: MW105

Prediction Limit Interwell Non-parametric

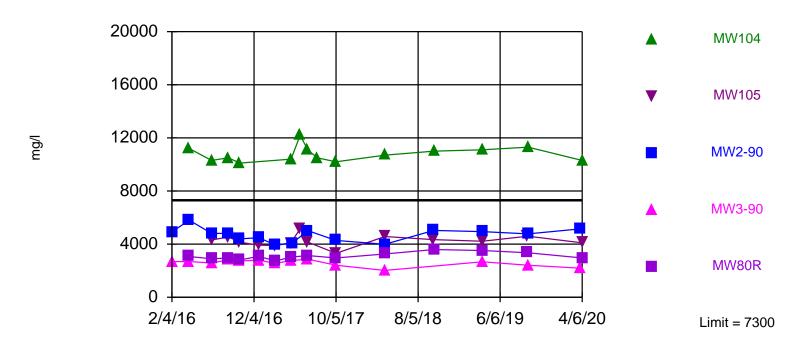


Non-parametric test used in lieu of parametric prediction limit because the Shapiro Francia normality test showed the data to be non-normal at the 0.05 alpha level. Limit is highest of 88 background values. Annual per-constituent alpha = 0.002497. Individual comparison alpha = 0.00025 (1 of 2). Comparing 5 points to limit. Seasonality was not detected with 95% confidence.

Constituent: Chloride Analysis Run 10/8/2020 9:54 PM R.M. Heskett Station Client: Montana-Dakota Utilities Co. Data: Heskett_SanitasAppIII Sanitas™ v.9.6.27 For the statistical analyses of ground water by Barr Engineering Company only. UG

Exceeds Limit: MW104

Prediction Limit


Interwell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Francia normality test showed the data to be non-normal at the 0.05 alpha level. Limit is highest of 84 background values. Annual per-constituent alpha = 0.002742. Individual comparison alpha = 0.0002746 (1 of 2). Comparing 5 points to limit. Seasonality was not detected with 95% confidence.

Constituent: Solids, total dissolved Analysis Run 10/8/2020 9:55 PM R.M. Heskett Station Client: Montana-Dakota Utilities Co. Data: Heskett_SanitasAppIII

Exceeds Limit: MW104

Prediction Limit Interwell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Francia normality test showed the data to be non-normal at the 0.05 alpha level. Limit is highest of 88 background values. Annual per-constituent alpha = 0.002497. Individual comparison alpha = 0.00025 (1 of 2). Comparing 5 points to limit. Seasonality was not detected with 95% confidence.

Constituent: Sulfate, as SO4 Analysis Run 10/8/2020 9:55 PM R.M. Heskett Station Client: Montana-Dakota Utilities Co. Data: Heskett_SanitasAppIII

Appendix C

Ash SPLP Laboratory Report (2011)

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 51 West Lincoln Way ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

Page: 1 of 2

Report Date: 8 Sep 11 Lab Number: 11-M2450 Work Order #:81-818 Account #: 013479 Date Sampled: Date Received: 28 Jun 11 9:00 PO #: 131460 OP

Duane Leingang Montana Dakota Utilities PO Box 40 Mandan ND 58554

Sample Description: Unit I Bottom Ash Sample Site: MDU Heskett

	As Receive Result	ed	Method RL	Method Reference	Date Analyzed	Analyst
SPLP Extraction				1312	22 Jul 11	SS
рН	12.2	units	N/A	SM4500 H+ B	22 Jul 11 17:00	
Specific Conductance	8778	umhos/cm	N/A	SM2510-B	22 Jul 11 17:00	
Total Suspended Solids	3	mg/l	1	SM2540-D	22 Jul 11 14:00	
Total Alkalinity	1120	mg/l CaCO3	4	SM2320-B	22 Jul 11 17:00	
Phenolphthalein Alk	1090	mg/l CaCO3	4	SM2320-B	22 Jul 11 17:00	
Bicarbonate	< 4	mg/l CaCO3	4	SM2320-B	22 Jul 11 17:00	
Carbonate	60	mg/l CaCO3	4	SM2320-B	22 Jul 11 17:0	
Hydroxide	1060	mg/l CaCO3	0	SM2320-B	22 Jul 11 17:00	
Tot Dis Solids (Summation)	4860	mg/l	NA	SM1030-F	3 Aug 11 8:4	2
Total Hardness as CaCO3	524	mg/l	NA	SM2340-B	3 Aug 11 8:4	
Hardness in grains/gallon	30.7	gr/gal	NA	SM2340-B	3 Aug 11 8:4	
Cation Summation	74,3	meg/L	NA	SM1030-F	3 Aug 11 8:4	
Anion Summation	74.6	meq/L	NA	SM1030-F	28 Jul 11 14:3	
Percent Error	-0.24	8	NA	SM1030-F	3 Aug 11 8:4	
Sodium Adsorption Ratio	27.1		NA	USDA 20b	3 Aug 11 8:4	
Gross Alpha Radiation	Attached	pCi/l			22 Aug 11 2:0	
Radon 222	Attached				28 Jul 11 4:3	
Radium 226	Attached	pCi/l			22 Aug 11 22:2	
Radium 228	Attached	pCi/l			16 Aug 11 16:5	
Total Organic Carbon	0.7	mg/l	0.5	SM5310-C	1 Aug 11 8:0	
Fluoride	< 0.1	mg/l	0.10	SM4500-F-C	4 Aug 11 17:0	
Sulfate	2440	mg/l	5.00	ASTM D516-02	27 Jul 11 9:0	
Chloride	50.5	mg/l	1.0	SM4500-Cl-E	27 Jul 11 14:0	
Nitrate-Nitrite as N	0.21	mg/l	0.10	EPA 353.2	28 Jul 11 14:3	
Ammonia-Nitrogen as N	0.32	mg/l	0.10	EPA 350.1	28 Jul 11 10:4	
Phosphorus as P - Total	< 0.1	mg/l	0.10	EPA 365.1	28 Jul 11 13:0	
Mercury - Total	< 0.0002	mg/l	0.0002	EPA 245.1	28 Jul 11 8:0	
Chemical Oxygen Demand	< 5	mg/l	5.0	HACH 8000	1 Aug 11 8:3	· · · · · · · · · · · · · · · · · · ·
Calcium - Total	210	mg/l	1.0	6010	3 Aug 11 8:4	-
Magnesium - Total	< 2.5	mg/l	1.0	6010	3 Aug 11 8:4	
Sodium - Total	1440	mg/l	1.0	6010	3 Aug 11 8:4	4
Potassium - Total	44.8	mg/l	1.0	6010	3 Aug 11 8:4	
Aluminum - Total	< 0.5	mg/l	0.10	6010	2 Aug 11 9:3	-
Iron - Total	< 0.5	mg/l	0.10	6010	2 Aug 11 9:3	-
Strontium - Total	28.2	mg/l	0.10	6010	2 Aug 11 9:3	-
Titanium - Total	< 0.5	mg/l	0.10	6010	2 Aug 11 9:3	4
Boron - Total	< 0,5	mg/l	0.10	6010	11 Aug 11 8:4	0 Stacy

RL = Method Reporting Limit

Elevated "Less Than Result" (<): @ = Due to sample matrix ! = Due to sample quantity # = Due to sample concentration

CERTIFICATION: MN LAB # 038-999-267 ND # ND-00016

+ = Due to extract volume

MVTL guarantees the accuracy of the analysis done on the sample submitted for testing. It is not possible for MVTL to guarantee that a test result obtained on a particular sample will be the same on any other sample unless all conditions affecting the sample are the same, including sampling by MVTL. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 51 West Lincoln Way ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

Page: 2 of 2

Report Date: 8 Sep 11 Lab Number: 11-M2450 Work Order #:81-818 Account #: 013479 Date Sampled: Date Received: 28 Jun 11 9:00 PO #: 131460 OP

Duane Leingang Montana Dakota Utilities PO Box 40 Mandan ND 58554

Sample Description: Unit I Bottom Ash Sample Site: MDU Heskett

	As Receive Result	ed	Method RL	Method Reference	Date Analyzed	Analyst
Antimony - Total	< 0.002	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Arsenic - Total	0.0044	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Barium - Total	0.1135	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Beryllium - Total	< 0.001	mg/l	0.0010	6020	25 Jul 11 16:18	Claudette
Cadmium - Total	0.00164	mg/l	0.00100	6020	25 Jul 11 16:18	Claudette
Chromium - Total	0.0065	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Cobalt - Total	< 0.002	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Copper - Total	0.0213	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Lead - Total	< 0.002	mg/l	0.0020	6020	25 Jul 11 16:18	
Manganese - Total	0.0027	mg/l	0.0010	6020	25 Jul 11 16:18	
Molybdenum - Total	0.6860	mg/l	0.0020	6020	26 Jul 11 12:46	7.
Nickel - Total	0.0074	mg/l	0.0020	6020	25 Jul 11 16:18	
Selenium - Total	0.0133	mg/l	0.0020	6020	26 Jul 11 9:46	Claudette
Silver - Total	< 0.001	mg/l	0.0010	6020	25 Jul 11 16:18	Claudette
Thallium - Total	< 0.002	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Tin - Total	< 0.05	mg/l	0.0500	6020	25 Jul 11 16:18	Claudette
Vanadium - Total	0.0189	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Zinc - Total	0.0151	mg/l	0.0100	6020	25 Jul 11 16:18	Claudette
Uranium	< 0.002	mg/l	0.002	6020	25 Jul 11 16:18	Claudette

All analyses were performed on the extract from Method 1312 (SPLP) with a modified solution to solids ratio of 4:1.

A Tander Approved by:

RL = Method Reporting Limit

CERTIFICATION: MN LAB # 038-999-267

Elevated "Less Than Result" (<): @ = Due to sample matrix | = Due to sample quantity

= Due to sample concentration
+ = Due to extract volume

MVTL guarantees the accuracy of the analysis done on the sample submitted for testing. It is not possible for MVTL to guarantee that a test result obtained on a particular sample will be the same on any other sample unless all conditions affecting the sample are the same, including sampling by MVTL. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

ND # ND-00016

l

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 51 West Lincoln Way ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

Page: 1 of 2

Report Date: 8 Sep 11 Lab Number: 11-M2451 Work Order #:81-818 Account #: 013479 Date Sampled: Date Received: 28 Jun 11 9:00 PO #: 131460 OP

Duane Leingang Montana Dakota Utilities PO Box 40 Mandan ND 58554

Sample Description: Unit II Sand Ash Sample Site: MDU Heskett

	As Receiv Result	ed	Method RL	Method Reference	Date Analyzed	Analyst
SPLP Extraction				1312	22 Jul 11	SS
pH	11.1	units	N/A	SM4500 H+ B	22 Jul 11 17:00	Claudette
Specific Conductance	20110	umhos/cm	N/A	SM2510-B	22 Jul 11 17:00	Claudette
Total Suspended Solids	21	mg/l	1	SM2540-D	22 Jul 11 14:00	CLB
Total Alkalinity	203	mg/l CaCO3	4	SM2320-B	22 Jul 11 17:00	Claudette
Phenolphthalein Alk	171	mg/l CaCO3	4	SM2320-B	22 Jul 11 17:00	Claudette
Bicarbonate	< 4	mg/l CaCO3	4	SM2320-B	22 Jul 11 17:00	Claudette
Carbonate	64	mg/l CaCO3	4	SM2320-B	22 Jul 11 17:00	Claudette
Hydroxide	139	mg/l CaCO3	0	SM2320-B	22 Jul 11 17:00	Claudette
Tot Dis Solids (Summation)	22500	mg/l	NA	SM1030-F	3 Aug 11 8:40	Calculated
Total Hardness as CaCO3	1200	mg/l	NA	SM2340-B	3 Aug 11 8:40	Calculated
Hardness in grains/gallon	70.2	gr/gal	NA	SM2340-B	3 Aug 11 8:40	Calculated
Cation Summation	318	meg/L	NA	SM1030-F	3 Aug 11 8:40	Calculated
Anion Summation	314	meg/L	NA	SM1030-F	28 Jul 11 14:30	Calculated
Percent Error	0.65	8	NA	SM1030-F	3 Aug 11 8:40	Calculated
Sodium Adsorption Ratio	80.9		NA	USDA 20b	3 Aug 11 8:40	Calculated
Gross Alpha Radiation	Attached	pCi/l			22 Aug 11 2:03	
Radon 222	See Attac	hed			28 Jul 11 4:37	
Radium 226	Attached	pCi/l			22 Aug 11 22:20	
Radium 228	Attached	pCi/l			16 Aug 11 16:50	
Total Organic Carbon	< 0.5	mg/l	0.5	SM5310-C	1 Aug 11 8:00	Eric
Fluoride	< 0.1	mg/l	0.10	SM4500-F-C	4 Aug 11 17:00	CLB
Sulfate	14900	mg/l	5.00	ASTM D516-02	27 Jul 11 9:00	KMP
Chloride	2.0	mg/l	1.0	SM4500-Cl-E	27 Jul 11 14:00	KMP
Nitrate-Nitrite as N	< 0.1	mg/l	0.10	EPA 353.2	28 Jul 11 14:30	KMP
Ammonia-Nitrogen as N	0.10	mg/l	0.10	EPA 350.1	28 Jul 11 10:45	KMP
Phosphorus as P - Total	< 0.1	mg/l	0.10	EPA 365.1	28 Jul 11 13:00	KMP
Mercury - Total	< 0.0002	mg/l	0.0002	EPA 245.1	28 Jul 11 8:00	Eric
Chemical Oxygen Demand	< 5	mg/l	5.0	HACH 8000	1 Aug 11 8:30	Wayne
Calcium - Total	481	mg/l	1.0	6010	3 Aug 11 8:40	Stacy
Magnesium - Total	< 5	mg/l	1.0	6010	3 Aug 11 8:40	Stacy
Sodium - Total	6500	mg/l	1.0	6010	3 Aug 11 8:40	Stacy
Potassium - Total	459	mg/l	1.0	6010	3 Aug 11 8:40	Stacy
Aluminum - Total	1.09	mg/l	0.10	6010	2 Aug 11 9:30	Stacy
Iron - Total	< 1	mg/l	0.10	6010	2 Aug 11 9:30	Stacy
Strontium - Total	66.0	mg/l	0.10	6010	2 Aug 11 9:30	Stacy
Titanium - Total	< 1	mg/l	0.10	6010	2 Aug 11 9:30	Stacy
Boron - Total	5.96	mg/l	0.10	6010	11 Aug 11 8:40	Stacy

RL = Method Reporting Limit

Elevated "Less Than Result" (<): \circledast = Due to sample matrix ! = Due to sample quantity # = Due to sample concentration
+ = Due to extract volume

CERTIFICATION: MN LAB # 038-999-267 ND # ND-00016

MVTL guarantees the accuracy of the analysis done on the sample submitted for testing. It is not possible for MVTL to guarantee that a test result obtained on a particular sample will be the same on any other sample unless all conditions affecting the sample are the same, including sampling by MVTL. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

I.

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 51 West Lincoln Way ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

Page: 2 of 2

Report Date: 8 Sep 11 Lab Number: 11-M2451 Work Order #:81-818 Account #: 013479 Date Sampled: Date Received: 28 Jun 11 9:00 PO #: 131460 OP

Duane Leingang Montana Dakota Utilities PO Box 40 Mandan ND 58554

.

Sample Description: Unit II Sand Ash Sample Site: MDU Heskett

	As Receive Result	ed	Method RL	Method Reference	Date Analyzed	Analyst
Antimony - Total	< 0.002	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Arsenic - Total	0.0822	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Barium - Total	0.0930	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Beryllium - Total	< 0.001	mg/l	0.0010	6020	25 Jul 11 16:18	Claudette
Cadmium - Total	0.00182	mg/l	0.00100	6020	25 Jul 11 16:18	Claudette
Chromium - Total	0.0244	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Cobalt - Total	< 0.002	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Copper - Total	0.1108	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Lead - Total	< 0.002	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Manganese - Total	0.0052	mg/l	0.0010	6020	25 Jul 11 16:18	Claudette
Molybdenum - Total	0.1000	mg/l	0.0020	6020	26 Jul 11 12:46	Claudette
Nickel - Total	0.0136	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Selenium - Total	0.0937	mg/l	0.0020	6020	26 Jul 11 9:46	Claudette
Silver - Total	< 0.001	mg/l	0.0010	6020	25 Jul 11 16:18	Claudette
Thallium - Total	< 0.002	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Tin - Total	< 0.05	mg/l	0.0500	6020	25 Jul 11 16:18	Claudette
Vanadium - Total	0.3026	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Zinc - Total	0,0327	mg/l	0.0100	6020	25 Jul 11 16:18	Claudette
Uranium	< 0.002	mg/l	0.002	6020	25 Jul 11 16:18	Claudette

All analyses were performed on the extract from Method 1312 (SPLP) with a modified solution to solids ratio of 4:1.

Tonde Approved by:

RL = Method Reporting Limit

CERTIFICATION: MN LAB # 038-999-267

Elevated "Less Than Result" (<): @ = Due to sample matrix ! = Due to sample quantity ND # ND-00016

= Due to sample concentration + = Due to extract volume

MVTL guarantees the accuracy of the analysis done on the sample submitted for testing. It is not possible for MVTL to guarantee that a test result obtained on a particular sample will be the same on any other sample unless all conditions affecting the sample are the same, including sampling by MVTL. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

1

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 51 West Lincoln Way ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

Page: 1 of 2

Report Date: 8 Sep 11 Lab Number: 11-M2452 Work Order #:81-818 Account #: 013479 Date Sampled: Date Received: 28 Jun 11 9:00 PO #: 131460 OP

Duane Leingang Montana Dakota Utilities PO Box 40 Mandan ND 58554

Sample Description: Unit I Fly Ash Sample Site: MDU Heskett

	As Receive Result	ed	Method RL	Method Reference	Date Analyzed	Analyst
SPLP Extraction				1312	22 Jul 11	SS
pH	12.9	units	N/A	SM4500 H+ B	22 Jul 11 17:00	
Specific Conductance	50660	umhos/cm	N/A	SM2510-B	22 Jul 11 17:00	
Total Suspended Solids	30	mg/l	1	SM2540-D	22 Jul 11 14:00	
Total Alkalinity	7020	mg/l CaCO3	4	SM2320-B	25 Jul 11 17:00	
Phenolphthalein Alk	6900	mg/l CaCO3	4	SM2320-B	25 Jul 11 17:00	
Bicarbonate	< 4	mg/l CaCO3	4	SM2320-B	25 Jul 11 17:00	
Carbonate	240	mg/l CaCO3	4	SM2320-B	25 Jul 11 17:00	
Hydroxide	6780	mg/l CaCO3	0	SM2320-B	25 Jul 11 17:00	
Tot Dis Solids (Summation)	42200	mg/l	NA	SM1030-F	3 Aug 11 8:40	1 T
Total Hardness as CaCO3	1750	mg/l	NA	SM2340-B	3 Aug 11 8:40	
Hardness in grains/gallon	102	gr/gal	NA	SM2340-B	3 Aug 11 8:40	
Cation Summation	663	meq/L	NA	SM1030-F	3 Aug 11 8:40	
Anion Summation	613	meq/L	NA	SM1030-F	28 Jul 11 14:30	
Percent Error	3,99	8	NA	SM1030-F	3 Aug 11 8:4	
Sodium Adsorption Ratio	143		NA	USDA 20b	3 Aug 11 8:4	
Gross Alpha Radiation	Attached	pCi/l			22 Aug 11 2:0	
Radon 222	Attached				28 Jul 11 4:3	
Radium 226	Attached	pCi/l			22 Aug 11 22:2	
Radium 228	Attached	pCi/l			16 Aug 11 16:5	
Total Organic Carbon	1.5	mg/l	0.5	SM5310-C	1 Aug 11 8:0	
Fluoride	5.60	mg/l	0.10	SM4500-F-C	10 Aug 11 17:0	
Sulfate	22600	mg/l	5.00	ASTM D516-02	27 Jul 11 9:0	
Chloride	53.8	mg/l	1.0	SM4500-Cl-E	27 Jul 11 14:0	
Nitrate-Nitrite as N	0.68	mg/l	0.10	EPA 353.2	28 Jul 11 14:3	
Ammonia-Nitrogen as N	7.22	mg/l	0.10	EPA 350.1	28 Jul 11 10:4	
Phosphorus as P - Total	< 0.1	mg/l	0.10	EPA 365.1	28 Jul 11 13:0	
Mercury - Total	< 0.0002	mg/l	0.0002	EPA 245.1	28 Jul 11 8:0	
Chemical Oxygen Demand	22.4	mg/l	5.0	HACH 8000	1 Aug 11 8:3	1
Calcium - Total	700	mg/l	1.0	6010	3 Aug 11 8:4	1
Magnesium - Total	< 25	mg/l	1.0	6010	3 Aug 11 8:4	-
Sodium - Total	14100	mg/l	1.0	6010	3 Aug 11 8:4	-
Potassium - Total	580	mg/l	1.0	6010	3 Aug 11 8:4	-
Aluminum - Total	< 5	mg/l	0.10	6010	2 Aug 11 9:3	-
Iron - Total	< 5	mg/l	0.10	6010	2 Aug 11 9:3	-
Strontium - Total	59.5	mg/l	0.10	6010	2 Aug 11 9:3	-
Titanium - Total	< 5	mg/l	0.10	6010	2 Aug 11 9:3	
Boron - Total	1.89	mg/l	0.10	6010	11 Aug 11 8:4	0 Stacy

RL = Method Reporting Limit

Elevated "Less Than Result" (<): @ = Due to sample matrix ! = Due to sample quantity

= Due to sample concentration
+ = Due to extract volume

CERTIFICATION: MN LAB # 038-999-267 ND # ND-00016

MVTL guarantees the accuracy of the analysis done on the sample submitted for testing. It is not possible for MVTL to guarantee that a test result obtained on a particular sample will be the same on any other sample unless all conditions affecting the sample are the same, including sampling by MVTLi As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 51 West Lincoln Way ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

Page: 2 of 2

Report Date: 8 Sep 11 Lab Number: 11-M2452 Work Order #:81-818 Account #: 013479 Date Sampled: Date Received: 28 Jun 11 9:00 PO #: 131460 OP

Duane Leingang Montana Dakota Utilities PO Box 40 Mandan ND 58554

Sample Description: Unit I Fly Ash Sample Site: MDU Heskett

	As Receiv Result	ed	Method RL	Method Reference	Date Analyzed	Analyst
Antimony - Total	< 0.002	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Arsenic - Total	0.1128	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Barium - Total	0.0906	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Beryllium - Total	< 0.001	mg/l	0.0010	6020	25 Jul 11 16:18	Claudette
Cadmium - Total	0.00244	mg/l	0.00100	6020	25 Jul 11 16:18	Claudette
Chromium - Total	0.0270	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Cobalt - Total	< 0.002	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Copper - Total	0.2934	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Lead - Total	0.0161	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Manganese - Total	0.0102	mg/l	0.0010	6020	25 Jul 11 16:18	Claudette
Molybdenum - Total	0,9246	mg/l	0.0020	6020	26 Jul 11 12:46	
Nickel - Total	0.0175	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Selenium - Total	0.1959	mg/l	0.0020	6020	26 Jul 11 9:46	Claudette
Silver - Total	< 0.001	mg/l	0.0010	6020	25 Jul 11 16:18	Claudette
Thallium - Total	< 0.002	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Tin - Total	< 0.05	mg/l	0.0500	6020	25 Jul 11 16:18	Claudette
Vanadium - Total	0.0158	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Zinc - Total	0.3984	mg/l	0.0100	6020	25 Jul 11 16:18	Claudette
Uranium	< 0.002	mg/l	0.002	6020	25 Jul 11 16:18	Claudette

All analyses were performed on the extract from Method 1312 (SPLP) with a modified solution to solids ratio of 4:1.

Approved by:

Torda

RL = Method Reporting Limit

CERTIFICATION: MN LAB # 038-999-267

Elevated "Less Than Result" (c): @ = Due to sample matrix $\frac{1}{2}$ = Due to sample quantity

ND # ND-00016

= Due to sample concentration
+ = Due to extract volume

MVTL guarantees the accuracy of the analysis done on the sample submitted for testing. It is not possible for MVTL to guarantee that a test result obtained on a particular sample will be the same on any other sample unless all conditions affecting the sample are the same, including sampling by MVTL. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 51 West Lincoln Way ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

1 of 2 Page:

Report Date: 8 Sep 11 Lab Number: 11-M2453 Work Order #:81-818 Account #: 013479 Date Sampled: Date Received: 28 Jun 11 9:00 PO #: 131460 OP

Duane Leingang Montana Dakota Utilities PO Box 40 Mandan ND 58554

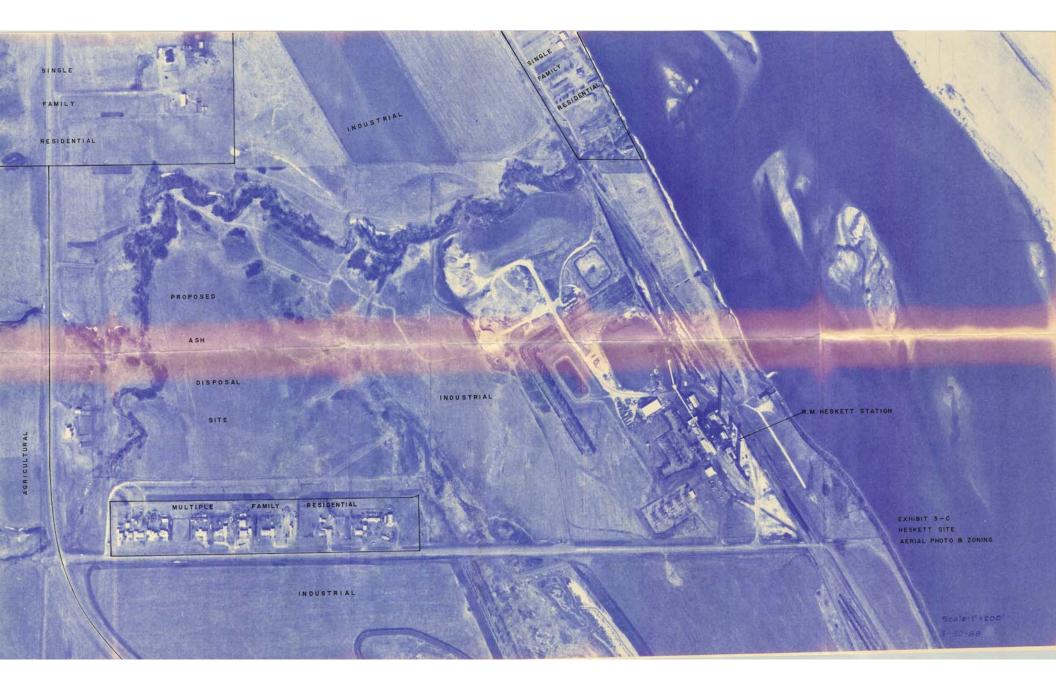
Sample Description: Unit II Fly Ash Sample Site: MDU Heskett

	As Receivo Result	ed	Method RL	Method Reference	Date Analyzed	Analyst
SPLP Extraction				1312	22 Jul 11	SS
рН	12.8	units	N/A	SM4500 H+ B	22 Jul 11 17:00	Claudette
Specific Conductance	27240	umhos/cm	N/A	SM2510-B	22 Jul 11 17:00	Claudette
Total Suspended Solids	13	mg/l	1	SM2540-D	22 Jul 11 14:00	CLB
Total Alkalinity	4570	mg/l CaCO3	4	SM2320-B	22 Jul 11 17:00	Claudette
Phenolphthalein Alk	4520	mg/l CaCO3	4	SM2320-B	22 Jul 11 17:00	Claudette
Bicarbonate	< 4	mg/l CaCO3	4	SM2320-B	22 Jul 11 17:00	Claudette
Carbonate	100	mg/l CaCO3	4	SM2320-B	22 Jul 11 17:00	Claudette
Hydroxide	4470	mg/l CaCO3	0	SM2320-B	22 Jul 11 17:00	Claudette
Tot Dis Solids (Summation)	16000	mg/l	NA	SM1030-F	3 Aug 11 8:40	Calculated
Total Hardness as CaCO3	1960	mg/l	NA	SM2340-B	3 Aug 11 8:40	Calculated
Hardness in grains/gallon	115	gr/gal	NA	SM2340-B	3 Aug 11 8:40	Calculated
Cation Summation	252	meg/L	NA	SM1030-F	9 Aug 11 9:09	Calculated
Anion Summation	247	meq/L	NA	SM1030-F	28 Jul 11 14:30	Calculated
Percent Error	1.00	do	NA	SM1030-F	9 Aug 11 9:09	Calculated
Sodium Adsorption Ratio	46.1		NA	USDA 20b	3 Aug 11 8:40	Calculated
Gross Alpha Radiation	Attached	pCi/l			22 Aug 11 2:03	
Radon 222	Attached				28 Jul 11 4:37	
Radium 226	Attached	pCi/l			22 Aug 11 22:20	
Radium 228	Attached	pCi/l			16 Aug 11 16:50	
Total Organic Carbon	1.6	mg/l	0.5	SM5310-C	1 Aug 11 8:00	Eric
Fluoride	3.60	mg/l	0.10	SM4500-F-C	4 Aug 11 17:00	CLB
Sulfate	7400	mg/l	5.00	ASTM D516-02	27 Jul 11 9:00	KMP
Chloride	66.0	mg/l	1.0	SM4500-Cl-E	27 Jul 11 14:00	KMP
Nitrate-Nitrite as N	0.38	mg/l	0.10	EPA 353.2	28 Jul 11 14:30	KMP
Ammonia-Nitrogen as N	15.0	mg/l	0.10	EPA 350.1	28 Jul 11 10:45	KMP
Phosphorus as P - Total	< 0.1	mg/l	0.10	EPA 365.1	28 Jul 11 13:00	KMP
Mercury - Total	< 0.0002	mg/l	0.0002	EPA 245.1	28 Jul 11 8:00	Eric
Chemical Oxygen Demand	9.4	mg/l	5.0	HACH 8000	1 Aug 11 8:30	Wayne
Calcium - Total	785	mg/l	1.0	6010	3 Aug 11 8:40	Stacy
Magnesium - Total	< 5	mg/l	1.0	6010	3 Aug 11 8:40	Stacy
Sodium - Total	4720	mg/l	1.0	6010	3 Aug 11 8:40	Stacy
Potassium - Total	275	mg/l	1.0	6010	3 Aug 11 8:40	Stacy
Aluminum - Total	< 1	mg/l	0.10	6010	9 Aug 11 9:09	Stacy
Iron - Total	< 1	mg/l	0.10	6010	9 Aug 11 9:09	Stacy
Strontium - Total	85.0	mg/l	0.10	6010	9 Aug 11 9:09	Stacy
Titanium - Total	< 1	mg/l	0.10	6010	9 Aug 11 9:09	Stacy
Boron - Total	< 1	mg/l	0.10	6010	11 Aug 11 8:40	Stacy

RL = Method Reporting Limit

CERTIFICATION: MN LAB # 038-999-267

Elevated "Less Than Result" (<): @ = Due to sample matrix ! = Due to sample quantity


ND # ND-00016

= Due to sample concentration + = Due to extract volume

MVTL guarantees the accuracy of the analysis done on the sample submitted for testing. It is not possible for MVTL to guarantee that a test result obtained on a particular sample will be the same on any other sample unless all conditions affecting the sample are the same, including sampling by MVTL. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

Appendix D

Aerial Photo (March 30, 1988)

Appendix E

Boring Logs

EXHIBIT 5-E

LITHOLOGIC LOGS

Wells 10, 11, 12 and 13

- 0-1 Top soil, silty, clayey, sandy, brown, calcareous; with some limestone pebbles.
- 1-11 Silt, clayey, brownish-tan, slightly indurated, very dry, calcareous; with thin coarse-grained, clean silt lenses and a few small (less than .5 in.) iron oxide concretions. Abundant small gypsum crystals (less than .13 in. long). Some small, black flakes of organic plant material. Cannonball-Ludlow Formations.
- 11-14 Silt, as above, with some (less than 20%) very fine- to fine-grained sand interspersed.
- 14-30 Silt, as above, clayey, less sand than above interval, oxidized; with very fine-grained silty sand lenses and very few gypsum crystals.
- 30-41 Silt, very clayey, with some (less than 20%) very fine-grained sand interspersed, steel-gray (color change), moderately indurated; with fewer small gypsum crystals than above intervals.
- 41-59 Silt, as above, very clayey, with some (less than 20%) fine- to medium-grained sand interspersed in a silt and clay matrix.
- 59-65 Silt, as above, with abundant (more than 20%) fine- to medium-grained sand interspersed.
- 65-81 Silt, clayey, steel-gray to bluish, moderately indurated; with thin coarse-grained silt to very fine-grained sand lenses in an otherwise fine silt to clay matrix.
- 81-84 Clay, silty, steel-gray to bluish, moderately indurated, dense.
- 84-91 Siltstone, sandy, clayey, steel-gray to bluish, slightly indurated; with small fine-grained sand lenses and abundant (more than 20%) sand interspersed in the matrix.
- 91-110 Silt, clayey, bluish-gray, moderately indurated; with thin (less than 1 foot) mudstone lenses.
- 110-120 Silt, very clayey, steel-gray to bluish, moderately indurated, very dense. Cannonball-Ludlow Formations.

Wells 20 and 21

1	Top soil, silty,	sandy, clayey,	dark-brown,
	calcareous; with	some limestone	and granite
	pebbles.		

- 1-21 Silt, clayey, with minor amounts (less than 10%) of very fine-grained sand interspersed, brownish-tan, slightly indurated, calcareous, oxidized; with small iron oxide concretions and abundant small gypsum crystals. Cannonball-Ludlow Formations.
- 21-26 Silt, as above, steel-gray (color change).
- 26-49 Silt, clayey, with some (less than 20%) very fine- to medium-grained sand interspersed, steel-gray to bluish, slightly indurated; with very few small gypsum crystals and some thin (less than 1 foot) siltstone lenses.
- 49-53 Silt, as above, with abundant (more than 20%) fine- to medium-grained sand interspersed.
- 53-63 Silt, as above, clayey, less sand, with thin (less than 1 foot) siltstone to mudstone lenses.
- 63-80 Silt, very clayey, steel-gray to bluish, moderately indurated, very dense. Cannonball-Ludlow Formations.

Wells 30, 31, 32 and 33

- 0-1 Top soil, silty, sandy, brownish, calcareous; with some granite and limestone pebbles.
- 1-2 Pebble-loam (glacial till), silty, sandy, clayey, yellowish-brown, dry, calcareous.
- 2-31 Silt, clayey, with minor amounts (less than 10%) of very fine-grained sand interspersed, brownish-tan, slightly indurated, calcareous, oxidized; with small iron oxide concretions. Some small, black flakes organic plant material. Cannonball-Ludlow Formations.
- 31-44 Silt, clayey, steel-gray (color change), slightly indurated, calcareous; with small iron oxide concretions, thin coarse silt lenses, small gypsum crystals and gray to reddish-brown mottling.

- 44-61 Silt, as above, with some (less than 20%) fineto medium-grained sand interspersed.
- 61-65 Silt, as above, with abundant (more than 20%) fine- to medium-grained sand interspersed, dense.
- 65-76 Silt, as above, clayey, less sand, some thin (less than 1 foot) lenses of siltstone to mudstone.
- 76-80 Siltstone, sandy, clayey, steel-gray to bluish, slightly indurated; with small fine-grained sand lenses and abundant (more than 20%) fine-grained sand interspersed in the matrix.
- 80-92 Silt, clayey, steel-gray to bluish, moderately indurated, with some (less than 20%) very fine- to fine grained sand interspersed.
- 92-120 Silt, very clayey, steel-gray to bluish, moderately indurated, very dense. Cannonball-Ludlow Formations.
- Well 40
- 0-1 Top soil, sandy, silty, brownish-tan, calcareous; with some granite and limestone pebbles.
- 1-5 Pebble-loam (glacial till), sandy, silty, with detrital lignite and organic matter, yellowish-brown, very dry, calcareous.
- 5-22 Sand, very fine- to medium-grained, unconsolidated, with thin lenses of clay and detrital lignite, brownish-yellow, calcareous.
- 22-40 Silt, clayey, with minor amounts (less than 10%) very fine-grained sand interspersed, brownish-tan, slightly indurated, calcareous, oxidized; with small iron oxide concretions and small gypsum crystals; Cannonball-Ludlow Formations.
- 40-51 Silt, clayey, with minor amounts (less than 10%) of very fine-grained sand interspersed, steel-gray (color change), moderately indurated; with some reddish-brown mottling and some very thin (less than 6 inches) mudstone lenses.
- 51-58 Silt, as above, with abundant (more than 20%) fine-grained sand and thin silty-clay lenses.

- 58-62 Siltstone, sandy, clayey, steel-gray to bluish, moderately indurated; with small fine-grained sand lenses and abundant (more than 20%) sand interspersed in the matrix.
- 62-70 Silt, clayey, with some (less than 20%) fine- to medium-grained sand interspersed, steel-gray to bluish, moderately indurated; with thin (less than 2 feet) sandy lenses.
- 70-80 Silt, as above, very clayey, some (less than 10%) fine-grained sand interspersed; less sand than above interval.
- 80-120 Silt, as above, dark-steel-gray. Cannonball-Ludlow Formations.
- Wells 41, 42 and 43
- 0-1 Top soil, sandy, silty, dark-brown, calcareous; with some granite and limestone pebbles.
- 1-4 Pebble-loam (glacial till), sandy, silty, clayey, yellowish-brown, very dry, calcareous.
- 4-40 Silt, clayey, with some (less than 20%) very fine-grained sand interspersed, brownish-tan, unconsolidated, noncompacted, calcareous to 25 feet, oxidized; with small iron oxide concretions and abundant small gypsum crystals. Cannonball-Ludlow Formations.
- 40-51 Silt, clayey, with minor amounts (less than 10%) of very fine-grained sand interspersed, steel-gray (color change), moderately indurated; with some reddish-brown mottling and some very thin (less than 6 inches) mudstone lenses.
- 51-58 Silt, as above, with abundant (more than 20%) fine-grained sand and thin silty-clay lenses.
- 58-62 Siltstone, sandy, clayey, steel-gray to bluish, moderately indurated; with small fine-grained sand lenses and abundant (more than 20%) sand interspersed in the matrix.
- 62-70 Silt, clayey, with some (less than 20%) fine- to medium-grained sand interspersed, steel-gray to bluish, moderately indurated; with thin (less than 2 feet) sandy lenses.

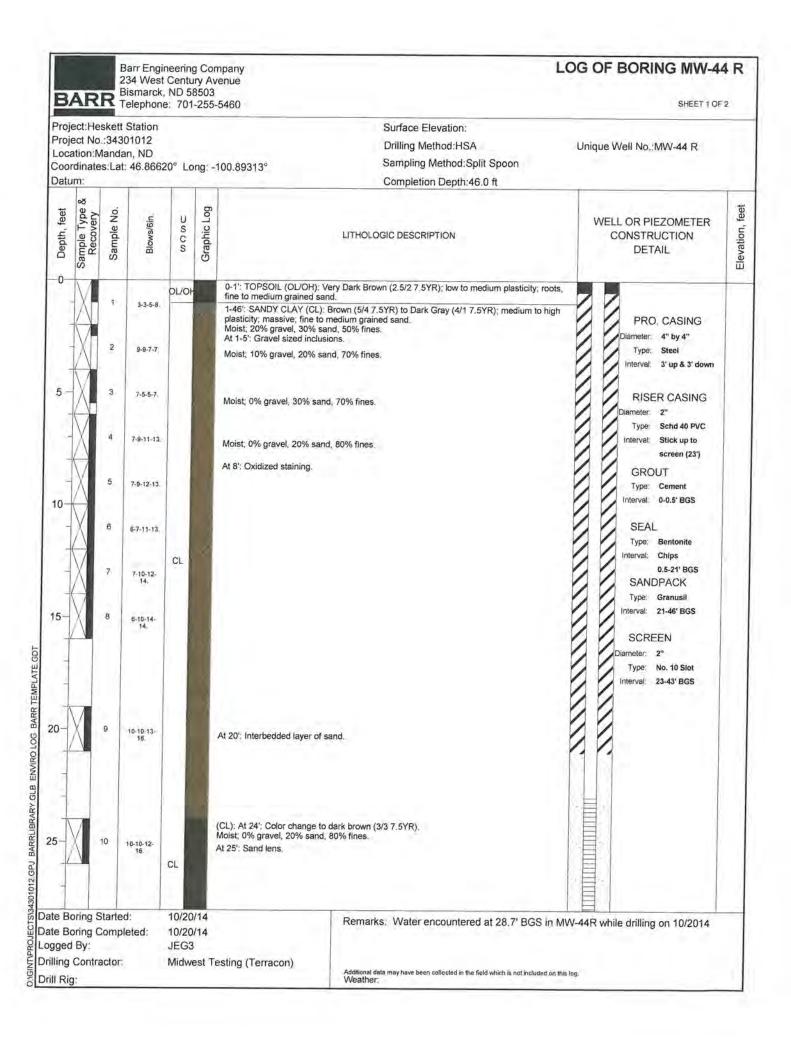
- 70-80 Silt, as above, very clayey, some (less than 10%) fine-grained sand interspersed; less sand than above interval.
- Wells 43 and 44
- 0-2 Top soil, clayey, silty, some sand, brownish-tan to light-gray, calcareous.
- 2-20 Silt, clayey, with some (less than 20%) fine-grained sand interspersed, brownish-tan, slightly indurated, very dry, calcareous; with small iron oxide concretions, abundant small gypsum crystals and occasional thin silt lenses. Cannonball-Ludlow Formations.
- 20-25 Silt, as above, very clayey, oxidized, with minor amounts (less than 10%) of fine-grained sand.
- 25-35 Silt, as above, dark-brownish-tan to bluish-gray (color change), with thin very fine-grained sand lenses.
- 35-60 Silt, clayey, with some (less than 20%) fine- to medium-grained sand interspersed, steel-gray to bluish, moderately indurated; with some indurated silty sand lenses. Cannonball-Ludlow Formations.

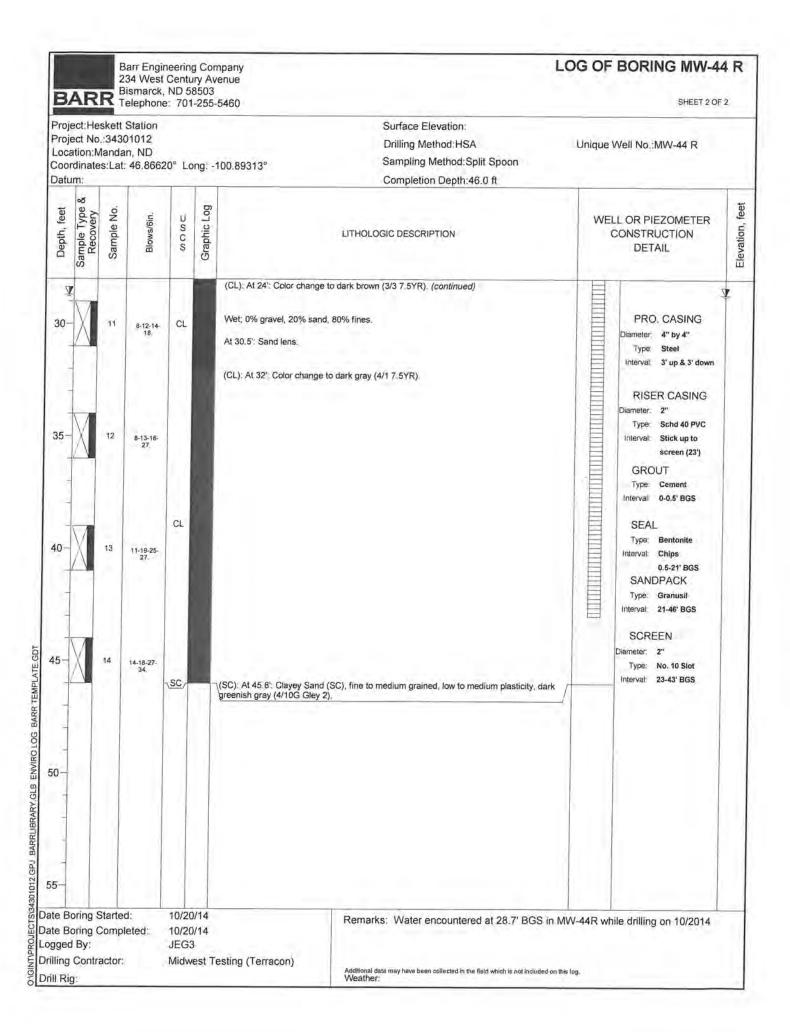
Wells 50, 51 and 52

- 0-4 Top soil, clayey, silty, very dark-brown.
- 4-10 Clay, silty, with some (less than 20%) fine-grained sand, dark-brownish-tan, soft, cohesive, wet, sticky; with some pebbles.
- 10-22 Silt, very clayey, with some (less than 20%) very fine-grained sand interspersed, brownish-tan, slightly indurated, calcareous, dense; with abundant small gypsum crystals and very thin silt and sand lenses; Cannonball-Ludlow Formations.
- 22-23 Sandstone, fine-grained, silty, indurated, oxidized, dark-brown.
- 23-30 Silt, very clayey, with some (less than 20%) very fine-grained sand interspersed, steel-gray (color change), moderately indurated; with thin medium grained sand lenses.

- 30-40 Silt, as above, very clayey, less sand than above interval, dark-steel-gray. Cannonball-Ludlow Formations.
- Wells 53 and 54
- 0-4 Top soil, clayey, silty, very dark-brown, wet, sticky.
- 4-15 Clay, silty, with some (less than 20%) fine- to medium-grained sand interspersed, brownish-tan, slightly indurated, dry, calcareous; with small iron oxide concretions, small gypsum crystals and occasional reddish-brown mottling; Cannonball-Ludlow Formations.
- 15-20 Sand, very fine-grained to medium-grained, silty, clayey, unconsolidated, yellowish-brown, oxidized.
- 20-30 Silt, clayey, with some (less than 20%) fine-grained sand interspersed, steel-gray (color change), slightly indurated; with clay and sand lenses, some small concretions and some small gypsum crystals.
- 30-45 Silt, as above, very clayey.
- 45-60 Silt, as above, clayey, brownish-gray, moderately indurated, some reddish-brown mottling. Cannonball-Ludlow Formations.
- Wells 55 and 56
- 0-5 Sandy-loam (glacial), with fine- to medium-grained sand, silty, calcareous; with small granite and limestone pebbles.
- 5-26 Clay, silty, with minor amounts (less than 10%) of very fine-grained sand, dark-brownish-tan, moderately indurated, brittle, very dry, calcareous; with small iron oxide concretions, small gypsum crystals and occasional thin sandstone laminae. Some small, black flakes of organic plant material. Cannonball-Ludlow Formations.
- 26-35 Clay, as above, very silty, sandy, brownish-tan, oxidized.

35-40 Silt, clayey, with some (less than 20%) very fine- to fine-grained sand interspersed, steel-gray (color change) moderately indurated; with small gypsum crystals and occasional clay lenses.

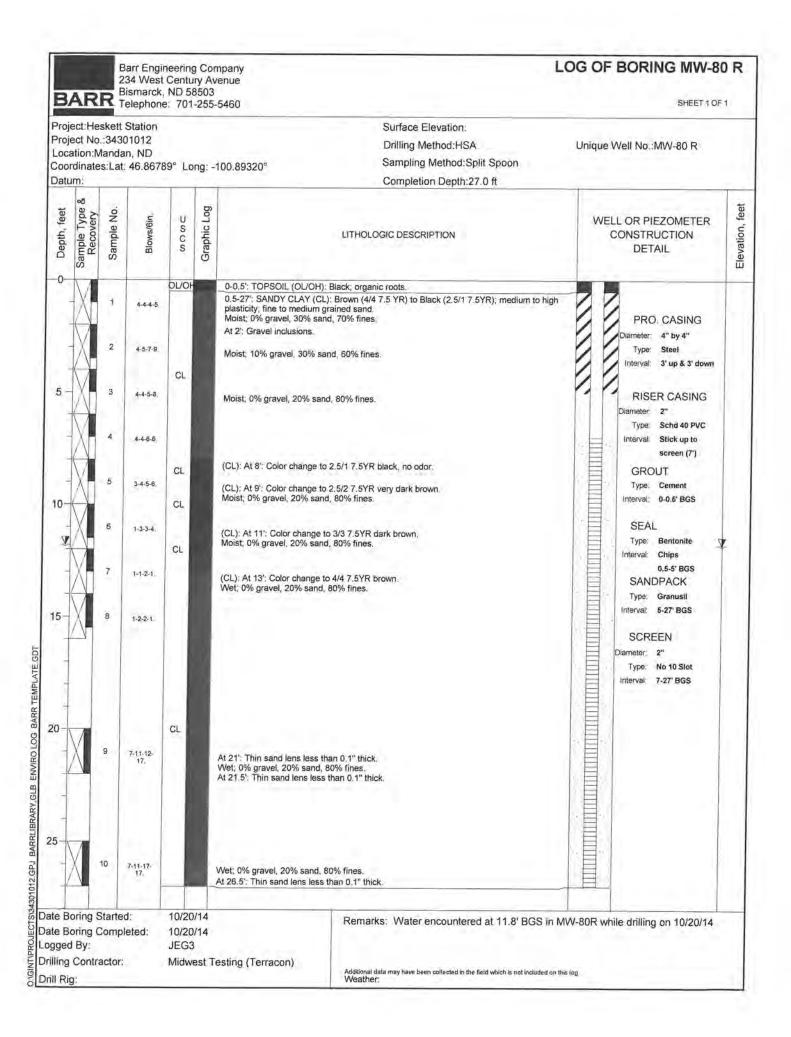

ة ريد


- 40-60 Silt, as above, with minor amounts (less than 10%) of fine-grained sand interspersed.
- 60-85 Silt, as above, clayey, less sand than above interval.
- 85-100 Silt, as above, very clayey, with minor amounts (less than 10%) of sand interspersed, light-gray. Cannonball-Ludlow Formations.
- Wells 60, 61 and 62
- 0-2 Top soil, silty, clayey, dark-brown to tanish-brown, calcareous.
- 2-25 Silt, very clayey, with some minor amounts (less than 10%) of very fine- to fine-grained sand interspersed, brownish-tan, slightly indurated, dry, calcareous; with abundant small gypsum crystals and thin silt and sand lenses; Cannonball-Ludlow Formations.
- 25-29 Silt, as above, with abundant (more than 20%) fine- to medium-grained sand interspersed.
- 29-36 Silt, as above, clayey, less sand than above interval, dark-brownish-tan, oxidized.
- 36-60 Silt, very clayey, with some (less than 20%) very fine-grained sand interspersed, steel-gray (color change), moderately indurated; with thin (less than 1 foot) sandy-silt lenses. Cannonball-Ludlow Formations.
- Well 70 0-2 Pebble-loam (glacial till), clayey, sandy, yellowish-brown, unconsolidated, damp, calcareous.
- 2-21 Silty, clayey, with some (less than 20%) fine-grained sand interspersed, brownish-tan, moderately indurated, very dry, calcareous, oxidized; with small iron oxide concretions and abundant small gypsum crystals. Cannonball-Ludlow Formations.

- 21-24 Shale, silty, steel- to dark-gray (color change), indurated, fissile, very dry; with occasional thin silt and sand lenses.
- 24-31 Silt, clayey, with abundant (more than 30%) sand, steel-gray, moderately indurated.
- 31-62 Silt, clayey, with some (less than 20%) very fine- to fine- grained sand interspersed, steel-gray, moderately indurated; with some small gypsum crystals and small iron oxide concretions.
- 62-76 Silt, as above, with some (less than 20%) fine-grained sand interspersed.
- 76-82 Silt, as above, with abundant (more than 20%) fine- to medium-grained sand.
- 82-100 Silt, as above, clayey, with some (less than 20%) fine-grained sand interspersed, dark-gray. Cannonball-Ludlow Formations.

The lithologic logs for wells 1-4 were described by personal from Water Supply Incorporated (WS), Bismarck, North Dakota. The wells were installed during a previous ground water investigation at Heskett Station.

Well WS 2 0-1 1-4 4-7 7-21 21-39 39-52 52-67	Top soil, silty, black. Pebble-loam(glacial till), silty, clayey, some cobbles, yellowish-brown. Gravel, sand and rocks. Sand, fine- to coarse-grained, some pebbles. Clay, silty, sandy, yellowish-brown to gray. Clay, silty, sandy, gray. Sand, fine-grained, bluish, with some clay
67-89	layers. Clay, silty, sandy, brown to gray.
Wells WS 1, 0-1 1-4	<pre>IA and IB Top soil, silty, black Clay, (glacial), silty, with pebbles, yellowish-brown.</pre>
4-21	Sand, fine- to medium-grained, yellowish-brown:
21-25	with clay and silt lenses.
25-30	Clay, silty, yellowish-brown. Sand, fine-grained, yellowish-brown, some
	indurated layers.
30-35	Clay, silty, yellowish-brown.
35-45	Sand, fine-grained, yellowish-brown.
45-50	Clay, silty, sandy, gray, about 50 percent shale.
50-56	Sand, fine-grained, with clay layers.
56-73	Clay, silty, sandy, gray.
WE11s WS 4, 4	A and 4B
0-13	Pebble-loam (glacial till), silty, sandy, with
	some cobbles, yellowish-brown.
13-23	Sand, fine- to medium-grained, yellowish-brown.
23-25	Slay, silty, sandy, yellowish-brown.
25-27	Sandstone, indurated.
27-30	Clay, sandy, silty, gray.
30-36	Sand, fine-grained, gray.
36-52	Clay, silty, sandy, gray; with some sand layers.
Wells WS 3 an	d 3A
0-1	Top soil, silty, black.
1-12	Pebble-loam, clayey, silty, with some cobbles, yellowish-brown.
12-16	
16-18	Clay, silty, gray; with some shale layers.
18-23	Limestone, indurated.
	Clay, silty, yellowish-brown; with some sand
23-44	layers.
23-11	Sand, fine- to medium-grained, gray; with some
44-50	clay layers. Clay, silty, medium-gray.

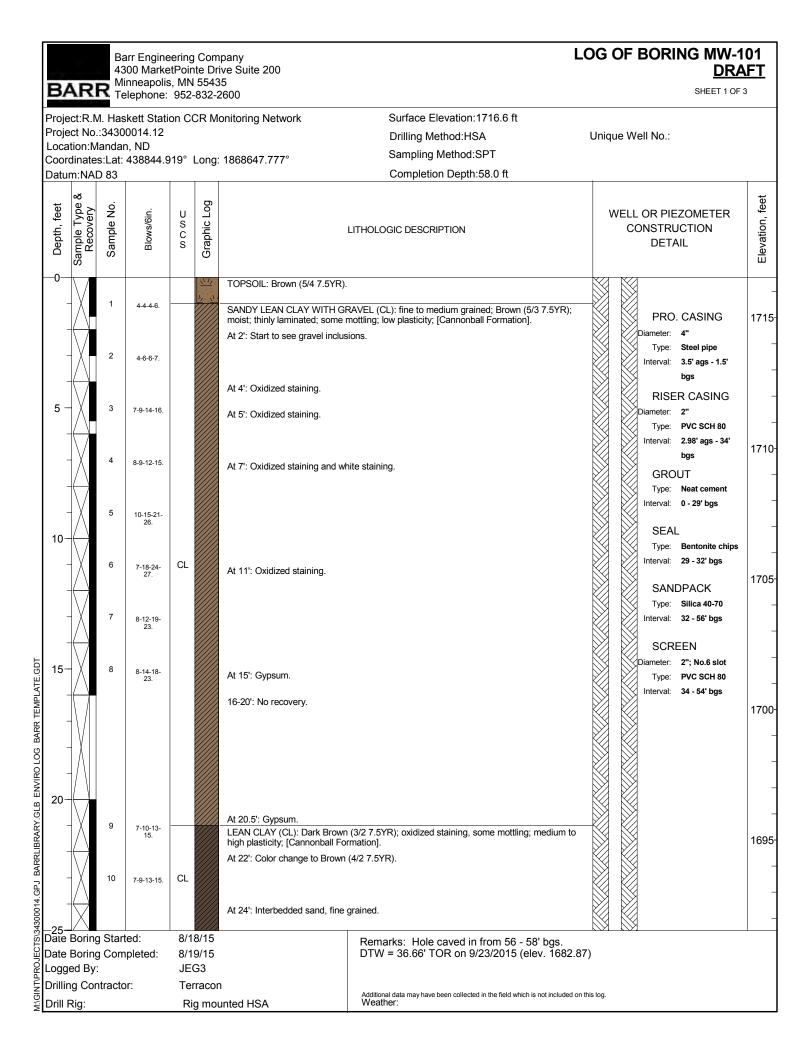


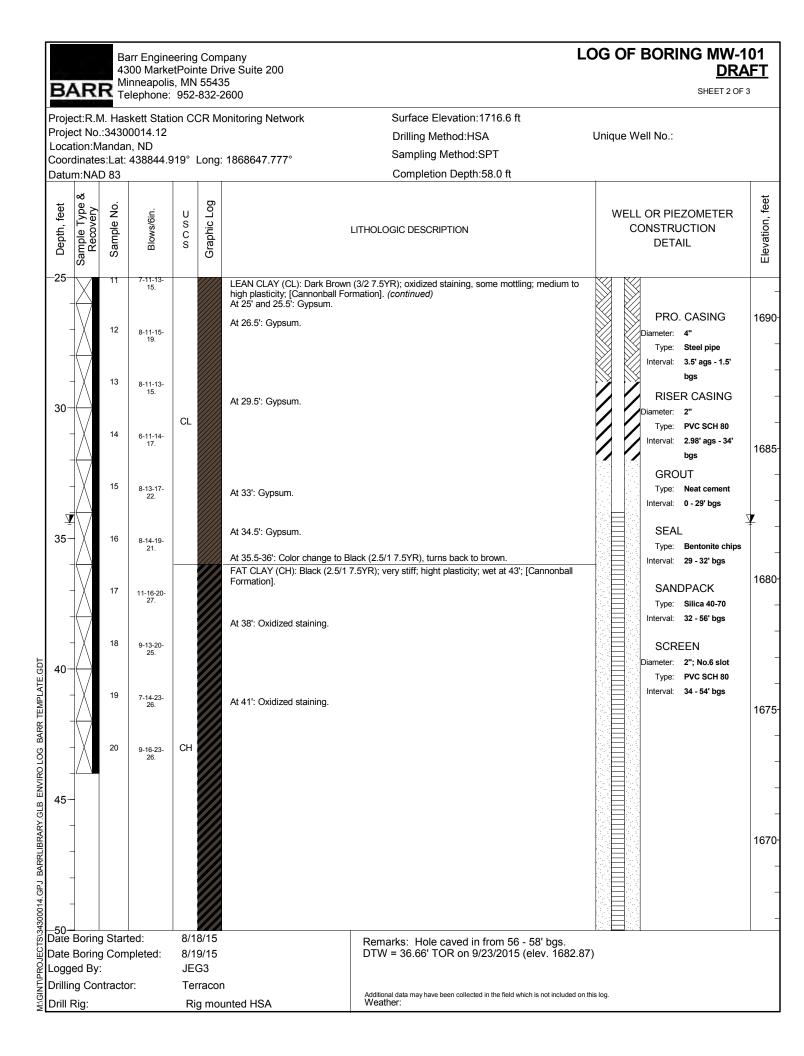
State of North Dakota BOARD OF WATER WELL CONTRACTORS

900 E. BOULEVARD • BISMARCK, NORTH DAKOTA 58505

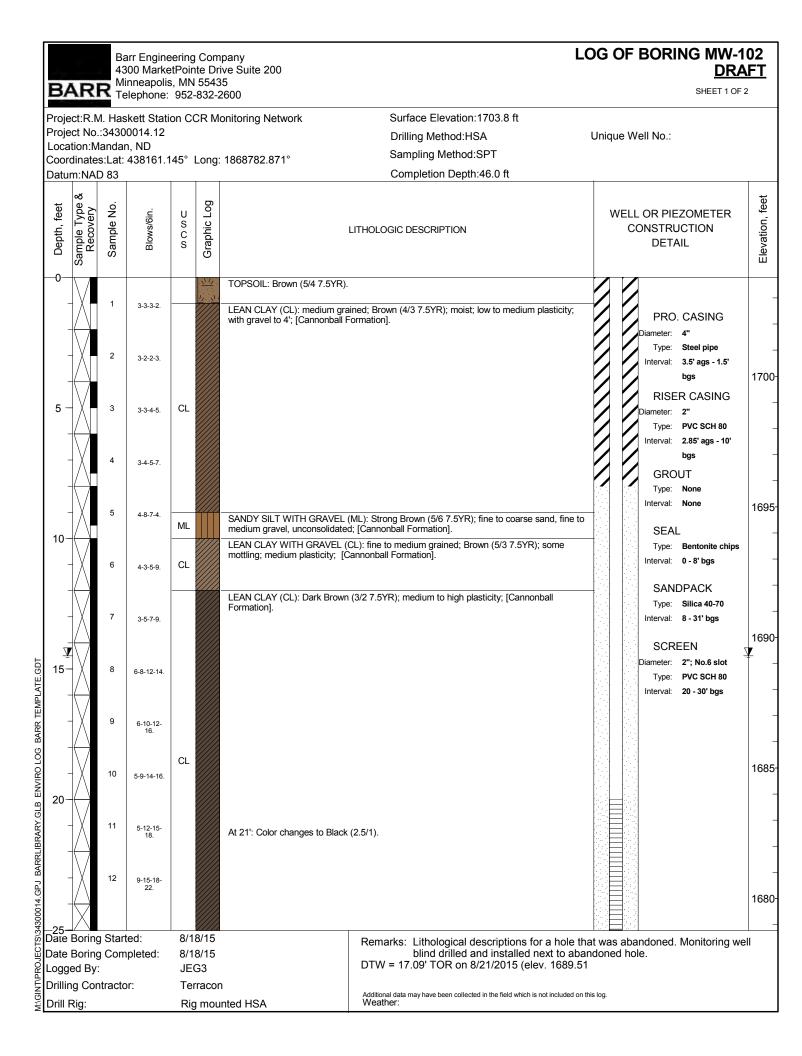
MONITORING WELL REPORT

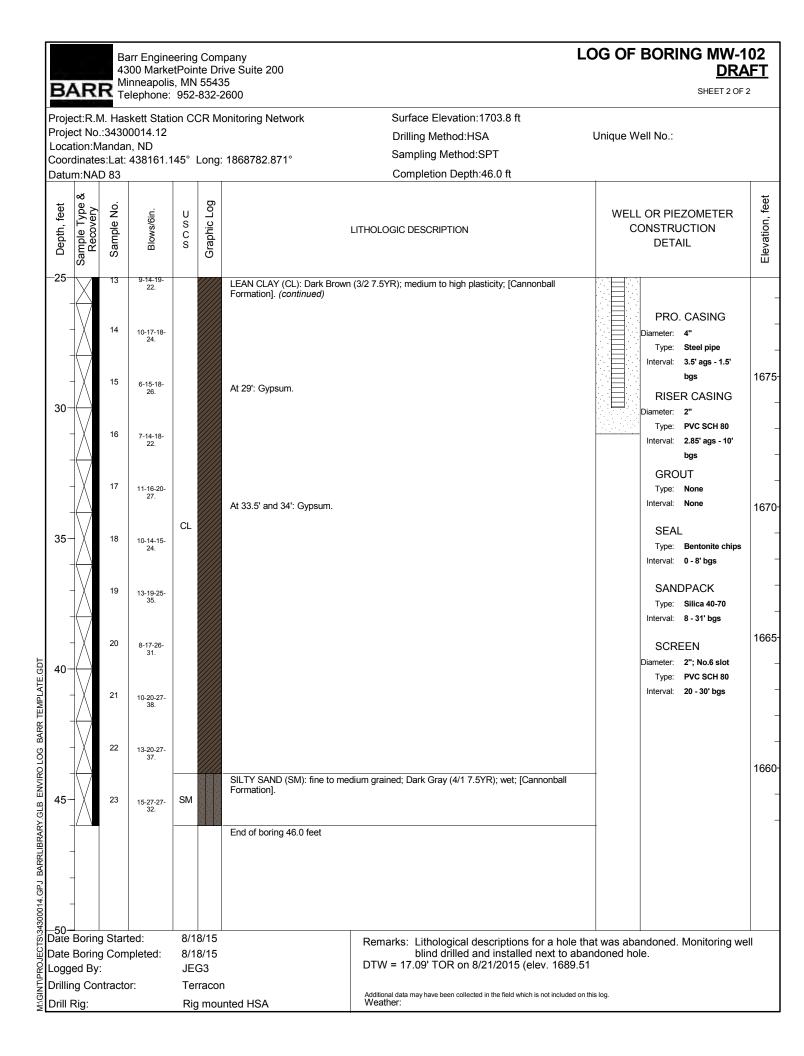
State law requires that this report be filed with the State Board of Water Well Cont	ractors within 30 days after completion or abandonment of the well.					
1. WELL OWNER	Well head completion:					
	24" above grade Other x					
Name <u>MDU-Heskett Station</u>	If other, specify _4" x 4" x 5' steel cover					
Address 2025 38 th Street	Was protective casing installed? ■ Yes □ No					
Mandan, North Dakota	Was well disinfected upon completion? □ Yes ■ No					
2. WELL LOCATION (MW-44R)						
Address (if in city) (see attached drawing)	5. WATER LEVEL					
	Static water level 28.5 feet below surface					
County Morton	If flowing: closed in pressure psi or ft. above land surface					
<u>SE ¼ SE ¼ SW ¼</u> Sec. <u>10</u> Twp. <u>139</u> N. Rge. <u>81</u> W.	6. WELL LOG Depth (Ft.)					
Lat. <u>46.86620</u> Long.: <u>-100.89313</u>						
Altitude:	Formation From To					
3. METHOD DRILLED	Topsoil 0 0.5					
Auger Other	Sandy lean clay 0.5 5					
4. WELL CONSTRUCTION	Sandy fat clay 5 46					
Diameter of Hole <u>8</u> inches Depth <u>46</u> feet						
Riser: ■ PVC □ Other						
■ Threaded □ Solvent □ Other						
Riser rating SDR Schedule40						
Diameter <u>2.0</u> inches	· · · · · · · · · · · · · · · · · · ·					
From <u>+2</u> ft. to <u>23</u> ft.						
Was a well screen installed? ■ Yes □ No						
Material <u>Schedule 40 PVC</u> Diameter <u>2.0</u> inches						
Slot Size <u>#10</u> set from <u>23</u> feet to <u>43</u> feet						
Sand packed from21 ft to46 ft	(Use separate sheet if necessary)					
Depth grouted from <u>1</u> ft to <u>21</u> ft	7. WAS THE HOLE PLUGGED OR ABANDONED?					
Grouting Material	□ Yes ■ No					
Bentonite Other	If so, how?					
If other explain:						
One foot concrete collar at surface	8. REMARKS					
	3 steel bumpers installed around well head					
	9. DATE COMPLETED 10-21-14					
	10. CONTRACTOR CERTIFICATION					
	This well was drilled under my jurisdiction and this report is true to the					
	best of my knowledge. Midwest Testing Laboratory, Inc. 444					
	Monitoring Well Contractor Certificate No.					
	P.O. Box 2084, Bismarck, ND 58502-2084					
	Address					
	10-22-14					
	Signature Date					

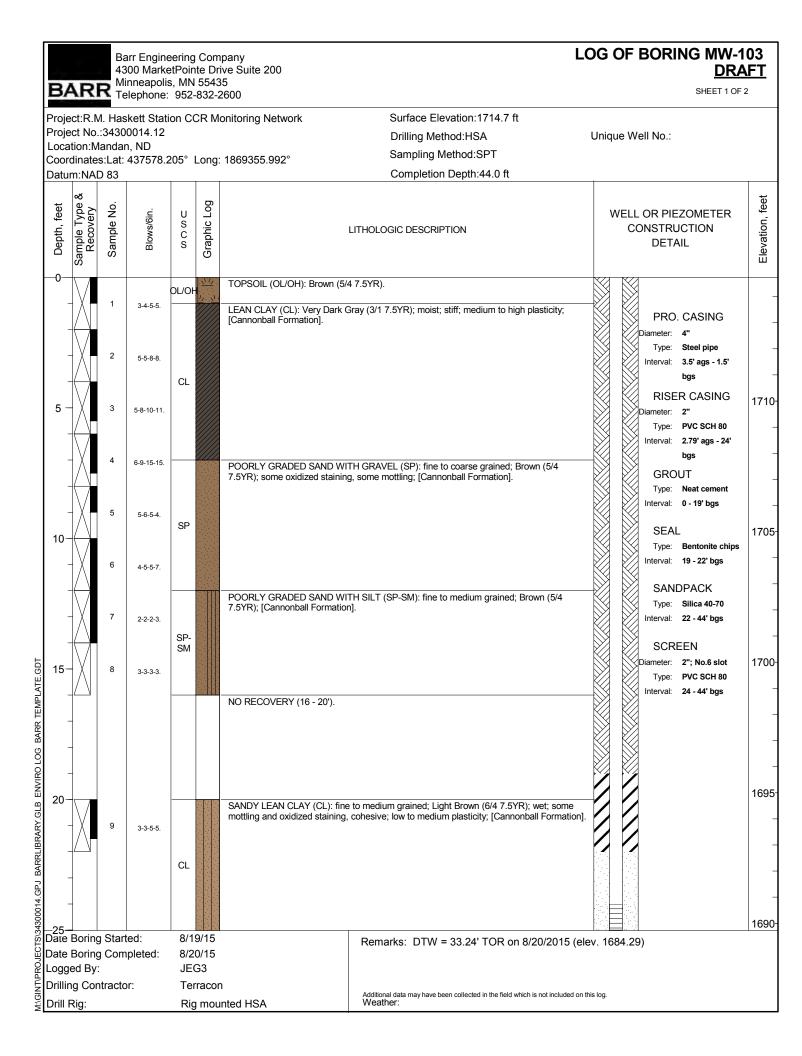

State of North Dakota BOARD OF WATER WELL CONTRACTORS

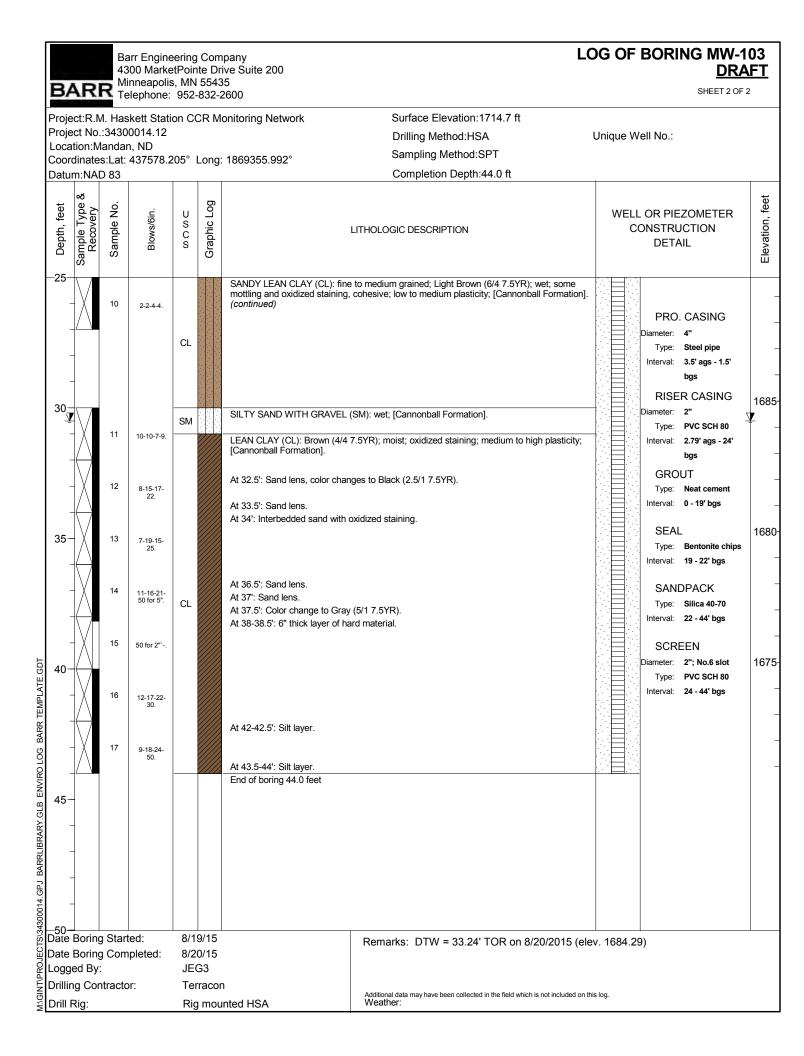

e

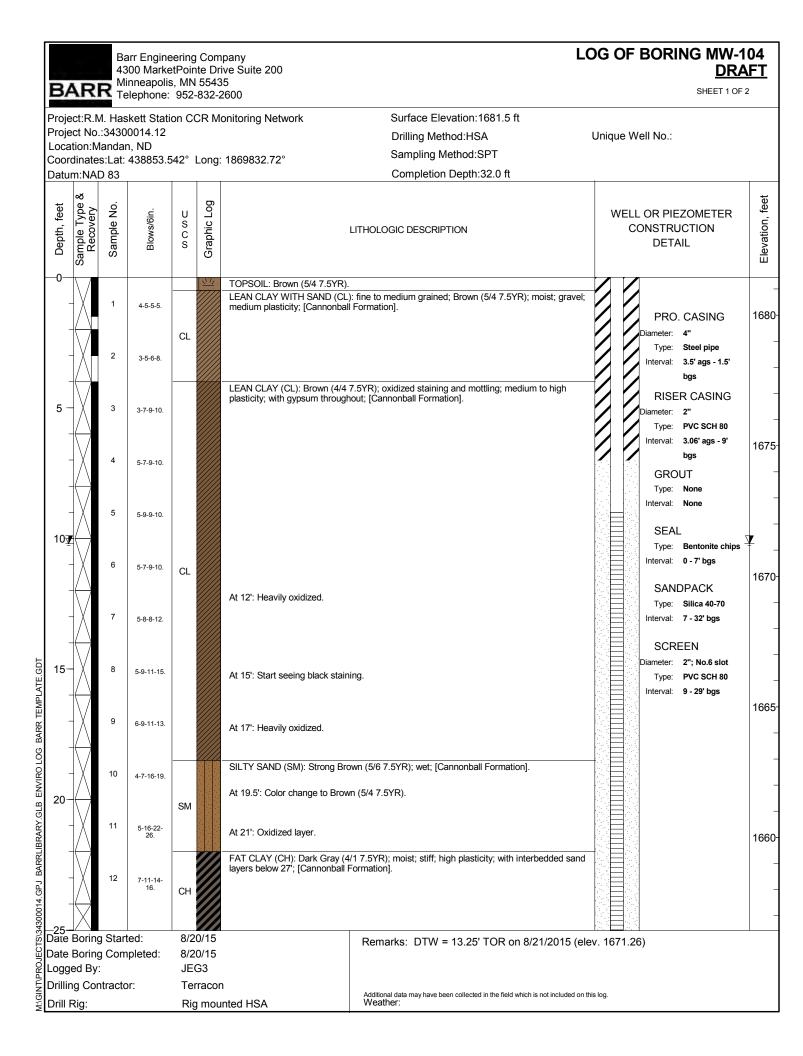
900 E. BOULEVARD • BISMARCK, NORTH DAKOTA 58505

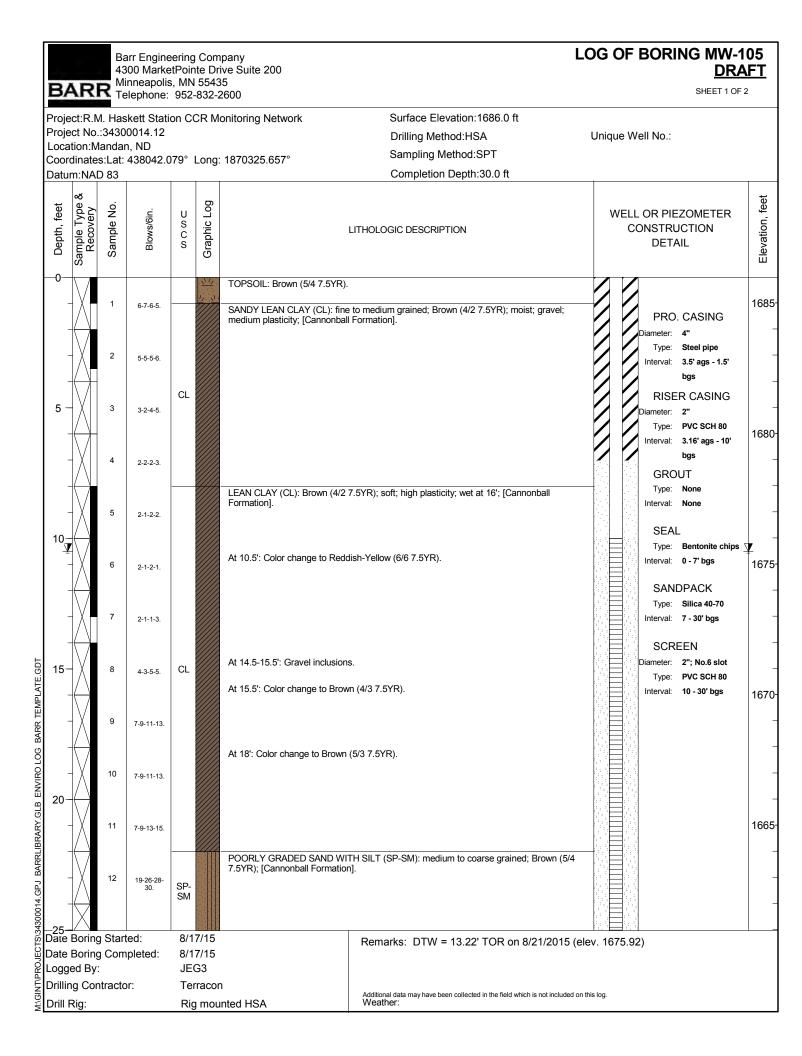

MONITORING WELL REPORT

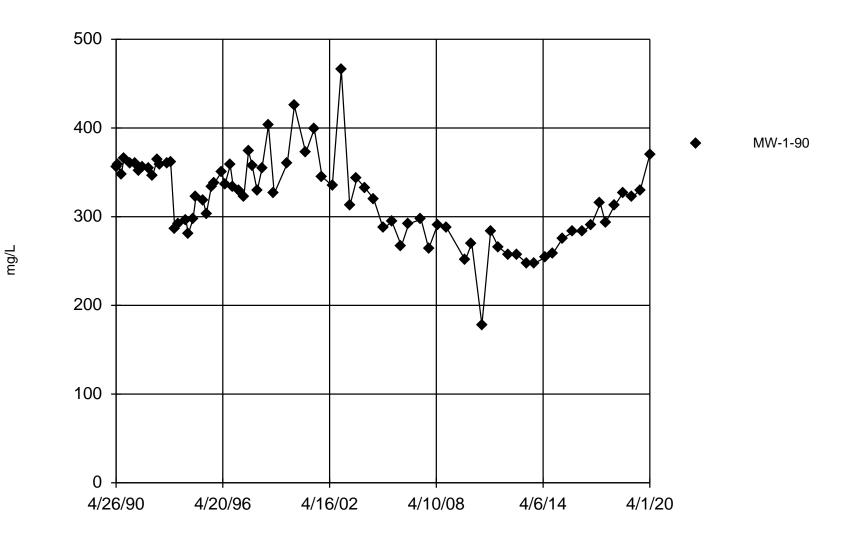

State law requires that this report be filed with the State Board of Water Well Cont	tractors within 30 days after completion or abandonment of the well.						
1. WELL OWNER	Well head completion:						
	24" above grade Other X						
Name MDU-Heskett Station	- If other, specify <u>4" x 4" x 5' steel cover</u>						
Address 2025 38 th Street	Was protective casing installed? ■ Yes □ No						
Mandan, North Dakota	Was well disinfected upon completion? □ Yes ■ No						
2. WELL LOCATION (MW-80R)							
Address (if in city) (see attached drawing)	5. WATER LEVEL						
	Static water level 12 feet below surface						
County Morton	If flowing: closed in pressure psi or ft. above land surface						
<u>NE ¼ SE ¼ SW ¼</u> Sec. <u>10</u> Twp. <u>139</u> N. Rge. <u>81</u> W.	6. WELL LOG Depth (Ft.)						
Lat. <u>46.86789</u> Long.: <u>-100.89320</u>							
Altitude:	Formation To						
3. METHOD DRILLED	Topsoil 0 0.5						
	•						
	Sandy lean clay 0.5 27						
4. WELL CONSTRUCTION							
Diameter of Hole 8 inches Depth 27 feet							
Riser: ■ PVC □ Other							
Threaded I Solvent I Other							
Riser rating SDR Schedule40							
Diameter <u>2.0</u> inches							
From $+2.5$ ft. to 7 ft.							
Was a well screen installed? ■ Yes □ No							
Material <u>Schedule 40 PVC</u> Diameter <u>2.0</u> inches							
Slot Size <u>#10</u> set from <u>7</u> feet to <u>27</u> feet	(Use separate sheet if necessary)						
Sand packed from <u>5</u> ft to <u>27</u> ft	7. WAS THE HOLE PLUGGED OR ABANDONED?						
Depth grouted from <u>1</u> ft to <u>5</u> ft	Yes ■ No						
Grouting Material	If so, how?						
Bentonite Other	It so, now:						
If other explain:							
One foot concrete collar at surface	8. REMARKS 3 steel bumpers installed around well head						
	5 steel bumpers instance around wen nead						
	9. DATE COMPLETED 10-21-14						
	10. CONTRACTOR CERTIFICATION						
	This well was drilled under my jurisdiction and this report is true to the						
	best of my knowledge. Midwest Testing Laboratory, Inc. 444						
	Monitoring Well Contractor Certificate No.						
	P.O. Box 2084, Bismarck, ND 58502-2084						
	······································						
	Address						
	Malan 10-22-14						
	Signature Date Date						





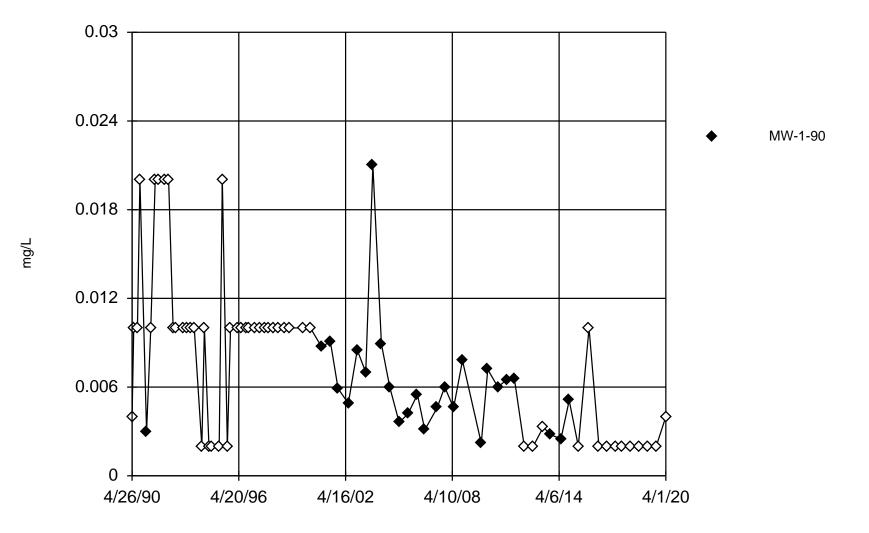

DADE		tPointe	e Dri	ive Suite 200		LOG OF	BORING MW-10 DRA	FT
BARF	Minneapolis Telephone:	952-8	32-2	2600			SHEET 3 OF 3	}
Project No.: Location:Ma Coordinates	34300014.12 ndan, ND Lat: 438844.9			onitoring Network 1868647.777°	Surface Elevation:1716.6 ft Drilling Method:HSA Sampling Method:SPT	Unique W	/ell No.:	
Datum:NAD	83				Completion Depth:58.0 ft			
Ň	Sample No. Blows/6in.	U S C S	Graphic Log		LITHOLOGIC DESCRIPTION		OR PIEZOMETER ONSTRUCTION DETAIL	Elevation, feet
-50 - - - - 55- - - -		СН		FAT CLAY (CH): Black (2.5/1 7 Formation]. <i>(continued)</i>	7.5YR); very stiff; hight plasticity; wet at 43'; [Cannonba		PRO. CASING Diameter: 4" Type: Steel pipe Interval: 3.5' ags - 1.5' bgs RISER CASING Diameter: 2" Type: PVC SCH 80 Interval: 2.98' ags - 34' bgs GROUT	
				End of boring 58.0 feet			Type: Neat cement Interval: 0 - 29' bgs SEAL Type: Bentonite chips Interval: 29 - 32' bgs SANDPACK Type: Silica 40-70 Interval: 32 - 56' bgs SCREEN Diameter: 2"; No.6 slot Type: PVC SCH 80	
							Interval: 34 - 54' bgs	
Date Boring Date Boring Logged By:	Completed:	8/18/ 8/19/ JEG:	/15 3		Remarks: Hole caved in from 56 - 58' bgs. DTW = 36.66' TOR on 9/23/2015 (elev. 168	2.87)	1	<u> </u>
Drilling Cont Drill Rig:	ractor:	Terra Rig		n unted HSA	Additional data may have been collected in the field which is not includ Weather:	ed on this log.		




÷r-		43		tPoir	nte Dr	ive Suite 200	L	OG OF BORING MW-104. <u>DRAFT</u>
BA	R	R Te	inneapolis elephone:	952 s, Min	-832-2	35 2600		SHEET 2 OF 2
Projec Projec Locat	ct:R.M ct No. tion:M linate	I. Has :3430 andar s:Lat:	skett Stati 0014.12 n, ND	on C	CR M	onitoring Network 1869832.72°	Surface Elevation:1681.5 ft Drilling Method:HSA Sampling Method:SPT Completion Depth:32.0 ft	Unique Well No.:
Depth, feet	Sample Type & Recovery	Sample No.	Blows/6in.	U S C S	Graphic Log		LITHOLOGIC DESCRIPTION	WELL OR PIEZOMETER CONSTRUCTION DETAIL
-25		13 14 15	8-12-16- 17. 8-12-16- 21. 8-12-16- 20.	СН		FAT CLAY (CH): Dark Gray (4 layers below 27'; [Cannonball F	/1 7.5YR); moist; stiff; high plasticity; with interbedded sand Formation]. <i>(continued)</i>	PRO. CASING Diameter: 4" Type: Steel pipe Interval: 3.5' ags - 1.5' bgs RISER CASING
30		16				Driller notes: sluff. End of boring 32.0 feet		Diameter: 2" Type: PVC SCH 80 Interval: 3.06' ags - 9' bgs GROUT Type: None Interval: None SEAL Type: Bentonite chips Interval: 0 - 7' bgs
40								SANDPACK Type: Silica 40-70 Interval: 7 - 32' bgs SCREEN Diameter: 2"; No.6 slot Type: PVC SCH 80 Interval: 9 - 29' bgs
- 45- - - -								
50 Date E Date E Logge	Boring	g Com	ted: pleted:	8/2	0/15 20/15 20/15 G3		Remarks: DTW = 13.25' TOR on 8/21/2015 (e	elev. 1671.26)
Drilling Drill R	g Cor		or:	Те	rracoi	n Inted HSA	Additional data may have been collected in the field which is not included or Weather:	n this log.

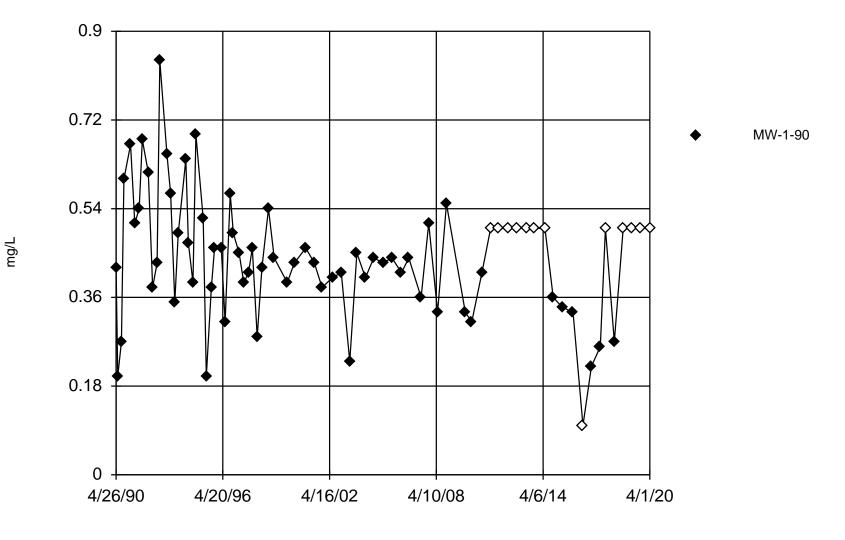
D		43		tPoin	te Dr	ive Suite 200		log of	BORING MW-1 DRA	FT
			inneapolis elephone:						SHEET 2 OF 2	<u>.</u>
Proje Loca Coor	ect No. tion:M	.:3430 landar s:Lat:	0014.12 n, ND			onitoring Network : 1870325.657°	Surface Elevation:1686.0 ft Drilling Method:HSA Sampling Method:SPT Completion Depth:30.0 ft	Unique W	/ell No.:	
Depth, feet	Sample Record Blow Grap						LITHOLOGIC DESCRIPTION		- OR PIEZOMETER ONSTRUCTION DETAIL	Elevation, feet
		13 14 15	15-25-31- 40.	CL		FAT CLAY (CL): Dark Brown (Formation]. At 26': Color change to Gray (5	3/4 7.5YR); high plasticity; sand lens at 26.5'; [Cannonba 5/1 7.5YR).		PRO. CASING Diameter: 4" Type: Steel pipe Interval: 3.5' ags - 1.5' bgs RISER CASING Diameter: 2" Type: PVC SCH 80 Interval: 3.16' ags - 10' bgs GROUT Type: None Interval: None SEAL Type: Bentonite chips Interval: 0 - 7' bgs SANDPACK Type: Silica 40-70 Interval: 7 - 30' bgs SCREEN Diameter: 2"; No.6 slot Type: PVC SCH 80 Interval: 10 - 30' bgs	1660-
Date Date Logg	Boring Boring ed By: ng Cor	g Com	pleted:	8/1 JE0	7/15 7/15 33 rracol		Remarks: DTW = 13.22' TOR on 8/21/2015	elev. 1675.9	2)	
						Inted HSA	Additional data may have been collected in the field which is not included Weather:	on this log.		

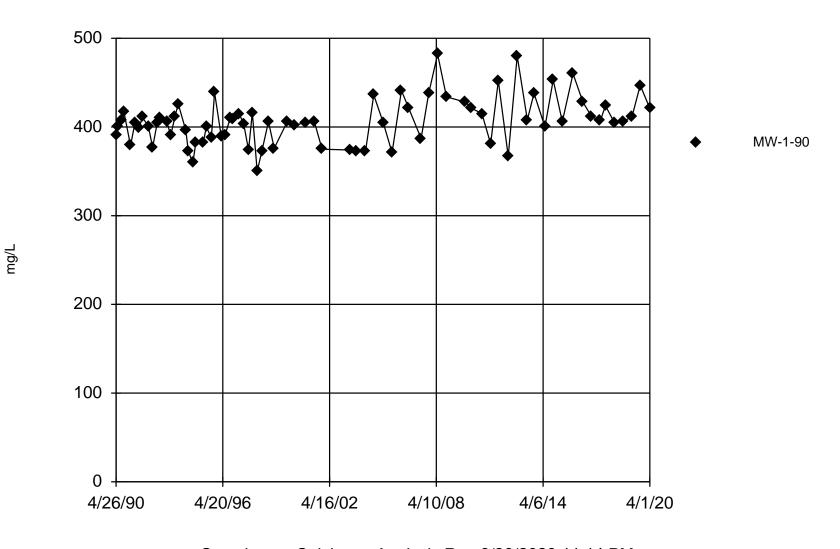
Appendix F

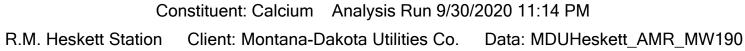

MW1-90 Time Series Plots

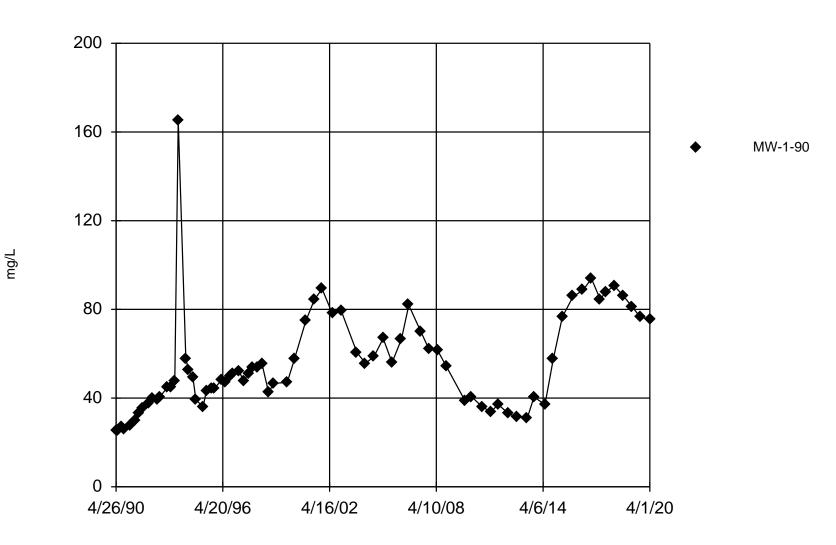
Constituent: Alkalinity, bicarbonate Analysis Run 9/30/2020 11:14 PM R.M. Heskett Station Client: Montana-Dakota Utilities Co. Data: MDUHeskett_AMR_MW190

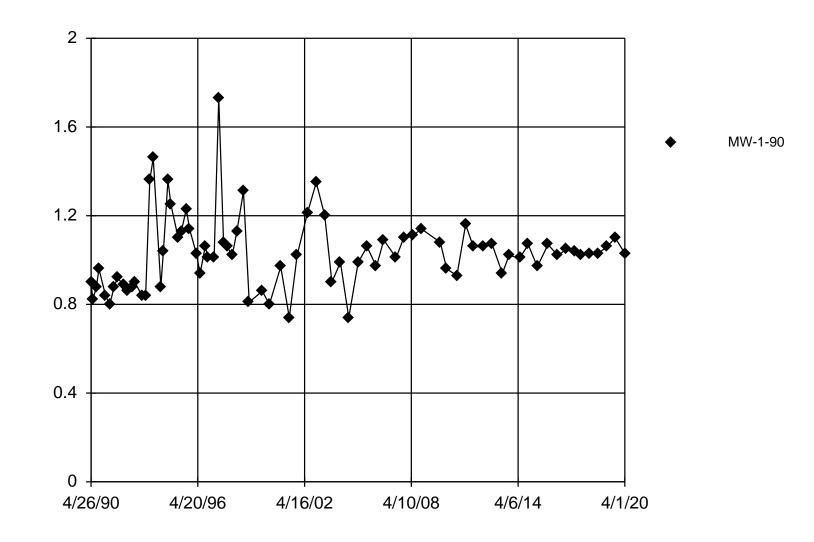
Sanitas[™] v.9.6.27 For the statistical analyses of ground water by Barr Engineering Company only. UG Hollow symbols indicate censored values.

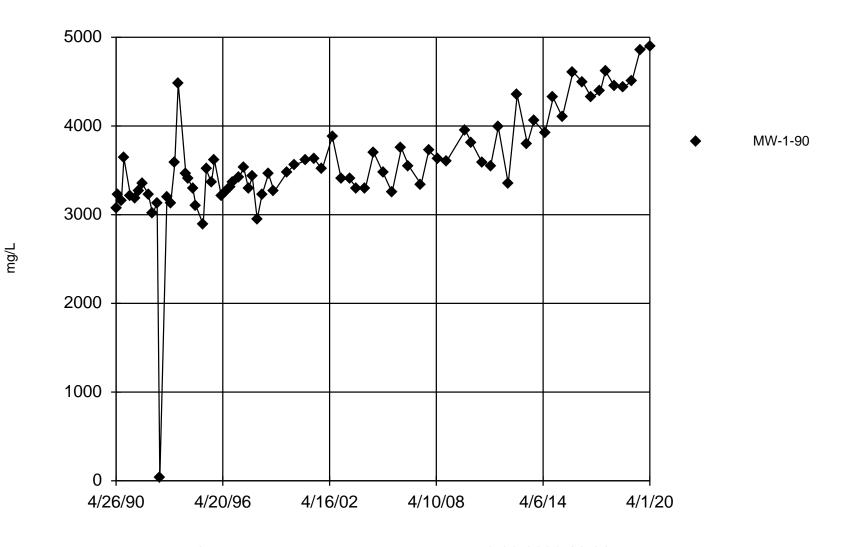


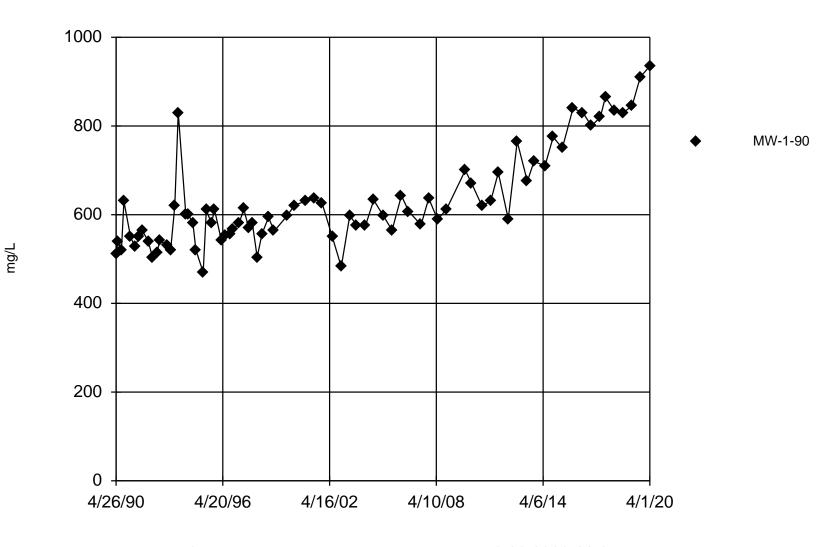

Constituent: Arsenic Analysis Run 9/30/2020 11:14 PM R.M. Heskett Station Client: Montana-Dakota Utilities Co. Data: MDUHeskett_AMR_MW190


Sanitas[™] v.9.6.27 For the statistical analyses of ground water by Barr Engineering Company only. UG Hollow symbols indicate censored values.

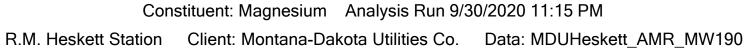


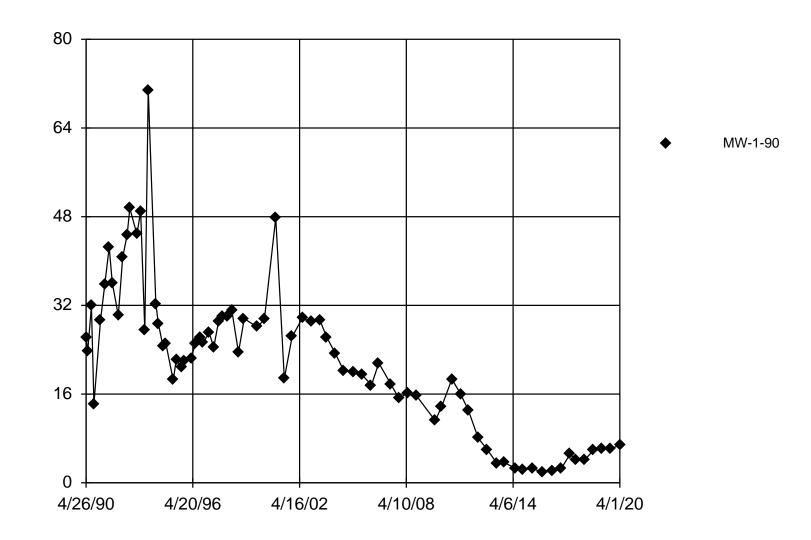

Constituent: Boron Analysis Run 9/30/2020 11:14 PM R.M. Heskett Station Client: Montana-Dakota Utilities Co. Data: MDUHeskett_AMR_MW190


Constituent: Chloride Analysis Run 9/30/2020 11:14 PM R.M. Heskett Station Client: Montana-Dakota Utilities Co. Data: MDUHeskett_AMR_MW190


Constituent: Fluoride Analysis Run 9/30/2020 11:14 PM R.M. Heskett Station Client: Montana-Dakota Utilities Co. Data: MDUHeskett_AMR_MW190

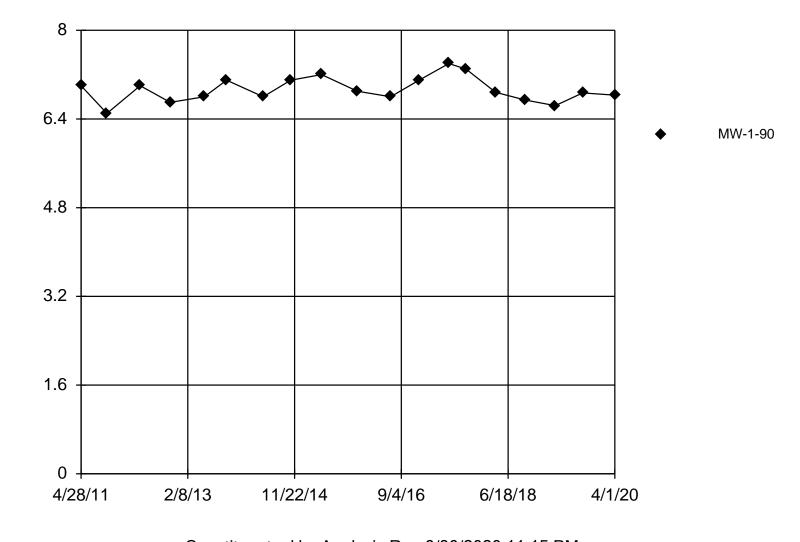
Time Series


mg/L

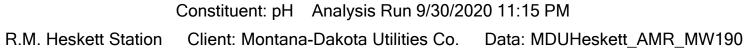


Constituent: Hardness Analysis Run 9/30/2020 11:14 PM R.M. Heskett Station Client: Montana-Dakota Utilities Co. Data: MDUHeskett_AMR_MW190

Time Series

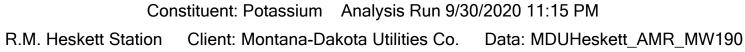


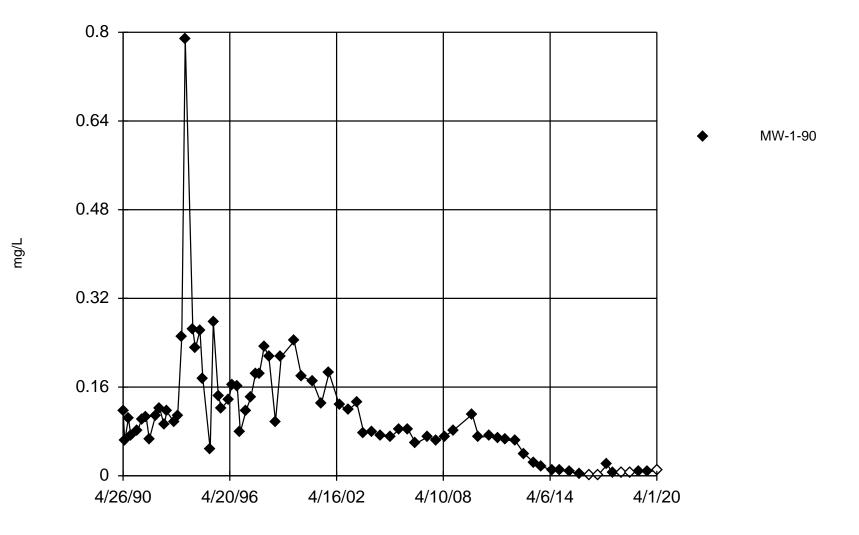
Constituent: Nitrogen Analysis Run 9/30/2020 11:15 PM R.M. Heskett Station Client: Montana-Dakota Utilities Co. Data: MDUHeskett_AMR_MW190

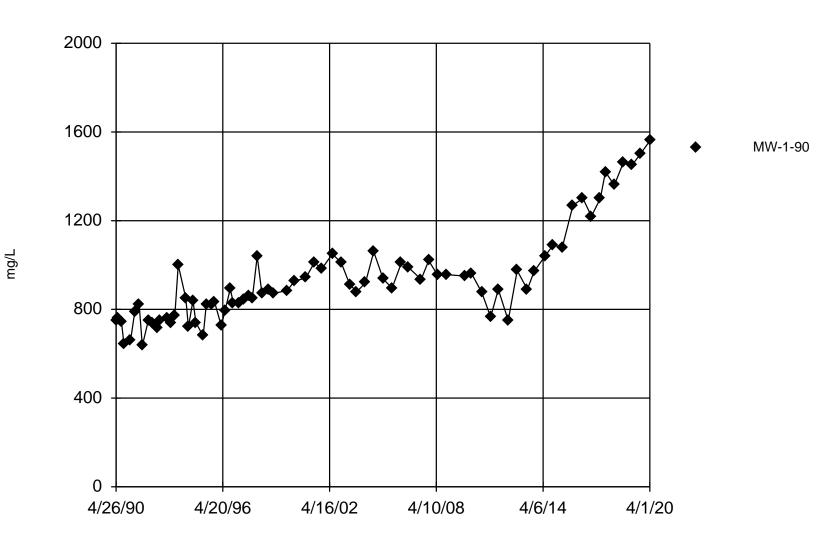

mg/L

Sanitas™ v.9.6.27 For the statistical analyses of ground water by Barr Engineering Company only. UG

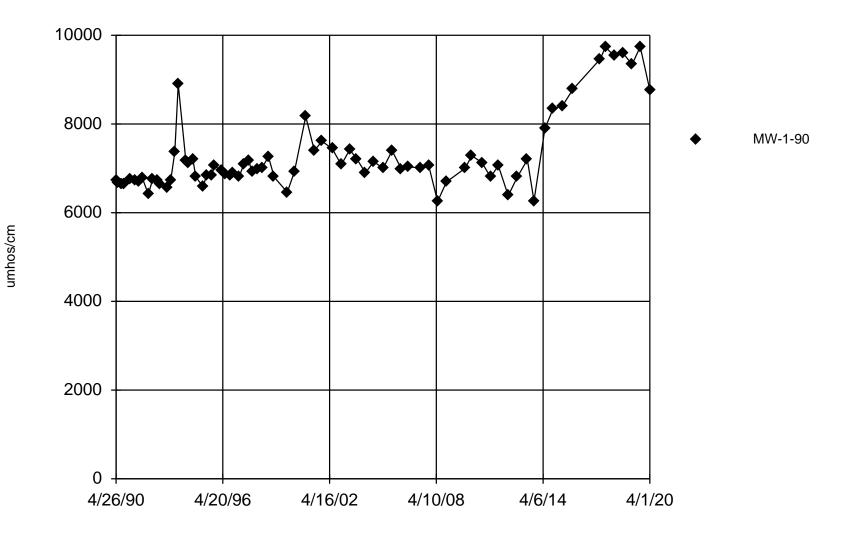

Нd

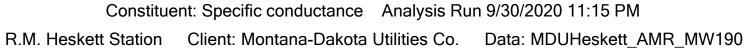


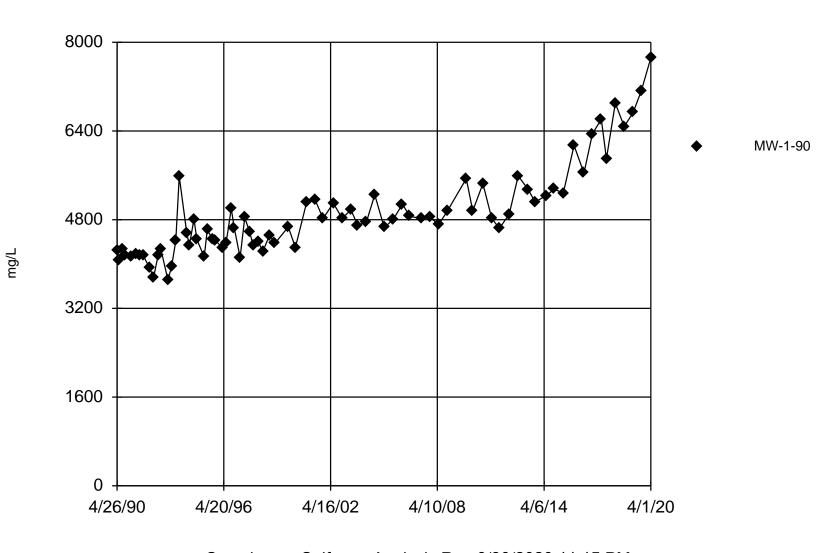

mg/L

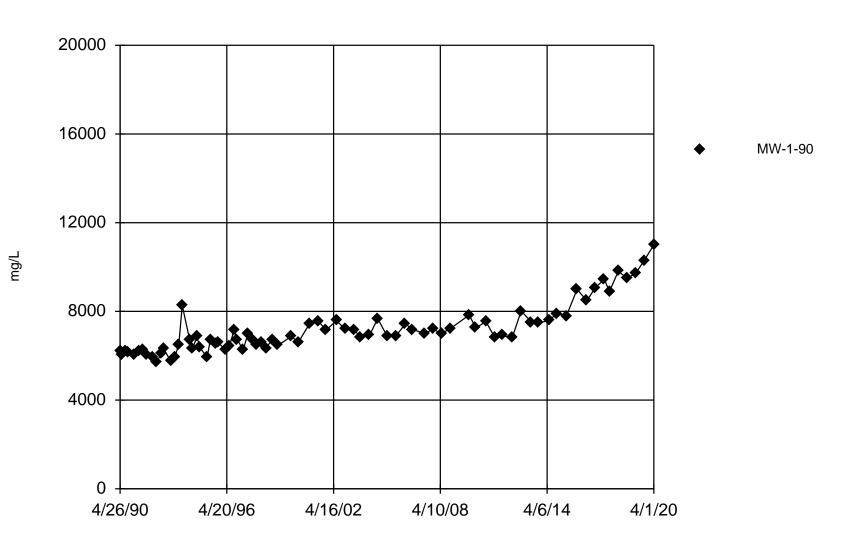


Sanitas[™] v.9.6.27 For the statistical analyses of ground water by Barr Engineering Company only. UG Hollow symbols indicate censored values.






Constituent: Selenium Analysis Run 9/30/2020 11:15 PM R.M. Heskett Station Client: Montana-Dakota Utilities Co. Data: MDUHeskett_AMR_MW190


Constituent: Sodium Analysis Run 9/30/2020 11:15 PM R.M. Heskett Station Client: Montana-Dakota Utilities Co. Data: MDUHeskett_AMR_MW190

Constituent: Sulfate Analysis Run 9/30/2020 11:15 PM R.M. Heskett Station Client: Montana-Dakota Utilities Co. Data: MDUHeskett_AMR_MW190

Constituent: TDS Analysis Run 9/30/2020 11:15 PM R.M. Heskett Station Client: Montana-Dakota Utilities Co. Data: MDUHeskett_AMR_MW190

Appendix G

Geochemist's Workbench Results

\$0. * * C/-30 3 2 80 *CO.*CO. Na *K 0 3 60 60 SOF 10×* 60 00 40 40 3 20 20 S S 8 3 3 00 8 00 Ca⁺⁺ > CI

% meq/kg

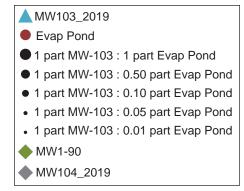
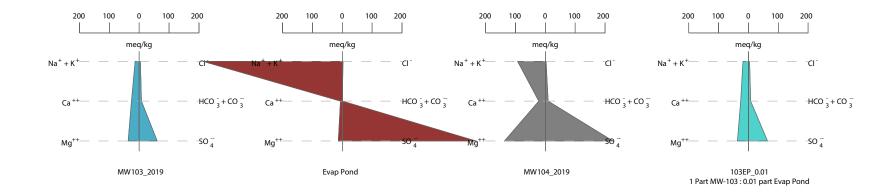



Figure G.1 Piper Plot for Mixing Evaporation Pond into MW-103 R.M. Heskett Station Alternative Source Demonstration April 2020 Event Montana Dakota Utilities Mandan, North Dakota

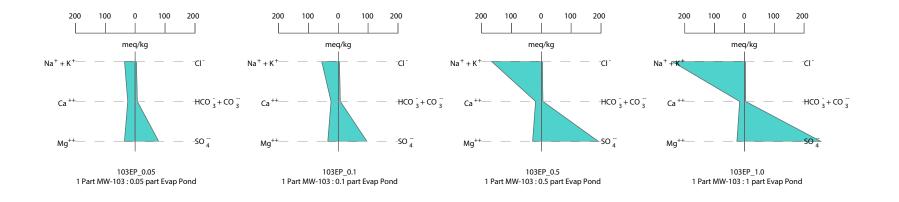


Figure G.2 Stiff Plot for Mixing Evaporation Pond into MW-103 R.M. Heskett Station Alternative Source Demonstration April 2020 Event Montana Dakota Utilities Mandan, North Dakota

Descrip	tion	Upgradient	Evap Pond	N	lixing Eva	ap Pond i	into MW-1	L03	Downg	radient
Sample ID		MW103	Evap Pond	1:0.01	1:0.05	1:0.1	1:0.5	1:1	MW1-90	MW-104
HCO3-	mg/l	457	20	452.7	436.2	417.3	311.3	238.5	259	591
Ca++	mg/l	530	125	526	510.7	493.2	395	327.5	453	448
CI-	mg/l	142	79.8	141.4	139	136.3	121.3	110.9	57.4	87.6
F-	mg/l	0.15	0.1	0.1495	0.1476	0.1455	0.1334	0.125	1.07	0.55
Mg++	mg/l	458	165	455.1	444.1	431.4	360.4	311.5	775	1700
рН	SU	6.5	10.7	6.502	6.511	6.523	6.643	6.854	7.1	6.8
K+	mg/l	18.8	734	25.88	52.87	83.85	257.3	376.6	25.2	37
Na+	mg/l	311	10600	412.9	801.2	1247	3742	5458	1090	2160
SO4	mg/l	2930	22100	3120	3843	4674	9323	12520	5350	11100
TDS	mg/kg	4860	34000	5152	6265	7541	14660.2	19527.5	7910	17700

Table G.1 Geochemist's Workbench Mixing Model Results