

2021 Annual Groundwater Monitoring and Corrective Action Report

CCR Landfill

R.M. Heskett Station Mandan, North Dakota

Prepared for Montana-Dakota Utilities Co.

January 2022

4300 MarketPointe Drive, Suite 200 Minneapolis, MN 55435 952.832.2600 www.barr.com

2021 Annual Groundwater Monitoring and Corrective Action Report

CCR Landfill

R.M. Heskett Station Mandan, North Dakota

January 31, 2022

Table of Contents

1.0	In	troduction1
1.1		Purpose1
1.2		CCR Rule Requirements1
2.0	G	roundwater Monitoring Program3
2.1		Groundwater Monitoring System3
2.2		Actions Completed/Problems Encountered
2.3		Data and Collection Summary
2	2.3.1	September 2020 Detection Monitoring Event
2	2.3.2	March 2021 Detection Monitoring Event4
2	2.3.3	August 2021 Detection Monitoring Event4
2.4		Activities for Upcoming Year4
3.0	Re	eferences5

List of Tables

Table 1CCR Rule Requirements and ComplianceTable 2Analytical Data Summary

List of Figures

Figure 1 Site Layout and CCR Monitoring Well Network

List of Appendices

- Appendix A Laboratory Reports and Field Sheets
- Appendix B Alternative Source Demonstration: September 2020 Event Alternative Source Demonstration: March 2021 Event

Acronyms

Acronym	Description
ASD	Alternative Source Demonstration
CCR	Coal Combustion Residuals
CFR	Code of Federal Regulations
MDU	Montana Dakota Utilities Co.
SSI	Statistically Significant Increase
TDS	Total Dissolved Solids

Executive Summary

This 2021 Annual Groundwater Monitoring and Corrective Action Report (Annual Report) describes the monitoring program and results for the CCR landfill at MDU's R.M. Heskett Station (Site). The permitted landfill is the only CCR Unit at this Site.

At the beginning, end, and throughout 2021, the CCR Unit was operating under a detection monitoring program as described in 40 CFR 257.94. Pursuant to §257.94, statistically significant increases (SSIs) were determined for:

- March 2021: fluoride at MW-2-90, sulfate at MW-104, and total dissolved solids (TDS) at MW-104
- August 2021: fluoride at MW-2-90, chloride at MW-105, sulfate at MW-104, and TDS at MW-104

Successful alternative source demonstrations (ASDs) were completed for the September 2020 and March 2021 SSIs. The ASD documentation is included in this report under Appendix B. An ASD for the August 2021 SSIs is anticipated in 2022. Therefore, no assessment monitoring program (§257.95), or related corrective or remedial measures (§§257.96, 257.97, and 257.98), were necessary.

1.0 Introduction

Montana-Dakota Utilities Co. (MDU) owns and operates R.M. Heskett Station, a coal-fired generating station and a gas-fired turbine located in Mandan, North Dakota (Figure 1). One CCR landfill, as defined by 40 CFR 257.53, is located on the property. Wastes contained in the CCR landfill primarily consist of coal combustion by-products, asbestos wastes generated from construction activity associated with MDU-owned facilities, and ash derived from the burning of tire-derived fuel at the facility.

This 2021 Annual Groundwater Monitoring and Corrective Action Report (Annual Report) describes the monitoring program and results for the CCR landfill at MDU's R.M. Heskett Station (Site).

1.1 Purpose

As stated in Section §257.90 (e), the Annual Report must:

- Document the status of groundwater monitoring and any corrective action programs for the CCR unit,
- Summarize key actions completed,
- Describe any problems encountered,
- Discuss actions to resolve the problems, and
- Project key activities for the upcoming year.

1.2 CCR Rule Requirements

Additional requirements for the Annual Report, as outlined in §257.90 (e) of the CCR Rule and this Site's compliance with the CCR Rule, are summarized in Table 1.

Table 1 CCR Rule Requirements and Compliance

CCR Rule Reference	Content Required in Report	Location
§257.90(e)(1)	Monitoring System Figure: A map, aerial image, or diagram showing the CCR unit and all background (or upgradient) and downgradient monitoring wells, to include the well identification numbers, that are part of the groundwater monitoring program for the CCR unit.	Section 2.1 Groundwater Monitoring System; see Figure 1.
§257.90(e)(2)	Monitoring System Adjustments : Identification of any monitoring wells that were installed or decommissioned during the preceding year, along with a narrative description of why those actions were taken.	Not applicable – no wells were installed or decommissioned.
§257.90(e)(3)	Data and Collection Summary : In addition to all the monitoring data obtained under §257.90 through §257.98, a summary including the number of groundwater samples that were collected, and whether the sample was required by the detection monitoring or assessment monitoring programs.	Section 2.3 Data and Collection Summary
§257.90(e)(4)	Monitoring Program : A narrative discussion of any transition between monitoring programs (e.g., the date and circumstances for transitioning from detection monitoring to assessment monitoring in addition to identifying the constituent(s) detected at a statistically significant increase over background levels).	Not applicable – No transition between monitoring programs was necessary.
§257.90(e)(5)	Other Information : Other information required, if applicable, to be included in the annual report as specified in §257.90 through §257.98.	Section 2.2 Actions Completed/Problems Encountered
§257.90(e)(6)	Executive Summary: A section at the beginning of the annual report that provides an overview of the current status of groundwater monitoring and corrective action programs for the CCR unit.	Executive Summary

2.0 Groundwater Monitoring Program

This section documents the status of the groundwater monitoring and corrective action program for the CCR unit in 2021. A description of the groundwater monitoring system is included in Section 2.1, key actions completed and problems encountered are described in Section 2.2, the monitoring and analytical results are described in Section 2.3, and key activities planned for 2022 are described in Section 2.4.

2.1 Groundwater Monitoring System

The groundwater monitoring system is consistent with the Groundwater Monitoring System Certification (Barr, 2017a), as seen in Figure 1; no adjustments or changes were made to the groundwater monitoring system in 2021.

2.2 Actions Completed/Problems Encountered

The following actions were completed in 2021:

- **Detection Monitoring Sampling**: Groundwater samples were collected from each well in the groundwater monitoring system on March 22-23, 2021 and from 11 of the 12 wells in the groundwater monitoring system on August 23-24, 2021. Downgradient monitoring well MW-3-90 could not be sampled in August 2021 due to insufficient volume. Groundwater samples were analyzed for Appendix III constituents, per the detection monitoring program of the CCR Rule (§257.94).
- **SSI Evaluation:** SSI evaluations were conducted in accordance with the Groundwater Statistical Method Selection Certification (Statistical Certification; Barr, 2017b) for the March 2021 and August 2021 detection monitoring events, both of which resulted in potential SSIs.
- Verification Retesting: No verification retesting was conducted in 2021.
- Alternative Source Demonstration (ASD): ASDs were conducted on the verified SSIs for the September 2020 and March 2021 detection monitoring events. Both ASDs were able to demonstrate an alternative source, as allowed by the CCR rule (§257.94(e)(2)). More details are provided in Section 2.3.

2.3 Data and Collection Summary

2.3.1 September 2020 Detection Monitoring Event

As mentioned in the 2020 Annual Report (Barr, 2021), an SSI evaluation was conducted on the results of the September 2020 detection monitoring event. Four potential SSIs (fluoride at MW-2-90, chloride at MW-105, and sulfate and TDS at MW-104) were identified.

An Appendix III ASD was conducted on the verified SSIs and was able to successfully demonstrate that a natural variation in groundwater quality resulted in the SSIs, as allowed by §257.94(e)(4). The Alternative Source Demonstration: September 2020 Event Report is included in Appendix B.

2.3.2 March 2021 Detection Monitoring Event

Groundwater samples were collected from all 12 monitoring wells at the Site on March 22-23, 2021. Three potential SSIs (fluoride at MW-2-90 and sulfate and TDS at MW-104) were identified. A summary of results is included in Table 2. Field data sheets and analytical laboratory reports for detection monitoring sampling and verification resampling are included in Appendix A.

An Appendix III ASD was conducted on the verified SSIs and was able to successfully demonstrate that a natural variation in groundwater quality and/or "a source other than the CCR unit" resulted in the SSIs, as allowed by §257.94(e)(4). The Alternative Source Demonstration: March 2021 Event is included in Appendix B.

2.3.3 August 2021 Detection Monitoring Event

Groundwater samples were collected from 11 monitoring wells at the Site on August 23-24, 2021. Downgradient monitoring well MW-3-90 could not be sampled due to insufficient volume. Four potential SSIs (fluoride at MW-2-90, chloride at MW-105, and sulfate and TDS at MW-104) were identified. A summary of results is included in Table 2. Field data sheets and analytical laboratory reports for detection monitoring sampling are included in Appendix A. An ASD for the SSIs identified in the August 2021 detection monitoring event is anticipated in 2022.

2.4 Activities for Upcoming Year

The following key activities for analytical results and statistical evaluations are planned for 2022:

- Complete ASD evaluation for the August 2021 detection monitoring event in accordance with the Statistical Certification (Barr, 2017b).
- Evaluate analytical results from 2022 semi-annual detection monitoring events for SSIs according to the Statistical Certification (Barr, 2017b).

3.0 References

Barr Engineering Co. (Barr), 2017a, Groundwater Monitoring System Certification, October 2017.

Barr, 2017b, Statistical Method Selection Certification, October 2017.

Barr, 2021, 2020 Annual Groundwater Monitoring and Corrective Action Report, January 2021.

Table

Table 2Water Quality Analytical Data Summary2021 Annual ReportHeskett CCR Groundwater Compliance

Location Date			MW101 3/22/2021	MW101 8/23/2021	MW102 3/22/2021	MW102 8/23/2021	MW103 3/23/2021	MW103 8/23/2021	MW104 3/23/2021	MW 8/24/	/104 /2021	MW105 3/23/2021	MW105 8/24/2021	MV 3/22/	V13 /2021
	Sa	ample Type	N	N	Ν	N	N	N	N	N	FD	N	N	Ν	FD
	Analysis											Î			
Parameter	Location	Units													
Appendix III															
Boron	Lab	mg/l	< 0.5 U	0.80	1.16	1.27	< 0.1 U	< 0.5 U	0.64	0.84	0.86	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U
Calcium	Lab	mg/l	463	442	441	470	510	500	419	422	443	316	339	392	399
Chloride	Lab	mg/l	21.5	20.8	5.4	6.1	108	119	87.2	94.1	93.0	261	280	73.0	73.1
Fluoride	Lab	mg/l	0.26	0.13	0.17	0.16	0.27	0.30	0.56	0.54	0.54	0.26	0.25	0.85	0.84
pН	Field	pH units	6.71	6.57 H	6.85	6.75 H	6.84	6.58 H	7.01	6.89 H		6.84	6.67 H	7.05	
Solids, total dissolved	Lab	mg/l	5620	5530	8440	7920	5020	4900	18000	17500	17400	6060	6760	10400	10600
Sulfate, as SO4	Lab	mg/l	3190	3420	5170	4880	2780	3000	11000	11600	11600	3360	4130	6260	6450

-- Not analyzed/Not available.

N Sample Type: Normal

FD: Sample Type: Field Duplicate

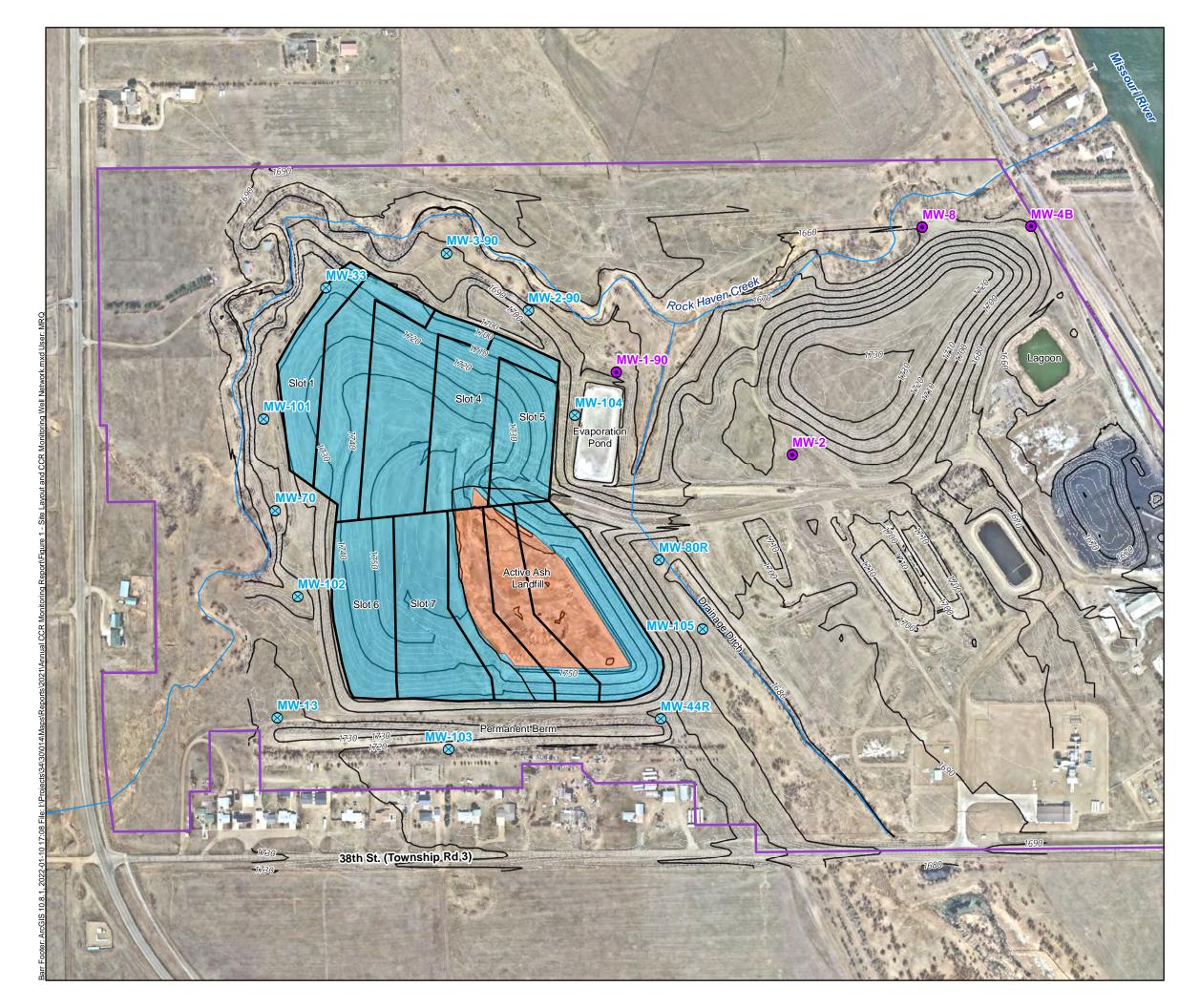
H: Recommended sample preservation, extraction or analysis holding time was exceeded.

U: The analyte was analyzed for, but was not detected.

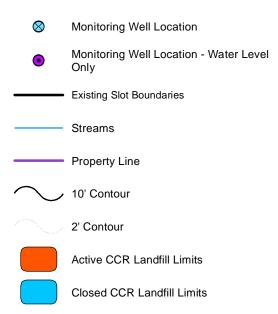
Table 2Water Quality Analytical Data Summary2021 Annual ReportHeskett CCR Groundwater Compliance

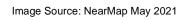
Location Date			MV 8/23/	V13 2021	MW2-90 3/22/2021		MW2-90 8/24/2021	MW3-90 3/22/2021	MW33 3/22/2021	MW33 8/24/2021	MW44R 3/23/2021	MW44R 8/24/2021	MW70 3/22/2021	MW70 8/23/2021	MW80R 3/23/2021	MW80R 8/25/2021
	Sa	ample Type	Ν	FD	N	FD	N	N	Ν	N	N	N	N	N	Ν	N
	Analysis						1									
Parameter	Location	Units														
Appendix III																
Boron	Lab	mg/l	0.63	0.63	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	0.27	< 0.5 U	< 0.5 U	< 0.5 U	0.44	0.44	< 0.5 U	< 0.5 U
Calcium	Lab	mg/l	391	385	500	490	505	505	458	467	384	410	344	320	336	340
Chloride	Lab	mg/l	76.0	77.6	78.8	77.8	89.5	36.9	12.3	13.3	197	203	51.9	56.3	134	155
Fluoride	Lab	mg/l	0.83	0.81	1.04	1.02	1.02	0.13	0.24	0.19	0.65	0.63	0.32	0.30	0.25	0.23
рН	Field	pH units	6.90 H		7.01		6.90 H	6.93	6.64	6.42 H	6.66	6.52 H	7.03	6.84 H	7.09	6.92 H
Solids, total dissolved	Lab	mg/l	10400	10500	9640	9530	10400	5190	5070	5310	10400	10800	3650	3340	5710	5610
Sulfate, as SO4	Lab	mg/l	6820	6800	5990	5520	6650	3020	2870	3440	5950	6830	2000	1960	2890	3150

-- Not analyzed/Not available.


N Sample Type: Normal

FD: Sample Type: Field Duplicate


H: Recommended sample preservation, extraction or analysis holding time was exceeded.


U: The analyte was analyzed for, but was not detected.

Figure

CAD Data Source: Slot Linework.dwg

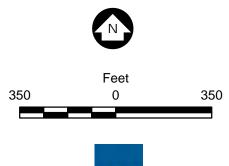


Figure 1

BARR

SITE LAYOUT AND CCR MONITORING WELL NETWORK R. M. Heskett Station

> Montana Dakota Utilities Mandan, North Dakota

Appendix A

Laboratory Reports and Field Sheets

Page: 1 of 1

APP III

CERTIFICATE of ANALYSIS - CCR

Todd Peterson Montana-Dakota Utilities Co. 400 N 4th St Bismarck ND 58501

Project Name: MDU Heskett

Sample Description: MW1-90

Event and Year: Spring 2021

Report Date: 31 Mar 21 Lab Number: 21-W501 Work Order #: 82-0597 Account #: 002800 Date Sampled: 23 Mar 21 9:29 Date Received: 23 Mar 21 14:00 Sampled By: MVTL Field Services

PO #: 185968 OP

Temp at Receipt: 3.6C ROI

	As Receiv Result	ed	Method RL	Method Reference	Date Analyzed	Analyst
pH - Field	6.89	units	NA	SM 4500 H+ B	23 Mar 21 9:29	DJN
H	* 7.1	units	0.1	SM4500-H+-B-11	23 Mar 21 17:00	RAA
Temperature - Field	6.26	Degrees C	NA	SM 2550B	23 Mar 21 9:29	DJN
Conductivity - Field	10530	umhos/cm	1	EPA 120.1	23 Mar 21 9:29	DJN
Fluoride	1.03	mg/l	0.10	SM4500-F-C	23 Mar 21 17:00	RAA
Sulfate	7030	mg/l	5.00	ASTM D516-11	24 Mar 21 10:47	SD
Chloride	82.7	mg/l	2.0	SM4500-Cl-E-11	24 Mar 21 8:47	SD
Total Dissolved Solids	12200	mg/l	10	USGS I1750-85	25 Mar 21 14:00	RAA
Calcium - Total	397	mg/l	1.0	6010D	26 Mar 21 10:32	MDE
Boron - Total	< 0.5 @	mg/l	0.10	6010D	24 Mar 21 12:46	MDE

* Holding time exceeded

Approved by:

11 40121 Clauditte K. Cantle

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

MVTL

MINNESOTA VALLEY TESTING LABORATORIES, INC.

1126 N. Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 E. Broadway Ave. ~ Bismarck, ND 58502 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Highway ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885

www.mvtl.com

MEMBER ACIL

Page: 1 of 1

Ouality Control Report

Lab ID: 21-W501		Pr	oject: MI	DU Heske	ett		Work Or	der: 202	182-059	7							
Analyte	LCS Spike Amt	LCS Rec %	LCS % Rec Limits	Matrix Spike Amt	Matrix Spike ID	Matrix Spike Orig Result	Matrix Spike Result	Matrix Spike Rec %	Matrix Spike % Rec Limits	MSD/ Dup Orig Result	MSD/ Dup Result	MSD Rec %	MSD/ Dup RPD	MSD/ Dup RPD Limit (<)	Known Rec (%)	Known % Rec Limits	Method Blank
Boron - Total mg/l	0.40	90	80-120	0.400	21-W477	0.36	0.74	95	75-125	0.74	0.72	90	2.7	20	-	-	< 0.1 < 0.1
Calcium - Total mg/l	100	109	80-120	500 2000 500	21D763q 21-M1496 21W501q	34.4 < 20 397	560 2040 900	105 102 101	75-125 75-125 75-125	560 2040 900	560 2040 895	105 102 100	0.0 0.0 0.6	20 20 20		-	< 1 < 1
Chloride mg/l	30.0 30.0	95 95	80-120 80-120	30.0	21-W511	< 2	29.0	97	80-120	29.0	29.0	97	0.0	20	-	-	< 2 < 2
Fluoride mg/l	0.50	104	90-110	0.500 0.500	21-D689 21-W507	1.59 0.24	2.05 0.70	92 92	80-120 80-120	2.05 0.70	2.08 0.71	98 94	1.5 1.4	20 20	-	-	< 0.1 < 0.1
pH units		-	-	-	-	-		-	-	12.4 7.2	12.4 7.4	-	0.0 2.7	20 20	-	-	-
Sulfate mg/l	100	103	80-120	100	21-W503	< 5	100	100	80-120	100	100	100	0.0	20	-	-	< 5
Total Dissolved Solids mg/l		-	-	-	-	-	-	-	-	10600 10400	10500 10400	-	0.9 0.0	20 20	-	-	< 10

Samples were received on 23 Mar 2021 at 1400.

Temperature upon receipt at the Bismarck laboratory was 3.6°C.

All samples were properly preserved unless noted here and/or flagged on the individual analytical laboratory report.

With the exception of pH, all holding times were met.

Approved methodology was followed for all sample analyses.

All acceptance criteria were met for calibration, method blanks, laboratory control samples, laboratory fortified matrix/duplicates unless noted here:

• For some analytes, the reported results were elevated due to additional dilutions required to minimize the effects of sample matrix.

Approved by: C. GMUTP

MVTL

2616 E. Broadway Ave Bismarck, ND 58501 (701) 258-9720

Chain of Custody Record

Project Name:				Event:								Work Orde	er Number:	
	MDU H	eskett				S	ipri i	ng 2	2021				82 -	0597
Report To: Attn: Address: Phone: Email:	Montana-Dakota Utilities Todd Peterson 400 North 4th St. Bismarck, ND 58501 701-425-2427 todd.peterson@mdu.com			CC:								Collected I Dale Nies		
Lab Number	Sample ID MW1-90	23 Mar 21	e line	Sample		X Soo Man	× 200 Minic		0) Coming Con		20530 20ec Cond	. Hall	o lunding	Analysis Required
WOVI	14144 T-20	- Ji wy of	0901		~ /	$\dot{\uparrow}$			0,00	<u>'</u>	0250	0101	0.01	MDU Heskett Spring
														2021

Comments:

Relinquished By		Sample	Condition	Receive	ed By
Name	Date/Time	Location	Temp (°C)	Name	Date/Time
1 Janin	23 mar21 1400	dog In Walk In #2	TM562 / TM805	C. Canto -	Z 3Mar 21 1400
2	1, 1		ROT 3.6		

	Field D			d Da	tachaat			Company: MDU Hesket			(ett
MVTÌ			ГІСІ	u Da	1 d 31	ieel		Event:		Spring 202	21
			G	roundwate	r Assessme	ent		Sample ID:		1-9	0
2616 E. Broadway Ave, Bi	smarck, ND							Sampling P	ersonal: /	Jane	n Nieswales
Phone: (701) 258-9	9720		_							<u></u>	
Weather Conditions	• •	Temp:	39	°F	Wind: /	right	@		Precip:	Sunny / Pa	artly Cloudy / Cloudy
1	WELL INFO	ORMATIO	N			<i>.</i>		SAM	IPLING IN	FORMATI	ON
Well Locked?	YES	NO				Purging Me	thod:	Bladder			Control Settings:
Well Labeled?	XES	NO				Sampling M		Bladder			Purge: Z Sec.
Casing Strait?	XES	NO				Dedicated E	quipment?	YES	NO		Recover: 55 Sec.
Grout Seal Intact?	YES	NO	Not V	/isible				C			PSI:
Repairs Necessary?						Duplicate Sa		YES	"NO)		
	g Diameter:	2	2"			Duplicate Sa	ample ID:	-			
Water Level Be	*		11.99	ft						r	
	pth of Well:		<u> </u>	ft			Bott	e List:			
	/ell Volume:		_	liters		1 Liter Raw					
	op of Pump:		~	ft ft	500mL Nitric						
Water Level Af	· · · · · ·		という Water Level			500mL Nitric	• •				
Measureme	ent Methoa:	Electric	water Level	Indicator		250mL Sulfu	10				
					FIE	LD READIN	IGS				
Stabilization Paran		Temp.	Spec.	рH	DO	ORP	Turbidity	Water Level	Pumping	Liters	Appearance or Comment
(3 Consecutive		(°C)	Cond.		(mg/L)	(mV)	(NTU)		Rate	Removed	Clarity, Color, Odor, Ect.
Purge Date	Time	±0.5°	±5%	±0.1	±10%	±10		(ft)	mL/Min		clear, slightly turbid, turbid
		Start of Well	Purge	0 01	0.45		A 70				
0929		6,41	10951	6.88	2.71	20,0	2:34	17.04	100	500	a
23Map 21	0914	6,16	10507	6.89	1.86	10.7	0.86	12,09	100	500	
03110p	0919	619	0505	6,88,	1-8-5	-513	0.70	1209	120	500	a
UN.	6924	6,24	105 37	9184	4.48	-10.9	0,74		100		
	0927	6126	10530	609	1191	- 1212	0.65	12.10	100	500	<u> </u>
						<u> </u>		+			
								+		<u></u>	
	Well Sta	bilized?	YES	NO		1	L	Total Vol	ume Purged:	2500	Liters
Sample Date	Time	Temp.	Spec.	pH			Turbidity				Appearance or Comment
		(°C)	Cond.				(NTU)				Clarity, Color, Odor, Ect.
23Mar 21	0929	6.26	10530	6.89			165	Τ			all
Comments:		· · · · · · · · · · · · · · · · · · ·		0 7							

ed yes.

Page: 1 of 8 APP III

CERTIFICATE of ANALYSIS - CCR

Todd Peterson Montana-Dakota Utilities Co. 400 N 4th St Bismarck ND 58501

Project Name: MDU Heskett

Sample Description: Dup2

Event and Year: Spring 2021

Report Date: 31 Mar 21 Lab Number: 21-W502 Work Order #: 82-0598 Account #: 002800 Date Sampled: 22 Mar 21 Date Received: 23 Mar 21 14:00 Sampled By: MVTL Field Services

PO #: 185968 OP

Temp at Receipt: 3.6C

	As Receiv Result	ed	Method RL	Method Reference	Date Analyzed	Analyst
pH Fluoride Sulfate Chloride Total Dissolved Solids Calcium - Total Boron - Total	* 7.1 1.02 5520 77.8 9530 490 < 0.5 @	units mg/l mg/l mg/l mg/l mg/l mg/l	0.1 0.10 5.00 2.0 10 1.0 0.10	SM4500-H+-B-11 SM4500-F-C ASTM D516-11 SM4500-C1-E-11 USGS I1750-85 6010D 6010D	23 Mar 21 17:00 23 Mar 21 17:00 24 Mar 21 10:47 24 Mar 21 8:47 25 Mar 21 14:00 26 Mar 21 10:32 24 Mar 21 12:46	SD RAA MDE

* Holding time exceeded

Approved by:

Clauditte 6121 K. Cantle

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

CERTIFICATION: ND # ND-00016

MINNA 1126 North 2 North Ge 2616 East J 1201 Linco

MINNESOTA VALLEY TESTING LABORATORIES, INC. 1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2 North German St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

Page: 2 of 8

CERTIFICATE OF ANALYSIS - CCR

Todd Peterson Montana-Dakota Utilities Co. 400 N 4th St Bismarck ND 58501

Project Name: MDU Heskett

Sample Description: FB2

Event and Year: Spring 2021

Report Date: 31 Mar 21 Lab Number: 21-W503 Work Order #: 82-0598 Account #: 002800 Date Sampled: 23 Mar 21 Date Received: 23 Mar 21 14:00 Sampled By: MVTL Field Services

PO #: 185968 OP

Temp at Receipt: 3.6C

	As Receiv Result	ved	Method RL	Method Reference	Date Analyzed	Analyst
pH	* 5.8	units	0.1	SM4500-H+-B-11	23 Mar 21 17:00	RAA
Fluoride	< 0.1	mg/l	0.10	SM4500-F-C	23 Mar 21 17:00	RAA
Sulfate	< 5	mg/l	5.00	ASTM D516-11	24 Mar 21 10:47	SD
Chloride	< 2	mg/l	2.0	SM4500-Cl-E-11	24 Mar 21 8:47	MDE
Total Dissolved Solids	< 10	mg/l	10	USGS I1750-85	25 Mar 21 14:00	
Calcium – Total	< 1	mg/l	1.0	6010D	26 Mar 21 11:32	
Boron – Total	< 0.1	mg/l	0.10	6010D	24 Mar 21 12:46	

* Holding time exceeded

Approved by:

CC Auron Claudette K. Canto

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

CERTIFICATION: ND # ND-00016

MVTL

MINNESOTA VALLEY TESTING LABORATORIES, INC. 1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2 North German St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

Page: 3 of 8

CERTIFICATE of ANALYSIS - CCR

Todd Peterson Montana-Dakota Utilities Co. 400 N 4th St Bismarck ND 58501

Project Name: MDU Heskett

Sample Description: MW2-90

Event and Year: Spring 2021

Report Date: 31 Mar 21 Lab Number: 21-W504 Work Order #: 82-0598 Account #: 002800 Date Sampled: 22 Mar 21 13:56 Date Received: 23 Mar 21 14:00 Sampled By: MVTL Field Services

PO #: 185968 OP

Temp at Receipt: 3.6C

	As Received Result		Method RL	Method Reference	Date Analyzed	Analyst
pH - Field pH Temperature - Field Conductivity - Field Fluoride Sulfate Chloride Total Dissolved Solids Calcium - Total Boron - Total	7.01 * 7.1 9.26 8600 1.04 5990 78.8 9640 500 < 0.5 @	units units Degrees C umhos/cm mg/l mg/l mg/l mg/l mg/l mg/l	NA 0.1 NA 1 0.10 5.00 2.0 10 1.0 0.10	SM 4500 H+ B SM4500-H+-B-11 SM 2550B EPA 120.1 SM4500-F-C ASTM D516-11 SM4500-C1-E-11 USGS I1750-85 6010D 6010D	22 Mar 21 13:56 23 Mar 21 17:00 22 Mar 21 13:56 23 Mar 21 13:56 23 Mar 21 17:00 24 Mar 21 10:47 24 Mar 21 8:47 25 Mar 21 14:00 26 Mar 21 11:32 24 Mar 21 12:46	RAA DJN DJN RAA SD SD RAA MDE

* Holding time exceeded

Approved by:

CC Arrol Clauditte K. Cantlo

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

The reporting limit was elevated for any analyte requiring a dilution as coded below: @ = Due to sample matrix # = Due to concentration of other analytes ! = Due to sample quantity + = Due to internal standard response CERTIFICATION: ND # ND-00016

MIVIL

MINNESOTA VALLEY TESTING LABORATORIES, INC. 1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2 North German St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

Page: 4 of 8

CERTIFICATE of ANALYSIS - CCR

Todd Peterson Montana-Dakota Utilities Co. 400 N 4th St Bismarck ND 58501

Project Name: MDU Heskett

Sample Description: MW3-90

Event and Year: Spring 2021

Report Date: 31 Mar 21 Lab Number: 21-W505 Work Order #: 82-0598 Account #: 002800 Date Sampled: 22 Mar 21 12:46 Date Received: 23 Mar 21 14:00 Sampled By: MVTL Field Services

PO #: 185968 OP

Temp at Receipt: 3.6C

	As Received Result		Method RL	Method Reference	Date Analyzed	Analyst
pH - Field pH Temperature - Field Conductivity - Field Fluoride Sulfate Chloride Total Dissolved Solids Calcium - Total Boron - Total	6.93 * 7.1 8.10 5343 0.13 3020 36.9 5190 505 < 0.5 @	units units Degrees C umhos/cm mg/l mg/l mg/l mg/l mg/l mg/l	NA 0.1 NA 1 0.10 5.00 2.0 10 1.0 0.10	SM 4500 H+ B SM4500-H+-B-11 SM 2550B EPA 120.1 SM4500-F-C ASTM D516-11 SM4500-C1-E-11 USGS I1750-85 6010D 6010D	22 Mar 21 12:46 23 Mar 21 17:00 22 Mar 21 12:46 23 Mar 21 12:46 23 Mar 21 12:46 24 Mar 21 10:47 24 Mar 21 8:47 25 Mar 21 14:00 26 Mar 21 11:32 24 Mar 21 12:46	RAA SD SD RAA MDE

* Holding time exceeded

K. Cantlo

CC 9 Aprol

Approved by:

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

Clauditte

The reporting limit was elevated for any analyte requiring a dilution as coded below: @ = Due to sample matrix # = Due to concentration of other analytes ! = Due to sample quantity + = Due to internal standard response CERTIFICATION: ND # ND-00016

Page: 5 of 8

CERTIFICATE of ANALYSIS - CCR

Todd Peterson Montana-Dakota Utilities Co. 400 N 4th St Bismarck ND 58501

Project Name: MDU Heskett

Sample Description: MW13

Event and Year: Spring 2021

Report Date: 31 Mar 21 Lab Number: 21-W506 Work Order #: 82-0598 Account #: 002800 Date Sampled: 22 Mar 21 9:50 Date Received: 23 Mar 21 14:00 Sampled By: MVTL Field Services

PO #: 185968 OP

Temp at Receipt: 3.6C

	As Received Result		Method RL	Method Reference	Date Analyzed	Analyst
pH - Field	7.05	units	NA	SM 4500 H+ B	22 Mar 21 9:50	DJN
pH	* 7.2	units	0.1	SM4500-H+-B-11	23 Mar 21 17:00	RAA
Temperature - Field	6.71	Degrees C	NA	SM 2550B	22 Mar 21 9:50	DJN
Conductivity - Field	9830	umhos/cm	1	EPA 120.1	23 Mar 21 9:50	DJN
Fluoride	0.85	mg/1	0.10	SM4500-F-C	23 Mar 21 17:00	RAA
Sulfate	6260	mg/1	5.00	ASTM D516-11	24 Mar 21 10:47	SD
Chloride	73.0	mg/1	2.0	SM4500-Cl-E-11	24 Mar 21 8:47	SD
Total Dissolved Solids	10400	mg/1	10	USGS I1750-85	25 Mar 21 14:00	RAA
Calcium - Total	392	mg/1	1.0	6010D	26 Mar 21 11:32	MDE
Boron - Total	< 0.5 @	mg/1	0.10	6010D	24 Mar 21 13:46	MDE

* Holding time exceeded

Approved by:

Ce 9 Apr 91 Clauditte K. Canto

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

The reporting limit was elevated for any analyte requiring a dilution as coded below: @ = Due to sample matrix # = Due to co # = Due to concentration of other analytes
+ = Due to internal standard response ! = Due to sample quantity

CERTIFICATION: ND # ND-00016

Page: 6 of 8

CERTIFICATE of ANALYSIS - CCR

Todd Peterson Montana-Dakota Utilities Co. 400 N 4th St Bismarck ND 58501

Project Name: MDU Heskett

Sample Description: MW33

Event and Year: Spring 2021

Report Date: 31 Mar 21 Lab Number: 21-W507 Work Order #: 82-0598 Account #: 002800 Date Sampled: 22 Mar 21 11:46 Date Received: 23 Mar 21 14:00 Sampled By: MVTL Field Services

PO #: 185968 OP

Temp at Receipt: 3.6C

	As Received Result		Method RL	Method Reference	Date Analyzed	Analyst
pH - Field pH Temperature - Field Conductivity - Field Fluoride Sulfate Chloride Total Dissolved Solids Calcium - Total Boron - Total	6.64 * 6.9 7.31 4816 0.24 2870 12.3 5070 458 0.27	units Units Degrees C umhos/cm mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1	NA 0.1 NA 1 0.10 5.00 2.0 10 1.0 0.10	SM 4500 H+ B SM4500-H+-B-11 SM 2550B EPA 120.1 SM4500-F-C ASTM D516-11 SM4500-C1-E-11 USGS I1750-85 6010D 6010D	22 Mar 21 11:46 23 Mar 21 17:00 22 Mar 21 11:46 23 Mar 21 11:46 23 Mar 21 17:00 24 Mar 21 10:47 24 Mar 21 8:47 25 Mar 21 14:00 26 Mar 21 11:32 24 Mar 21 13:46	DJN RAA DJN DJN RAA SD SD RAA MDE MDE

* Holding time exceeded

Approved by:

CC 9 April Clauditte K. Cantlo

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

The reporting limit was elevated for any analyte requiring a dilution as coded below: @ = Due to sample matrix # = Due to concentration of other analytes ! = Due to sample quantity + = Due to internal standard response

CERTIFICATION: ND # ND-00016

MIVTL

MINNESOTA VALLEY TESTING LABORATORIES, INC. 1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2 North German St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

Page: 7 of 8

CERTIFICATE of ANALYSIS - CCR

Todd Peterson Montana-Dakota Utilities Co. 400 N 4th St Bismarck ND 58501

Project Name: MDU Heskett

Sample Description: MW70

Event and Year: Spring 2021

Report Date: 31 Mar 21 Lab Number: 21-W508 Work Order #: 82-0598 Account #: 002800 Date Sampled: 22 Mar 21 13:18 Date Received: 23 Mar 21 14:00 Sampled By: MVTL Field Services

PO #: 185968 OP

Temp at Receipt: 3.6C

	As Received Result		Method RL	Method Reference	Date Analyzed	Analyst
pH - Field	7.03	units	NA	SM 4500 H+ B	22 Mar 21 13:18	DJN
pH	* 7.2	units	0.1	SM4500-H+-B-11	23 Mar 21 17:00	RAA
Temperature - Field	9.61	Degrees C	NA	SM 2550B	22 Mar 21 13:18	DJN
Conductivity - Field	3913	umhos/cm	1	EPA 120.1	23 Mar 21 13:18	DJN
Fluoride	0.32	mg/l	0.10	SM4500-F-C	23 Mar 21 13:18	RAA
Sulfate	2000	mg/l	5.00	ASTM D516-11	24 Mar 21 11:11	SD
Chloride	51.9	mg/l	2.0	SM4500-C1-E-11	24 Mar 21 11:11	SD
Total Dissolved Solids	3650	mg/l	10	USGS I1750-85	25 Mar 21 14:00	RAA
Calcium - Total	344	mg/l	1.0	6010D	26 Mar 21 11:32	MDE
Boron - Total	0.44	mg/l	0.10	6010D	24 Mar 21 13:46	MDE

* Holding time exceeded

Approved by:

CC. ADIDI Clauditte K. Canto

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

MIVTL

MINNESOTA VALLEY TESTING LABORATORIES, INC. 1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2 North German St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

Page: 8 of 8

CERTIFICATE of ANALYSIS - CCR

Todd Peterson Montana-Dakota Utilities Co. 400 N 4th St Bismarck ND 58501

Project Name: MDU Heskett

Sample Description: MW80R

Event and Year: Spring 2021

Report Date: 31 Mar 21 Lab Number: 21-W509 Work Order #: 82-0598 Account #: 002800 Date Sampled: 23 Mar 21 11:24 Date Received: 23 Mar 21 14:00 Sampled By: MVTL Field Services

PO #: 185968 OP

Temp at Receipt: 3.6C

	As Received Result		Method RL	Method Reference	Date Analyzed	Analyst
pH - Field pH Temperature - Field	7.09 * 7.2 8.02	units units Degrees C	NA 0.1 NA	SM 4500 H+ B SM4500-H+-B-11 SM 2550B	23 Mar 21 11:24 23 Mar 21 17:00 23 Mar 21 11:24 23 Mar 21 11:24	DJN RAA DJN DJN
Conductivity - Field Fluoride Sulfate Chloride Total Dissolved Solids Calcium - Total Boron - Total	5614 0.25 2890 134 5710 336 < 0.5 @	umhos/cm mg/l mg/l mg/l mg/l mg/l mg/l	1 0.10 5.00 2.0 10 1.0 0.10	EPA 120.1 SM4500-F-C ASTM D516-11 SM4500-Cl-E-11 USGS I1750-85 6010D 6010D	23 Mar 21 11:24 23 Mar 21 17:00 24 Mar 21 11:11 24 Mar 21 8:47 25 Mar 21 14:00 26 Mar 21 11:32 24 Mar 21 13:46	RAA SD SD RAA MDE MDE

* Holding time exceeded

Approved by:

9 Aprol Clauditte K. Canto

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

The reporting limit was elevated for any analyte requiring a dilution as coded below: @ = Due to sample matrix # = Due to concentration of other analytes ! = Due to sample quantity + = Due to internal standard response CERTIFICATION: ND # ND-00016

MIVIL

MINNESOTA VALLEY TESTING LABORATORIES, INC. 1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2 North German St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

Page: 1 of 8

CERTIFICATE of ANALYSIS - CCR

Todd Peterson Montana-Dakota Utilities Co. 400 N 4th St Bismarck ND 58501

Project Name: MDU Heskett

Sample Description: Dup1

Event and Year: Spring 2021

Report Date: 31 Mar 21 Lab Number: 21-W510 Work Order #: 82-0598 Account #: 002800 Date Sampled: 22 Mar 21 Date Received: 23 Mar 21 14:00 Sampled By: MVTL Field Services

PO #: 185968 OP

Temp at Receipt: 3.6C

	As Received Result		Method RL	Method Reference	Date Analyzed	Analyst
pH Fluoride Sulfate Chloride Total Dissolved Solids Calcium - Total Boron - Total	* 7.2 0.84 6450 73.1 10600 399 < 0.5 @	units mg/l mg/l mg/l mg/l mg/l	0.1 0.10 5.00 2.0 10 1.0 0.10	SM4500-H+-B-11 SM4500-F-C ASTM D516-11 SM4500-C1-E-11 USGS I1750-85 6010D 6010D	23 Mar 21 17:00 23 Mar 21 17:00 24 Mar 21 11:11 24 Mar 21 8:47 25 Mar 21 14:00 26 Mar 21 11:32 24 Mar 21 13:46	RAA SD SD RAA MDE

* Holding time exceeded

Approved by:

9 Aprol Clauditte K. Canto

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

CC

CERTIFICATION: ND # ND-00016

Page: 2 of 8

CERTIFICATE of ANALYSIS - CCR

Todd Peterson Montana-Dakota Utilities Co. 400 N 4th St Bismarck ND 58501

Project Name: MDU Heskett

Sample Description: FB1

Event and Year: Spring 2021

Report Date: 31 Mar 21 Lab Number: 21-W511 Work Order #: 82-0598 Account #: 002800 Date Sampled: 22 Mar 21 Date Received: 23 Mar 21 14:00 Sampled By: MVTL Field Services

PO #: 185968 OP

Temp at Receipt: 3.6C

	As Received Result	Method RL	Method Reference	Date Analyzed	Analyst
pH Fluoride Sulfate Chloride Total Dissolved Solids Calcium - Total Boron - Total	* 5.7 units < 0.1 mg/l < 5 mg/l < 2 mg/l < 10 mg/l < 1 mg/l < 0.1 mg/l	0.1 0.10 5.00 2.0 10 1.0 0.10	SM4500-H+-B-11 SM4500-F-C ASTM D516-11 SM4500-Cl-E-11 USGS I1750-85 6010D 6010D	23 Mar 21 17:00 23 Mar 21 17:00 24 Mar 21 11:11 24 Mar 21 8:47 25 Mar 21 14:00 26 Mar 21 11:32 24 Mar 21 13:46	RAA SD SD RAA MDE

* Holding time exceeded

Approved by:

9 Ard Clauditte K. Canto

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

Page: 3 of 8

CERTIFICATE of ANALYSIS - CCR

Todd Peterson Montana-Dakota Utilities Co. 400 N 4th St Bismarck ND 58501

Project Name: MDU Heskett

Sample Description: MW101

Event and Year: Spring 2021

Report Date: 31 Mar 21 Lab Number: 21-W512 Work Order #: 82-0598 Account #: 002800 Date Sampled: 22 Mar 21 14:48 Date Received: 23 Mar 21 14:00 Sampled By: MVTL Field Services

PO #: 185968 OP

Temp at Receipt: 3.6C

	As Received Result		Method RL	Method Reference	Date Analyzed	Analyst
pH - Field	6.71	units	NA	SM 4500 H+ B	22 Mar 21 14:48	DJN
Hq	* 6.9	units	0.1	SM4500-H+-B-11	23 Mar 21 17:00	RAA
Temperature - Field	10.0	Degrees C	NA	SM 2550B	22 Mar 21 14:48	DJN
Conductivity - Field	5148	umhos/cm	1	EPA 120.1	22 Mar 21 14:48	DJN
Fluoride	0.26	mg/l	0.10	SM4500-F-C	23 Mar 21 17:00	RAA
Sulfate	3190	mg/l	5.00	ASTM D516-11	24 Mar 21 11:11	SD
Chloride	21.5	mg/l	2.0	SM4500-Cl-E-11	24 Mar 21 8:47	SD
Total Dissolved Solids	5620	mg/l	10	USGS I1750-85	25 Mar 21 14:00	RAA
Calcium - Total	463	mg/l	1.0	6010D	26 Mar 21 11:32	MDE
Boron - Total	< 0.5 @	mg/l	0.10	6010D	24 Mar 21 13:46	MDE

* Holding time exceeded

CC 9 Apr 21 Clauditte Approved by: K. Cantle

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

CERTIFICATION: ND # ND-00016

4 of 8 Page:

CERTIFICATE of ANALYSIS - CCR

Todd Peterson Montana-Dakota Utilities Co. 400 N 4th St Bismarck ND 58501

Project Name: MDU Heskett

Sample Description: MW102

Event and Year: Spring 2021

Report Date: 31 Mar 21 Lab Number: 21-W513 Work Order #: 82-0598 Account #: 002800 Date Sampled: 22 Mar 21 11:46 Date Received: 23 Mar 21 14:00 Sampled By: MVTL Field Services

PO #: 185968 OP

Temp at Receipt: 3.6C

	As Received Result		Method RL	Method Reference	Date Analyzed	Analyst
pH - Field pH Temperature - Field Conductivity - Field Fluoride Sulfate Chloride Total Dissolved Solids Calcium - Total Boron - Total	6.85 * 7.0 8.61 8140 0.17 5170 5.4 8440 441 1.16	units Degrees C umhos/cm mg/l mg/l mg/l mg/l mg/l mg/l	NA 0.1 NA 1 0.10 5.00 2.0 10 1.0 0.10	SM 4500 H+ B SM4500-H+-B-11 SM 2550B EPA 120.1 SM4500-F-C ASTM D516-11 SM4500-C1-E-11 USGS I1750-85 6010D 6010D	22 Mar 21 11:46 23 Mar 21 17:00 22 Mar 21 11:46 23 Mar 21 11:46 23 Mar 21 17:00 24 Mar 21 11:11 24 Mar 21 8:47 25 Mar 21 14:00 26 Mar 21 12:32 24 Mar 21 13:46	DJN RAA DJN DJN RAA SD SD RAA MDE MDE

* Holding time exceeded

Approved by:

Clauditte K. Canto

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

The reporting limit was elevated for any analyte requiring a dilution as coded below: @ = Due to sample matrix # = Due to co # = Due to co # = Due to concentration of other analytes
+ = Due to internal standard response ! = Due to sample quantity CERTIFICATION: ND # ND-00016

MIVIL

MINNESOTA VALLEY TESTING LABORATORIES, INC. 1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2 North German St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

Page: 5 of 8

CERTIFICATE of ANALYSIS - CCR

Todd Peterson Montana-Dakota Utilities Co. 400 N 4th St Bismarck ND 58501

Project Name: MDU Heskett

Sample Description: MW103

Event and Year: Spring 2021

Report Date: 31 Mar 21 Lab Number: 21-W514 Work Order #: 82-0598 Account #: 002800 Date Sampled: 23 Mar 21 9:28 Date Received: 23 Mar 21 14:00 Sampled By: MVTL Field Services

PO #: 185968 OP

Temp at Receipt: 3.6C

	As Recei [.] Result	ved	Method RL	Method Reference	Date Analyzed	Analyst
pH - Field pH	6.84 * 7.0	units units	NA 0.1	SM 4500 H+ B SM4500-H+-B-11	23 Mar 21 9:28 23 Mar 21 17:00	DJN RAA
Temperature - Field	7.41	Degrees C	NA	SM 2550B	23 Mar 21 9:28	DJN
Conductivity - Field	4964	umhos/cm	1	EPA 120.1 SM4500-F-C	23 Mar 21 9:28 23 Mar 21 17:00	DJN RAA
Fluoride Sulfate	0.27 2780	mg/l mg/l	0.10 5.00	ASTM D516-11	24 Mar 21 11:11	SD
Chloride	108	mg/l	2.0	SM4500-Cl-E-11	24 Mar 21 8:47	SD
Total Dissolved Solids	5020	mg/l	10 1.0	USGS I1750-85 6010D	25 Mar 21 14:00 26 Mar 21 12:32	RAA MDE
Calcium - Total Boron - Total	510 < 0.1	mg/l mg/l	0.10	6010D	24 Mar 21 13:46	MDE

Total and dissolved selenium have been rerun.

* Holding time exceeded

Approved by:

CC 9 Apra Clauditte K. Cantle

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

MINNESOTA VALLEY TESTING LABORATORIES, INC. 1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2 North German St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890

2 North German St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

Page: 6 of 8

CERTIFICATE of ANALYSIS - CCR

Todd Peterson Montana-Dakota Utilities Co. 400 N 4th St Bismarck ND 58501

Project Name: MDU Heskett

Sample Description: MW104

Event and Year: Spring 2021

Report Date: 31 Mar 21 Lab Number: 21-W515 Work Order #: 82-0598 Account #: 002800 Date Sampled: 23 Mar 21 10:25 Date Received: 23 Mar 21 14:00 Sampled By: MVTL Field Services

D----

PO #: 185968 OP

Temp at Receipt: 3.6C

	As Received Result		Method RL	Method Reference	Date Analyzed	Analyst
pH - Field pH Temperature - Field Conductivity - Field Fluoride Sulfate Chloride Total Dissolved Solids Calcium - Total Boron - Total	7.01 * 7.2 8.51 14045 0.56 11000 87.2 18000 419 0.64	units Degrees C umhos/cm mg/l mg/l mg/l mg/l mg/l mg/l	NA 0.1 NA 1 0.10 5.00 2.0 10 1.0 0.10	SM 4500 H+ B SM4500-H+-B-11 SM 2550B EPA 120.1 SM4500-F-C ASTM D516-11 SM4500-C1-E-11 USGS I1750-85 6010D 6010D	23 Mar 21 10:25 23 Mar 21 17:00 23 Mar 21 10:25 23 Mar 21 10:25 23 Mar 21 17:00 24 Mar 21 11:11 24 Mar 21 8:47 25 Mar 21 14:00 26 Mar 21 12:32 24 Mar 21 13:46	DJN RAA DJN DJN RAA SD SD RAA MDE MDE

* Holding time exceeded

Approved by:

CC tor of Clauditte K. Canto

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

The reporting limit was elevated for any analyte requiring a dilution as coded below: @ = Due to sample matrix # = Due to concentration of other analytes ! = Due to sample quantity + = Due to internal standard response CERTIFICATION: ND # ND-00016

Page: 7 of 8

CERTIFICATE of ANALYSIS - CCR

Todd Peterson Montana-Dakota Utilities Co. 400 N 4th St Bismarck ND 58501

Project Name: MDU Heskett

Sample Description: MW105

Event and Year: Spring 2021

Report Date: 31 Mar 21 Lab Number: 21-W516 Work Order #: 82-0598 Account #: 002800 Date Sampled: 23 Mar 21 12:43 Date Received: 23 Mar 21 14:00 Sampled By: MVTL Field Services

PO #: 185968 OP

Temp at Receipt: 3.6C

	As Received Result		Method RL	Method Reference	Date Analyzed	Analyst
pH - Field	6.84	units	NA	SM 4500 H+ B	23 Mar 21 12:43	DJN
H	* 7.2	units	0.1	SM4500-H+-B-11	23 Mar 21 18:00	RAA
Temperature - Field	8.31	Degrees C	NA	SM 2550B	23 Mar 21 12:43	DJN
Conductivity - Field	5906	umhos/cm	1	EPA 120.1	23 Mar 21 12:43	DJN
Fluoride	0.26	mg/l	0.10	SM4500-F-C	23 Mar 21 18:00	RAA
Sulfate	3360	mg/l	5.00	ASTM D516-11	24 Mar 21 11:11	SD
Chloride	261	mg/l	2.0	SM4500-Cl-E-11	24 Mar 21 8:47	SD
Total Dissolved Solids	6060	mg/l	10	USGS I1750-85	25 Mar 21 14:00	RAA
Calcium - Total	316	mg/l	1.0	6010D	26 Mar 21 12:32	MDE
Boron - Total	< 0.5 @	mg/l	0.10	6010D	24 Mar 21 14:46	MDE

* Holding time exceeded

CC 9 Apron

Approved by:

Clauditte K. Canrep

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

CERTIFICATION: ND # ND-00016

MIVTL

MINNESOTA VALLEY TESTING LABORATORIES, INC. 1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2 North German St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

Page: 8 of 8

CERTIFICATE of ANALYSIS - CCR

Todd Peterson Montana-Dakota Utilities Co. 400 N 4th St Bismarck ND 58501

Project Name: MDU Heskett

Sample Description: MW44R

Event and Year: Spring 2021

Report Date: 31 Mar 21 Lab Number: 21-W517 Work Order #: 82-0598 Account #: 002800 Date Sampled: 23 Mar 21 10:42 Date Received: 23 Mar 21 14:00 Sampled By: MVTL Field Services

-

PO #: 185968 OP

. . . .

Temp at Receipt: 3.6C

	As Received Result		Method RL	Method Reference	Date Analyzed	Analyst
pH - Field pH Temperature - Field Conductivity - Field Fluoride Sulfate Chloride Total Dissolved Solids Calcium - Total Boron - Total	6.66 * 6.9 8.47 8992 0.65 5950 197 10400 384 < 0.5 @	units Units Degrees C umhos/cm mg/l mg/l mg/l mg/l mg/l mg/l	NA 0.1 NA 1 0.10 5.00 2.0 10 1.0 0.10	SM 4500 H+ B SM4500-H+-B-11 SM 2550B EPA 120.1 SM4500-F-C ASTM D516-11 SM4500-C1-E-11 USGS I1750-85 6010D 6010D	23 Mar 21 10:42 23 Mar 21 18:00 23 Mar 21 10:42 23 Mar 21 18:00 24 Mar 21 11:11 24 Mar 21 8:47 25 Mar 21 14:00 26 Mar 21 12:32 24 Mar 21 14:46	DJN RAA DJN DJN RAA SD SD RAA MDE MDE

* Holding time exceeded

Approved by:

11 1010 Clauditte K. Canto

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

MVTL

Ouality Control Report

MINNESOTA VALLEY TESTING LABORATORIES, INC.

1126 N. Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 E. Broadway Ave. ~ Bismarck, ND 58502 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Highway ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

MEMBER ACIL

Page: 1 of 1

Lab IDs: 21-W502 to 21-W3	517	Pr	oject: MI	DU Heske	ett		Work Or	der: 202	182-0598	8							
Analyte	LCS Spike Amt	LCS Rec %	LCS % Rec Limits	Matrix Spike Amt	Matrix Spike ID	Matrix Spike Orig Result	Matrix Spike Result	Matrix Spike Rec %	Matrix Spike % Rec Limits	MSD/ Dup Orig Result	MSD/ Dup Result	MSD Rec %	MSD/ Dup RPD	MSD/ Dup RPD Limit (<)	Known Rec (%)	Known % Rec Limits	Method Blank
Boron - Total mg/l	0.40 0.40 0.40	90 95 95	80-120 80-120 80-120	0.400 0.400 0.400	21-W477 21-W511 21-W463	0.36 < 0.1 0.50	0.74 0.36 0.96	95 90 115	75-125 75-125 75-125	0.74 0.36 0.96	0.72 0.35 0.93	90 88 108	2.7 2.8 3.2	20 20 20	- - - -	- - - -	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1
Calcium - Total mg/l	100 100 100	109 111 112	80-120 80-120 80-120	500 2000 500 500 500	21D763q 21-M1496 21W501q 21W512q 21W517q	34.4 < 20 397 463 384	560 2040 900 965 880	105 102 101 100 99	75-125 75-125 75-125 75-125 75-125 75-125	560 2040 900 965 880	560 2040 895 965 890	105 102 100 100 101	0.0 0.0 0.6 0.0 1.1	20 20 20 20 20 20			<1 <1 <1 <1 <1 <1 <1 <1
Chloride mg/l	30.0 30.0	95 95	80-120 80-120	30.0	21-W511	< 2	29.0	97	80-120	29.0	29.0	97	0.0	20	-	-	< 2 < 2
Fluoride mg/l	0.50 0.50 0.50	104 102 102	90-110 90-110 90-110	0.500 0.500 0.500	21-D689 21-W507 21-W517	1.59 0.24 0.65	2.05 0.70 1.05	92 92 80	80-120 80-120 80-120	2.05 0.70 1.05	2.08 0.71 1.06	98 94 82	1.5 1.4 0.9	20 20 20	- - -		< 0.1 < 0.1 < 0.1 < 0.1
pH units		-						- - -		12.4 7.2 7.2	12.4 7.4 7.2	- - -	0.0 2.7 0.0	20 20 20	-		- - -
Sulfate mg/l	100 100	103 101	80-120 80-120	100 100	21-W503 21-W511	< 5 < 5	100 95.4	100 95	80-120 80-120	100 95.4	100 96.2	100 96	0.0 0.8	20 20	-	-	< 5 < 5
Total Dissolved Solids mg/l	-		-	-	-	-	-	-	-	10600 10400	10500 10400	-	0.9 0.0	20 20		-	< 10

Samples were received on 23 Mar 2021 at 1400.

•

Temperature upon receipt at the Bismarck laboratory was 3.6°C.

All samples were properly preserved unless noted here and/or flagged on the individual analytical laboratory report.

With the exception of pH, all holding times were met.

Approved methodology was followed for all sample analyses.

All acceptance criteria were met for calibration, method blanks, laboratory control samples, laboratory fortified matrix/duplicates unless noted here:

For some analytes, the reported results were elevated due to additional dilutions required to minimize the effects of sample matrix.

Approved by: C. Conit () 9Ag-21

2616 E. Broadway Ave MVTL Bismarck, ND 58501

(701) 258-9720

Chain of Custody Record

Project Name:				Event:								Work Orde	er Number:		
	MDU I	Heskett		Spring 2021					21		82-0598				
Report To: Attn: Address: Phone: Email:	Montana-Dakota Utilitie Todd Peterson 400 North 4th St. Bismarck, ND 58501 701-425-2427 todd.peterson@mdu.co		CC:								Collected E Darren Jo	sy: n Niques evenny M) Y~~		
Lab Number	Sample ID	Date Date	line	Samol	11 allo	Soc Rail	Son Min	250 Minic	1 Life Min Minic	lemp (°C)	Spec. Conn	in Ha	Turbioity of	Analysis Required	
W502	Dup2	224/221	NA	GW	X	X	Х	X		NA	NA	NA	NA		
W503	FB2	23 Mar 21	NA	GW	X	X	X	X		NA	NA	NA	NA		
W504	MW2-90	22 Marzi	1356	GW	X	X	Х	X	- 9	,26	8600	7.0(0.84		
W505	MW3-90	221221	1246	GW	X	X	X	Х		3.10	5343	6.93	0,86	MDU Heskett Spring	
W506	MW13	228/2221	0950	GW	X	X	Х	Х		.71	9830	7.05	2-59	2021	
W507	MW33	22Marzy	1146	GW	X	X	Х	Х		7.31.	4816	6.64	4.81	2021	
W.508	MW70	22 Mar21	1318	GW	X	X	Х	Х		7.61	3913	7.03	0.41		
WSOS	MW80R	238/221	1124	GW	X	X	Х	X		B.02	5614	7.09	1.12		

Comments:

Relinquished By		Sample	Condition	Rec	eived By
Name	Date/Time	Location	Temp (°C)	Name	Date/Time
1 Da Ning	23,Ma/21 1400	< <u>⊂Log In</u> > Walk In #2	TM562 / TM805	Teral XL	23 Mar 21 1400
2			3.6	0	

2616 E. Broadway Ave MVTL Bismarck, ND 58501 (701) 258-9720

Chain of Custody Record

Project Name:				Event:							Work Order Number:				
	MDU H	eskett					Sp	orir	ng 2021		82-()598				
Report To:	Montana-Dakota Utilities	5		CC:											
Attn: Address:	Todd Peterson 400 North 4th St. Bismarck, ND 58501	00 North 4th St. Bismarck, ND 58501									Derre	n Kieswa. Jeremy	Z		
Phone: Email:	701-425-2427 todd.peterson@mdu.com										Jeremy	Ney-			
Lab Number	Sample ID	Date	lime	Samole	3/12 Type	500 Raw	Son Min	250 Min.	¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹	Spec. Con.	in Ha	Turbioint, m.	Analysis Required		
WSID	Dup1	22 Mar 21	NA	GW		X	X	X	NA	NA	NA	NA			
WSII	FB1	22 pla-21	NA	GW	X	X	X	X	NA	NA	NA	NA			
WSIZ	MW101	22 Mar 21	1448	GW	X	X	X	X	10,00	5148	6.71	0.67			
W513	MW102	22Mar21	1146	GW	X	X	X	X	8.6(B140	6.85	0,52	MDU Heskett Spring		
WSIY	MW103 23 Maron	22 Mar 21	0928	GW	X	X	X	X	7.41	4964	6.84	0,44	2021		
W515	MW104 2000	23 Mar 21	1025	GW	X	Х	_	Х	8,51	14045	7.01	0.73	2021		
WSIL	MW105	Z3 Morzi	1243	GW	X	Х	X	X	8,31	5906	6.84	3,29			
W517	MW44R	23 M221	1042	GW	X	X	X	X	8,47	8992	6.66	1.82	6		

Comments:

Relinquished By		Sample C	Condition	Rec	Received By				
Name	Date/Time	Location	Temp (°C)	Name	Date/Time				
1 Ja Ning	2310121 1400	Walk In #2	TM562 / 21805	stera XI	23.Mar 21 1400				
2			3.6						

			Fial		tack			Company:		MDU Hesi	(ett
MVTĹ			riei	u Da	ntash	ieei		Event:		Spring 202	21
			G	roundwate	r Assessme	ent		Sample ID:		2-90	2
2616 E. Broadway Ave, Bis	smarck, ND							Sampling P	ersonal:	Darra	
Phone: (701) 258-9	9720		11			<u> </u>				$\hat{\Lambda}$	
Weather Conditions:	:	Temp:	45	°F	Wind:	Se	@ / (Precip:	Sunny / Pa	artly Cloudy / Cloudy
	WELL INFO	ORMATIO	N					SAN	IPLING IN	FORMATI	ON
Well Locked?	YES	NO]	Purging Me	thod:	Bladder			Control Settings:
Well Labeled?	XES	NO				Sampling M	ethod:	Bladder			Purge:
Casing Strait?	XHS	NO				Dedicated E	quipment?	YES	NO		Recover: Sec.
Grout Seal Intact?	^C YES	NO	Not \	/isible							PSI:
Repairs Necessary?						Duplicate Sa		YES	NO		
	g Diameter:	2]	Duplicate Sa	ample ID:	1 Pu	p-2		
Water Level Be		21	.99	ft				· · ·	<u> </u>	•	
	oth of Well:		<u>~</u>	ft	4		Bott	le List:			
	ell Volume:			liters ft	4	1 Liter Raw					
Depth to To		-	6	ft		500mL Nitric	<u>۱</u>	17 -			
Water Level Af		22.	ンし Nater Level		-	500mL Nitric		$\langle \mathcal{L} \rangle$			
Measureme	nt Method:	Electric	vater Level	Indicator]	250mL Sulfur]	
<u> </u>				I	T	LD READIN			Decement		
Stabilization Param		Temp.	Spec.	рН	DO	ORP	Turbidity	Water Level	Pumping	Liters	Appearance or Comment
(3 Consecutive Purge Date	²⁾ Time	(°C) ±0.5°	Cond. ±5%	±0.1	(mg/L) ±10%	(mV) ±10	(NTU)	(ft)	Rate mL/Min	Removed	Clarity, Color, Odor, Ect. clear, slightly turbid, turbid
Fuige Date		Start of Well		1 10.1	1 10/8	110				I	clear, signity turbid, turbid
	1326	6,50	1000-11	7.04	IV.CI	-23 2	1.24	12 22	102	500	
	17-0	9.09	000	7.01	5.43	-22.7	1,95	22,26	100	1500	
22/10/21	rzu/	9.21	4927	7.01	530	-21,9	1.75	22,2%	100	500	
2 Mim	1201	9,20	8/42	1.01	5,40	-22,1	0.39	172.21	100	500	
17/1	127-1	0,26	\$7.00	701	5.01	1227	O all	22.20	100	500	
V	+ 776	11-2	0000				- 191				
						·				1	
									*		
*	Well Sta	abilized?	YES	NO				Total Vo	ume Purged:	3500	Liters
Sample Date	Time	Temp.	Spec.	рН			Turbidity				Appearance or Comment
Sample Date		(°C)	Cond.				(NTU)				Clarity, Color, Odor, Ect.
22 nar21	1356	9.26	\$600	7.01			0,84				Ular
Comments:				- 1						· · · · · · · · · · · · · · · · · · ·	

the second s

			Fial	4 0-	+	haat		Company:		MDU Hes	
MVTI			ге	u Da	ILds	heet		Event:		Spring 202	21
			G	roundwate	r Assessr	nent		Sample ID:		2-90	221.7.4 1
2616 E. Broadway Ave, Bi	smarck. ND							Sampling P	L	arren	Niesnay
Phone: (701) 258-9								<u></u>	1	<i>JUG1 201</i>	1 2 3
Weather Conditions		Temp:	US	°F	Wind:	Cp	@ / (~		Precip:	Sunny/ Pa	artly Cloudy / Cloudy
						20	<u> </u>				
Well Locked?	YES	ORMATIO	V		1	Purging Met	thad	Bladder	IPLING IN		Control Settings:
Well Labeled?	YES	<u>NO</u> NO			ł	Sampling Me		Bladder		-	Purge: 2_ Sec.
Casing Strait?	YES	NO		~	1	Dedicated E		YES	NO	4	Recover: SS Sec.
Grout Seal Intact?	YES	NO	Not 1	lisible	1	Localedica				4	PSI:
Repairs Necessary?					1	Duplicate Sa	ample?	YES	(NO	1	
	g Diameter:	2			1	Duplicate Sa]	
Water Level Be		200	11 top	ft						-	
	pth of Well:		- /	ft	1		Bottl	e List:		4	
	/ell Volume:			liters	4	1 Liter Raw					
	op of Pump:			ft ft	-	500mL Nitric					
Water Level Af Measureme			<u> </u>		4	500mL Nitric					
ivieasureme	ent method.	Electric	valei Levei	mulcator]	250mL Sulfur			· · · · · · · · · · · · · · · · · · ·	1	
				.		IELD READIN		.	r	-	
Stabilization Paran		Temp.	Spec.	рH	DO	ORP	Turbidity	Water Level	Pumping	Liters	Appearance or Comment
(3 Consecutive		(°C)	Cond.		(mg/L)		(NTU)		Rate	Removed	Clarity, Color, Odor, Ect.
Purge Date	Time 1216	±0.5° Start of Well	±5%	±0.1	±10%	±10		(ft)	mL/Min	1	clear, slightly turbid, turbid
	1221	1.99	CZ SO	693	121		3.09	-	104	500	
22/10/21	1721	8.04	5360	1 03	26	-67.17	- 1.93	TOO	100	1500	and the second s
22	1241	8.07	5260	6.93	2,97		1.00	TOD	100	500	-A
12.	12.41	8.10	247	6.93	1 96		12.91	700	100	500	
	1200	8210			1913	u		100	100		
				1						1	
						· · · · · · · · · · · · · · · · · · ·					
				L			L		ļ	\bot	<u> </u>
	Well Sta	abilized?	YES	NO				Total Vo	lume Purged	3,000	_Liters
Sample Date	Time	Temp.	Spec.	pH			Turbidity				Appearance or Comment
Jampie Date		(°C)	Cond.				(NTU)				Clarity, Color, Odor, Ect.
22 Mar 21	1246	8,10	5343	6.93			0186				Clear
Comments:						······					
L	I				· · · · · · · · · · · · · · · · · · ·			<u> </u>	· · · · · · · · · · · · · · · · · · ·		

Groundwater Assessment

	Company:	MDU Heskett
ieet	Event:	Spring 2021
ent	Sample ID:	, 13
	Sampling Personal:	Joren Kons
_		
5 @ 5-10	Precip:	Sunny / Partly Cloudy / Cloudy
	SAMPLING IN	FORMATION
Purging Method:	Bladder	Control Settings:
Sampling Method:	Bladder	Purge: S Sec.
Dedicated Equipment?	(YES) NO	Recover: 55 Sec.
		PSI: 20

2616 E. Broadway Ave, Bismarck, ND

Phone: (701) 258-9720

Weather Conditions:	Temp:	20 °F	Wind:	5 @ 5-10	Precip:	Sunny / Partly Cloudy / Cloudy
\\/EI1	INFORMATION				SAMPLING	NEORMATION

Duplicate Sample?

Duplicate Sample ID:

500mL Nitric (filtered) 250mL Sulfuric

YES?

Bottle List:

Dr

NO

	WELL INFO	KIVIATION	
Well Locked?	YES	NO	
Well Labeled?	YES	NO	
Casing Strait?	YES	NO	
Grout Seal Intact?	YES	NO	Not Visible
Repairs Necessary?			
Casir	g Diameter:	2"	
Water Level B	efore Purge:	31,1	3 ft
Total De	pth of Well:		ft
V	/ell Volume:		liters
Depth to T	op of Pump:	******	- ft
Water Level A	fter Sample:	34,	71 ft
Measureme	ent Method:	Electric W	ater Level Indicator

FIELD READINGS

1 Liter Raw 500mL Nitric

Stabilization Para	ameters	Temp.	Spec.	pН	DO	ORP	Turbidity	Water Level	Pumping	Liters	Appearance or Comment
(3 Consecuti	ive)] (°C)	Cond.	hu	(mg/L)	(mV)	(NTU)	Water Lever	Rate	Removed	Clarity, Color, Odor, Ect.
Purge Date	Time	±0.5°	±5%	±0.1	±10%	±10		(ft)	mL/Min		clear, slightly turbid, turbid
22 Mar 21	0835	Start of Wel	l Purge								
	0840	5.67	6511	7.06	11.17	251.9	0.43	31.93	100.0	500,0	Clear
	0650	6,53	9693	7.0b	9.73	240.5	6.77	32,58	180.0	1000.0	Cleare
	0900	6,15	8469	7.12	10.91	249.0	6.21	32,92	100:0	1000.0	Clear
	0910	6.32	9750	7,13	5.03	253.1	5.48	33,32	100.0	1000.0	Clear
	0930	6,36	9791	7.10	3,74	256,3	2.58	33.82	100.0	2002,0	Clear
	0940	6.47	9814	1,08	3,92	247.4	3,55	34,26	100.0	1000.0	clow
	0945	636	9812	7.07	3,83	245,4	2.13	34.37	6,001	500.D	Clear
	0950	6.71	9630	7.05	3.71	249.2	2,59	34,49	100.0	500.0	Clein
								1			
	Well St	tabilized?	YES	NO				Total Vo	ume Purged:	7500.0	Liters
Sample Date	Time	Temp.	Spec.	pН			Turbidity		••••••		Appearance or Comment
Sample Date	inne	(°C)	Cond.	hu			(NTU)				Clarity, Color, Odor, Ect.
20 12 21	1-0-0-0	1 71	0830	7.50			2 -0				

22 plar 21	0150 6.71	9030 4.05	2-59	Clear	
Comments:					

		\sum	Einl	d Da	tack	voot		Company:		MDU Hes	kett	_,,
MVT			гіеі		11921	ieei		Event:		Spring 202	21	
			G	roundwate	r Assessme	ent		Sample ID:		33	1	
2616 E. Broadway Ave, I	Bismarck, ND							Sampling F	Personal:	DATTE	m Niesv	has
Phone: (701) 258	-9720							•••••••••				$ \rightarrow $
Weather Condition	s:	Temp:	44	°F	Wind:		<u>92</u>	15	Precip:	Sunny / Pa	artly Cloudy / Cloud	/
	WELL INFO	ORMATIO	N					SAN	APLINGT	FORMATI	ON	
Well Locked?	YES	NO	· - · ·]	Purging Me	thod:	Bladder]	Control Settin	ngs:
Well Labeled?	TES	NO]	Sampling N	1ethod:	Bladder			Purge: 82	Sec.
Casing Strait?	TES	NO				Dedicated I	Equipment?	TES 2	NO		Recover: 58	Sec.
Grout Seal Intact?	YES	NO	Not	/isible	+					7	PSI:	
Repairs Necessary?					4	Duplicate S		YES	(NO)			
Water Level B	ng Diameter:		1 07	ft	{	Duplicate S	ample ID:]		
	epth of Well:	1	483-	ft	4		Bott	le List:		1		
	Vell Volume:			liters	1	1 Liter Raw				1		
	op of Pump:		-	ft		500mL Nitric	:					
Water Level A			00	ft	1	500mL Nitric	: (filtered)					
Measurem	ent Method:	Electric \	Nater Level	Indicator		250mL Sulfu	ric					
					FIE	LD READIN	IGS					
Stabilization Para	meters	Temp.	Spec.		DO	ORP	Turbidity	Water Level	Pumping	Liters	Appearance or Co	mment
(3 Consecuti	ve)	(°C)	Cond.	pН	(mg/L)	(mV)	(NTU)	water Level	Rate	Removed	Clarity, Color, Od	or, Ect.
Purge Date	Time	±0.5°	±5%	±0.1	±10%	±10		(ft)	mL/Min		clear, slightly turbi	d, turbid
х.	0906	Start of Well	Purge	1			1.1.1	1 1 1 1 1	I	<u> </u>	<i>(ST)</i>	
	0911	3.29	514	6171	4.14	-45.6	199	41.92	100	500	57	
DA (L'	ay-	6,35	04908	6.68	3,42	65,5	24.7	41.92	100	2000	st	
22Ma/21	100	7.00	4817	9.95	2.24	- 59.9	+ / /	42.00	100	3000	Cha	
	131	1970 7.14	48,5	6400	1 20	-44.4	0.20	41.94	100	4500	<u> </u>	
	130	7,20	Lig 12	6,67	7.70	-42.3	1.01	41.96	100	2000	11	
	1197	1.25	4816	6.63	2.71	-41.5	4.24	41.98	100	500	a	
	1146	7.31	4816	6.69	2.76	-39.1	4.8	41.95	100	500	a	
					- / -							
L		L :1:		<u> </u>				<u> </u>	<u> </u>		<u> </u>	
	weirsta	abilized?	YES	NO					lume Purged	16,000	_ Liters	
Sample Date	Time	Temp. (°C)	Spec.	рН			Turbidity (NTU)				Appearance or Co	
22 Mor21	1146	7.31	Cond. 4 <i>816</i>	6.64	1		4 91				Clarity, Color, Od	
					• · · · · · · · · · · · · · · · · · · ·	1. 	120 1	·				
Comments:	Had	topi	11 20	ng ch	ecto bo	alln	195 54	tuck o	and 7	the S	(reen nee	del
	to bo	rada	(p) ~	1	-	1 rust					-	
	1 00	reput	ma, J	nepu	ng was	1 UST	er up.	2				

Phone: (701) 258-9720

Weather Conditions:

Field Datashe

Groundwater Assessment

Wind:

<u>35°F</u>

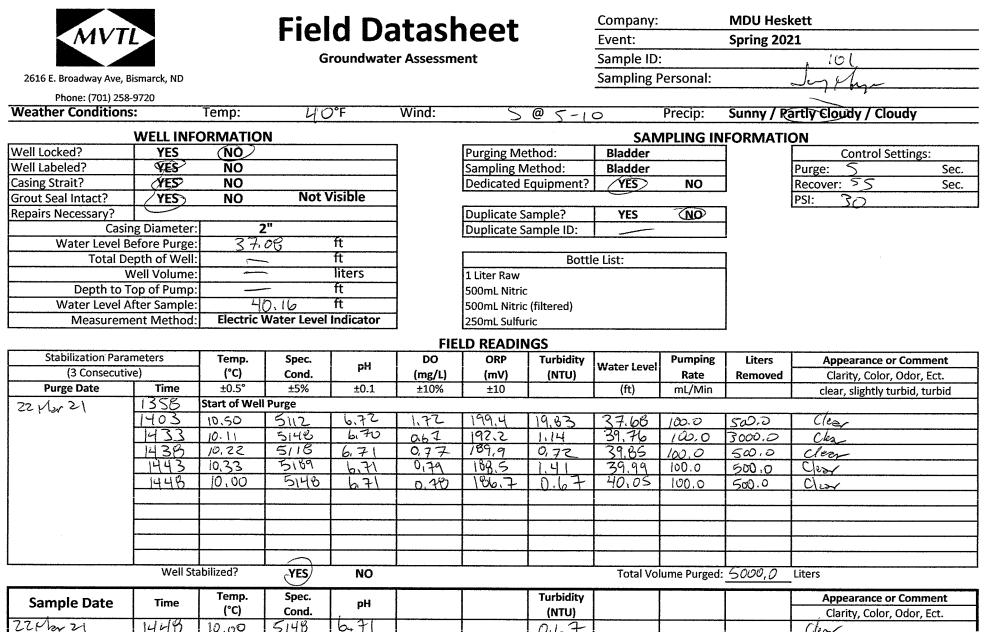
oot	Company:		MDU Heskett	
leet	Event:		Spring 2021	
nt	Sample ID:		70	
	Sampling P	ersonal:	Jern john	_
	·····			
5 @5-10	5	Precip:	Sunny / Partly Cloudy / Clo	oudy
	SAM	PLING IN	IFORMATION	
Purging Method:	Bladder		Control S	ettings:
Sampling Method:	Bladder		Purge: 5	Sec.
Dedicated Equipment?	YES	NO	Recover: 55	Sec.
	-		PSI: 20	
Duplicate Sample?	YES	NO		
Duplicate Sample ID:	<u> </u>			
Bott	e List:			
1 Liter Raw			·	
500mL Nitric				
500mL Nitric (filtered)				

Well Locked?	YES	NO	
Well Labeled?	XEST	NO	
Casing Strait?	(YES)	NO	
Grout Seal Intact?	TES	NO	Not Visible
Repairs Necessary?			
Casir	g Diameter:	2"	
Water Level B	efore Purge:	22,3	sz ft
Total De	epth of Well:		ft
V	Vell Volume:		liters
Depth to T	op of Pump:		ft
Water Level A	fter Sample:	24,1	ol ft
Measureme	ent Method:		ater Level Indicator

Temp:

WELL INFORMATION

FIELD READINGS


250mL Sulfuric

Stabilization Para	meters	Temp.	Spec.	mLl	DO	ORP	Turbidity	Water Level	Pumping	Liters	Appearance or Comment	
(3 Consecutiv	/e)	(°C)	Cond.	pН	(mg/L)	(mV)	(NTU)	water Level	Rate	Removed	Clarity, Color, Odor, Ect.	
Purge Date	Time	±0.5°	±5%	±0.1	±10%	±10		(ft)	mL/Min		clear, slightly turbid, turbid	
22 Mar 21	120B	Start of Well	t of Well Purge									
oc (var or	1213	9.31	4519	7.11	4,39	38.2	96.46	22.70	100.0	500.0	Clear	
	1243	9.15	4087	7.03	0.57	48.2	0.19	23.62	100.0	3000.0	Clar	
	1253	9,41	HOIB	7.03	0.62	65.5	0.64	23.95	100.0	1000,0	Clezn	
	1258	9.43	3993	7.04	0.71	763	0.20	24,01	00.00	5000	Clust	
	13 03	9.36	3971	7.03	0.84	76.3	0,23	24.11	100.0	500.0	Clear	
	1308	9.62	3933	7.04	0.88	93.8	0.23	24.22	100.0	50.0	Clear	
	1313	9,79	3917	7,03	0.85	95.6	0.39	24.27	100,0	500.0	Clear	
	1318	9.61	3913	7.03	0.91	9,3,3	0,41	24,33	00.0	500.0	Clear	
	Well St	abilized?	YES	NO				Total Vol	ume Purged:	7000.0	Liters	
Sample Date	Time	Temp.	Spec.	pН			Turbidity				Appearance or Comment	
Sample Date	Time	(°C)	Cond.	рп			(NTU)				Clarity, Color, Odor, Ect.	
22 Mar 21	1318	9,61	3913	7,03			0.41				Clear	
Comments:	0 11		$\gamma 1 - \gamma$	1010								
	Collec	ted H	BI @	1210								

			r:al		took			Company:		MDU Hesk	kett
Μντί			riei	d Da	Itasr	ieet		Event:		Spring 202	21
			G	roundwate	r Assessme	ent		Sample ID:		50	iR
2616 E. Broadway Ave, Bi	smarck ND		-					Sampling F		Tarren	Niesman
<i>,</i> , ,	·							Sumpling i	croonan p	- Coran	10 Tester
Phone: (701) 258-9 Weather Conditions		Temp:	ЧE	°F	Wind: /	Eabt	@		Precip:	Suppy / De	artly Cloudy Cloudy
		•••••			wind. 2	1900	<u>w</u>		•		
	WELL INFO	ORMATIO	N				·		IPLING IN	FORMATIC	
Well Locked?	100	NO				Purging Met		Bladder		ł	Control Settings:
Well Labeled?	SES C	NO				Sampling M		Bladder			Purge: 2 Sec.
Casing Strait?	TES	NO	No.	Calle		Dedicated E	quipment?	(YES)	NO	J	Recover: 58 Sec.
Grout Seal Intact?	TES/	NO		/isible			<u> </u>	1 1/50	-	1	PSI:
Repairs Necessary?	("			Duplicate Sa		YES	NO	-	
	g Diameter:			ft		Duplicate Sa	imple ID:			l	
Water Level Be	pth of Well:	17	,31	ft			Pott	le List:		1	
	/ell Volume:		-	liters		1 Liter Raw	BUIL	ie List.			
	op of Pump:		~	ft		500mL Nitric					
Water Level Af		13	.66	ft		500mL Nitric					
Measureme		Electric V	Water Level			250mL Sulfur	•				
										1	
Stabilization Paran	notors	Toma	- Croc	1	DO	LD READIN	Turbidity	T	Pumping	Liters	Appearance or Comment
(3 Consecutive		Temp. (°C)	Spec. Cond.	pН	(mg/L)	(mV)	(NTU)	Water Level	Rate	Removed	Clarity, Color, Odor, Ect.
Purge Date	Time	±0.5°	±5%	±0.1	±10%	±10		(ft)	mL/Min	hemoteu	clear, slightly turbid, turbid
. dige bate		Start of Well								L	
	1059	7.17	5625	17.13	2.47	-5.4	1.29	1360	100	500	Cler
7)1 7	NUM	7.94	5622	7.09	1,84	-15,6	1138	13.63	100	000	C.C.
$\sim 2/m$	1114	6,0D	5616	7.09	1.9	-18,9	1.117	13,67	100	500	
2001	1119	8,05	5612		1,58	-21.2	1.40	13.65	(90	500	cC
23/100/21/11	1124	8102	5614	7.09	1.54	-23,9	1,12	13165	- (OÙ	100	56-
		0.0					- 011				
				ļ							
	Well Sta	abilized?	(YES)	NO				lotal Vo	ume Purged:	<u>3000</u>	- Liters
Sample Date	Time	Temp.	Spec.	рН			Turbidity				Appearance or Comment
Sample Date		(°C)	Cond.				(NTU)				Clarity, Color, Odor, Ect.
ZZMarzi	1104	8,02	15614	7.09			1.12				ch
Comments:											an a'

MVTL	

	Spring 202	21	
	. 801	iR	
rsonal:	Damen	Niesman	
• • •			
recip:	Sunny LPa	artly Cloudy Cloudy	
LING I	NFORMATIC	ON	

.

		10.0-	1 1 1 0		016 1		CUA	
Comments:								
comincines.								
1								
L	L							

2616 E. Broadway Ave, Bismarck, ND Phone: (701) 258-9720

Weather Conditions:

Field D

Groundwat

۴F

		+		Company:		MDU Hesk		
9	tash	ieet		Event:		Spring 202	21	
ate	r Assessme	ent		Sample ID:		,	102	
				Sampling P	Personal:	le	mphi	
	Wind:	7	@ 5-10	7	Precip:	Sunny / Pa	irtly Cloudy / Cloudy	
				SAN	IPLING IN	FORMATIO	ON	
		Purging Me	thod:	Bladder		1	Control Setting	gs:
		Sampling M	lethod:	Bladder		•	Purge: 5	Sec
		Dedicated E	quipment?	YES	NO		Recover: 55	Sec
						-	PSI: 20	
		Duplicate Sa		YES	NÒ			
		Duplicate Sa	ample ID:]		
						-		
			Bottl	e List:				
		1 Liter Raw						
		500mL Nitric						
		500mL Nitric	-					
•		250mL Sulfu	ric					
	FIE	LD READIN	IGS					
	DO	ORP	Turbidity	Water Level	Pumping	Liters	Appearance or Con	iment
	(mg/L)	(mV)	(NTU)	water Lever	Rate	Removed	Clarity, Color, Odor	-, Ect.
	±10%	±10		(ft)	mL/Min		clear, slightly turbid,	turbid

Well Locked?	YES	NO	
Well Labeled?	YES	NO	
Casing Strait?	(YES)	NO	
Grout Seal Intact?	YES	NO	Not Visible
Repairs Necessary?			
Casin	g Diameter:	2"	
Water Level B	efore Purge:	16.5	2 ft
Total De	pth of Well:		ft
W	/ell Volume:		liters
Depth to T	op of Pump:		ft
Water Level A	fter Sample:	21.	45 ft
Measureme	ent Method:	Electric W	ater Level Indicator

Temp:

WELL INFORMATION

Stabilization Para	ameters	Temp.	Spec.	рH	DO	ORP	Turbidity	Water Level	Pumping	Liters	Appearance or Comment
(3 Consecut	ive)	(°C)	Cond.	- Pu	(mg/L)	(mV)	(NTU)	water Lever	Rate	Removed	Clarity, Color, Odor, Ect.
Purge Date	Time	±0.5°	±5%	±0.1	±10%	±10		(ft)	mL/Min		clear, slightly turbid, turbid
22Mar21	1041	Start of Wel	l Purge								
	1046	7.63	9360	6.92	0.34	-69.4	2.63	19.23	100.0	500.0	Clear
	1116	8.33	6175	6.BZ	0.49	-44.6	0,93	20,85	100.0	3000.0	Clear
	1136	8.59	7833	6,84	0.77	-26.9	0.87	21.05	100.0	1000.0	Clean
	1136	8.61	7995	6.85	0.44	-31.2	0,76	21.15	100.0	1000.00	Clear
	1(41	8.53	8024	6.85	0.47	-27.8	0,71	21,19	0,00	F00,0	Clear
	1156	8.61	8140	6,85	0.52	- 30,6	0.52	21.25	100.0	600,0	Class
										-	
						1					
	Well St	abilized?	YES	NO				Total Vo	lume Purged:	55000	Liters

Sample Date	Time	Temp. (°C)	Spec. Cond.	рН	Turbidity (NTU)	Appearance or Comment Clarity, Color, Odor, Ect.
22 phr 21	1146	8.61	8140	6.85	0.52	Clear
Comments:						

Groundwater Assessment

Company:	MDU Heskett
Event:	Spring 2021
Sample ID:	103
Sampling Personal:	Jan ton

2616 E. Broadway Ave, Bismarck, ND

Phone: (701) 258-9720

Phone: (701) 258-9720						
Weather Conditions:	Temp:	35 °F	Wind:	N@5-10	Precip:	Sunny / Partly Cloudy Cloudy
WELL	INFORMATION				SAMPLING I	NFORMATION

	VVELL HAPL	NIVIATION		
Well Locked?	YES	NO		
Well Labeled?	(YES	NO		
Casing Strait?	YES	NO		
Grout Seal Intact?	YES	NO	Not	Visible
Repairs Necessary?				
Casin	g Diameter:	2'	17	
Water Level Be	efore Purge:	32.4	10	ft
Total De	pth of Well:		-	ft
N	/ell Volume:		~	liters
Depth to Te	op of Pump:		~	ft
Water Level A	fter Sample:	34	1.50	ft
Measurement Method:		Electric V	Vater Leve	el Indicator

	SAIV	IPLING IN
Purging Method:	Bladder	
Sampling Method:	Bladder	
Dedicated Equipment?	YE\$	NO
	\bigcirc	
Duplicate Sample?	YES	(NO)
Duplicate Sample ID:		

Bottle List:

Control Sett	ings:
Purge: 5	Sec.
Recover: 55	Sec.
PSI: 20	

25	OmL Sulfuric
FIELD	READINGS

1 Liter Raw 500mL Nitric 500mL Nitric (filtered)

Stabilization Para	ameters	Temp.	Spec.	рH	DO	ORP	Turbidity	Water Level	Pumping	Liters	Appearance or Comment
(3 Consecuti	ve)] (°C)	Cond.	Pu	(mg/L)	(mV)	(NTU)	ANGLEI LEVEI	Rate	Removed	Clarity, Color, Odor, Ect.
Purge Date	Time	±0.5°	±5%	±0.1	±10%	±10		(ft)	mL/Min		clear, slightly turbid, turbid
23 Mar 21	OBHB	Start of Wel	l Purge								1
(roa - (0853	7,22	5016	6184	0.76	193.9	0,22	33,38	100.0	500.0	Cha
	0903	7.44	5019	6.83	0.52	196.1	0.16	34.05	100.0	1000.0	Olizi
	0913	7.36	14995	6,63	0.66	176.1	0,33	34.24	100.0	1000.0	Clear
	0918	7.35	4989	6.84	0,76	166.4	0,31	34.29	(00.0	500,0	Clear
	0923	7.34	4981	6,84	0.82	159.0	0.42	34,37	G. 00)	500.0	Clear
	0923	7.41	4964	6.84	0,84	157.3	0,44	34,41	122.0	5000	Clim
			6								
	Well St	abilized?	YES	NO				Total Vol	ume Purged:	4000.0	Liters
Sample Date	Time	Temp.	Spec.	рН			Turbidity				Appearance or Comment
Sample Date	Time	(°C)	Cond.	pu pu			(NTU)				Clarity, Color, Odor, Ect.
231/221	ONZB	7.41	4964	6.84			0.44				Clear

Groundwater Assessment

°F

UD

Company:	MDU Heskett
Event:	Spring 2021
Sample ID:	104
Sampling Person	al: Darren Niesman _
	· · · · · · · · · · · · · · · · · · ·

2616 E. Broadway Ave, Bismarck, ND

Phone: (701) 258-9720

Weather Conditions:

Wind: (16/2, T@

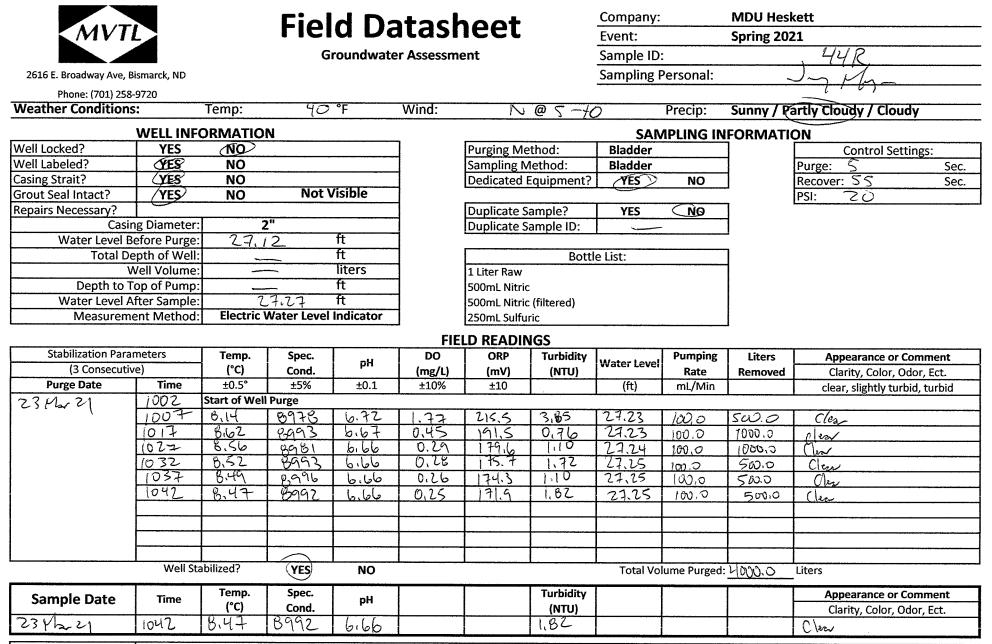
P	Precip:	Sunny /	Partly Cl	oudy /	Cloudy

	WELL INFO	ORMATION	
Well Locked?	YES	NO	
Well Labeled?	TES	NO	
Casing Strait?	YES	NO	
Grout Seal Intact?	YES	NO	Not Visible
Repairs Necessary?			
Casir	ng Diameter:	2"	
Water Level B	efore Purge:	13,	66 ft
Total De	epth of Well:	- ``	- ft
٧	Vell Volume:	-	- liters
Depth to Top of Pump:		-	ft
Water Level A	fter Sample:	14:1	0 ft
Measurem	ent Method:	Electric W	ater Level Indicator

Temp:

<i>v</i>	SAM	PLING IN	IFORMAT	ON
Purging Method:	Bladder]	
Sampling Method:	Bladder			Pure
Dedicated Equipment?	(YES/	NO		Reco
	\mathcal{O}		-	PSI:
Duplicate Sample?	YES	NO/	7	
Duplicate Sample ID:				
			_	

Ca	ontrol Setting	gs:
Purge:	\$ 2	Sec.
Recover:	56	Sec.
PSI:		


Bottle List:	
1 Liter Raw	
500mL Nitric	
500mL Nitric (filtered)	
250mL Sulfuric	

FIELD READINGS

Stabilization Para	meters	Temp.	Spec.	pН	DO	ORP	Turbidity	Water Level	Pumping	Liters	Appearance or Comment
(3 Consecutiv	/e)	(°C)	Cond.	hu	(mg/L)	(mV)	(NTU)	ANGLEI LEVEI	Rate	Removed	Clarity, Color, Odor, Ect.
Purge Date	Time	±0.5°	±5%	±0.1	±10%	±10		(ft)	mL/Min		clear, slightly turbid, turbid
	0455										
	1000	8.36	14045	7.11	9,42	10,8	1.52	14.02	100	500	Ci
	1010	8,39	14017		2,88	-Och	1.22	14.05	100	1000	5
23/mar21	1015	8,47	13998	7.02	2:99	-2,4	0.72	14,12	100	500	à
	1020	8.68	13999	Fiel	2.82	-2,8	0,69	1410	100	500	Clear
	1025	E.CI	14045	7.01	2.78	-5.2	0.73	14,10	100	500	
	1000	0101	110 -				(. ,		•		
				10							
	1						I				
	Well Sta	abilized?	YES	NO				Total Vol	ume Purged:	1000	Liters
Sample Date	Time	Temp.	Spec.	pН			Turbidity				Appearance or Comment
Sample Date	Inne	(°C)	Cond.				(NTU)				Clarity, Color, Odor, Ect.
23 mar 21	1025	8151	14045	7.01			0173				ch
Comments:		· · · · · · · · · · · · · · · · · · ·									

MVT			Fiel	d Da	ıtasł	neet		Company: Event:		MDU Hesl Spring 202	
			Groundwater Assessment					Sample ID:		105	2
2616 E. Broadway Ave, Bi	ismarck, ND							Sampling F	Personal:	para	n Nieswaay
Phone: (701) 258-			1			. /	_			<i>T</i>	
Weather Conditions	:	Temp:	45	°F	Wind:		<u>e s</u>		Precip:	Sunny / Pa	artly Cloudy / Cloudy
	WELL INFO	ORMATIO	N			V		SAN	IPLING IN	FORMATI	ON
Well Locked?	YES	NO				Purging Me	thod:	Bladder]	Control Settings:
Well Labeled?	YES	NO				Sampling M	ethod:	Bladder]	Purge: 2 Sec.
Casing Strait?	YES	NO				Dedicated E	quipment?	YES	NO]	Recover: Sec.
Grout Seal Intact?	YES	NO	Not	/isible				,		-	PSI:
Repairs Necessary?	<u> </u>			· · · · · · · · · · · · · · · · · · ·		Duplicate S		YES	NO	1	
	g Diameter:					Duplicate S	ample ID:		/ -]	
Water Level Be		16	<u>~60</u>	ft ft		r				-	
	pth of Well: Vell Volume:		-	liters		4 Liter D.	Botti	e List:		4	
	op of Pump:			ft		1 Liter Raw 500mL Nitric					
Water Level A			2,92	ft		500mL Nitric					
	ent Method:		Nater Level			250mL Sulfu	. ,				
		L							· · · · · · · · · · · · · · · · · · ·	1	
Stabilization Parar	meters	Temp.	Spec.	r	DO	LD READIN	Turbidity	r	Pumping	1 174-1-1	Annon an Common A
(3 Consecutiv		(°C)	Cond.	pН	(mg/L)	(mV)	(NTU)	Water Level	Rate	Liters Removed	Appearance or Comment Clarity, Color, Odor, Ect.
Purge Date	Time	±0.5°	±5%	±0.1	±10%	±10	(110)	(ft)	mL/Min	Kenioved	clear, slightly turbid, turbid
~	1148	Start of Well	Purge		1			(1	cicul, signity turbid, turbid
	1153	8.05	2488	7.06	1.04	-22,5	3.21	12,83	100	500	16
NMARZI	1208	8103	@ 3988		1,14	-32,4	2.74	12,98	1.00	1500	
and	1213	8,22	4312	6,92	0,90	1-34,3	2.33	12.88	100	1500	ch
ahll	1278	8ºUl	5443	6.87	0,95	-40.0	2.45	12,82	100	1500	Ch-
V	7233	8.28	5671	6.86	0.20	-38,4	2.57	12,82	100	,500	a
	1238	8.38	5746	6185	0,98	- 43,4	3,93	12,85	100	500	\sim
	1243	\$131	5906	6.84	0,99	- 48,0	-3,29	12,85	100	500	<u> </u>
				ļ		ļ	\`			L	
						ļ					
	Well Sta	hilizod?	AFE	NO				T-+-1)(-1		1 mon	
	wen sta	iomzeu :	(YES)	NO				I OTAI VOI	ume Purged:	6500	Liters
Sample Date	Time	Temp.	Spec.	рН			Turbidity				Appearance or Comment
		(°C)	Cond.	for			(NTU)			_	Clarity, Color, Odor, Ect.
2311021	1243	813	5006	6189			3,29				der
Comments:	Fie	(d bl	ank	2 (0	llect	ed	1155				

, •

Comments:

REVISED PT1_APP III

CERTIFICATE of ANALYSIS - CCR

Todd Peterson Montana-Dakota Utilities Co. 400 N 4th St Bismarck ND 58501

Project Name: MDU Heskett

Sample Description: FB1

Event and Year: Fall 2021

1 of 8 Page:

Report Date: 10 Sep 21 Lab Number: 21-W3041 Work Order #: 82-2247 Account #: 002800 Date Sampled: 24 Aug 21 Date Received: 25 Aug 21 9:28 Sampled By: MVTL Field Services

PO #: 185968 OP

Temp at Receipt: 4.3C

	As Recei Result	ved	Method RL	Method Reference	Date Analyzed	Analyst
Н	* 5.7	units	0.1	SM4500-H+-B-11	25 Aug 21 17:00	RAA
Fluoride	< 0.1	mg/l	0.10	SM4500-F-C	25 Aug 21 17:00	RAA
Sulfate	< 5	mg/l	5.00	ASTM D516-11	1 Sep 21 9:41	SD
Chloride	< 2	mg/l	2.0	SM4500-Cl-E-11	25 Aug 21 13:28	SD
Total Dissolved Solids	< 10	mg/l	10	USGS I1750-85	26 Aug 21 16:00	RAA
Calcium - Total	< 1	mg/l	1.0	6010D	27 Aug 21 11:13	SZ
Boron - Total	< 0.1	mg/l	0.10	6010D	26 Aug 21 10:37	SZ

MINNESOTA VALLEY TESTING LABORATORIES, INC. 1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724

www.mvtl.com

* Holding time exceeded

Approved by:

11 1500+21 Clauditte K. Canrep

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

= Due to concentration of other analytes
+ = Due to internal standard response

CERTIFICATION: ND # ND-00016

MVTL guarantees the accuracy of the analysis done on the sample submitted for testing. It is not possible for MVTL to guarantee that a test result obtained on a particular sample will be the same on any other sample unless all conditions affecting the sample are the same, including sampling by MVTL. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

MEMBER

MINNESOTA VALLEY TESTING LABORATORIES, INC. 1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885

www.mvtl.com

MEMBER

2 of 8 Page:

CERTIFICATE of ANALYSIS - CCR

Todd Peterson Montana-Dakota Utilities Co. 400 N 4th St Bismarck ND 58501

Project Name: MDU Heskett

Sample Description: MW101

Event and Year: Fall 2021

Report Date: 10 Sep 21 Lab Number: 21-W3042 Work Order #: 82-2247 Account #: 002800 Date Sampled: 23 Aug 21 13:02 Date Received: 25 Aug 21 9:28 Sampled By: MVTL Field Services

PO #: 185968 OP

Temp at Receipt: 4.3C

	As Received Result		Method RL	Method Reference	Date Analyzed	Analyst
pH - Field	6.57	units	NA	SM 4500 H+ B	23 Aug 21 13:02	JSM
Hq	* 7.1	units	0.1	SM4500-H+-B-11	25 Aug 21 18:00	RAA
Temperature - Field	15.2	Degrees C	NA	SM 2550B	23 Aug 21 13:02	JSM
Conductivity - Field	5268	umhos/cm	1	EPA 120.1	23 Aug 21 13:02	JSM
Fluoride	0.13	mg/l	0.10	SM4500-F-C	25 Aug 21 18:00	RAA
Sulfate	3420	mg/l	5.00	ASTM D516-11	1 Sep 21 9:41	SD
Chloride	20.8	mg/l	2.0	SM4500-Cl-E-11	25 Aug 21 13:28	SD
Total Dissolved Solids	5530	mg/l	10	USGS I1750-85	26 Aug 21 16:00	RAA
Calcium - Total	442	mg/l	1.0	6010D	27 Aug 21 11:13	SZ
Boron - Total	0.80	mg/l	0.10	6010D	26 Aug 21 10:37	SZ

* Holding time exceeded

Approved by:

CC 1SOCT 21 Clauditte K. Canto

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

= Due to concentration of other analytes
+ = Due to internal standard response

CERTIFICATION: ND # ND-00016

MINNESOTA VALLEY TESTING LABORATORIES, INC. 1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

3 of 8 Page:

CERTIFICATE of ANALYSIS - CCR

Todd Peterson Montana-Dakota Utilities Co. 400 N 4th St Bismarck ND 58501

Project Name: MDU Heskett

Sample Description: MW102

Event and Year: Fall 2021

Report Date: 10 Sep 21 Lab Number: 21-W3043 Work Order #: 82-2247 Account #: 002800 Date Sampled: 23 Aug 21 10:25 Date Received: 25 Aug 21 9:28 Sampled By: MVTL Field Services

PO #: 185968 OP

Temp at Receipt: 4.3C

	As Received Result		Method RL	Method Reference	Date Analyzed	Analyst
pH - Field pH Temperature - Field Conductivity - Field Fluoride Sulfate	6.75 * 7.2 12.1 8066 0.16 4880	units units Degrees C umhos/cm mg/l mg/l	NA 0.1 NA 1 0.10 5.00 2.0	SM 4500 H+ B SM4500-H+-B-11 SM 2550B EPA 120.1 SM4500-F-C ASTM D516-11 SM4500-C1-E-11	23 Aug 21 10:25 25 Aug 21 18:00 23 Aug 21 10:25 23 Aug 21 10:25 25 Aug 21 18:00 1 Sep 21 9:41 25 Aug 21 14:06	JSM RAA SD
Chloride Total Dissolved Solids Calcium – Total Boron – Total	6.1 7920 470 1.27	mg/l mg/l mg/l mg/l	10 1.0 0.10	USGS 11750-85 6010D 6010D	26 Aug 21 16:00 27 Aug 21 11:13 26 Aug 21 10:37	RAA SZ

* Holding time exceeded

Approved by:

Cr 50CT21 Clauditte K. Cantle

! = Due to sample quantity

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

The reporting limit was elevated for any analyte requiring a dilution as coded below: @ = Due to sample matrix # = Due to co CERTIFICATION: ND # ND-00016

= Due to concentration of other analytes
+ = Due to internal standard response

MIVTL

MINNESOTA VALLEY TESTING LABORATORIES, INC. 1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

Page: 4 of 8

CERTIFICATE of ANALYSIS - CCR

Todd Peterson Montana-Dakota Utilities Co. 400 N 4th St Bismarck ND 58501

Project Name: MDU Heskett

Sample Description: MW103

Event and Year: Fall 2021

Report Date: 10 Sep 21 Lab Number: 21-W3044 Work Order #: 82-2247 Account #: 002800 Date Sampled: 23 Aug 21 14:20 Date Received: 25 Aug 21 9:28 Sampled By: MVTL Field Services

PO #: 185968 OP

Temp at Receipt: 4.3C

	As Received Result		Method RL	Method Reference	Date Analyzed	Analyst
pH - Field pH Temperature - Field Conductivity - Field Fluoride Sulfate Chloride	6.58 * 7.0 12.0 4910 0.30 3000 119	units units Degrees C umhos/cm mg/l mg/l mg/l	NA 0.1 NA 1 0.10 5.00 2.0	SM 4500 H+ B SM4500-H+-B-11 SM 2550B EPA 120.1 SM4500-F-C ASTM D516-11 SM4500-C1-E-11 USGS 11750-85	23 Aug 21 14:20 25 Aug 21 18:00 23 Aug 21 14:20 23 Aug 21 14:20 25 Aug 21 18:00 1 Sep 21 9:41 25 Aug 21 14:06 26 Aug 21 16:00	JSM JSM RAA SD SD
Total Dissolved Solids Calcium - Total Boron - Total	4900 500 < 0.5 @	mg/l mg/l mg/l	10 1.0 0.10	6010D 6010D	26 Aug 21 10:00 27 Aug 21 11:13 26 Aug 21 10:37	SZ

* Holding time exceeded

Approved by:

Clauditte K. Canto 500721

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

The reporting limit was elevated for any analyte requiring a dilution as coded below: @ = Due to sample matrix # = Due to concentration of other analytes ! = Due to sample quantity + = Due to internal standard response CERTIFICATION: ND # ND-00016

MVTL

MINNESOTA VALLEY TESTING LABORATORIES, INC. 1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

Page: 5 of 8

CERTIFICATE of ANALYSIS - CCR

Todd Peterson Montana-Dakota Utilities Co. 400 N 4th St Bismarck ND 58501

Project Name: MDU Heskett

Sample Description: MW104

Event and Year: Fall 2021

Report Date: 10 Sep 21 Lab Number: 21-W3045 Work Order #: 82-2247 Account #: 002800 Date Sampled: 24 Aug 21 12:50 Date Received: 25 Aug 21 9:28 Sampled By: MVTL Field Services

PO #: 185968 OP

Temp at Receipt: 4.3C

	As Receiv Result	ved	Method RL	Method Reference	Date Analyzed	Analyst
pH - Field pH Temperature - Field Conductivity - Field Fluoride Sulfate Chloride	6.89 * 7.3 12.5 14092 0.54 11600 94.1	units Degrees C umhos/cm mg/l mg/l mg/l	NA 0.1 NA 1 0.10 5.00 2.0	SM 4500 H+ B SM4500-H+-B-11 SM 2550B EPA 120.1 SM4500-F-C ASTM D516-11 SM4500-C1-E-11	24 Aug 21 12:50 25 Aug 21 18:00 24 Aug 21 12:50 24 Aug 21 12:50 25 Aug 21 18:00 1 Sep 21 10:00 25 Aug 21 14:06	RAA SD SD
Total Dissolved Solids Calcium - Total Boron - Total	17500 422 0.84	mg/l mg/l mg/l	10 1.0 0.10	USGS I1750-85 6010D 6010D	26 Aug 21 16:00 27 Aug 21 11:13 26 Aug 21 10:37	SZ

* Holding time exceeded

Approved by:

Clauditte K. Cantle

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

MINNESOTA VALLEY TESTING LABORATORIES, INC. 1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

Page: 6 of 8

CERTIFICATE of ANALYSIS - CCR

Todd Peterson Montana-Dakota Utilities Co. 400 N 4th St Bismarck ND 58501

Project Name: MDU Heskett

Sample Description: MW105

Event and Year: Fall 2021

Report Date: 10 Sep 21 Lab Number: 21-W3046 Work Order #: 82-2247 Account #: 002800 Date Sampled: 24 Aug 21 14:52 Date Received: 25 Aug 21 9:28 Sampled By: MVTL Field Services

PO #: 185968 OP

Temp at Receipt: 4.3C

	As Receiv Result	ed	Method RL	Method Reference	Date Analyzed	Analyst
pH - Field	6.67	units	NA	SM 4500 H+ B	24 Aug 21 14:52	JSM
Hq	* 7.2	units	0.1	SM4500-H+-B-11	25 Aug 21 18:00	RAA
Temperature - Field	15.7	Degrees C	NA	SM 2550B	24 Aug 21 14:52	JSM
Conductivity - Field	6331	umhos/cm	1	EPA 120.1	24 Aug 21 14:52	JSM
Fluoride	0.25	mg/l	0.10	SM4500-F-C	25 Aug 21 18:00	RAA
Sulfate	4130	mg/l	5.00	ASTM D516-11	1 Sep 21 10:00	SD
Chloride	280	mg/l	2.0	SM4500-Cl-E-11	25 Aug 21 14:06	SD
Total Dissolved Solids	6760	mg/l	10	USGS I1750-85	27 Aug 21 16:00	RAA
Calcium - Total	339	mg/l	1.0	6010D	27 Aug 21 11:13	SZ
Boron - Total	< 0.5 @	mg/l	0.10	6010D	26 Aug 21 10:37	SZ

* Holding time exceeded

Approved by:

G SOCTZI Clauditte K. Canto

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

CERTIFICATION: ND # ND-00016

MIVIL

MINNESOTA VALLEY TESTING LABORATORIES, INC. 1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

Page: 7 of 8

CERTIFICATE of ANALYSIS - CCR

Todd Peterson Montana-Dakota Utilities Co. 400 N 4th St Bismarck ND 58501

Project Name: MDU Heskett

Sample Description: MW44R

Event and Year: Fall 2021

Report Date: 10 Sep 21 Lab Number: 21-W3047 Work Order #: 82-2247 Account #: 002800 Date Sampled: 24 Aug 21 8:15 Date Received: 25 Aug 21 9:28 Sampled By: MVTL Field Services

PO #: 185968 OP

Temp at Receipt: 4.3C

	As Received Result		Method RL	Method Reference	Date Analyzed	Analyst
pH - Field	6.52	units	NA	SM 4500 H+ B	24 Aug 21 8:15	JSM
H	* 7.1	units	0.1	SM4500-H+-B-11	25 Aug 21 18:00	RAA
Temperature - Field	12.0	Degrees C	NA	SM 2550B	24 Aug 21 8:15	JSM
Conductivity - Field	9336	umhos/cm	1	EPA 120.1	24 Aug 21 8:15	JSM
Fluoride	0.63	mg/l	0.10	SM4500-F-C	25 Aug 21 18:00	RAA
Sulfate	6830	mg/l	5.00	ASTM D516-11	1 Sep 21 10:00	SD
Chloride	203	mg/l	2.0	SM4500-Cl-E-11	25 Aug 21 14:06	SD
Total Dissolved Solids	10800	mg/l	10	USGS I1750-85	27 Aug 21 16:00	RAA
Calcium - Total	410	mg/l	1.0	6010D	27 Aug 21 12:23	SZ
Boron - Total	< 0.5 @	mg/l	0.10	6010D	26 Aug 21 10:37	

* Holding time exceeded

Approved by:

CC 150CTDI Clauditte K. Canto

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

CERTIFICATION: ND # ND-00016

MVTI

MINNESOTA VALLEY TESTING LABORATORIES, INC. 1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

8 of 8 Page:

CERTIFICATE of ANALYSIS - CCR

Todd Peterson Montana-Dakota Utilities Co. 400 N 4th St Bismarck ND 58501

Project Name: MDU Heskett

Sample Description: Dup2

Event and Year: Fall 2021

Report Date: 10 Sep 21 Lab Number: 21-W3048 Work Order #: 82-2247 Account #: 002800 Date Sampled: 24 Aug 21 Date Received: 25 Aug 21 9:28 Sampled By: MVTL Field Services

PO #: 185968 OP

Temp at Receipt: 4.3C

	As Received Result			Method Reference	Date Analyzed	Analyst
pH * Fluoride Sulfate Chloride Total Dissolved Solids Calcium - Total Boron - Total	0.54 mg 11600 mg 93.0 mg 17400 mg 443 mg	hits g/l g/l g/l g/l g/l g/l	0.1 0.10 5.00 2.0 10 1.0 0.10	SM4500-F-C ASTM D516-11 SM4500-Cl-E-11 USGS I1750-85 6010D	25 Aug 21 18:00 25 Aug 21 18:00 1 Sep 21 10:00 25 Aug 21 14:06 27 Aug 21 16:00 27 Aug 21 12:23 26 Aug 21 10:37	RAA SD SD RAA SZ

* Holding time exceeded

Approved by:

150000 Clauditte K. Canrep

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

1c

CERTIFICATION: ND # ND-00016

MVTL

MINNESOTA VALLEY TESTING LABORATORIES, INC.

1126 N. Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 E. Broadway Ave. ~ Bismarck, ND 58502 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Highway ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

MEMBER ACIL

Page: 1 of 1

Quality Control Report Lab IDs: 21-W3041 to 21-W3048 Project: MDU Heskett Work Order: 202182-2247 MSD/ Matrix Matrix MSD/ Matrix LCS LCS LCS Matrix Spike Matrix Spike Spike MSD/ MSD MSD. Dup Known Known Matrix Dup Method % Rec Dup RPD Rec % Rec Spike Rec % Rec Spike Spike Orig Spike Rec Orig Dup Rec Blank % Limits Result Result % RPD Limit (<) (%) Limits % Limits ID Result Result Analyte Amt Amt 2.00 21-W3048 0.86 2.58 86 75-125 2.58 2.69 92 4.2 20 < 0.1 Boron - Total mg/l 0.40 105 80-120 --< 0.1 -_ 96 75-125 98.9 97.9 95 1.0 20 < 1 Calcium - Total mg/l 100 104 80-120 100 21W3037a 2.6 98.9 --92 154 90 1.3 20 < 1 105 100 21W3069q 64.5 156 75-125 156 100 80-120 --< 1--< 1 --21-W3030 < 2 28.3 94 80-120 28.3 28.7 96 1.4 20 < 2 Chloride mg/l 95 80-120 30.0 30.0 --95 28.5 95 0.4 20 < 2 30.0 95 80-120 30.0 21-W3049 < 2 28.5 80-120 28.6 --0.2 20 < 2 30.0 95 80-120 30.0 21-W2964 31.1 62.3 104 80-120 62.3 62.4 104 --< 2 30.0 95 80-120 --80-120 0.50 0.50 0.0 20 < 0.1Fluoride mg/l 0.50 100 90-110 0.500 21-W3030 < 0.10.50 100 100 _ 2.16 2.68 104 80-120 2.68 2.72 112 1.5 20 < 0.190-110 0.500 21-W3037 0.50 100 _ -92 20 < 0.190-110 90 1.26 1.27 0.8 0.50 100 0.500 21-W3040 0.81 1.26 80-120 --0.500 21-W3053 0.30 0.81 102 80-120 0.81 0.90 120 10.5 20 < 0.1 0.50 100 90-110 -5.7 5.8 1.7 20 pH units _ ---8.2 8.5 3.6 20 _ -. ---. 20 8.6 8.6 -0.0 ----_ ---_ -2.7 20 7.6 7.4 -_ _ . _ ---_ 104 1.9 20 < 5 Sulfate mg/l 100 106 80-120 100 21-W3041 < 5 104 104 80-120 106 106 -_ 20 < 5 80-120 100 21-W3049 105 105 80-120 105 104 104 1.0 100 104 < 5--Total Dissolved Solids mg/l 1640 1670 1.8 20 < 10 _ --------2490 20 < 10 2480 0.4 _ -------------0.0 20 1740 1740 ---------

Samples were received in good condition on 25 Aug 2021 at 0928.

Temperature upon receipt at the Bismarck laboratory was 4.3°C.

All samples were properly preserved unless noted here and/or flagged on the individual analytical laboratory report.

With the exception of pH, all holding times were met.

Approved methodology was followed for all sample analyses.

All acceptance criteria were met for calibration, method blanks, laboratory control samples, laboratory fortified matrix/duplicates unless noted here:

• For some analytes, the reported results were elevated due to additional dilutions required to minimize the effects of sample matrix.

Approved by: C. Guild 1501731

Groundwater Assessment

Company:	MDU Heskett
Event:	Fall 2021
Sample ID:	101 ,
Sampling Personal:	Ja Phys
O Procin:	Suppy / Partly Cloudy / Cloudy

2616 E. Broadway Ave, Bis	тагск, мо							outriping :	0.00			
Phone: (701) 258-9	720											
Weather Conditions:		Temp:	65	°F	Wind:	N	0 5-10	<u></u>	Precip:	Sunny / Pa	artly Cloudy / Cloudy	
	NELL INEC	ORMATION	N					SAM	IPLING IN	FORMATI	ON	
Well Locked?	YES	NO			1	Purging Met	thod:	Bladder		1	Control Settings	:
Well Labeled?	VES.	NO			1	Sampling M		Bladder]	Purge: 3	Sec.
Casing Strait?	/YES	NO				Dedicated E	quipment?	(YES)	NO]	Recover: 27	Sec.
Grout Seal Intact?	YES	NO	Not V	isible	1	1				-	PSI: 25	
Repairs Necessary?	\sim				7	Duplicate Sa	ample?	YES	(NO			
	g Diameter:	2]	Duplicate Sa	ample ID:]		
Water Level Be		36		ft						•		•
	oth of Well:		_	ft		L	Bottl	e List:		1		
	ell Volume:			liters	4	1 Liter Raw						
Depth to To				ft	4	500mL Nitric						
Water Level After Sample: 40.5 ft Measurement Method: Electric Water Level Indicator					4	500mL Nitric	•					
Measureme	nt Method:	Electric V	Water Level	Indicator		250mL Sulfur	ric]		
					FIE	LD READIN	IGS					
Stabilization Parameters Temp. Spec.			рH	DO	ORP	Turbidity	Water Level	Pumping	mL	Appearance or Comm		
(3 Consecutive	e)	(°C)	Cond.	μи	(mg/L)	(mV)	(NTU)		Rate	Removed	Clarity, Color, Odor,	
Purge Date	Time	±0.5°	±5%	±0.1	±10%	±10		(ft)	mL/Min		clear, slightly turbid, t	urbid
	1212	Start of Well	-						· · · ·		1 27	
	1217	15.02	5257	6.59	2.25	251.5	3.26	39,28	100.0	50,0	Cleer	
	1247	14.95	5234	6.57	1.39	195.4	1.34	40.25	100.0	3000.0	Clas_	
	1252	15,28	5248	6.50	1.73	185.1	1.07	40.31	100.0	500.0	Clear	
23 Ag21	1257	14,90	5250	bist	1.59	183.2	1.01	40.38	100.0	500	Clear	
	1302	15,16	5266	657	1.58	184.3	0,97	40.42	100.0	500.0	Cher	
						<u> </u>	+		100.0-			
						+	+					
					_		+					
							<u> </u>	+	<u> </u>			
	Well Sta	abilized?	VES	NO		<u> </u>	<u>.l</u>	Total Vo	lume Purged	: 5000,0		
Sample Data	Time	Temp.	Spec.	рН			Turbidity				Appearance or Com	
Sample Date	Inne	(°C)	Cond.				(NTU)		ļ		Clarity, Color, Odor,	Ect.
	1302	15.16	5268	6.57			0.97					

Groundwater Assessment

Company:	MDU Heskett	
Event:	Fall 2021	
Sample ID:	102	
Sampling Personal:	Jack	
	1. /	

Phone:	(701)	258-9720	

Vell Locked? Vell Labeled?	NELL INFO	BMATION	60							(··· (···	
Vell Labeled?			4					SAM	PLING IN	FORMATIC	
Vell Labeled?	YES	< NO				Purging Method: Bladder					Control Settings:
	VES	NO			1	Sampling M	ethod:	Bladder			Purge: 3 Sec
Casing Strait?	(YES	NO			1	Dedicated E	quipment?	ES	NO		Recover: 27 Sec
Grout Seal Intact?	YES	NO	Not V	isible]				_		PSI: 20
Repairs Necessary?			\sim]	Duplicate Sa	ample?	YES	(NO		
Casing	g Diameter:	2				Duplicate Sa	ample ID:				
Water Level Be	fore Purge:	19		ft							
Total Der	oth of Well:			ft			Bottl	e List:			
	ell Volume:			liters]	1 Liter Raw					
Depth to Top of Pump: ft					1	500mL Nitric					
Water Level Aft				ft	4	500mL Nitric					
Measureme	nt Method:	Electric V	Water Level	Indicator	1	250mL Sulfur	ic				
					FIE	LD READIN	IGS				
Stabilization Param	neters	Temp.	Spec.	pН	DO	ORP	Turbidity	Water Level	Pumping	mL	Appearance or Comment
(3 Consecutive	2)	(°C)	Cond.	hu	(mg/L)	(mV)	(NTU)		Rate	Removed	Clarity, Color, Odor, Ect.
Purge Date	Time	±0.5°	±5%	±0.1	±10%	±10		(ft)	mL/Min		clear, slightly turbid, turbid
		Start of Well									
	0940	11.07	<u>9415</u>	6.79	0.96	6.2	0,01	20.70	102.0	500.0	Clear
	1010	11.92	8034	6.72	1.37	38.2	0.05	21.74	100.0	3090.0	clea
	1015	11.70	6045	6.74	0.94	20.6	0.13	21.86	100.0	500	Clear
23 Aug 21	1020	11.88	7957	6.74	1.02	24.2	0.11	21.90	1000	500.0	Clear
	1025	12.07	8066	6,75	1.08	15,0	0.21	21,92	00.0	500.0	Clear
		ļ			+			╂─────╂			
								<u> </u>			· · · · · · · · · · · · · · · · · · ·
	Well Sta	abilized?	YES	NO			•	Total Vol	ume Purged:	5000,0	mL
Sample Date	Time	Temp.	Spec.	рН	T		Turbidity				Appearance or Comment
Jampie Date	Tane	(°C)	Cond.				(NTU)				Clarity, Color, Odor, Ect.
23 Aug 21	1025	12.07	8066	6.75			0.21				Clear

Groundwater Assessment

Company:	MDU Heskett
Event:	Fall 2021
Sample ID:	. 1,03
Sampling Personal:	Jarla-
O Precin:	Sunny / Partly Cloudy / Cloudy

Phone: (701) 258-9 Weather Conditions:		Temp:	65	۴	Wind:		0 5-10	0	Precip:	Sunny / Pa	rtly Cloudy / Cloudy
		ORMATIO								FORMATIC	
Vell Locked?	YES	TNO/			Purging Method: Bladder						Control Settings:
Vell Labeled?	CHES -	NO	· · · · · · · · · · · · · · · · · · ·		1	Sampling M		Bladder			Purge: 3 Sec
Casing Strait?	(YES)	NO	······································			Dedicated E		YES	NO		Recover: 27 See
Frout Seal Intact?	YES	NO	Not V	7isible					~		PSI: 25
Repairs Necessary?		·				Duplicate Sa	mple?	YES	(NO)		
	g Diameter:		ni -			Duplicate Sa	imple ID:				
Water Level Be	fore Purge:	33	3.97	ft		·····					
Total De	pth of Well:			ft			Bottl	e List:			
	ell Volume:			liters		1 Liter Raw					
Depth to To				ft		500mL Nitric					
	Water Level After Sample: 38,72 ft Measurement Method: Electric Water Level Indicato						(filtered)				
Measureme	nt Method:	Electric	Nater Level	Indicator]	250mL Sulfur	ic]	
					FIE	LD READIN	GS				
Stabilization Parameters Temp. Spec.		pH	DO	ORP	Turbidity	Water Level	Pumping	mL	Appearance or Comment		
(3 Consecutive)		(°C)	Cond.	P.1	(mg/L)	(mV)	(NTU)		Rate	Removed	Clarity, Color, Odor, Ect.
Purge Date	Time	±0.5°	±5%	±0.1	±10%	±10		(ft)	mL/Min		clear, slightly turbid, turbid
		Start of Well			1						
	1335	13.31	5002	6.69	3.25	273.9	1.86	34.98	100,0	500.0	Cleev
	1405	11.71	4851	6161	1.03	270,8	0,51	37.20	100.0	3000.0	Clear
23Aus24	1410	11.61	4840	6,60	1.66	270,6	0,30	37.84	100,00	50,0	Cleer
	1415	11.82	4882	6.60	1.74	275.3	0.21	38.05	0.001	5200	des
	1420	11,98	4910	658	1.79	272.3	0.55	38,19	190 10	520.0	Clizi
				<u> </u>				·····			
					<u> </u>					<u> </u>	
					<u> </u>	1					
				1							
I	Well Sta	abilized?	TES	NO	1	1		Total Vol	ume Purged:	5000.0	mL.
Comula Data	T:	Temp.	Spec.				Turbidity				Appearance or Comment
Sample Date	Time	(°C)	Cond.	рН			(NTU)				Clarity, Color, Odor, Ect.
23Avy21	1420	11.98	4910	6.50	1	1	0,55				Clesy

Groundwater Assessment

Company:	MDU Heskett
Event:	Fall 2021
Sample ID:	104
Sampling Personal:	J-My-

2616 E. Broadway Ave, Bismarck, ND

Comments:

2010 21 010000100 / 110/ 0								<u>`</u>			
Phone: (701) 258-	-9720										
Weather Conditions	5:	Temp:	70	°F	Wind:	N	@ 5~14	2	Precip:	Sunny / Pa	artly Cloudy / Cloudy
	WELL INFO	ORMATIO	N			·		SAM	PLING IN	FORMATIO	N
Well Locked?	YES	(NO)			7	Purging Me	thod:	Bladder		1	Control Settings:
Well Labeled?	(TES)	NO			1	Sampling M		Bladder		1	Purge: Sec.
Casing Strait?	(YES	NO			1	Dedicated I	quipment?	(YES)	NO]	Recover: 55 Sec.
Grout Seal Intact?	(YES	NO	Not V	isible	7					-	PSI: 22
Repairs Necessary?						Duplicate S		(YÊS)	NÔ		
	ng Diameter:		2"			Duplicate S	ample ID:	Dupi	2	J	
Water Level B		14		ft	4			L.		1	
	epth of Well:			ft	4		Bottl	e List:		1	,
				liters	_	1 Liter Raw					
Depth to Top of Pump:ft					4	500mL Nitric					
	Water Level After Sample: اج، ٦3 ft Measurement Method: Electric Water Level Indicator					500mL Nitric (filtered)					
Measurem	ent Method:	Electric	water Level	Indicator		250mL Sulfu	ric			1	
					FIE	LD READIN	IGS				• • • • • • • • • • • • • • • • • • •
Stabilization Parameters Temp. Spec. pH				nH	DO	ORP	Turbidity	Water Level	Pumping	mL	Appearance or Comment
(3 Consecutiv	ve)	(°C)	Cond.		(mg/L)	(mV)	(NTU)		Rate	Removed	Clarity, Color, Odor, Ect.
Purge Date	Time	±0.5°	±5%	±0.1	±10%	±10		(ft)	mL/Min	<u> </u>	clear, slightly turbid, turbid
	1200	Start of Wel									
24 Aug 21	1205	14.70	13988	6.98	3.32	268.7	14.79	15.20	100.0	500.0	Clear
	1235	12.46	14028	6.90	1.15	227.6	0.65	1538		3000.0	Clear
	1240	12.32	14068	6.90	1.11	227.7	0,43	15,40	<u> </u>	520.7	Cless
	1245	12.22	14033	6.89	1.20	224.3	0,55	15,40	[20:7	520.0	<u>Clear</u>
	1250	12.50	14092	6.89	1.29	1 20-1.3	0.01	12,16	120.0	300.0	Char.
		<u> </u>									
	 					1					<u> </u>
		<u> </u>	-		+	+				1	
	Well St	abilized?	ÝES	NO		<u> </u>	1	Total Vol	ume Purged:	50000	mL
	Time	Temp.	Spec.	рН	1		Turbidity			<u> </u>	Appearance or Comment
Comple Date				i pu	1	1	1 (817711)			1	Clarity, Color, Odor, Ect.
Sample Date	mie	(°C)	Cond.				(NTU)				Clust

Groundwater Assessment

Company:	MDU Heskett
Event:	Fall 2021
Sample ID:	105
Sampling Personal:	Ja May

2616 E. Broadway Ave, Bismarck, ND

....

Phone: (701) 258-97	720										· · · · · · · · · · · · · · · · · · ·	
Weather Conditions:		Temp:	70	°F	Wind:	h	@ 5-12	2	Precip:	Sunny / Ra	ertly Cloudy / Cloud	У
v	VELL INFO	RMATIO	V					SAN	IPLING IN	FORMATIC		
Well Locked?	YES	NO]	Purging Me		Bladder			Control Setti	
Vell Labeled?	VES	NO]	Sampling M		Bladder			Purge: 5	See
Casing Strait?	YES	NO				Dedicated E	quipment?	YES	NO]	Recover: 55	Se
Grout Seal Intact?	XES	NO	Not V	/isible		P				т	PSI: 20	
Repairs Necessary?	<u> </u>				1	Duplicate Sa		YES	CNO	1		
	Diameter:	2		- <u></u>		Duplicate Sa	ample ID:		-	J		
Water Level Bet		13.6	5	ft	-	r				1		
	th of Well:		`	ft	-		Botti	e List:		4		
Well Volume:			liters	4	1 Liter Raw							
Depth to To				ft	-	500mL Nitric						
Tratel Zerel / atel beinpiel				ft	4	500mL Nitric	•					
Measuremer	nt Method:	Electric \	Nater Level	Indicator]	250mL Sulfu	ric			1		
						LD READIN		······	,	r		
Stabilization Param	eters	Temp.	Spec.	pH	DO	ORP	Turbidity	Water Level	Pumping	mL	Appearance or C	the second s
(3 Consecutive		(°C)	Cond.		(mg/L)	(mV)	(NTU)		Rate	Removed	Clarity, Color, Oc	
Purge Date	Time	±0.5°	±5%	±0.1	±10%	±10	L	(ft)	mL/Min	<u> </u>	clear, slightly turb	ia, turbia
		Start of Well			10-6	12.2	1 1701	112 02		500.0		
	1337	16.13	4170	6.73	0,75	217.1	17.94	13.93	100.0		Clear Clear	
	1407	18,00	5005	6.69	0.79	220.0	23.57	13,98	100.0	300.0	Clear	
	1427	17.15	5635	6.67	0.79	222.7	8.63	13.95	100.0 100.0	2000.0	Clest	
01A.21	1437	15.64	6000	6.68	0.69	217.5		13.97	100.0	520.0	Clear	
24 Aug 21	1442	15.84	6086	6.68	0,65	216.7	4,62	13,9%	100.0	500	Clear	
-	1447	15.73	6135	6.68		211,9	4,29	13,99	100.0	500,0	Clear	
	1452	15.67	6331	6.67	0.66		7.61	1 1311	100.0	/~~.0	Mear	
			<u> </u>		+					1		
-					+					1		
1	Well Sta	abilized?	(YES)	NO	1		1	Total Vo	lume Purged	: B000.0	mL	
		Temp.	Spec.		1	T	Turbidity	T			Appearance or C	omment
Sample Date	Time	(°C)	Cond.	рН			(NTU)				Clarity, Color, O	dor, Ect.
24 Aug 21	1452	15,67	6331	6.67			4.29				Cher	
Comments:												

Groundwater Assessment

MDU Heskett	-
Fall 2021	
.44B	
Jarta	

. -

2010 L. Bioadway Ave, b	isinarci, no							ounping.			7+12	
Phone: (701) 258-			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<u> </u>	NA/		0		Duesius	Comment / De	, 	
Weather Conditions	5:	Temp:	55	- <u>+</u> -	Wind:	\mathbb{N}	@ ٢-ر۵	<u> </u>	Precip:	Sunny / Pa	rtly Cloudy / Cloud	У
	WELL INFO	ORMATIO	N					SAM	PLING IN	FORMATIC	ON	
Well Locked?	YES	NO			1	Purging Me	thod:	Bladder			Control Sett	ngs:
Well Labeled?	VES>	NO			1	Sampling M	lethod:	Bladder			Purge: 3	Sec.
Casing Strait?	(YES)	NO			1	Dedicated E	quipment?	(TES)	NO		Recover: 27	Sec.
Grout Seal Intact?	(YES	NO	Not V	/isible	1						PS1: 25	
Repairs Necessary?	See Comments]	Duplicate Sa	ample?	YES	(ND)			
Casir	ng Diameter:	2	, 21]	Duplicate Sa	ample ID:]		
Water Level B	efore Purge:	29.	13	ft]					-		
Total De	Total Depth of Well: ft				Bottl	e List:						
V	Well Volume:			liters	_	1 Liter Raw						
Depth to T	op of Pump:			ft		500mL Nitric						
Water Level A	fter Sample:		,22	ft		500mL Nitric	(filtered)					
Measurem	ent Method:	Electric \	Nater Level	Indicator		250mL Sulfu	ric					
					FIE	LD READIN	IGS					
Stabilization Para	meters	Temp.	Spec.		DO	ORP	Turbidity	Water Level	Pumping	mL	Appearance or C	omment
(3 Consecutiv	ve)	(°C)	Cond.	рH	(mg/L)	(mV)	(NTU)	water rever	Rate	Removed	Clarity, Color, O	lor, Ect.
Purge Date	Time	±0.5°	±5%	±0.1	±10%	±10		(ft)	mL/Min		clear, slightly turb	id, turbid
	0715	Start of Well	Purge									
	0720	11.72	9393	6.55	1.60	252.5	3.16	29,25	100,->	500.0	Cleen	
	0750	11.27	9215	6,50	1.47	24915	5.80	29,12	102.0	3000.0	Clear	
	0800	11,90	9367	6.51	1.35	238.4	3.63	29.18	000	1000.0	Clear	
	0805	11.96	9316	6.51	1,52	238.9	2,62	29.21	100.0	500.0	Cles.	

Stabilization Parameters		Spec.		DO	ORP	Turbidity	Water Level	Pumping	mL	Appearance or Comment	
/e)	(°C)	Cond.	hu	(mg/L)	(mV)	(NTU)	WALEI LEVEI	Rate	Removed	Clarity, Color, Odor, Ect.	
Time	±0.5°	±5%	±0.1	±10%	±10		(ft)	mL/Min		clear, slightly turbid, turbid	
071S Start of Well Purge											
0720	11.72	9393	6.55	1.60	252.5	3.16	29,25	100.0	500.0	Clear	
0750	11.27	9215	6,50	1.47	24915	5.80	29,12	100.0	3000.0	Clear	
0800	11,90	9367	6.51	1.35	238.4	3,63	29.18	1000	1000.0	Clear	
0805	11.96	9316		1,52	238.9	2,62	29.21	100.0	500.0	Clear	
0810	12.08	9300	6.51	1.50	233.1	2.97	29.15	100.0	500.0	Clear	
0815	12.04	9336	6.52	1.44	230.2	3.02	29,18	100.0	500.0	Clear	
Well St	abilized?	YES	NO				Total Vo	lume Purged:	6000.0	mL	
_	Temp.	Spec.		1		Turbidity	T			Appearance or Comment	
lime	(°C)	Cond.	рн			(NTU)				Clarity, Color, Odor, Ect.	
OBIS	12.04	9336	6.52			3,02				CLEAN	
comments: Outer cashy sink, could not close lid.											
Collected Right 1 @ 0730											
	re) Time 0715 0720 0750 0750 0805 0810 0815 Well St Time 0815 0815	re) (°C) Time $\pm 0.5^{\circ}$ $07+15$ Start of Well $07+20$ $[1,72]$ 0750 $[1,72]$ 0750 $[1,72]$ 0800 $[1,90]$ 0800 $[1,90]$ 0800 $[1,90]$ 0800 $[1,90]$ 0810 12.08 0815 $i2.04$ Well Stabilized? Time Temp. $(°C)$ 0815 0.5 $i2.04$	(°C) Cond. Time $\pm 0.5^{\circ}$ $\pm 5\%$ 07-15 Start of Well Purge 07-20 (1.72 9.393 0750 11.27 9.215 0800 11.90 9.367 0805 11.96 9.316 0810 12.08 9.300 0815 12.04 9.336 Well Stabilized? YES Time Temp. Spec. (°C) Cond. 0815 12.04 9.336	(°C) Cond. pH Time $\pm 0.5^{\circ}$ $\pm 5\%$ ± 0.1 $07+15$ Start of Well Purge 0.720 $[1.72]$ 9.393 6.55 0750 $[1.72]$ 9.393 6.55 0750 $[1.77]$ 9.215 6.50 0800 $[1.96]$ 9.367 6.51 0805 $[1.96]$ 9.316 6.51 0805 $[1.96]$ 9.300 6.51 0816 12.08 9.300 6.51 0815 $i2.04$ 9.336 6.52 Well Stabilized? YES NO Time Temp. Spec. Other Coshey Sunk, Could	meters Temp. Spec. pH DO re) (°C) Cond. pH (mg/L) Time $\pm 0.5^{\circ}$ $\pm 5\%$ ± 0.1 $\pm 10\%$ $O7+LS$ Start of Well Purge 0.720 [L-72 9.39.3 6.55 $I.60$ $O7+LS$ Start of Well Purge 0.720 [L-72 9.39.3 6.55 $I.60$ $O7+DS$ [L-72 9.39.3 6.55 $I.60$ 0.730 $I.47$ $O7+O [L-72 9.39.3 6.55 I.60 0.730 I.47 O7+O [L-72 9.39.3 6.551 I.35 0.805 I.90 9.51 I.52 O805 [L-90 9.300 6.51 I.50 0.51 I.50 O815 i2.04 9.336 6.52 I.44 Vell Stabilized? YES NO I.90 I.90 I.90 Vell Stabilized? YES NO I.9336 6.52 $	meters Temp. Spec. pH DO ORP re) (°C) Cond. pH (mg/L) (mV) Time ±0.5° ±5% ±0.1 ±10% ±10 O7+LS Start of Well Purge 0.720 [1.72 9.393 6.55 1.60 252.5 O750 [1.27 9.215 6.50 1.47 2.49.5 0800 [1.90 9.367 6.51 1.35 2.38.4 0805 [1.96 9.31% 6.51 1.52 2.38.9 0805 [1.96 9.300 6.51 1.50 2.33.1 0810 12.08 9.300 6.52 1.44 2.30.2 Well Stabilized? YES NO 1.44 2.30.2 Well Stabilized? YES NO 1.44 2.30.2 0815 12.04 9.336 6.52 1.44 2.30.2 0815 12.04 9.336 6.52 1.44 2.30.2 1.44 <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td> <td>meters Temp. Spec. Cond. pH DO (mg/L) ORP (mV) Turbidity (NTU) Water Level Time $\pm 0.5^{\circ}$ $\pm 5\%$ ± 0.1 $\pm 10\%$ ± 10 (ft) 0715 Start of Well Purge 0720 [[.72] 9393 6.55 1.60% 252.5 3.16 29.25 0750 [[.72] 9393 6.55 1.47 2.4915 5.80 29.12 0800 [[.90] 9367 6.51 1.35 238.4 3.63 29.16 0805 [[.90] 9316 6.51 1.50 $2.33.1$ $2.97.2$ 29.21 0805 [[.90] 9300 6.51 1.50 233.1 $2.97.15$ 0815 [2.04] 9336 6.52 1.44 230.2 3.02 29.16 Well Stabilized? YES NO Turbidity (NTU) 0815 12.04 9336 6.52 3.02 3.02 <td r<="" td=""><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td></td></td>	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	meters Temp. Spec. Cond. pH DO (mg/L) ORP (mV) Turbidity (NTU) Water Level Time $\pm 0.5^{\circ}$ $\pm 5\%$ ± 0.1 $\pm 10\%$ ± 10 (ft) 0715 Start of Well Purge 0720 [[.72] 9393 6.55 1.60% 252.5 3.16 29.25 0750 [[.72] 9393 6.55 1.47 2.4915 5.80 29.12 0800 [[.90] 9367 6.51 1.35 238.4 3.63 29.16 0805 [[.90] 9316 6.51 1.50 $2.33.1$ $2.97.2$ 29.21 0805 [[.90] 9300 6.51 1.50 233.1 $2.97.15$ 0815 [2.04] 9336 6.52 1.44 230.2 3.02 29.16 Well Stabilized? YES NO Turbidity (NTU) 0815 12.04 9336 6.52 3.02 3.02 <td r<="" td=""><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td></td>	<td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td> <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td>	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

20

2616 E. Broadway Ave MVTL Bismarck, ND 58501 (701) 258-9720

Chain of Custody Record

Project Name:				1										
Froject Name:				Event:	Event:						Work Order Number:			
	MDU Heskett						F	Fall	2021		8	82-2247		
Report To:	Montana-Dakota Utilitie	S		CC:							Collected I	By:		
Attn:	Todd Peterson											,		
Address:	400 North 4th St.											l		
Phone:	Bismarck, ND 58501 701-425-2427										ler	meth		
Email:	todd.peterson@mdu.con	n	e									(P		
	toda.peterson@indu.com	4 E								•••••••••••••••	I			
			/	/	7		/	1	18/17	/	/	/	/	
				,	/		/	/ /						
					ø	1	/ /		Ì:://				5	
					20	13					ș /			
			/ a.	18	2/	18	2	2/2	<u>]] [</u>			dir.		
Lab Number	Sample ID	alle alle	Time	29mpr	1:	Son Raw.	Soo Mit.	20 m minic	¹ Lifer Wiric Temo (°C)	Sole.	140	Turbioinv.	Analysis Deswired	
		23 Aug 21 ×	NA	GW				x	NA NA	NA NA	NA NA	NA NA	/ Analysis Required	
W3041	FB1	24 Aug 21	NA	GW	X			$\frac{x}{x}$	NA NA	NA	NA		-	
W3042	MW101	23 Aug 21	1302	GW	X		x		15,16	5268	6.57	NA 0.97	-	
W3043	MW102		1025									· · · · · · · · · · · · · · · · · · ·	-	
		23 Aug 21		GW	X			X	12.07	8066	6.75	0,21	MDU List AA & MDU List	
W3044	MW103	23 Aug 21	1420	GW	X			X	11.98	4910	6,58	0,55	с	
123045	MW104	24 Aug 21	1250	GW				X	12.50	14092	6,89	0.61	ļ	
W3046	MW105	24 Aug 21	1452	GW	X	X	X	x	15,67	6331	6.67	4.29		
W3047	MW44R	24 Aug ZI	OBIS	GW	X	X	X	x	12.04	9336	6,52	3,02		
-														

Comments:

¥ = @ a 150(7 21

Relinquished By	Sample C	ondition	Received By			
Name /	Date/Time	Location	Temp (°C)	Name	Date/Time	
1 Just	25Ay21 092B	Ug tog to Walk In #2	4,3 TM562 / 70805	IMPA RA	25Aug21	
2				pro 9 . e	0.00	

MINNESOTA VALLEY TESTING LABORATORIES, INC. 1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

REVISED PT2_APP III

CERTIFICATE of ANALYSIS - CCR

Todd Peterson Montana-Dakota Utilities Co. 400 N 4th St Bismarck ND 58501

Project Name: MDU Heskett

Sample Description: Dup1

Event and Year: Fall 2021

Page: 1 of 1

Report Date: 10 Sep 21 Lab Number: 21-W3040 Work Order #: 82-2247A Account #: 002800 Date Sampled: 23 Aug 21 Date Received: 25 Aug 21 9:28 Sampled By: MVTL Field Services

PO #: 185968 OP

Temp at Receipt: 4.3C

	As Receiv Result	ved	Method RL	Method Reference	Date Analyzed	Analyst
pH Fluoride Sulfate Chloride Total Dissolved Solids Calcium – Total Boron – Total	* 7.4 0.81 6800 77.6 10500 385 0.63	units mg/l mg/l mg/l mg/l mg/l	0.1 0.10 5.00 2.0 10 1.0 0.10	SM4500-H+-B-11 SM4500-F-C ASTM D516-11 SM4500-C1-E-11 USGS I1750-85 6010D 6010D	25 Aug 21 18:00 25 Aug 21 18:00 1 Sep 21 9:41 25 Aug 21 13:28 26 Aug 21 16:00 27 Aug 21 11:13 26 Aug 21 10:37	RAA SD SD RAA SZ

* Holding time exceeded

Approved by:

(C 150000 Clauditte K. Canto

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

The reporting limit was elevated for any analyte requiring a dilution as coded below: @ = Due to sample matrix # = Due to concentration of other analytes ! = Due to sample quantity + = Due to internal standard response CERTIFICATION: ND # ND-00016

MINNESOTA VALLEY TESTING LABORATORIES, INC. 1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

Page: 1 of 6

CERTIFICATE of ANALYSIS - CCR

Todd Peterson Montana-Dakota Utilities Co. 400 N 4th St Bismarck ND 58501

Project Name: MDU Heskett

Sample Description: FB2

Event and Year: Fall 2021

Report Date: 10 Sep 21 Lab Number: 21-W3049 Work Order #: 82-2247A Account #: 002800 Date Sampled: 25 Aug 21 Date Received: 25 Aug 21 9:28 Sampled By: MVTL Field Services

PO #: 185968 OP

Temp at Receipt: 4.3C

	As Recei Result	ved	Method RL	Method Reference	Date Analyzed	Analyst
pH Fluoride Sulfate Chloride Total Dissolved Solids Calcium – Total Boron – Total	* 5.7 < 0.1 < 5 < 2 < 10 < 1 < 0.1	units mg/l mg/l mg/l mg/l mg/l mg/l	0.1 0.10 5.00 2.0 10 1.0 0.10	SM4500-H+-B-11 SM4500-F-C ASTM D516-11 SM4500-Cl-E-11 USGS I1750-85 6010D 6010D	25 Aug 21 17:00 25 Aug 21 17:00 1 Sep 21 10:00 25 Aug 21 14:06 27 Aug 21 16:00 27 Aug 21 12:23 26 Aug 21 11:37	RAA SD SD RAA SZ

* Holding time exceeded

10 150CT2 Clauditte K. Canto Approved by:

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

The reporting limit was elevated for any analyte requiring a dilution as coded below: @ = Due to sample matrix # = Due to concentration of other analytes ! = Due to sample quantity + = Due to internal standard response CERTIFICATION: ND # ND-00016

2 of 6 Page:

CERTIFICATE of ANALYSIS - CCR

Todd Peterson Montana-Dakota Utilities Co. 400 N 4th St 58501 Bismarck ND

Project Name: MDU Heskett

Sample Description: MW2-90

Event and Year: Fall 2021

Report Date: 10 Sep 21 Lab Number: 21-W3050 Work Order #: 82-2247A Account #: 002800 Date Sampled: 24 Aug 21 11:05 Date Received: 25 Aug 21 9:28 Sampled By: MVTL Field Services

PO #: 185968 OP

Temp at Receipt: 4.3C

	As Receive Result	ed	Method RL	Method Reference	Date Analyzed	Analyst
pH - Field	6.90	units	NA	SM 4500 H+ B	24 Aug 21 11:05	
pH	* 7.6	Units	0.1	SM4500-H+-B-11	25 Aug 21 18:00	
Temperature - Field	14.6	Degrees C	NA	SM 2550B	24 Aug 21 11:05	
Conductivity - Field	8892	umhos/cm	1	EPA 120.1	24 Aug 21 11:05	
Fluoride	1.02	mg/l	0.10	SM4500-F-C	25 Aug 21 18:00	
Sulfate	6650	mg/l	5.00	ASTM D516-11	1 Sep 21 10:00	
Chloride	89.5	mg/l	2.0	SM4500-C1-E-11	25 Aug 21 14:06	
Total Dissolved Solids	10400	mg/l	10	USGS I1750-85	27 Aug 21 16:00	
Calcium - Total	505	mg/l	1.0	6010D	27 Aug 21 12:23	
Boron - Total	< 0.5 @	mg/l	0.10	6010D	26 Aug 21 11:37	

* Holding time exceeded

Approved by:

OCTZI Clauditte K. Canto

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

= Due to concentration of other analytes
+ = Due to internal standard response CERTIFICATION: ND # ND-00016

MINNESOTA VALLEY TESTING LABORATORIES, INC. 1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

Page: 3 of 6

CERTIFICATE of ANALYSIS - CCR

Todd Peterson Montana-Dakota Utilities Co. 400 N 4th St Bismarck ND 58501

Project Name: MDU Heskett

Sample Description: MW13

Event and Year: Fall 2021

Report Date: 10 Sep 21 Lab Number: 21-W3051 Work Order #: 82-2247A Account #: 002800 Date Sampled: 23 Aug 21 8:30 Date Received: 25 Aug 21 9:28 Sampled By: MVTL Field Services

PO #: 185968 OP

Temp at Receipt: 4.3C

	As Recei Result	ved	Method RL	Method Reference	Date Analyzed	Analyst
pH - Field pH Temperature - Field Conductivity - Field Fluoride Sulfate Chloride Total Dissolved Solids Calcium - Total	6.90 * 7.5 12.0 10341 0.83 6820 76.0 10400 391	units Degrees C umhos/cm mg/l mg/l mg/l mg/l mg/l mg/l	NA 0.1 NA 1 0.10 5.00 2.0 10 1.0 0.10	SM 4500 H+ B SM4500-H+-B-11 SM 2550B EPA 120.1 SM4500-F-C ASTM D516-11 SM4500-C1-E-11 USGS I1750-85 6010D 6010D	23 Aug 21 8:30 25 Aug 21 18:00 23 Aug 21 8:30 23 Aug 21 8:30 25 Aug 21 18:00 1 Sep 21 10:00 25 Aug 21 14:06 27 Aug 21 14:02 26 Aug 21 12:23 26 Aug 21 11:37	JSM JSM RAA SD SD RAA SZ
Boron - Total	0.63	mg/l	0.10	6010D	26 Aug 21 11:37	54

* Holding time exceeded

Approved by:

TT21 Claudite K. Canto

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

The reporting limit was elevated for any analyte requiring a dilution as coded below: @ = Due to sample matrix # = Due to concentration of other analytes ! = Due to sample quantity + = Due to internal standard response CERTIFICATION: ND # ND-00016

MINNESOTA VALLEY TESTING LABORATORIES, INC. 1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

ACIL

Page: 4 of 6

CERTIFICATE of ANALYSIS - CCR

Todd Peterson Montana-Dakota Utilities Co. 400 N 4th St Bismarck ND 58501

Project Name: MDU Heskett

Sample Description: MW33

Event and Year: Fall 2021

Report Date: 10 Sep 21 Lab Number: 21-W3052 Work Order #: 82-2247A Account #: 002800 Date Sampled: 24 Aug 21 10:00 Date Received: 25 Aug 21 9:28 Sampled By: MVTL Field Services

PO #: 185968 OP

Temp at Receipt: 4.3C

	As Receiv Result	ed	Method RL	Method Reference	Date Analyzed	Analyst
pH - Field	6.42	units	NA	SM 4500 H+ B	24 Aug 21 10:00	JSM
pH	* 7.2	units	0.1	SM4500-H+-B-11	25 Aug 21 18:00	RAA
Temperature - Field	13.8	Degrees C	NA	SM 2550B	24 Aug 21 10:00	JSM
Conductivity - Field	5185	umhos/cm	1	EPA 120.1	25 Aug 21 10:00	JSM
Fluoride	0.19	mg/l	0.10	SM4500-F-C	25 Aug 21 18:00	RAA
Sulfate	3440	mg/l	5.00	ASTM D516-11	1 Sep 21 10:00	SD
Chloride	13.3	mg/l	2.0	SM4500-C1-E-11	25 Aug 21 14:06	SD
Total Dissolved Solids	5310	mg/l	10	USGS I1750-85	27 Aug 21 14:06	RAA
Calcium - Total	467	mg/l	1.0	6010D	27 Aug 21 12:23	SZ
Boron - Total	< 0.5 @	mg/l	0.10	6010D	26 Aug 21 11:37	SZ

* Holding time exceeded

Approved by:

11 かいろ Claudite K. Canro

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

Page: 5 of 6

CERTIFICATE of ANALYSIS - CCR

Todd Peterson Montana-Dakota Utilities Co. 400 N 4th St Bismarck ND 58501

Project Name: MDU Heskett

Sample Description: MW70

Event and Year: Fall 2021

Report Date: 10 Sep 21 Lab Number: 21-W3053 Work Order #: 82-2247A Account #: 002800 Date Sampled: 23 Aug 21 11:45 Date Received: 25 Aug 21 9:28 Sampled By: MVTL Field Services

PO #: 185968 OP

Temp at Receipt: 4.3C

	As Receiv Result	red	Method RL	Method Reference	Date Analyzed	Analyst
pH - Field pH Temperature - Field Conductivity - Field Fluoride Sulfate Chloride Total Dissolved Solids Calcium - Total Boron - Total	6.84 * 7.4 13.5 3712 0.30 1960 56.3 3340 320 0.44	units units Degrees C umhos/cm mg/l mg/l mg/l mg/l mg/l	NA 0.1 NA 1 0.10 5.00 2.0 10 1.0 0.10	SM 4500 H+ B SM4500-H+-B-11 SM 2550B EPA 120.1 SM4500-F-C ASTM D516-11 SM4500-C1-E-11 USGS I1750-85 6010D 6010D	23 Aug 21 11:45 25 Aug 21 18:00 23 Aug 21 11:45 23 Aug 21 11:45 25 Aug 21 18:00 1 Sep 21 10:00 25 Aug 21 14:06 27 Aug 21 16:00 27 Aug 21 12:23 26 Aug 21 11:37	JSM JSM RAA SD SD RAA SZ

* Holding time exceeded

Approved by:

150(52) Clauditte K. Canto

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

(C

CERTIFICATION: ND # ND-00016

MVTL guarantees the accuracy of the analysis done on the sample submitted for testing. It is not possible for MVTL to guarantee that a test result obtained on a particular sample will be the same on any other sample unless all conditions affecting the sample are the same, including sampling by MVTL. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

MINNESOTA VALLEY TESTING LABORATORIES, INC. 1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

Page: 6 of 6

CERTIFICATE of ANALYSIS - CCR

Todd Peterson Montana-Dakota Utilities Co. 400 N 4th St Bismarck ND 58501

Project Name: MDU Heskett

Sample Description: MW80R

Event and Year: Fall 2021

Report Date: 10 Sep 21 Lab Number: 21-W3054 Work Order #: 82-2247A Account #: 002800 Date Sampled: 25 Aug 21 7:42 Date Received: 25 Aug 21 9:28 Sampled By: MVTL Field Services

PO #: 185968 OP

Temp at Receipt: 4.3C

	As Receive Result	ed	Method RL	Method Reference	Date Analyzed	Analyst
pH - Field	6.92	units	NA	SM 4500 H+ B	25 Aug 21 7:42	
Hq	* 7.5	units	0.1	SM4500-H+-B-11	25 Aug 21 18:00	
Temperature - Field	9.74	Degrees C	NA	SM 2550B	25 Aug 21 7:42	
Conductivity - Field	5656	umhos/cm	1	EPA 120.1	25 Aug 21 7:42	JSM
Fluoride	0.23	mg/l	0.10	SM4500-F-C	25 Aug 21 18:00	
Sulfate	3150	mg/l	5.00	ASTM D516-11	1 Sep 21 10:00	SD
Chloride	155	mg/l	2.0	SM4500-Cl-E-11	25 Aug 21 14:06	SD
Total Dissolved Solids	5610	mg/l	10	USGS I1750-85	27 Aug 21 16:00	RAA
Calcium - Total	340	mg/l	1.0	6010D	27 Aug 21 12:23	SZ
Boron - Total	< 0.5 @	mg/l	0.10	6010D	26 Aug 21 11:37	SZ

* Holding time exceeded

Approved by:

CC 150(721 Clauditte K. Canto

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

The reporting limit was elevated for any analyte requiring a dilution as coded below: @ = Due to sample matrix # = Due to concentration of other analytes ! = Due to sample quantity + = Due to internal standard response CERTIFICATION: ND # ND-00016

MVTL guarantees the accuracy of the analysis done on the sample submitted for testing. It is not possible for MVTL to guarantee that a test result obtained on a particular sample will be the same on any other sample unless all conditions affecting the sample are the same, including sampling by MVTL. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

MVTL

Quality Control Report

MINNESOTA VALLEY TESTING LABORATORIES, INC.

1126 N. Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 E. Broadway Ave. ~ Bismarck, ND 58502 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Highway ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

MEMBER ACIL

Page: 1 of 1

Lab IDs: 21-W3040 to 21-W	V3054	Pr	oject: MI	DU Heske	ett		Work Or	rder: 202	182-2247	7A							
Analyte	LCS Spike Amt	LCS Rec %	LCS % Rec Limits	Matrix Spike Amt	Matrix Spike ID	Matrix Spike Orig Result	Matrix Spike Result	Matrix Spike Rec %	Matrix Spike % Rec Limits	MSD/ Dup Orig Result	MSD/ Dup Result	MSD Rec %	MSD/ Dup RPD	MSD/ Dup RPD Limit (<)	Known Rec (%)	Known % Rec Limits	Method Blank
Boron - Total mg/l	0.40 0.40	105 100	80-120 80-120	2.00 0.400	21-W3048 21-W3053	0.86 0.44	2.58 0.78	86 85	75-125 75-125	2.58 0.78	2.69 0.79	92 88	4.2 1.3	20 20		- - -	<0.1 <0.1 <0.1 <0.1
Calcium - Total mg/l	100 100	104 105	80-120 80-120	100 100	21W3037q 21W3069q	2.6 64.5	98.9 156	96 92	75-125 75-125	98.9 156	97.9 154	95 90	1.0 1.3	20 20			< 1 < 1 < 1 < 1 < 1
Chloride mg/l	30.0 30.0 30.0 30.0 30.0	95 95 95 95	80-120 80-120 80-120 80-120	30.0 30.0 30.0	21-W3030 21-W3049 21-W2964	<2 <2 31.1	28.3 28.5 62.3	94 95 104	80-120 80-120 80-120	28.3 28.5 62.3	28.7 28.6 62.4	96 95 104	1.4 0.4 0.2	20 20 20			<2 <2 <2 <2 <2
Fluoride mg/l	0.50 0.50 0.50 0.50	100 100 100 100	90-110 90-110 90-110 90-110	0.500 0.500 0.500 0.500	21-W3040 21-W3053 21-W3030 21-W3037	0.81 0.30 < 0.1 2.16	1.26 0.81 0.50 2.68	90 102 100 104	80-120 80-120 80-120 80-120	1.26 0.81 0.50 2.68	1.27 0.90 0.50 2.72	92 120 100 112	0.8 10.5 0.0 1.5	20 20 20 20	- - -		< 0.1 < 0.1 < 0.1 < 0.1
pH units		- - - -			- - -					8.6 7.6 5.7 8.2	8.6 7.4 5.8 8.5		0.0 2.7 1.7 3.6	20 20 20 20 20		- - -	
Sulfate mg/l	100 100	106 104	80-120 80-120	100 100	21-W3041 21-W3049	< 5 < 5	104 105	104 105	80-120 80-120	104 105	106 104	106 104	1.9 1.0	20 20	-	-	< 5 < 5
Total Dissolved Solids mg/l		-			- - -	-	- - -	-		1640 2490 1740	1670 2480 1740	-	1.8 0.4 0.0	20 20 20			< 10 < 10

Samples were received in good condition on 25 Aug 2021 at 0928.

Temperature upon receipt at the Bismarck laboratory was 4.3°C.

All samples were properly preserved unless noted here and/or flagged on the individual analytical laboratory report.

With the exception of pH, all holding times were met.

٠

Approved methodology was followed for all sample analyses.

All acceptance criteria were met for calibration, method blanks, laboratory control samples, laboratory fortified matrix/duplicates unless noted here:

For some analytes, the reported results were elevated due to additional dilutions required to minimize the effects of sample matrix.

150CT XI

Groundwater Assessment

Company:	MDU Heskett	
Event:	Fall 2021	
Sample ID:	2-90,	
Sampling Personal:	In the	

2616 E. Broadway Ave, Bismarck, ND

Veather Conditions:		Temp:	70	۴-	Wind:	p	9 5-10)	Precip:	Sunny / Pa	artly Cloudy / Cloudy
١	NELL INFO	ORMATIO	N						PLING IN	ORMATIO	ON
Vell Locked?	YES	NO]	Purging Me		Bladder			Control Settings:
Vell Labeled?	(YES)	NO				Sampling M		Bladder			Purge: 5 Sec
Casing Strait?	(YES)	NO			_	Dedicated E	quipment?	(YES)	NO		Recover: 55 Sec
irout Seal Intact?	YES	NO	Not	<i>Tisible</i>	_					1	PSI: ZO
epairs Necessary?			\sim			Duplicate Sa		YES	A RO		
	g Diameter:		.11		_	Duplicate Sa	ample ID:				
Water Level Be		BP		ft	1						
	oth of Well:			ft	_		Bottl	e List:			
	ell Volume:			liters	4	1 Liter Raw					
Depth to To			40	ft	4	500mL Nitric					
Water Level Af				ft	_	500mL Nitric	-				
Measureme	nt Method:	Electric	Nater Level	Indicator		250mL Sulfu	10			l	
					FIE	LD READIN	IGS				
Stabilization Paran	neters	Temp.	Spec.	pH	DO	ORP	Turbidity	Water Level	Pumping	mL	Appearance or Comment
(3 Consecutive	2)	(°C)	Cond.	·	(mg/L)	(mV)	(NTU)		Rate	Removed	Clarity, Color, Odor, Ect.
Purge Date	Time	±0.5°	±5%	±0.1	±10%	±10		(ft)	mL/Min		clear, slightly turbid, turbid
	i045	Start of Wel							(m) -	C C C C	
	1050	14.09	870Z	6.95	5.90	237.7	5.51	BP	(00.0	5000	Clear
	1055	14.16	8827	6.92	5.14	249.9	3.33	β₽	(40.0	520.0 500.0	Clear
	1100	14.27	8839	6,91	5.18	256.5	2.64	BP DP	0.00		Clise
a (1.2)	1105	14,63	8092	6.90	5,17	260.4	2,30	BP	[00.0	500.0	clear
24 Auj21			ļ								
			L	 							
			l	<u></u>							
	Wall St	abilized?	TES	I NO		1	I	Total Vol	ume Purged:	2200.0	
						1	1	1	_	·····	- Appearance or Comment
Sample Date	Time	Temp.	Spec.	рН	ł		Turbidity				Clarity, Color, Odor, Ect.
•	1.	(°C)	Cond.	1.00			(NTU) 2,30				Clarity, color, odor, Ect.
24 4-321	llos.	14.63	8892	6.90			1000				Ulla

BP= woder level below top of pump

Groundwater Assessment

Company:	MDU Heskett
Event:	Fall 2021
Sample ID:	3-90
Sampling Personal:	Jamp Magan

. -

2616 E. Broadway Ave, Bismarck, ND

Weather Conditions:		Temp:	70	°F	Wind:	N	@5-ic	>	Precip:	Sunny / Pa	artly Cloudy / Cloud	<u>/</u>
1	NELL INFO	ORMATIO	N					SAM	IPLING IN	FORMATIO	N	
Well Locked?	YES	(NO)				Purging Me	thod:	Bladder]	Control Setti	ngs:
Well Labeled?	(TES)	NO				Sampling M	ethod:	Bladder			Purge: 5	Sec
Casing Strait?	XES	NO		7		Dedicated E	quipment?	TES	NO]	Recover: SO	Se
Grout Seal Intact?	YES	NO	Not V	isible						_	PSI: 20	
Repairs Necessary?						Duplicate Sa		YES	TO NO			
	g Diameter:					Duplicate S	ample ID:			J		
Water Level Be		BP		ft						•		
	oth of Well:	,,		ft			Bottl	e List:				
	ell Volume:			liters	_	1 Liter Raw						
Depth to To			1 -	ft	4	500mL Nitric						
Water Level Af		B	1	ft	_	500mL Nitric	•					
Measureme	nt Method:	Electric V	Nater Level	Indicator		250mL Sulfu	ic]		
					FIE	LD READIN	GS					
Stabilization Paran	neters	Temp.	Spec.	pН	DO	ORP	Turbidity	Water Level	Pumping	mL	Appearance or Co	
(3 Consecutive	2)	(°C)	Cond.	ри	(mg/L)	(mV)	(NTU)		Rate	Removed	Clarity, Color, Od	
Purge Date	Time	±0.5°	±5%	±0.1	±10%	±10		(ft)	mL/Min	<u> </u>	clear, slightly turbi	d, turbid
		Start of Well	Purge							·		
	1034	7						BP	100.0	5000		
	10iter							BP	1:00:0	1000.0-		
					1	<u> </u>				_		
24 Ag21				\searrow								
0.0				[\rightarrow							
					\rightarrow							
			<u> </u>		-			ļ				<u> </u>
						+						
	Well Sta	bilized?	YES	NO	1	L		Total Vol	ume Purged:	<u>I</u>	mL	
		Temp.	Spec.	I	T	T	Turbidity	[- Appearance or Co	mment
Sample Date	Time	(°C)	Cond.	рН			(NTU)				Clarity, Color, Od	
24 Ay21	1034											
Comments:	Add	í i l		ıl .		, :	7	/ (1	. 1	
	Attemp	er to	purge u	ell. In	sufficien	t volum	of wa	ster to	purge &	souple :	we1]	
BP=	Below		pump						1	_		

Phone: (701) 258-9720

Weather Conditions:

Well Locked?

Well Labeled?

Field Datasheet

Groundwater Assessment

Wind:

<u>O°F</u>

~~ k	Company:		MDU Heskett		۰ ۲
eet	Event:		Fall 2021		
nt	Sample ID:		13	1	
	Sampling P	ersonal:	Jeni	lon	

N1 @5-10		Precip:	Sunny / Partly-	Etoudy / Cloud	ly
.	SAM	IPLING IN	FORMATION		
Purging Method:	Bladder			Control Sett	ings:
Sampling Method:	Bladder		Purg	e: 35	Sec.
Dedicated Equipment?	(TES)	NO	Reco	ver: 2 4	Sec.
			PSI:	20	
Duplicate Sample?	TES	ANO			
Duplicate Sample ID:	1	0]		

real concision.			
Casing Strait?	(YES)	NO	
Grout Seal Intact?	YES	NO	Not Visible
Repairs Necessary?	\square		
Casir	ng Diameter:	2"	
Water Level B	efore Purge:	31,30	ç ft
Total De	epth of Well:	distant in the second	ft
٧	Vell Volume:		liters
Depth to T	op of Pump:		ft
Water Level A	fter Sample:	34.0	
Measurem	ent Method:	Electric Wa	ter Level Indicator

Temp:

NO)

NO

WELL INFORMATION

YES

TES

500mL Nitric (filtered) 250mL Sulfuric

Bottle List:

1 Liter Raw 500mL Nitric

FIELD READINGS Appearance or Comment Stabilization Parameters DO ORP Turbidity Pumping mL Temp. Spec. Water Level pН Clarity, Color, Odor, Ect. (3 Consecutive) (°C) (NTU) Rate Removed Cond. (mg/L)(mV)clear, slightly turbid, turbid **Purge Date** Time ±0.5° ±5% ±0.1 ±10% ±10 (ft) mL/Min Start of Well Purge 0720 10258 6.97 239,5 11.42 33,35 500.0 Clear 10.54 6.25 100.0 23 Ag21 0725 5,59 33.67 0755 10380 6.89 4.31 3000,0 Clear 11.26 292.8 100,0 33.92 200.0 Cles 312.2 1.87 0815 11,92 10359 6.87 6.29 100.0 33.94 (ં.ઝમ 6.86 5.32 308.6 1.70 100.0 500 Clear ORD 10360 5.27 6.87 1.49 33,95 0825 11.87 10351 100.0 500.0 Clear 311.2 10 341 5.22 312.9 1.52 33.97 0830 12.04 90 100.0 500.0 ile Well Stabilized? (YES) Total Volume Purged: 7000.0 mL NO Turbidity Appearance or Comment Temp. Spec. Sample Date Time pН (°C) Cond. (NTU) Clarity, Color, Odor, Ect. Cles 10341 6.90 1.52 23 Au 21 0830 12.04

Comments:

Groundwater Assessment

Company:	MDU Heskett	
Event:	Fall 2021	
Sample ID:	23	
Sampling Personal:	Jardy	

2616 E. Broadway Ave, Bismarck, ND

Weather Conditions		Temp:	70	<u>۴ .</u>	Wind:	K	@ 5-10) 	Precip:	Sunny / Pa	artly Cloudy / Cloudy
	WELL INFO	ORMATIO	V					SAN	IPLING IN	FORMATIO	
Well Locked?	YES	(NO)			1	Purging Me	thod:	Bladder			Control Settings:
Well Labeled?	CYES	NO	······			Sampling M	lethod:	Bladder			Purge: 5 Se
Casing Strait?	YES	NO			1	Dedicated E	quipment?	(YES)	NO		Recover: 55 Se
Grout Seal Intact?	YES	NO	Not V	isible	1	-				-	psi: 30
Repairs Necessary?]	Duplicate S	ample?	YES	CING		
	g Diameter:]	Duplicate S	ample ID:		-		
Water Level Be	efore Purge:	43,	10	ft]					•	
Total De	pth of Well:			ft			Bott	le List:			
N	ell Volume:			liters		1 Liter Raw					
Depth to To	op of Pump:			ft		500mL Nitric					
Water Level A	ter Sample:		3,89	ft		500mL Nitric	(filtered)				
Measureme	nt Method:	Electric \	Water Level	Indicator		250mL Sulfu	ric				
					FIE	LD READIN	IGS				
Stabilization Parar	neters	Temp.	Spec.		DO	ORP	Turbidity		Pumping	mL	Appearance or Comment
(3 Consecutiv		(°C)	Cond.	рH	(mg/L)	(mV)	(NTU)	Water Level	Rate	Removed	Clarity, Color, Odor, Ect.
Purge Date	Time	±0.5°	±5%	±0.1	±10%	±10		(ft)	mL/Min		clear, slightly turbid, turbid
	0280	Start of Well	Purge								•
	OBSS	12.74	5050	7.23	7.61	96.0	10.46	43,40	100,0	500.0	Cler
	0925	12.69	5230	6.54	1.09	40.9	15.49	43,90	100.0	3000.0	Cliar
	0945	13,95	5228	6.41	1.25	37.0	4,93	43.83	100.0	2000.0	Clear
24 A-521	0950	13.87	5205	6.41	1.20	32.7	7.87	43,85	100.0	580.0	Clear
	0955	13.62	5178	6,42	1127	35.6	4.65	43,03	0.001	500.0	Clear
	1000	13.75	5185	6.42	1,31	35.7	4.71	43.81	100.0	580.0	Chip
								· · · · · · · · · · · · · · · · · · ·			
					<u> </u>		l				<u></u>
	Well St	abilized?	YES	NO				Total Vo	lume Purged:	7000.0	_mL
	-	Temp.	Spec.			1	Turbidity				Appearance or Comment
Consul- Date	Time	(°C)	Cond.	рН			(NTU)				Clarity, Color, Odor, Ect.
Sample Date	1						4.71				Clest

Groundwater Assessment

Company:	MDU Heskett
Event:	Fall 2021
Sample ID:	、 や ,
Sampling Personal:	Dem May

2616 E. Broadway Ave, Bismarck, ND

Phone: (701) 258-9720

Weather Conditions:	1	emp:	60°F	Wind:	N@ 5-12		Precip:	Sunny / R	artly Cloudy / Clo	oudy
	WELL INFO	RMATION				SAN	IPLING II	NFORMAT	ION	
Well Locked?	YES	NO		7	Purging Method:	Bladder			Control S	Settings:
Well Labeled?	XES	NO		_	Sampling Method:	Bladder		7	Purge: 3	Sec.
Casing Strait?	YES	NO			Dedicated Equipment?	(YES)	NO	7	Recover: 27	Sec.
Grout Seal Intact?	YES)	NO	Not Visible						PSI: 20	
Repairs Necessary?					Duplicate Sample?	YES	NO			
Casin	g Diameter:	2"			Duplicate Sample ID:					
Water Level Be	efore Purge:	23,09	′ ft							
Total De	pth of Well:	,	ft		Bottle	e List:				
Ŵ	/ell Volume:		liters		1 Liter Raw					
Depth to To	op of Pump:		ft		500mL Nitric					
Water Level Af	ter Sample:	25.7	ら ft		500mL Nitric (filtered)					
Measureme	ent Method:		r Level Indicator		250mL Sulfuric					

FIELD READINGS

Stabilization Para	meters	Temp.	Spec.	nU	DO	ORP	Turbidity	Water Level	Pumping	mL	Appearance or Comment
(3 Consecutiv	/e)	(°C)	Cond.	рН	(mg/L)	(mV)	(NTU)	vvalet Level	Rate	Removed	Clarity, Color, Odor, Ect.
Purge Date	Time	±0.5°	±5%	±0.1	±10%	±10		(ft)	mL/Min		clear, slightly turbid, turbid
	1055	Start of Well	Purge								
	1100	12.93	3856	6.91	0.68	75.3	0.85	23.80	10000	500.0	Clear
23 Ag21	1130	12,56	3742	6.84	0.76	160.6	1,80	25.05	100.0	3000,0	Cles
	(135	13,09	3715	6.83	0.86	163.6	0.22	25.28	100.0	500.0	Clear
	1140	13,33	3717	6.84	0.97	159.7	0.51	25.37	100,0	580.0	Clear
	1145	13.47	37R	6.84	1.05	155.4	0.84	25,41	100.0	500.0	Clear
						<u> </u>					
					<u> </u>	<u> </u>					[
	Well St	abilized?	YES	NO				Total Vo	lume Purged:	5200.0	mL
Comula Data	Time	Temp.	Spec.			I	Turbidity				Appearance or Comment
Sample Date	lime	(°C)	Cond.	pH			(NTU)				Clarity, Color, Odor, Ect.
23 Ay 21	1145	13,47	3712	6.84			0.84				Clear
Comments:								· · · · ·			

Groundwater Assessment

Company:	MDU Heskett	, -
Event:	Fall 2021	
Sample ID:	BOR,	
Sampling Personal:	Japp	

2616 E. Broadway Ave, Bismarck, ND

Weather Conditions:		Temp:	50)°F	Wind:	\mathbb{N}	@ 5-16		Precip:	Sunny / Pa	ntly Cloudy / Cloudy
,	WELL INFO	ORMATIO	N					SAM	IPLING IN	FORMATIC	ON
Well Locked?	YES	NO)			7	Purging Me	thod:	Bladder]	Control Settings:
Well Labeled?		NO			1	Sampling N		Bladder		1	Purge: 5 See
Casing Strait?	YES YES	NO			1	Dedicated I	Equipment?	(YES)	NO	1	Recover: SS Se
Grout Seal Intact?	NES/	NO	Not \	/isible						-	PSI: 20
Repairs Necessary?						Duplicate S	ample?	YES	NO)		
Casing Diameter: 2"			Duplicate S	ample ID:]				
Water Level Be	fore Purge:	15	.09	ft						_	
Total De	pth of Well:			ft			Bottl	e List:			
	ell Volume:			liters		1 Liter Raw					
Depth to To				ft		500mL Nitric]	
Water Level Af	ter Sample:		5.25	ft		500mL Nitric	• •				
Measureme	nt Method:	Electric	Water Level	Indicator		250mL Sulfu	ric]	
					FIE	LD READIN	IGS				
Stabilization Paran	neters	Temp.	Spec.		DO	ORP	Turbidity		Pumping	mL	Appearance or Comment
(3 Consecutive	⊇)	(°C)	Cond.	рН	(mg/L)	(mV)	(NTU)	Water Level	Rate	Removed	Clarity, Color, Odor, Ect.
Purge Date	Time	±0.5°	±5%	±0.1	±10%	±10		(ft)	mL/Min		clear, slightly turbid, turbid
	0652	Start of Wel		-							
	0657	9.19	5643	6.97	1.40	215.4	4,59	15.25	100,0	500	Clear
	0727	9.42	5663	6.93	1.38	222.0	0.99	15,25	100.0	30000	Olecr
	0732	9.62	5651	6.92	1.08	222.3	1.22	15.26	100,0	500.0	Aesr
25Ay21	0737	9,83	5646	6,92	1.13	220,2	1.35	15.26	100,0	500.0	clear
Conco v	0742	9,74	5656	6,92	1.17	220,1	1,45	15,26	100,0	5000	Clear
		ļ	<u></u>								
				L				ļ			
		ļ									
		 	l			_				Į	
************	142.15.05	1 12 12		L		<u> </u>					-
	Well Sta	abilized?	TES	NO				Total Vol	lume Purged:	500.0	mL
		Temp.	Spec.	pH			Turbidity				Appearance or Comment
Sample Date	Time					1	1 (61711)	1 1		1	Clarity, Color, Odor, Ect.
Sample Date $25Ax^{21}$	Time	(°C) 9,74	Cond.	6.92			<u>(NTU)</u> .ฯร				

Comments:

2616 E. Broadway Ave Bismarck, ND 58501 (701) 258-9720

Chain of Custody Record

-

Project Name:				Event:								Work Orde	er Number:	
	MDU F	leskett					F	all	20	21			87.	-2247A
Report To:	Montana-Dakota Utilitie	S		CC:								Collected E	By:	
Attn: Address:	Todd Peterson 400 North 4th St. Bismarck, ND 58501											Pro	1 Mm	
Phone: Email:	701-425-2427 todd.peterson@mdu.cor	n										240	11 ling-	
Lab Numbe r ,	sample ID	Date	lime	Sample.	11. 1100	500 Paul	Son Mit.	20 miler	Liten Sulfue Title	Temb (c)	Spec Cond	; Ha	^{Turbidity} A.	Analysis Required
6-30-18 W36-10	· ·	24 100 21	NA	GW	X	X	x	x	Ť	NA	NA	NA	NA	/
W3049	FB2	25 4 3 21	NA	GW	Х	X	x	X		NA	NA	NA	NA	
W3050	MW2-90	24 Aug 21	1105	GW	Х			X		14.63	8892	6.90	2,30]
	MW3-90	24 Aug 21	1034	GW	- X -	X	X	X	*	vinsu fficle				MDU List AA & MDU List
W3051	MW13	23 Aug 21	0830	GW	Х	X	Х	X		12.04	10341	6.90	1.52	
W3052	MW33	24 Aug 21	1000	GW	Х	Х	Х	X		13,75	5185	6.42	4.71	
W3053	MW70	23 Aug 21	1145	GW	Х	X	x	X		13,47	3712	6.84	0.04	
:W3054	MW80R	25.4ug21	0742	GW	Х	X	Х	X		9.74	5656	6.92	1.45	

Comments:

1

* 25 Jug 21 - IT = A CC ISTCTL

Relinquished By		Sample C	ondition	Rece	eived By
Name /	Date/Time	Location	Temp (°C)	Name	Date/Time
1 $ -$	25A-521 09.28	Log An Walk In #2	4.3 TM562 / (11805	Mar AL	25Aug21
2					

Appendix B

Alternative Source Demonstration Reports

Alternative Source Demonstration: September 2020 Event

R.M. Heskett Station

Prepared for Montana-Dakota Utilities Co.

March 2021

Alternative Source Demonstration: September 2020 Event

R.M. Heskett Station

Prepared for Montana-Dakota Utilities Co.

March 2021

4300 MarketPointe Drive, Suite 200 Minneapolis, MN 55435 952.832.2600 www.barr.com

Alternative Source Demonstration September 2020 Event

March 2021

Contents

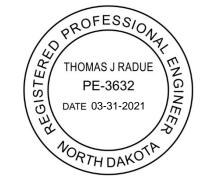
1.0	Introduction	1
2.0	September 2020 SSIs	2
2.1	September Sampling Event	2
2.2	Verification Sampling	2
3.0	Alternative Source Demonstration	3
3.1	Source Hypothesis #1: CCR Unit Release	3
3.2	Source Hypothesis #2: Natural Variations of Pre-Landfill or Regional Groundwater Quality	4
3.	2.1 Chloride at MW-105	
3.	2.2 Fluoride at MW2-90	4
3.	2.3 Sulfate and TDS at MW-104	5
3.3	Source Hypothesis #3: Evaporation Pond Release	6
3.	3.1 TDS and Sulfate at MW-104	6
4.0	Conclusions	9
5.0	References	.10

List of Tables

- Table 1
 Detection Monitoring Results for Potential SSI Well-Parameter Pairs
- Table 2Verification Sampling Results
- Table 3Summary of SSIs and Alternative Sources

List of Figures

- Figure 1 Site Layout and CCR Monitoring Well Network
- Figure 2 Piper Plot
- Figure 3 Sulfate Concentrations
- Figure 4 TDS Concentrations


List of Appendices

- Appendix A Appendix III Time Series Plots
- Appendix B September 2020 Prediction Limit Plots
- Appendix C Ash SPLP Laboratory Report (2011)
- Appendix D Aerial Photo (March 30, 1988)
- Appendix E Boring Logs
- Appendix F MW1-90 Time Series Plots
- Appendix G Geochemist's Workbench Results

Certifications

I hereby certify that I, or my agent, have examined this written demonstration and attest that this Coal Combustion Residuals Facility Alternative Source Demonstration (ASD) is accurate and has been prepared in accordance with good engineering practice, including consideration of applicable industry standards and the requirements of 40 CFR §257.94. I further certify that this report was prepared by me or under my direct supervision and that I am a duly Licensed Professional Engineer under the laws of the state of North Dakota.

Revision	Date	Summary of Revisions
0	03-31-2021	March 2021 Alternative Source Demonstration

Thomas J. Radue

1.0 Introduction

Montana-Dakota Utilities Co. (MDU) owns and operates R.M. Heskett Station (Site), a coal-fired generating station and a gas-fired turbine located in Mandan, Morton County, North Dakota (Figure 1). One CCR (coal combustion residual) unit, as defined by 40 CFR 257.53, is located on the property. The CCR unit contains coal combustion by-products, asbestos wastes generated from construction activity associated with MDU-owned facilities, and ash derived from burning tire-derived fuel (TDF) at the facility.

The CCR Rule (US EPA, 2015) §257.94(e)(2) allows for an alternative source demonstration (ASD) in the event of an identified statistically significant increase (SSI) in a water quality parameter in a downgradient monitoring well over background levels:

The owner or operator may demonstrate that a source other than the CCR unit caused the statistically significant increase over background levels for a constituent or that the statistically significant increase resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. The owner or operator must complete the written demonstration within 90 days of detecting a statistically significant increase over background levels to include obtaining a certification from a qualified professional engineer verifying the accuracy of the information in the report.

The purpose of this work is to evaluate the data collected as part of the September 2020 monitoring event, along with historical data, to demonstrate if the potential SSIs are the results of a "source other than the CCR unit" or due to natural variation in groundwater quality, an error in sampling, analysis, or statistical evaluation.

2.0 September 2020 SSIs

Sampling for the second detection monitoring event in 2020 was conducted September 14-15, 2020. Four potential SSIs over background were identified: sulfate and total dissolved solids (TDS) at MW-104, chloride at MW-105, and fluoride at MW2-90 (see time series plots in Appendix A and prediction limit plots in Appendix B).

Evaluations were undertaken to review potential alternative sources for the SSIs. These evaluations included comparing leaching tests of on-site CCR materials, leachate collected in the Evaporation Pond (non-CCR unit), regional (background) groundwater quality data, and groundwater quality collected at the site prior to construction of the CCR unit.

Several characteristics of the CCR unit site geology, groundwater monitoring well locations, and historic groundwater quality data prompted consideration of potential alternative sources for the potential SSIs, including elevated water quality parameters in pre-landfill groundwater monitoring data, site-specific geologic conditions, and/or leakage from the Evaporation Pond (non-CCR unit).

A successful demonstration of alternative source(s) for the potential SSIs are discussed in Section 3.0.

2.1 September Sampling Event

Methods used to evaluate potential alternative sources as the basis for water quality parameter concentrations over background from the September 2020 detection monitoring event are discussed below. Concentrations for potential SSIs observed in September 2020 are less than those observed during the prior four detection monitoring events (Table 1).

		Interwell	Detection Monitoring Results (mg/L)									
Well	Parameter	Prediction Limit (mg/L)	April 2018			September 2019	April 2020	September 2020				
MW-105	Chloride	271	333	384	282	290	278	339				
MW-104	Sulfate	7,300	10,700	11,000	11,100	11,300	10,300	10,700				
MW-104	TDS	10,400	17,400	18,000	17,700	17,200	16,500	17,900				
MW2-90	Fluoride	0.98	1.03	1.00	1.02	1.03	0.98	1.01				

Table 1. Detection Monitoring Results for Potential SSI Well-Parameter Pairs

Bolded values indicate concentrations exceed the associated interwell predication limits.

Trend analysis results indicate chloride at MW-105 has a statistically significant decreasing trend (95% confidence level) whereas TDS at MW-104 has a statistically significant increasing trend (95% confidence level).

2.2 Verification Sampling

No verification sampling was conducted on the potential SSIs.

3.0 Alternative Source Demonstration

Successful demonstrations of alternative sources have previously been documented for the four potential SSIs. The associated ASD Reports (Barr, 2018a; Barr, 2018b; Barr, 2019a; Barr, 2019b; Barr, 2020a; Barr, 2020b) documented that each of the SSIs could be explained by natural groundwater quality variability based on concentrations that were either present at the Site before the landfill was constructed, consistent with regional groundwater quality data, and/or associated with a release from the Evaporation Pond (non-CCR unit).

The purpose of this ASD Report is to validate the results of prior findings with the September 2020 data. For each potential SSI, three hypotheses regarding the potential source of the SSI are assessed: 1) a release of leachate from the CCR unit is the source of one or more of the potential SSIs; 2) natural variations of pre-landfill or regional groundwater quality is the source of one or more of the potential SSIs; or 3) a release of leachate from the Evaporation Pond (non-CCR unit) is the source of one or more of the potential SSIs.

3.1 Source Hypothesis #1: CCR Unit Release

To accept the hypothesis that a release of leachate from the CCR unit is the source of one or more of the potential SSIs, it would be assumed that groundwater chemistry at one or more of the potentially impacted wells (MW2-90, MW-104, and/or MW-105) would be geochemically similar to impacted water from the CCR unit represented by leach tests results. However, if they are geochemically dissimilar, this indicates that a source "other than the CCR unit" may be responsible for the potential SSI. Therefore, major ion chemistry from the CCR monitoring locations (upgradient and downgradient) was compared to CCR Synthetic Precipitation Leaching Procedure (SPLP; EPA Method 1312) data collected July 2011 (Appendix C).

To test this hypothesis, piper diagrams were used to visually compare the CCR SPLP results (Appendix C) and the measured groundwater quality at the Site (Figure 2). Piper diagrams are plots of major ion chemistry of water samples (calcium, magnesium, potassium, sodium, chloride, sulfate, and alkalinity) that are used to differentiate between water types and to identify potential mixing of water types. This method is a means to identify or "fingerprint" water samples by their common characteristics (major ions) to assess which types of water are similar or dissimilar to potential source water types (Helsel and Hirsch, 2002). On the piper diagram depicted in Figure 2, downgradient well compositions are shown as circular points, CCR SPLP compositions as red triangles, and the range of upgradient compositions as a blue polygon.

Downgradient water quality (including the potential SSI parameter-well pairs) is characterized as a Mg-SO₄ type water, whereas the ash SPLP results are Na-SO₄ type water. The major difference observed between the downgradient water quality and the SPLP results is the dominant cation concentration (magnesium vs. sodium). Because water quality data from SSI well-parameter pairs are clustered with data from that of the upgradient wells, which are Na-Mg-SO₄ to Mg-SO₄ type water, rather than near the SPLP results, it indicates that the water chemistry at those locations are more like upgradient groundwater than a potential release from the CCR unit. **Therefore, we reject the hypothesis that the CCR unit is the source of the sulfate and TDS observed at MW-104, chloride at MW-105, and fluoride at MW2-90.**

3.2 Source Hypothesis #2: Natural Variations of Pre-Landfill or Regional Groundwater Quality

As Source Hypothesis #1 (CCR Unit Release) was rejected as a potential source of the SSIs, natural variations of pre-landfill conditions and/or regional groundwater quality were evaluated for each of the potential SSIs. The second hypothesis evaluated is that concentrations of sulfate and TDS at MW-104 and chloride at MW-105 are consistent with historical (pre-landfill) or regional (background) groundwater data. To test this hypothesis, results of September 2020 detection monitoring event were compared to pre-landfill data and/or regional groundwater quality data from the Cannonball Formation and associated units to determine if natural variation is a potential alternative source for the SSIs.

3.2.1 Chloride at MW-105

Results from groundwater samples collected in 1986 were included in the 1989 Special Use Disposal Site Permit Application (Permit Application; MDU, 1989). The 1986 samples were collected prior to construction of the CCR unit; an aerial photograph from March 30, 1988 shows the area of the CCR unit, which appears undisturbed (Appendix D).

Pre-landfill chloride concentrations collected from groundwater at the Site were measured as high as 558 mg/L (Well 44, 1986), indicating that high chloride concentrations pre-date construction of the CCR unit. Additionally, the North Dakota State Water Commission conducted a groundwater study in Morton County (Ackerman, 1980); 45 wells screened in the Cannonball and Ludlow Formations were sampled for various parameters including chloride. Chloride concentrations ranged from 0 to 500 mg/L (37% of which had concentrations greater than 250 mg/L).

Historic data shows that concentrations of chloride in groundwater at the Site measured prior to the construction of the CCR unit (558 mg/L) as well as regional groundwater quality data (0 to 500 mg/L) are consistent with and/or higher than chloride measured at MW-105 in September 2020 (329 mg/L). This supports the hypothesis that the SSI for chloride at MW-105 is due to a "source other than the CCR unit." **Therefore, we accept the hypothesis that chloride concentrations observed at MW-105 are consistent with regional (background) groundwater data.**

3.2.2 Fluoride at MW2-90

Source Hypothesis #2 was tested by comparing fluoride concentrations collected as part of several regional groundwater quality studies on the Cannonball Formation and associated units. A summary of the range of fluoride concentrations in the Cannonball Formation and associated units are included in the table below.

Table 3. Fluoride Concentrations in Morton County, North Dakota

Reference	Fluoride Conc. Range	Formation/Units	Data Source Location
Ackerman, D.J., 1980. Ground-Water Resources of Morton County, North Dakota. North Dakota Geological Survey Bulletin 72, Part III. 51 p.	0.0 to 4.0 mg/L	Cannonball and Ludlow formations, undifferentiated	Morton County
Crosby, O.A. and Klausing, R.L., 1984. Hydrology of Area 47, Northern Great Plains and Rocky Mountain Coal Provinces, North Dakota, South Dakota, and Montana. USGS Water- Resources Investigations Open-File Report 83-221, 93 p.	0.1 to 6.3 mg/L	Entire Fort Union Formation (includes Cannonball Formation)	Morton County

The Ackerman study provides summary statistics for the fluoride concentrations observed in Morton County. Forty-six samples were analyzed for fluoride; of those, 20 (or 43%) had concentrations greater than 1.3 mg/L (Ackerman, 1980). The fluoride concentration observed at MW-2-90 in September 2020 (1.01 mg/L) is within the range of values consistent with naturally-occurring concentrations of fluoride associated with the Cannonball Formation in Morton County. **Therefore, we accept the hypothesis that fluoride concentrations observed at MW-2-90 are consistent with regional (background) groundwater data.**

3.2.3 Sulfate and TDS at MW-104

Analyses of groundwater samples collected prior to construction of the CCR unit included in the Permit Application notes that high sulfate and TDS was observed at the Site. Maximum sulfate and TDS concentrations reported in 1986 (pre-landfill) were 11,632 mg/L and 14,917 mg/L, respectively, in Well 60 (approximately 700 feet southwest of MW-104), with similar concentrations observed two years later. Sulfate concentrations reported in September 2020 at MW-104 (10,700 mg/L) are within range of historically observed concentrations (Figure 3), but TDS concentrations (17,900 mg/L) are somewhat higher than historically observed (Figure 4). Figures 3 and 4 show the range of sulfate and TDS concentrations, respectively, across the Site, including recent and historical monitoring well data.

The mineralogy of the underlying Fort Union Formation may yield an explanation for the elevated sulfate concentrations (which leads to elevated TDS concentrations). The dominant lithology observed at the Site is unconsolidated silt in a clay matrix with interspersed fine to medium-grained sand (10% to 30%). Small gypsum crystals are documented discontinuously throughout the upper 30 feet of the surface materials, which have been presumed to be the result of diagenetic processes which occur above the water table during alternating wetting and drying cycles (Groenewold et al., 1983). Gypsum is a hydrated calcium sulfate mineral that can be a source of high sulfate concentrations in groundwater.

The boring log for MW-104 (Appendix E) notes gypsum present throughout the upper layer of the screened interval. Boring logs for other CCR wells and pre-landfill wells note gypsum occurrences across the Site (Appendix E). The water level and screened interval in MW-104 are within the gypsum-bearing unit. In other wells with lower sulfate and TDS concentrations, the water levels and/or screened units are

below the documented gypsum occurrences. As groundwater fluctuates and surface water infiltration occurs, periodic dissolution of gypsum into the water column may occur, resulting in elevated sulfate concentrations (and therefore elevated TDS, too).

Based on presence of gypsum in native subsurface deposits and documentation of elevated sulfate and TDS in pre-landfill groundwater, the hypothesis that the SSI for sulfate and TDS at MW-104 may be due to natural conditions (a "source other than the CCR unit") is possible. However, a statistically significant increasing trend for TDS at MW-104 was observed. Natural/background groundwater can be affected by seasonality and/or site-wide aquifer changes, resulting in trending data; two other monitoring wells at the site have statistically significant increasing trends at the site: upgradient well MW-13 and downgradient well MW2-90 (conversely, MW-13 has a long-term (late 1980s to present) statistically significant decreasing trend). Seasonality was not detected in TDS or sulfate at MW-104. **Sulfate and TDS concentrations at MW-104 may be due to natural conditions, however additional source considerations were evaluated.**

3.3 Source Hypothesis #3: Evaporation Pond Release

Two conditions are necessary in order to accept the hypothesis that a release of Evaporation Pond water is the source of one or more of the potential SSIs: (1) mechanism of release (such as an issue with Evaporation Pond liner integrity) and (2) geochemically similar groundwater chemistry at one or more of the potentially impacted wells with water from the Evaporation Pond. Based on proximity, only the SSIs observed at MW-104 (TDS and sulfate) are being evaluated for this potential source.

3.3.1 TDS and Sulfate at MW-104

A statistically significant increasing trend in TDS was observed at MW-104 following the September 2020 detection monitoring event. No other statistically significant trends were observed for other Appendix III parameters at this location. Past ASD Reports (Barr, 2019b; Barr, 2020a; Barr, 2020b) attributed elevated sulfate and TDS concentrations at MW-104 to either natural conditions or a release from the Evaporation Pond. MW-104 is located between the CCR unit and the Evaporation Pond (a non-CCR unit). The Evaporation Pond was constructed to collect surface water run-off from the Site as well as leachate from the CCR Unit. Due to the relative proximity of MW-104 to the Evaporation Pond, an evaluation was conducted to assess the Evaporation Pond liner integrity, potential impacts to downgradient wells, and determine the geochemical feasibility of Evaporation Pond water contributing to the conditions observed at MW-104.

Liner Integrity Evaluation

In the 2010 Annual Report for the Special Waste Disposal Permit (SP-087), it was noted that erosion was encountered at the Evaporation Pond. More specifically, "cuts in the banks of the pond ranged from 8 to 24-inches. Erosion was caused from storm water running into the evaporation pond from closed Slots and the haul road" (MDU, 2011). No repairs were made at that time due to standing water in the pond. Similar erosional features were noted in the 2011 and 2012 Annual Reports, citing erosion cuts of 8 to 48-inches (MDU, 2012 and MDU, 2013). These erosion cuts were repaired in 2013 during the construction of Slot 10. Additionally, the 2013 Annual Report stated that "the west wall of the evaporation pond was raised and

graded to reroute storm water that accumulates outside of the ash disposal area from the cover of Phase I ash disposal site away from the pond during rain events" (MDU, 2014).

These reports did not specify if the erosional cuts were 8 to 48-inches wide or 8 to 48-inches deep. Based on the Phase I Development "as-constructed" Plan Sheets (January and November 1990), the Evaporation Pond was built with a 3-foot-thick compacted clay liner (MDU, 1989 Exhibit 6-B). If the erosional cuts were up to 48-inches deep, then the cuts would extend through the entirety of the liner thickness, creating a conduit for Evaporation Pond water to enter the groundwater. Additionally, no details were provided on the materials used for repairing the Evaporation Pond (i.e. if the liner was impacted, were the erosion cuts filled in with a comparable clay liner material).

Additionally, the integrity of the Evaporation Pond liner may have been compromised due to cation exchange. Time series plots of groundwater quality at nearby well MW1-90 (Appendix F) show an increase in sodium; this increase is most apparent at MW1-90 between 2012 and 2019. The Evaporation Pond liner may be composed of a clay with sodium as its main interlayer cation (e.g., sodium-montmorillonite and/or sodium-bentonite, which are common in the area (Groenewold et al., 1983)), and cation exchange processes can occur between the sodium in the clay and positively charged cations concentrated in the evaporation pond water (calcium, magnesium, potassium, and aluminum), increasing the concentration of dissolved sodium as it is released from the clay structure. Over time this exchange may decrease swelling potential and increase hydraulic conductivity of the clay constituting the pond liner, resulting in increased leakage of Evaporation Pond water.

Downgradient Impacts

The base of the Evaporation Pond sits at approximately 1675 feet above MSL whereas the most recent groundwater elevations in MW-104 and MW1-90 were measured at roughly 1670.92 feet above MSL and 1663.63 feet above MSL, respectively. Therefore, any water leaking from the Evaporation Pond would report radially downward into the groundwater, toward both MW-104 and MW1-90, reaching both wells downgradient of the Pond.

As MW-104 was installed on August 20, 2015, it is not possible to determine if the erosional cuts observed in the early 2010s impacted the water quality at this location. However, data has consistently been collected from nearby well MW1-90, also downgradient of the Evaporation Pond. As seen in the time series plots (Appendix F; 1990-2020), in approximately 2010 concentrations of chloride, sulfate, TDS, magnesium, sodium, and specific conductance at MW1-90 began increasing more rapidly. To a lesser extent, changes in concentrations were observed around this same time for potassium, nitrogen, and total alkalinity. This timing corresponds to when the erosional cuts at the Evaporation Pond were first observed in the Annual Monitoring Reports. The increasing trends have since continued, despite reports of the erosional cuts being repaired in 2013, except for chloride, which has since leveled off and is now decreasing.

Geochemical Feasibility

A simple mixing model was developed in April 2019 (Barr, 2019b) to determine the potential of producing a similar water quality observed at MW-104 (and MW1-90, as a historical analogue) when mixing

Evaporation Pond water with unimpacted upgradient water. This mixing model was conducted in Geochemist's Workbench® v.12.0, using a water sample collected from the Evaporation Pond in September 2014 and a water sample from upgradient monitoring well MW-103 in April 2019. The mixing model assumes a starting concentration equal to the upgradient groundwater concentrations and then iteratively mixes it with incremental amounts of Evaporation Pond water.

The results of the April 2019 model are provided in Appendix G. Figure G.1 shows the results of the mixing model on a stiff diagram for MW-103. Downgradient wells MW-104 and MW1-90 are shown as gray and green diamonds, respectively. The blue line represents the various possible outcomes when mixing the upgradient water quality with the Evaporation Pond. The black circles (G.3) represent specific proportions (1-part upgradient water to 0.01-, 0.05-, 0.1-, 0.5-, and 1-part Evaporation Pond water). Figure G.2 shows the results as Stiff plots. Table E.1 provides the numerical inputs and results of the various mixing proportions.

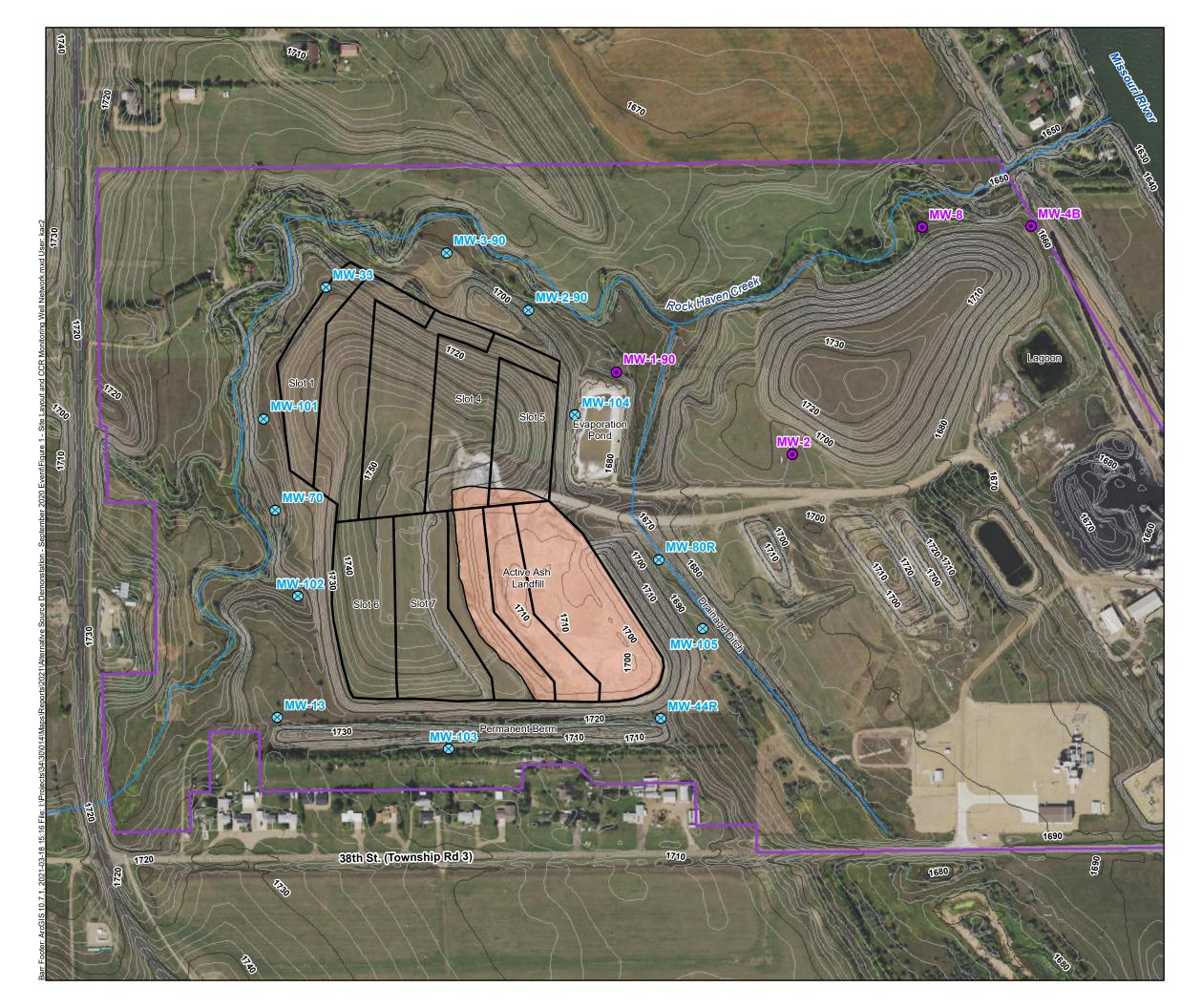
As shown on Figure G.1, the downgradient well compositions are similar to the chemistry anticipated if the Evaporation Pond is mixing with upgradient groundwater emanating from the proximity of monitoring well MW-103. The path of the mixing reaction from MW-103 to the Evaporation Pond transects MW-104 when 1-part upgradient (MW-103) water is mixed with as little as 0.05-part Evaporation Pond water. Therefore, it appears plausible that a relatively small portion of Evaporation Pond water would be needed to "impact" upgradient groundwater to get a similar chemistry as observed in MW-104. The geometry of the Stiff plots in Figure G.2 show the similarity in anionic concentrations and calcium in the mixing models.

Based on the description of erosional features extending upwards of 48 inches into the liner of the Evaporation Pond in 2010-2013 corresponding with the increased concentrations of several parameters observed in downgradient monitoring well MW1-90, it is possible that a release from the Evaporation Pond occurred starting in approximately 2011. Furthermore, the results of the geochemical model along with the general proximity and hydraulic position of MW-104 relative to the Evaporation Pond supports the hypothesis that the SSI for TDS and sulfate at MW-104 is due to a "source other than the CCR unit." **Therefore, we accept the hypothesis that TDS and sulfate concentrations observed at MW-104 are consistent with a potential release from the Evaporation Pond, a non CCR unit.**

4.0 Conclusions

Four SSIs were identified from the September 2020 detection monitoring event. This report demonstrates that a "source other than the CCR unit" caused the potential SSIs (natural variation in regional and/or prelandfill groundwater quality and the Evaporation Pond), as allowed by §257.94(e)(2). The results of this alternative source demonstration are summarized in the table below.

Well	Parameter	Report Section	Evidence for Alternative Source
MW-105	Chloride	3.2.1	Natural variability (pre-landfill values and geologic background)
MW-104	Sulfate	3.2.2, 3.3.1	Natural variability and/or Other (Evaporation Pond, a non CCR unit)
MW-104	Total Dissolved Solids	3.2.2, 3.3.1	Natural Variability and/or Other (Evaporation Pond, a non CCR unit)
MW-2-90	Fluoride	3.2.2	Natural variability (pre-landfill values and geologic background)

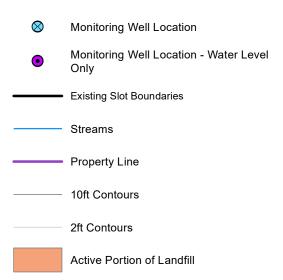
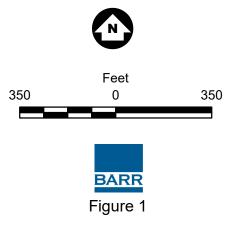
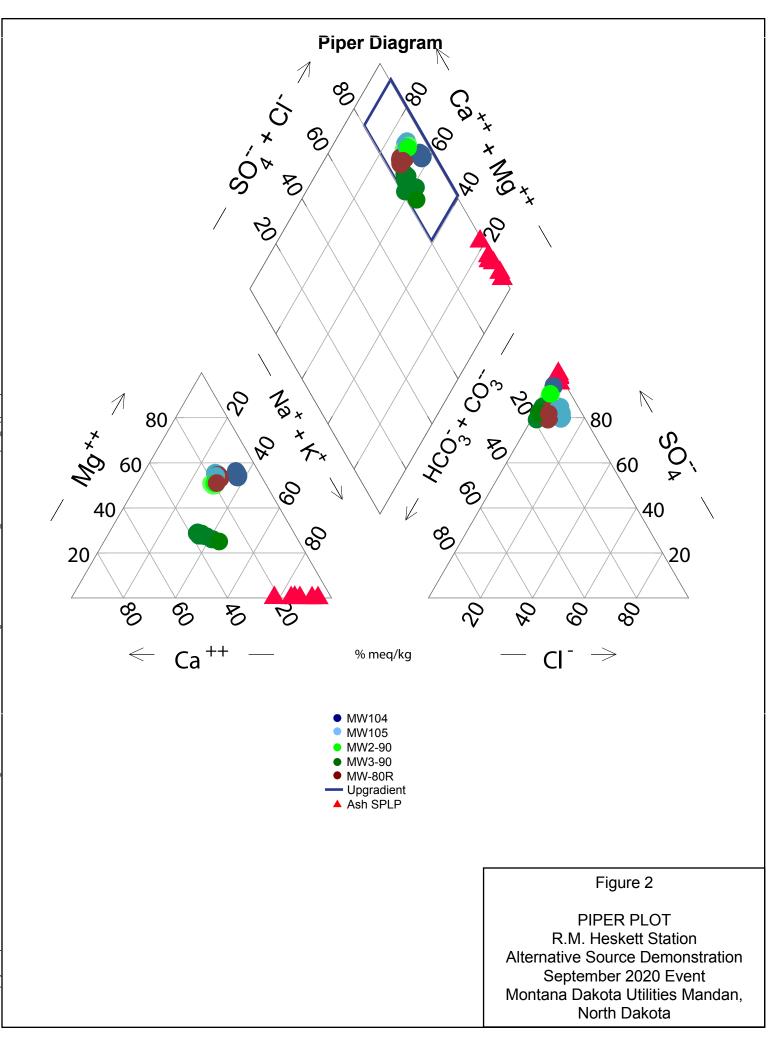

Table 3. Summary of SSIs and Alternative Sources

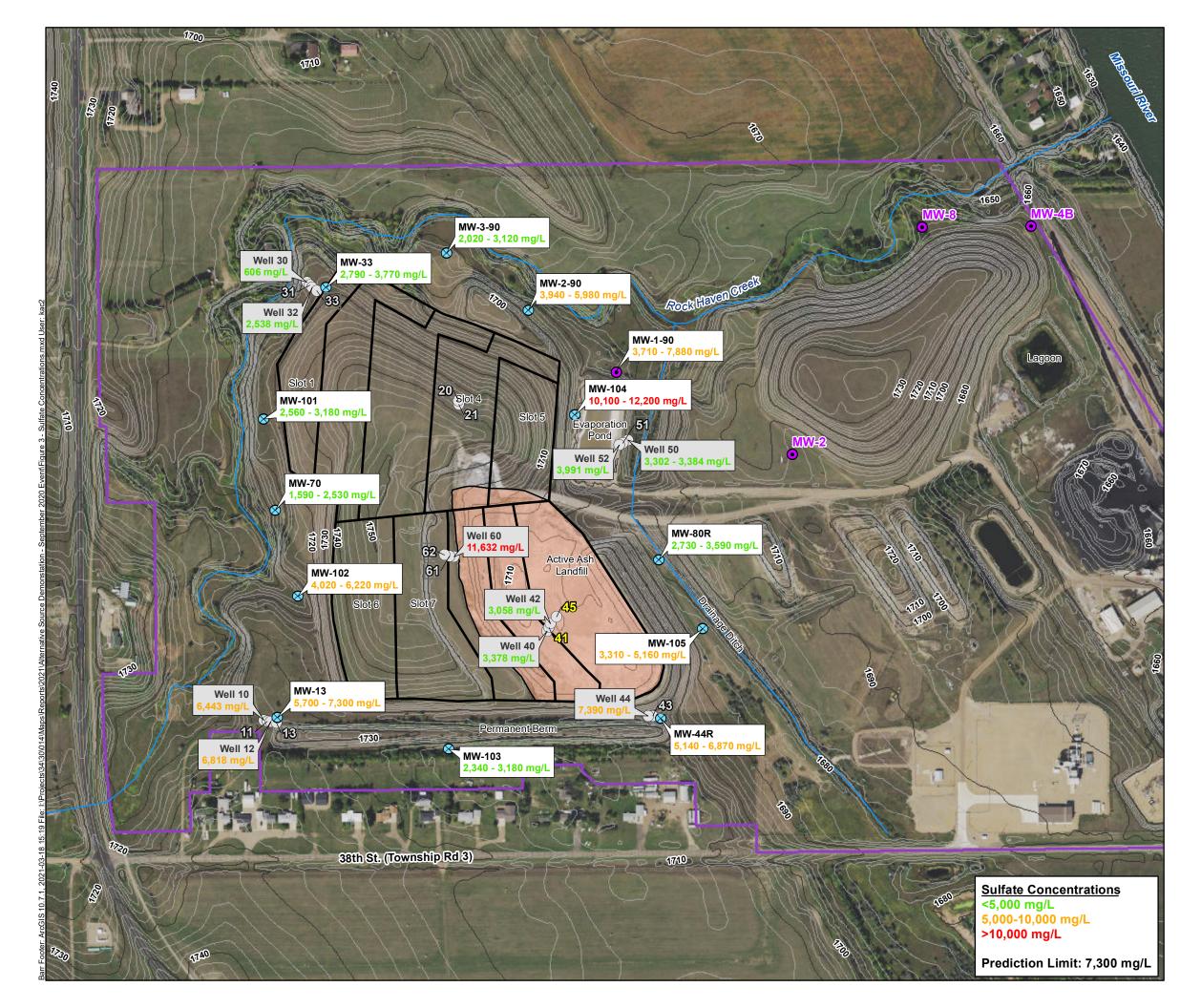
Based on the foregoing, the alternative source demonstration presented herein meets the requirements of CCR Rule §257.94(e)(2). As coal unit operations will cease around March 2022, MDU will work with the North Dakota Department of Environmental Quality (NDDEQ) on closure options for the Evaporation Pond as it is regulated under a permit through the NDDEQ.

5.0 References

- Ackerman, D.J., 1980. Ground-Water Resources of Morton County, North Dakota. North Dakota Geological Survey Bulletin 72, Part III. 51 p.
- Barr Engineering Co., 2019a. Alternative Source Demonstration: October 2018 Event. R.M. Heskett Station. Prepared for Montana-Dakota Utilities Co. April 2019.
- Barr Engineering Co., 2019b. Alternative Source Demonstration: April 2019 Event. R.M. Heskett Station. Prepared for Montana-Dakota Utilities Co. November 2019.
- Barr Engineering Co., 2020a. Alternative Source Demonstration: September 2019 Event. R.M. Heskett Station. Prepared for Montana-Dakota Utilities Co. April 2020.
- Barr Engineering Co., 2020b. Alternative Source Demonstration: April 2020 Event. R.M. Heskett Station. Prepared for Montana-Dakota Utilities Co. July 2020.
- Crosby, O.A. and Klausing, R.L., 1984. Hydrology of Area 47, Northern Great Plains and Rocky Mountain Coal Provinces, North Dakota, South Dakota, and Montana. USGS Water-Resources Investigations Open-File Report 83-221, 93 p.
- Groenewold, G.H., Koob, G.J., McCarthy, B.W., and Peterson, W.M., 1983, Geologic and Geochemical Controls on the Chemical Evolution of Subsurface Water in Undisturbed and Surface-Mined Landscapes on Western North Dakota, North Dakota Geological Survey Report of Investigation 79, 151 p.
- Helsel, D.R. and R. M. Hirsch, 2002. Statistical Methods in Water Resources Techniques of Water Resources Investigations, Book 4, chapter A3. U.S. Geological Survey. 522 pages.
- Montana-Dakota Utilities Co. (MDU), 1989, R.M. Heskett Station Special Use Disposal Site Permit Application. Submitted to North Dakota State Department of Health, March 1, 1989.
- MDU, 2011, R.M. Heskett Station Special Waste Disposal Permit SP-087 2010 Annual Report. February 2011.
- MDU, 2012, R.M. Heskett Station Special Waste Disposal Permit SP-087 2011 Annual Report. February 2012.
- MDU, 2013, R.M. Heskett Station Special Waste Disposal Permit SP-087 2012 Annual Report. February 2013.
- MDU, 2014, R.M. Heskett Station Special Waste Disposal Permit SP-087 2013 Annual Report. February 2014.
- US EPA, 2015, Hazardous and Solid Waste Management Systems; Management of Coal Combustion Residuals from Electric Utility, CFR Parts 257 and 261, Federal Register, Vol. 80, No. 74, April 17, 2015

Figures


Image Source: 2019 Statewide Imagery (ND GIS Hub)

CAD Data Source: Slot Linework.dwg

SITE LAYOUT AND CCR MONITORING WELL NETWORK R. M. Heskett Station Alternative Source Demonstration: September 2020 Event Montana Dakota Utilities Mandan, North Dakota

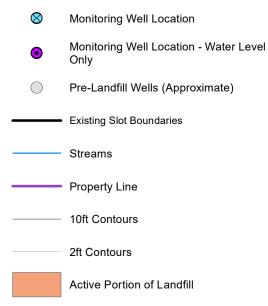


Image Source: 2018 Statewide Imagery (ND GIS Hub)

CAD Data Source: Slot Linework.dwg Pre-Landfill well concentrations are from 9/11/1986, 11/21/1986 (MDU, 1989), and CCR Rule monitoring well concentrations are from 2016-2019.

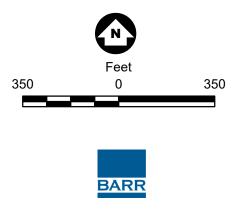
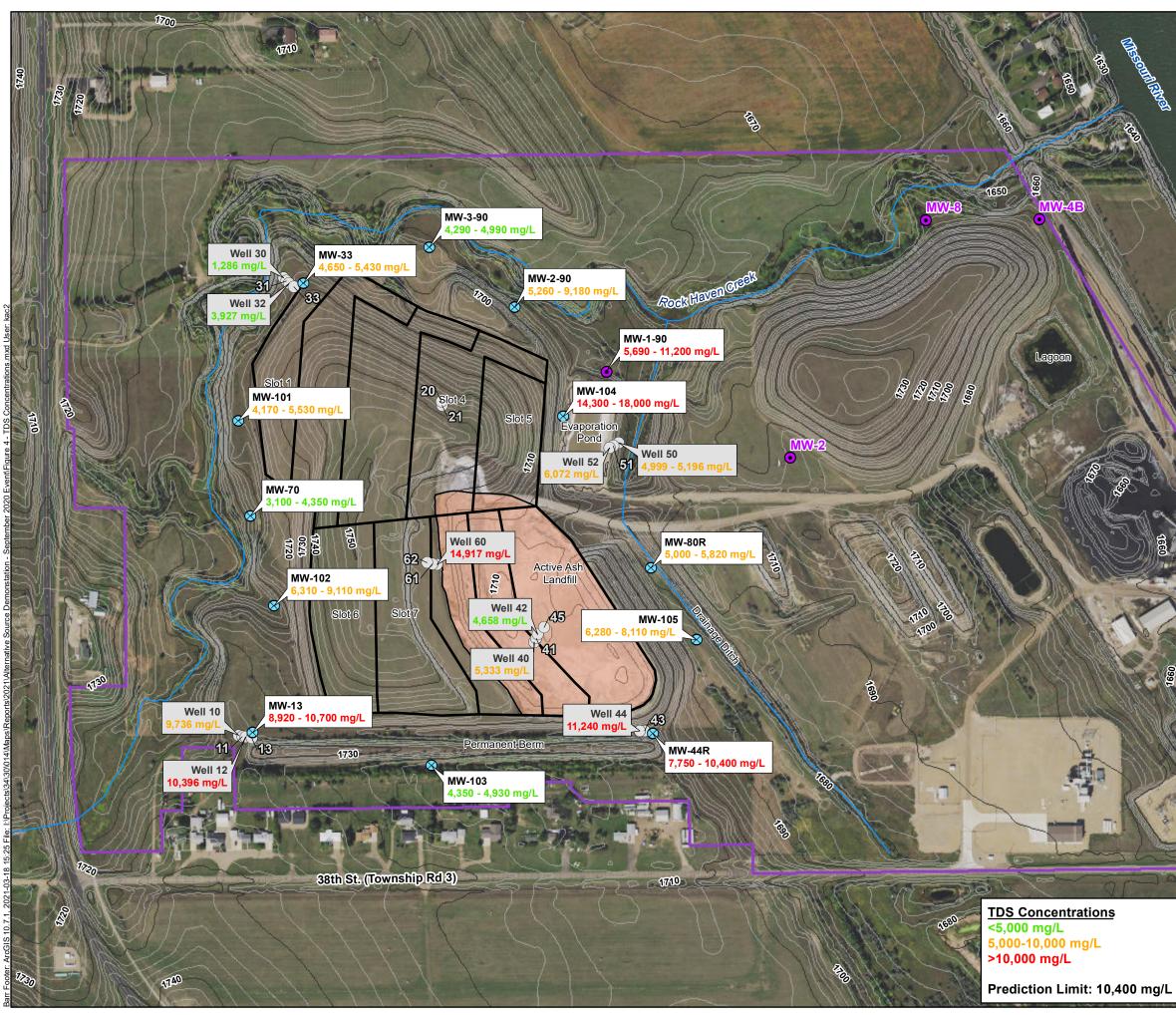



Figure 3

SULFATE CONCENTRATIONS R. M. Heskett Station Alternative Source Demonstration: September 2020 Event Montana Dakota Utilities Mandan, North Dakota

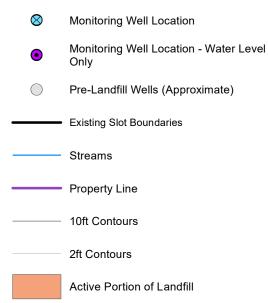


Image Source: 2018 Statewide Imagery (ND GIS Hub)

CAD Data Source: Slot Linework.dwg Pre-Landfill well concentrations are from 9/11/1986, 11/21/1986 (MDU, 1989), and CCR Rule monitoring well concentrations are from 2016-2019.

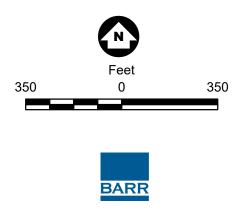
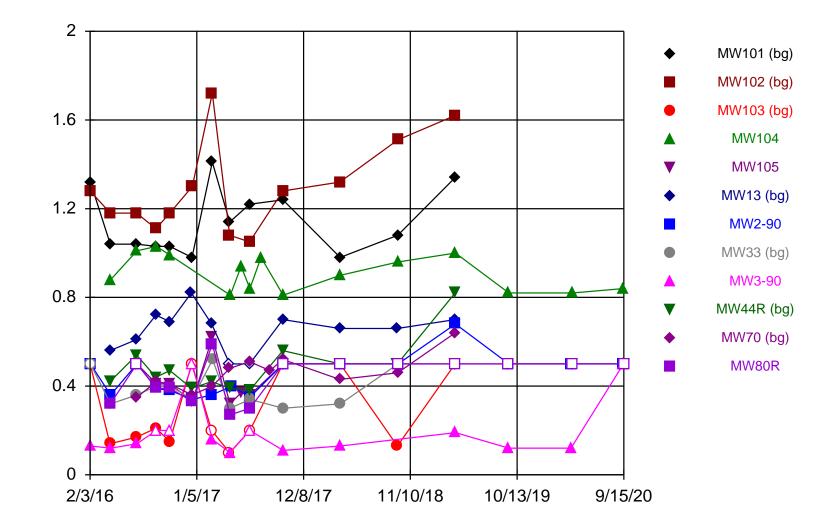


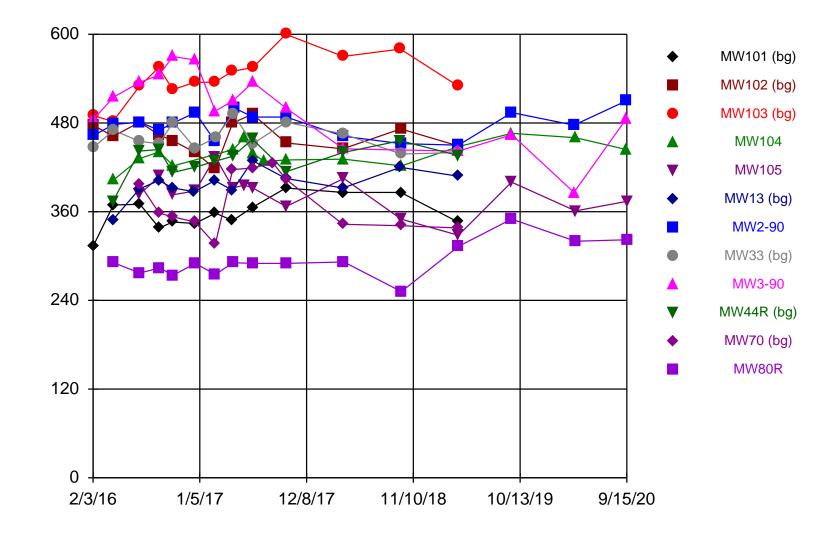
Figure 4

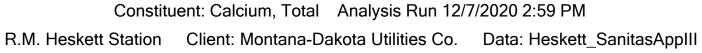

TDS CONCENTRATIONS R. M. Heskett Station Alternative Source Demonstration: September 2020 Event Montana Dakota Utilities Mandan, North Dakota

Appendix A

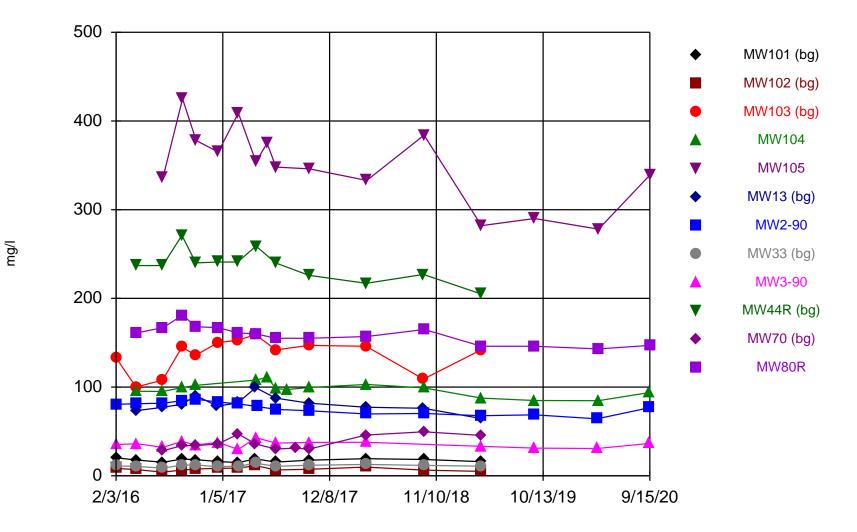
Appendix III Time Series Plots

Sanitas[™] v.9.6.27 For the statistical analyses of ground water by Barr Engineering Company only. UG Hollow symbols indicate censored values.

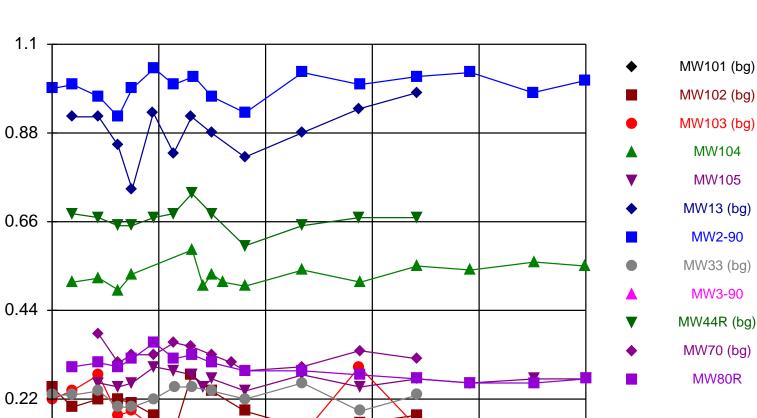

Time Series


Constituent: Boron, total Analysis Run 12/7/2020 2:59 PM R.M. Heskett Station Client: Montana-Dakota Utilities Co. Data: Heskett_SanitasAppIII

mg/l


Sanitas™ v.9.6.27 For the statistical analyses of ground water by Barr Engineering Company only. UG

Time Series


mg/l

Constituent: Chloride Analysis Run 12/7/2020 3:00 PM R.M. Heskett Station Client: Montana-Dakota Utilities Co. Data: Heskett_SanitasAppIII

Sanitas[™] v.9.6.27 For the statistical analyses of ground water by Barr Engineering Company only. UG Hollow symbols indicate censored values.

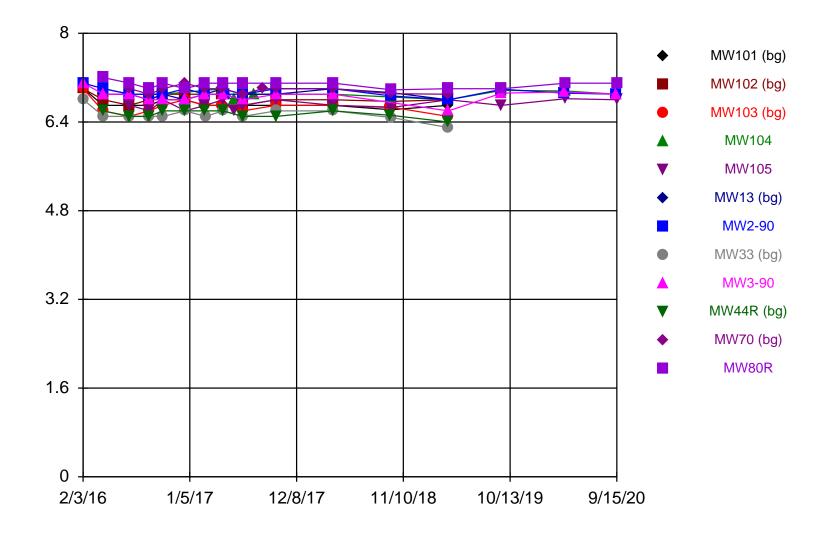
Time Series

Constituent: Fluoride Analysis Run 12/7/2020 3:00 PM R.M. Heskett Station Client: Montana-Dakota Utilities Co. Data: Heskett_SanitasAppIII

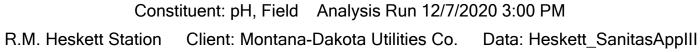
12/8/17

11/10/18

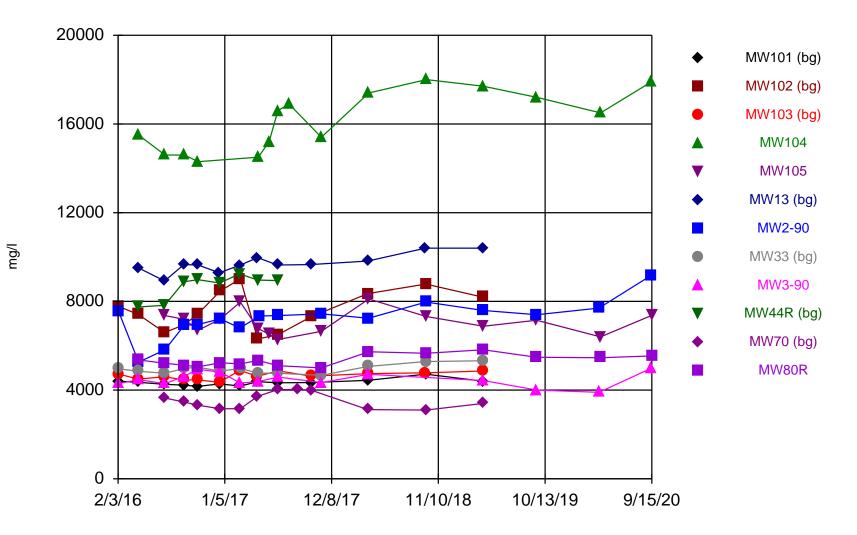
10/13/19

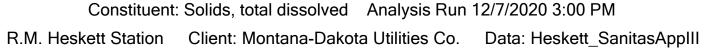

9/15/20

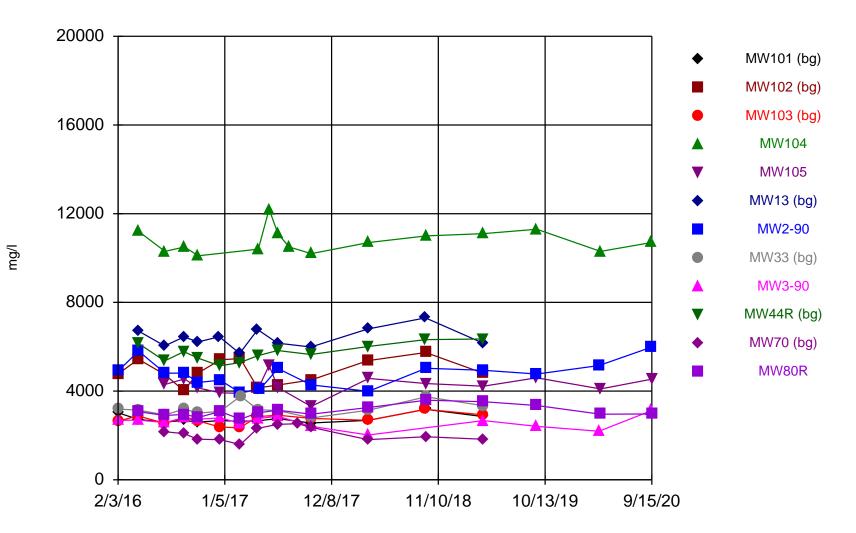
mg/l


0

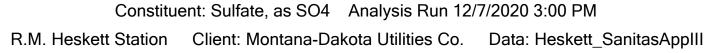
2/3/16


1/5/17


Time Series



pH units



Time Series

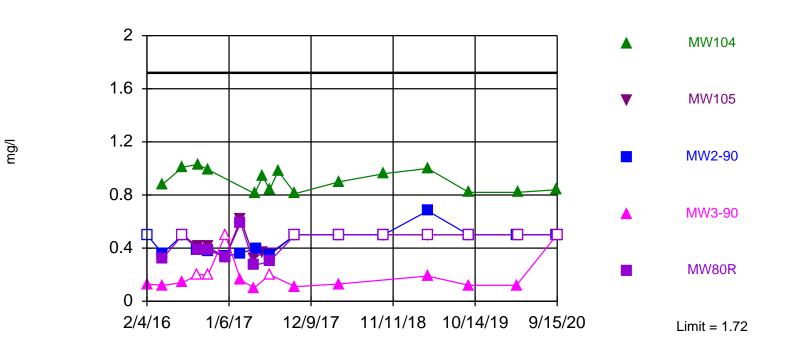
Time Series

Appendix B

September 2020 Prediction Limit Plots

Prediction Limit

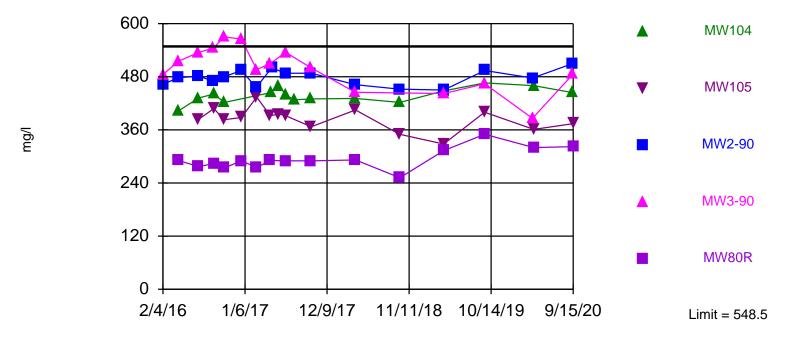
R.M. Heskett Station Client: Montana-Dakota Utilities Co. Data: Heskett_SanitasAppIII Printed 12/7/2020, 3:04 PM


				_							
<u>Constituent</u>	Well	Upper Lim.	Lower Lim.	Date	Observ.	<u>Sig.</u>	<u>Bg N</u>	<u>%NDs</u>	<u>Transform</u>	<u>Alpha</u>	Method
Boron, total (mg/l)	MW104	1.72	n/a	9/14/2020	0.84	No	88	17.05	n/a	0.00025	NP Inter (normality)
Boron, total (mg/l)	MW105	1.72	n/a	9/15/2020	0.5ND	No	88	17.05	n/a	0.00025	NP Inter (normality)
Boron, total (mg/l)	MW2-90	1.72	n/a	9/14/2020	0.5ND	No	88	17.05	n/a	0.00025	NP Inter (normality)
Boron, total (mg/l)	MW3-90	1.72	n/a	9/14/2020	0.5ND	No	88	17.05	n/a	0.00025	NP Inter (normality)
Boron, total (mg/l)	MW80R	1.72	n/a	9/15/2020	0.5ND	No	88	17.05	n/a	0.00025	NP Inter (normality)
Calcium, Total (mg/l)	MW104	548.5	n/a	9/14/2020	444	No	88	0	No	0.001504	Param Inter 1 of 2
Calcium, Total (mg/l)	MW105	548.5	n/a	9/15/2020	374	No	88	0	No	0.001504	Param Inter 1 of 2
Calcium, Total (mg/l)	MW2-90	548.5	n/a	9/14/2020	510	No	88	0	No	0.001504	Param Inter 1 of 2
Calcium, Total (mg/l)	MW3-90	548.5	n/a	9/14/2020	486	No	88	0	No	0.001504	Param Inter 1 of 2
Calcium, Total (mg/l)	MW80R	548.5	n/a	9/15/2020	322	No	88	0	No	0.001504	Param Inter 1 of 2
Chloride (mg/l)	MW104	271	n/a	9/14/2020	93.9	No	88	0	n/a	0.00025	NP Inter (normality)
Chloride (mg/l)	MW105	271	n/a	9/15/2020	<mark>339</mark>	Yes	88	0	n/a	0.00025	NP Inter (normality)
Chloride (mg/l)	MW2-90	271	n/a	9/14/2020	76.8	No	88	0	n/a	0.00025	NP Inter (normality)
Chloride (mg/l)	MW3-90	271	n/a	9/14/2020	36.5	No	88	0	n/a	0.00025	NP Inter (normality)
Chloride (mg/l)	MW80R	271	n/a	9/15/2020	147	No	88	0	n/a	0.00025	NP Inter (normality)
Fluoride (mg/l)	MW104	0.98	n/a	9/14/2020	0.55	No	88	11.36	n/a	0.00025	NP Inter (normality)
Fluoride (mg/l)	MW105	0.98	n/a	9/15/2020	0.27	No	88	11.36	n/a	0.00025	NP Inter (normality)
Fluoride (mg/l)	MW2-90	0.98	n/a	9/14/2020	1.01	Yes	88	11.36	n/a	0.00025	NP Inter (normality)
Fluoride (mg/l)	MW3-90	0.98	n/a	9/14/2020	0.13	No	88	11.36	n/a	0.00025	NP Inter (normality)
Fluoride (mg/l)	MW80R	0.98	n/a	9/15/2020	0.27	No	88	11.36	n/a	0.00025	NP Inter (normality)
pH, Field (pH units)	MW104	7.1	6.3	9/14/2020	6.9	No	88	0	n/a	0.000	NP Inter (normality)
pH, Field (pH units)	MW105	7.1	6.3	9/15/2020	6.8	No	88	0	n/a	0.000	NP Inter (normality)
pH, Field (pH units)	MW2-90	7.1	6.3	9/14/2020	6.9	No	88	0	n/a	0.000	NP Inter (normality)
pH, Field (pH units)	MW3-90	7.1	6.3	9/14/2020	6.9	No	88	0	n/a	0.000	NP Inter (normality)
pH, Field (pH units)	MW80R	7.1	6.3	9/15/2020	7.1	No	88	0	n/a	0.000	NP Inter (normality)
Solids, total dissolved (mg/l)	MW104	10400	n/a	9/14/2020	<mark>17900</mark>	Yes	84	0	n/a	0.000	NP Inter (normality)
Solids, total dissolved (mg/l)	MW105	10400	n/a	9/15/2020	7370	No	84	0	n/a	0.000	NP Inter (normality)
Solids, total dissolved (mg/l)	MW2-90	10400	n/a	9/14/2020	9180	No	84	0	n/a	0.000	NP Inter (normality)
Solids, total dissolved (mg/l)	MW3-90	10400	n/a	9/14/2020	4990	No	84	0	n/a	0.000	NP Inter (normality)
Solids, total dissolved (mg/l)	MW80R	10400	n/a	9/15/2020	5540	No	84	0	n/a	0.000	NP Inter (normality)
Sulfate, as SO4 (mg/l)	MW104	7300	n/a	9/14/2020	10700	Yes	88	0	n/a	0.00025	NP Inter (normality)
Sulfate, as SO4 (mg/l)	MW105	7300	n/a	9/15/2020	4540	No	88	0	n/a	0.00025	NP Inter (normality)
Sulfate, as SO4 (mg/l)	MW2-90	7300	n/a	9/14/2020	5980	No	88	0	n/a	0.00025	NP Inter (normality)
Sulfate, as SO4 (mg/l)	MW3-90	7300	n/a	9/14/2020	3120	No	88	0	n/a	0.00025	NP Inter (normality)
Sulfate, as SO4 (mg/l)	MW80R	7300	n/a	9/15/2020	2970	No	88	0	n/a	0.00025	NP Inter (normality)
. = .											

Sanitas[™] v.9.6.27 For the statistical analyses of ground water by Barr Engineering Company only. UG Hollow symbols indicate censored values.

Within Limit

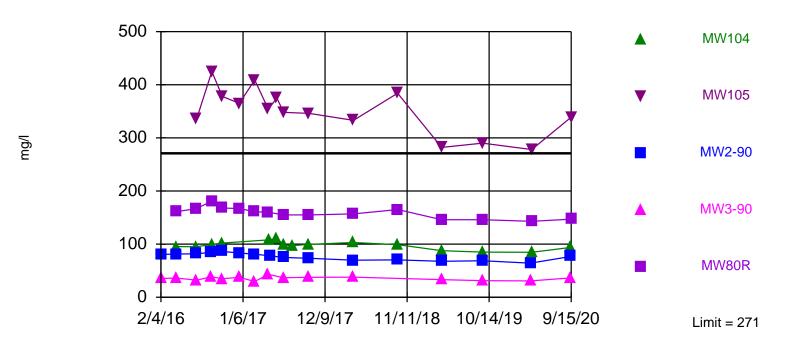
Prediction Limit


Interwell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Francia normality test showed the data to be non-normal at the 0.05 alpha level. Limit is highest of 88 background values. 17.05% NDs. Annual perconstituent alpha = 0.002497. Individual comparison alpha = 0.00025 (1 of 2). Comparing 5 points to limit. Seasonality was not detected with 95% confidence.

Constituent: Boron, total Analysis Run 12/7/2020 3:04 PM R.M. Heskett Station Client: Montana-Dakota Utilities Co. Data: Heskett_SanitasAppIII Within Limit

Prediction Limit

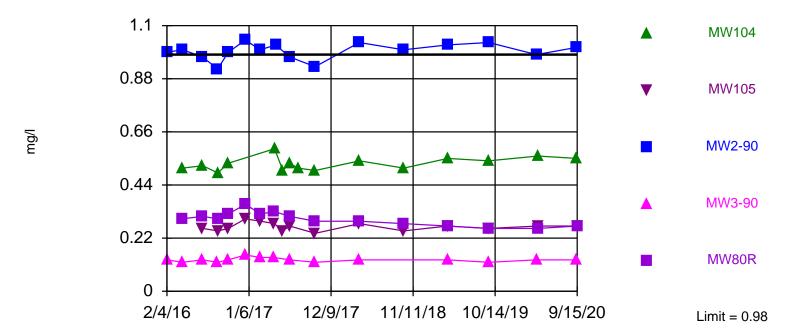


Background Data Summary: Mean=432.4, Std. Dev.=64.15, n=88. Seasonality was not detected with 95% confidence. Normality test: Shapiro Francia @alpha = 0.05, calculated = 0.9786, critical = 0.972. Kappa = 1.81 (c=7, w=5, 1 of 2, event alpha = 0.05132). Report alpha = 0.007498. Individual comparison alpha = 0.001504. Comparing 5 points to limit.

Constituent: Calcium, Total Analysis Run 12/7/2020 3:04 PM R.M. Heskett Station Client: Montana-Dakota Utilities Co. Data: Heskett_SanitasAppIII Sanitas™ v.9.6.27 For the statistical analyses of ground water by Barr Engineering Company only. UG

Exceeds Limit: MW105

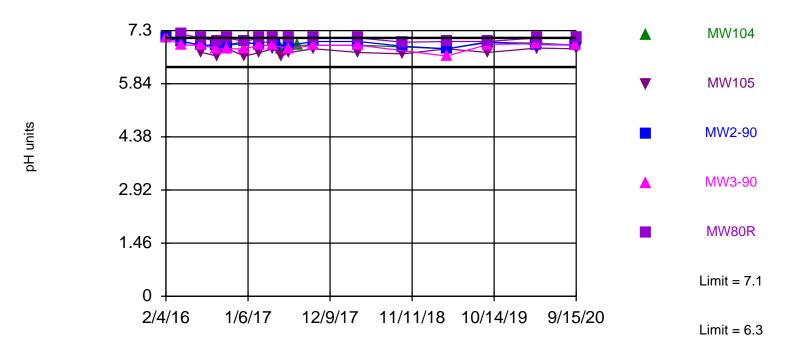
Prediction Limit Interwell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because the Shapiro Francia normality test showed the data to be non-normal at the 0.05 alpha level. Limit is highest of 88 background values. Annual per-constituent alpha = 0.002497. Individual comparison alpha = 0.00025 (1 of 2). Comparing 5 points to limit. Seasonality was not detected with 95% confidence.

Constituent: Chloride Analysis Run 12/7/2020 3:04 PM R.M. Heskett Station Client: Montana-Dakota Utilities Co. Data: Heskett_SanitasAppIII Exceeds Limit: MW2-90

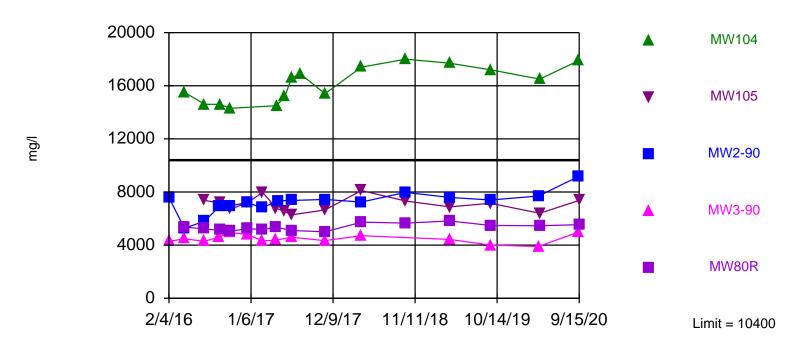
Prediction Limit


Interwell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Francia normality test showed the data to be non-normal at the 0.05 alpha level. Limit is highest of 88 background values. 11.36% NDs. Annual perconstituent alpha = 0.002497. Individual comparison alpha = 0.00025 (1 of 2). Comparing 5 points to limit. Seasonality was not detected with 95% confidence.

Constituent: Fluoride Analysis Run 12/7/2020 3:04 PM R.M. Heskett Station Client: Montana-Dakota Utilities Co. Data: Heskett_SanitasAppIII Within Limits

Prediction Limit

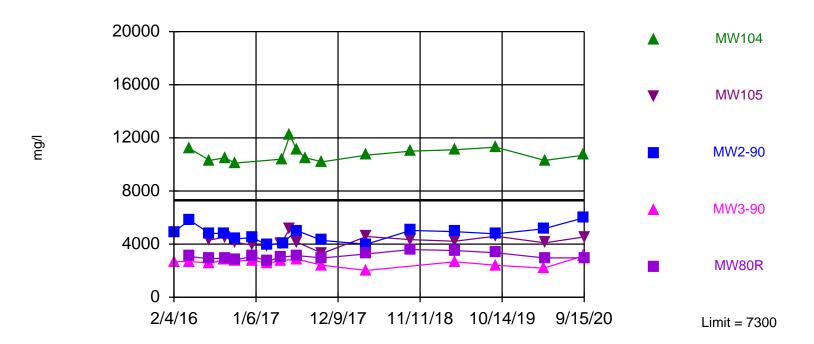

Interwell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Francia normality test showed the data to be non-normal at the 0.05 alpha level. Limits are highest and lowest of 88 background values. Annual perconstituent alpha = 0.004994. Individual comparison alpha = 0.0004999 (1 of 2). Comparing 5 points to limit. Seasonality was not detected with 95% confidence.

Constituent: pH, Field Analysis Run 12/7/2020 3:04 PM R.M. Heskett Station Client: Montana-Dakota Utilities Co. Data: Heskett_SanitasAppIII

Exceeds Limit: MW104

Prediction Limit


Interwell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Francia normality test showed the data to be non-normal at the 0.05 alpha level. Limit is highest of 84 background values. Annual per-constituent alpha = 0.002742. Individual comparison alpha = 0.0002746 (1 of 2). Comparing 5 points to limit. Seasonality was not detected with 95% confidence.

Constituent: Solids, total dissolved Analysis Run 12/7/2020 3:04 PM R.M. Heskett Station Client: Montana-Dakota Utilities Co. Data: Heskett_SanitasAppIII

Exceeds Limit: MW104

Prediction Limit Interwell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Francia normality test showed the data to be non-normal at the 0.05 alpha level. Limit is highest of 88 background values. Annual per-constituent alpha = 0.002497. Individual comparison alpha = 0.00025 (1 of 2). Comparing 5 points to limit. Seasonality was not detected with 95% confidence.

Constituent: Sulfate, as SO4 Analysis Run 12/7/2020 3:04 PM R.M. Heskett Station Client: Montana-Dakota Utilities Co. Data: Heskett_SanitasAppIII

Appendix C

Ash SPLP Laboratory Report (2011)

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 51 West Lincoln Way ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

Page: 1 of 2

Report Date: 8 Sep 11 Lab Number: 11-M2450 Work Order #:81-818 Account #: 013479 Date Sampled: Date Received: 28 Jun 11 9:00 PO #: 131460 OP

Duane Leingang Montana Dakota Utilities PO Box 40 Mandan ND 58554

Sample Description: Unit I Bottom Ash Sample Site: MDU Heskett

	As Receive Result	ed	Method RL	Method Reference	Date Analyzed	Analyst
SPLP Extraction				1312	22 Jul 11	SS
рН	12.2	units	N/A	SM4500 H+ B	22 Jul 11 17:00	
Specific Conductance	8778	umhos/cm	N/A	SM2510-B	22 Jul 11 17:00	
Total Suspended Solids	3	mg/l	1	SM2540-D	22 Jul 11 14:00	
Total Alkalinity	1120	mg/l CaCO3	4	SM2320-B	22 Jul 11 17:00	
Phenolphthalein Alk	1090	mg/l CaCO3	4	SM2320-B	22 Jul 11 17:00	
Bicarbonate	< 4	mg/l CaCO3	4	SM2320-B	22 Jul 11 17:00	
Carbonate	60	mg/l CaCO3	4	SM2320-B	22 Jul 11 17:0	
Hydroxide	1060	mg/l CaCO3	0	SM2320-B	22 Jul 11 17:0	
Tot Dis Solids (Summation)	4860	mg/l	NA	SM1030-F	3 Aug 11 8:4	2
Total Hardness as CaCO3	524	mg/l	NA	SM2340-B	3 Aug 11 8:4	
Hardness in grains/gallon	30.7	gr/gal	NA	SM2340-B	3 Aug 11 8:4	
Cation Summation	74,3	meg/L	NA	SM1030-F	3 Aug 11 8:4	
Anion Summation	74.6	meq/L	NA	SM1030-F	28 Jul 11 14:3	
Percent Error	-0.24	8	NA	SM1030-F	3 Aug 11 8:4	
Sodium Adsorption Ratio	27.1		NA	USDA 20b	3 Aug 11 8:4	
Gross Alpha Radiation	Attached	pCi/l			22 Aug 11 2:0	
Radon 222	Attached				28 Jul 11 4:3	
Radium 226	Attached	pCi/l			22 Aug 11 22:2	
Radium 228	Attached	pCi/l			16 Aug 11 16:5	
Total Organic Carbon	0.7	mg/l	0.5	SM5310-C	1 Aug 11 8:0	
Fluoride	< 0.1	mg/l	0.10	SM4500-F-C	4 Aug 11 17:0	
Sulfate	2440	mg/l	5.00	ASTM D516-02	27 Jul 11 9:0	
Chloride	50.5	mg/l	1.0	SM4500-Cl-E	27 Jul 11 14:0	
Nitrate-Nitrite as N	0.21	mg/l	0.10	EPA 353.2	28 Jul 11 14:3	
Ammonia-Nitrogen as N	0.32	mg/l	0.10	EPA 350.1	28 Jul 11 10:4	
Phosphorus as P - Total	< 0.1	mg/l	0.10	EPA 365.1	28 Jul 11 13:0	
Mercury - Total	< 0.0002	mg/l	0.0002	EPA 245.1	28 Jul 11 8:0	
Chemical Oxygen Demand	< 5	mg/l	5.0	HACH 8000	1 Aug 11 8:3	· · · · · · · · · · · · · · · · · · ·
Calcium - Total	210	mg/l	1.0	6010	3 Aug 11 8:4	-
Magnesium - Total	< 2.5	mg/l	1.0	6010	3 Aug 11 8:4	
Sodium - Total	1440	mg/l	1.0	6010	3 Aug 11 8:4	4
Potassium - Total	44.8	mg/l	1.0	6010	3 Aug 11 8:4	
Aluminum - Total	< 0.5	mg/l	0.10	6010	2 Aug 11 9:3	-
Iron - Total	< 0.5	mg/l	0.10	6010	2 Aug 11 9:3	-
Strontium - Total	28.2	mg/l	0.10	6010	2 Aug 11 9:3	-
Titanium - Total	< 0.5	mg/l	0.10	6010	2 Aug 11 9:3	4
Boron - Total	< 0,5	mg/l	0.10	6010	11 Aug 11 8:4	0 Stacy

RL = Method Reporting Limit

Elevated "Less Than Result" (<): @ = Due to sample matrix ! = Due to sample quantity # = Due to sample concentration

CERTIFICATION: MN LAB # 038-999-267 ND # ND-00016

+ = Due to extract volume

MVTL guarantees the accuracy of the analysis done on the sample submitted for testing. It is not possible for MVTL to guarantee that a test result obtained on a particular sample will be the same on any other sample unless all conditions affecting the sample are the same, including sampling by MVTL. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 51 West Lincoln Way ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

Page: 2 of 2

Report Date: 8 Sep 11 Lab Number: 11-M2450 Work Order #:81-818 Account #: 013479 Date Sampled: Date Received: 28 Jun 11 9:00 PO #: 131460 OP

Duane Leingang Montana Dakota Utilities PO Box 40 Mandan ND 58554

Sample Description: Unit I Bottom Ash Sample Site: MDU Heskett

	As Receive Result	ed	Method RL	Method Reference	Date Analyzed	Analyst
Antimony - Total	< 0.002	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Arsenic - Total	0.0044	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Barium - Total	0.1135	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Beryllium - Total	< 0.001	mg/l	0.0010	6020	25 Jul 11 16:18	Claudette
Cadmium - Total	0.00164	mg/l	0.00100	6020	25 Jul 11 16:18	Claudette
Chromium - Total	0.0065	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Cobalt - Total	< 0.002	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Copper - Total	0.0213	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Lead - Total	< 0.002	mg/l	0.0020	6020	25 Jul 11 16:18	
Manganese - Total	0.0027	mg/l	0.0010	6020	25 Jul 11 16:18	
Molybdenum - Total	0.6860	mg/l	0.0020	6020	26 Jul 11 12:46	7.
Nickel - Total	0.0074	mg/l	0.0020	6020	25 Jul 11 16:18	
Selenium - Total	0.0133	mg/l	0.0020	6020	26 Jul 11 9:46	Claudette
Silver - Total	< 0.001	mg/l	0.0010	6020	25 Jul 11 16:18	Claudette
Thallium - Total	< 0.002	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Tin - Total	< 0.05	mg/l	0.0500	6020	25 Jul 11 16:18	Claudette
Vanadium - Total	0.0189	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Zinc - Total	0.0151	mg/l	0.0100	6020	25 Jul 11 16:18	Claudette
Uranium	< 0.002	mg/l	0.002	6020	25 Jul 11 16:18	Claudette

All analyses were performed on the extract from Method 1312 (SPLP) with a modified solution to solids ratio of 4:1.

A Tander Approved by:

RL = Method Reporting Limit

CERTIFICATION: MN LAB # 038-999-267

Elevated "Less Than Result" (<): @ = Due to sample matrix | = Due to sample quantity

= Due to sample concentration
+ = Due to extract volume

MVTL guarantees the accuracy of the analysis done on the sample submitted for testing. It is not possible for MVTL to guarantee that a test result obtained on a particular sample will be the same on any other sample unless all conditions affecting the sample are the same, including sampling by MVTL. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

ND # ND-00016

l

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 51 West Lincoln Way ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

Page: 1 of 2

Report Date: 8 Sep 11 Lab Number: 11-M2451 Work Order #:81-818 Account #: 013479 Date Sampled: Date Received: 28 Jun 11 9:00 PO #: 131460 OP

Duane Leingang Montana Dakota Utilities PO Box 40 Mandan ND 58554

Sample Description: Unit II Sand Ash Sample Site: MDU Heskett

	As Receiv Result	ed	Method RL	Method Reference	Date Analyzed	Analyst
SPLP Extraction				1312	22 Jul 11	SS
рн	11.1	units	N/A	SM4500 H+ B	22 Jul 11 17:00	Claudette
Specific Conductance	20110	umhos/cm	N/A	SM2510-B	22 Jul 11 17:00	Claudette
Total Suspended Solids	21	mg/l	1	SM2540-D	22 Jul 11 14:00	CLB
Total Alkalinity	203	mg/l CaCO3	4	SM2320-B	22 Jul 11 17:00	Claudette
Phenolphthalein Alk	171	mg/l CaCO3	4	SM2320-B	22 Jul 11 17:00	Claudette
Bicarbonate	< 4	mg/l CaCO3	4	SM2320-B	22 Jul 11 17:00	Claudette
Carbonate	64	mg/l CaCO3	4	SM2320-B	22 Jul 11 17:00	Claudette
Hydroxide	139	mg/l CaCO3	0	SM2320-B	22 Jul 11 17:00	Claudette
Tot Dis Solids (Summation)	22500	mg/l	NA	SM1030-F	3 Aug 11 8:40	Calculated
Total Hardness as CaCO3	1200	mg/l	NA	SM2340-B	3 Aug 11 8:40	Calculated
Hardness in grains/gallon	70.2	gr/gal	NA	SM2340-B	3 Aug 11 8:40	Calculated
Cation Summation	318	meg/L	NA	SM1030-F	3 Aug 11 8:40	Calculated
Anion Summation	314	meg/L	NA	SM1030-F	28 Jul 11 14:30	Calculated
Percent Error	0.65	8	NA	SM1030-F	3 Aug 11 8:40	Calculated
Sodium Adsorption Ratio	80.9		NA	USDA 20b	3 Aug 11 8:40	Calculated
Gross Alpha Radiation	Attached	pCi/l			22 Aug 11 2:03	
Radon 222	See Attac	hed			28 Jul 11 4:37	
Radium 226	Attached	pCi/l			22 Aug 11 22:20	
Radium 228	Attached	pCi/l			16 Aug 11 16:50	
Total Organic Carbon	< 0.5	mg/l	0.5	SM5310-C	1 Aug 11 8:00	Eric
Fluoride	< 0.1	mg/l	0.10	SM4500-F-C	4 Aug 11 17:00	CLB
Sulfate	14900	mg/l	5.00	ASTM D516-02	27 Jul 11 9:00	KMP
Chloride	2.0	mg/l	1.0	SM4500-Cl-E	27 Jul 11 14:00	KMP
Nitrate-Nitrite as N	< 0.1	mg/l	0.10	EPA 353.2	28 Jul 11 14:30	KMP
Ammonia-Nitrogen as N	0.10	mg/l	0.10	EPA 350.1	28 Jul 11 10:45	KMP
Phosphorus as P - Total	< 0.1	mg/l	0.10	EPA 365.1	28 Jul 11 13:00	KMP
Mercury - Total	< 0.0002	mg/l	0.0002	EPA 245.1	28 Jul 11 8:00	Eric
Chemical Oxygen Demand	< 5	mg/l	5.0	HACH 8000	1 Aug 11 8:30	Wayne
Calcium - Total	481	mg/l	1.0	6010	3 Aug 11 8:40	Stacy
Magnesium - Total	< 5	mg/l	1.0	6010	3 Aug 11 8:40	Stacy
Sodium - Total	6500	mg/l	1.0	6010	3 Aug 11 8:40	Stacy
Potassium - Total	459	mg/l	1.0	6010	3 Aug 11 8:40	Stacy
Aluminum - Total	1.09	mg/l	0.10	6010	2 Aug 11 9:30	Stacy
Iron - Total	< 1	mg/l	0.10	6010	2 Aug 11 9:30	Stacy
Strontium - Total	66.0	mg/l	0.10	6010	2 Aug 11 9:30	Stacy
Titanium - Total	< 1	mg/l	0.10	6010	2 Aug 11 9:30	Stacy
Boron - Total	5.96	mg/l	0.10	6010	11 Aug 11 8:40	Stacy

RL = Method Reporting Limit

Elevated "Less Than Result" (<): \circledast = Due to sample matrix ! = Due to sample quantity # = Due to sample concentration
+ = Due to extract volume

CERTIFICATION: MN LAB # 038-999-267 ND # ND-00016

MVTL guarantees the accuracy of the analysis done on the sample submitted for testing. It is not possible for MVTL to guarantee that a test result obtained on a particular sample will be the same on any other sample unless all conditions affecting the sample are the same, including sampling by MVTL. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

I.

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 51 West Lincoln Way ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

Page: 2 of 2

Report Date: 8 Sep 11 Lab Number: 11-M2451 Work Order #:81-818 Account #: 013479 Date Sampled: Date Received: 28 Jun 11 9:00 PO #: 131460 OP

Duane Leingang Montana Dakota Utilities PO Box 40 Mandan ND 58554

.

Sample Description: Unit II Sand Ash Sample Site: MDU Heskett

	As Receive Result	ed	Method RL	Method Reference	Date Analyzed	Analyst
Antimony - Total	< 0.002	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Arsenic - Total	0.0822	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Barium - Total	0.0930	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Beryllium - Total	< 0.001	mg/l	0.0010	6020	25 Jul 11 16:18	Claudette
Cadmium - Total	0.00182	mg/l	0.00100	6020	25 Jul 11 16:18	Claudette
Chromium - Total	0.0244	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Cobalt - Total	< 0.002	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Copper - Total	0.1108	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Lead - Total	< 0.002	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Manganese - Total	0.0052	mg/l	0.0010	6020	25 Jul 11 16:18	Claudette
Molybdenum - Total	0.1000	mg/l	0.0020	6020	26 Jul 11 12:46	Claudette
Nickel - Total	0.0136	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Selenium - Total	0.0937	mg/l	0.0020	6020	26 Jul 11 9:46	Claudette
Silver - Total	< 0.001	mg/l	0.0010	6020	25 Jul 11 16:18	Claudette
Thallium - Total	< 0.002	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Tin - Total	< 0.05	mg/l	0.0500	6020	25 Jul 11 16:18	Claudette
Vanadium - Total	0.3026	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Zinc - Total	0,0327	mg/l	0.0100	6020	25 Jul 11 16:18	Claudette
Uranium	< 0.002	mg/l	0.002	6020	25 Jul 11 16:18	Claudette

All analyses were performed on the extract from Method 1312 (SPLP) with a modified solution to solids ratio of 4:1.

Tonde Approved by:

RL = Method Reporting Limit

CERTIFICATION: MN LAB # 038-999-267

Elevated "Less Than Result" (<): @ = Due to sample matrix ! = Due to sample quantity ND # ND-00016

= Due to sample concentration + = Due to extract volume

MVTL guarantees the accuracy of the analysis done on the sample submitted for testing. It is not possible for MVTL to guarantee that a test result obtained on a particular sample will be the same on any other sample unless all conditions affecting the sample are the same, including sampling by MVTL. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

1

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 51 West Lincoln Way ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

Page: 1 of 2

Report Date: 8 Sep 11 Lab Number: 11-M2452 Work Order #:81-818 Account #: 013479 Date Sampled: Date Received: 28 Jun 11 9:00 PO #: 131460 OP

Duane Leingang Montana Dakota Utilities PO Box 40 Mandan ND 58554

Sample Description: Unit I Fly Ash Sample Site: MDU Heskett

	As Receive Result	ed	Method RL	Method Reference	Date Analyzed	Analyst
SPLP Extraction				1312	22 Jul 11	SS
pH	12.9	units	N/A	SM4500 H+ B	22 Jul 11 17:00	
Specific Conductance	50660	umhos/cm	N/A	SM2510-B	22 Jul 11 17:00	
Total Suspended Solids	30	mg/l	1	SM2540-D	22 Jul 11 14:00	
Total Alkalinity	7020	mg/l CaCO3	4	SM2320-B	25 Jul 11 17:00	
Phenolphthalein Alk	6900	mg/l CaCO3	4	SM2320-B	25 Jul 11 17:00	
Bicarbonate	< 4	mg/l CaCO3	4	SM2320-B	25 Jul 11 17:00	
Carbonate	240	mg/l CaCO3	4	SM2320-B	25 Jul 11 17:00	
Hydroxide	6780	mg/l CaCO3	0	SM2320-B	25 Jul 11 17:00	
Tot Dis Solids (Summation)	42200	mg/l	NA	SM1030-F	3 Aug 11 8:40	1 C
Total Hardness as CaCO3	1750	mg/l	NA	SM2340-B	3 Aug 11 8:40	
Hardness in grains/gallon	102	gr/gal	NA	SM2340-B	3 Aug 11 8:40	
Cation Summation	663	meq/L	NA	SM1030-F	3 Aug 11 8:40	
Anion Summation	613	meq/L	NA	SM1030-F	28 Jul 11 14:30	
Percent Error	3,99	8	NA	SM1030-F	3 Aug 11 8:4	
Sodium Adsorption Ratio	143		NA	USDA 20b	3 Aug 11 8:4	
Gross Alpha Radiation	Attached	pCi/l			22 Aug 11 2:0	
Radon 222	Attached				28 Jul 11 4:3	
Radium 226	Attached	pCi/l			22 Aug 11 22:2	
Radium 228	Attached	pCi/l			16 Aug 11 16:5	
Total Organic Carbon	1.5	mg/l	0.5	SM5310-C	1 Aug 11 8:0	
Fluoride	5.60	mg/l	0.10	SM4500-F-C	10 Aug 11 17:0	
Sulfate	22600	mg/l	5.00	ASTM D516-02	27 Jul 11 9:0	
Chloride	53.8	mg/l	1.0	SM4500-Cl-E	27 Jul 11 14:0	
Nitrate-Nitrite as N	0.68	mg/l	0.10	EPA 353.2	28 Jul 11 14:3	
Ammonia-Nitrogen as N	7.22	mg/l	0.10	EPA 350.1	28 Jul 11 10:4	
Phosphorus as P - Total	< 0.1	mg/l	0.10	EPA 365.1	28 Jul 11 13:0	
Mercury - Total	< 0.0002	mg/l	0.0002	EPA 245.1	28 Jul 11 8:0	
Chemical Oxygen Demand	22.4	mg/l	5.0	HACH 8000	1 Aug 11 8:3	1
Calcium - Total	700	mg/l	1.0	6010	3 Aug 11 8:4	1
Magnesium - Total	< 25	mg/l	1.0	6010	3 Aug 11 8:4	-
Sodium - Total	14100	mg/l	1.0	6010	3 Aug 11 8:4	-
Potassium - Total	580	mg/l	1.0	6010	3 Aug 11 8:4	-
Aluminum - Total	< 5	mg/l	0.10	6010	2 Aug 11 9:3	-
Iron - Total	< 5	mg/l	0.10	6010	2 Aug 11 9:3	-
Strontium - Total	59.5	mg/l	0.10	6010	2 Aug 11 9:3	-
Titanium - Total	< 5	mg/l	0.10	6010	2 Aug 11 9:3	
Boron - Total	1.89	mg/l	0.10	6010	11 Aug 11 8:4	0 Stacy

RL = Method Reporting Limit

Elevated "Less Than Result" (<): @ = Due to sample matrix ! = Due to sample quantity

= Due to sample concentration
+ = Due to extract volume

CERTIFICATION: MN LAB # 038-999-267 ND # ND-00016

MVTL guarantees the accuracy of the analysis done on the sample submitted for testing. It is not possible for MVTL to guarantee that a test result obtained on a particular sample will be the same on any other sample unless all conditions affecting the sample are the same, including sampling by MVTLi As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 51 West Lincoln Way ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

Page: 2 of 2

Report Date: 8 Sep 11 Lab Number: 11-M2452 Work Order #:81-818 Account #: 013479 Date Sampled: Date Received: 28 Jun 11 9:00 PO #: 131460 OP

Duane Leingang Montana Dakota Utilities PO Box 40 Mandan ND 58554

Sample Description: Unit I Fly Ash Sample Site: MDU Heskett

	As Receiv Result	ed	Method RL	Method Reference	Date Analyzed	Analyst
Antimony - Total	< 0.002	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Arsenic - Total	0.1128	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Barium - Total	0.0906	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Beryllium - Total	< 0.001	mg/l	0.0010	6020	25 Jul 11 16:18	Claudette
Cadmium - Total	0.00244	mg/l	0.00100	6020	25 Jul 11 16:18	Claudette
Chromium - Total	0.0270	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Cobalt - Total	< 0.002	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Copper - Total	0.2934	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Lead - Total	0.0161	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Manganese - Total	0.0102	mg/l	0.0010	6020	25 Jul 11 16:18	Claudette
Molybdenum - Total	0,9246	mg/l	0.0020	6020	26 Jul 11 12:46	
Nickel - Total	0.0175	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Selenium - Total	0.1959	mg/l	0.0020	6020	26 Jul 11 9:46	Claudette
Silver - Total	< 0.001	mg/l	0.0010	6020	25 Jul 11 16:18	Claudette
Thallium - Total	< 0.002	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Tin - Total	< 0.05	mg/l	0.0500	6020	25 Jul 11 16:18	Claudette
Vanadium - Total	0.0158	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Zinc - Total	0.3984	mg/l	0.0100	6020	25 Jul 11 16:18	Claudette
Uranium	< 0.002	mg/l	0.002	6020	25 Jul 11 16:18	Claudette

All analyses were performed on the extract from Method 1312 (SPLP) with a modified solution to solids ratio of 4:1.

Approved by:

Torda

RL = Method Reporting Limit

CERTIFICATION: MN LAB # 038-999-267

Elevated "Less Than Result" (c): @ = Due to sample matrix $\frac{1}{2}$ = Due to sample quantity

ND # ND-00016

= Due to sample concentration
+ = Due to extract volume

MVTL guarantees the accuracy of the analysis done on the sample submitted for testing. It is not possible for MVTL to guarantee that a test result obtained on a particular sample will be the same on any other sample unless all conditions affecting the sample are the same, including sampling by MVTL. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 51 West Lincoln Way ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

1 of 2 Page:

Report Date: 8 Sep 11 Lab Number: 11-M2453 Work Order #:81-818 Account #: 013479 Date Sampled: Date Received: 28 Jun 11 9:00 PO #: 131460 OP

Duane Leingang Montana Dakota Utilities PO Box 40 Mandan ND 58554

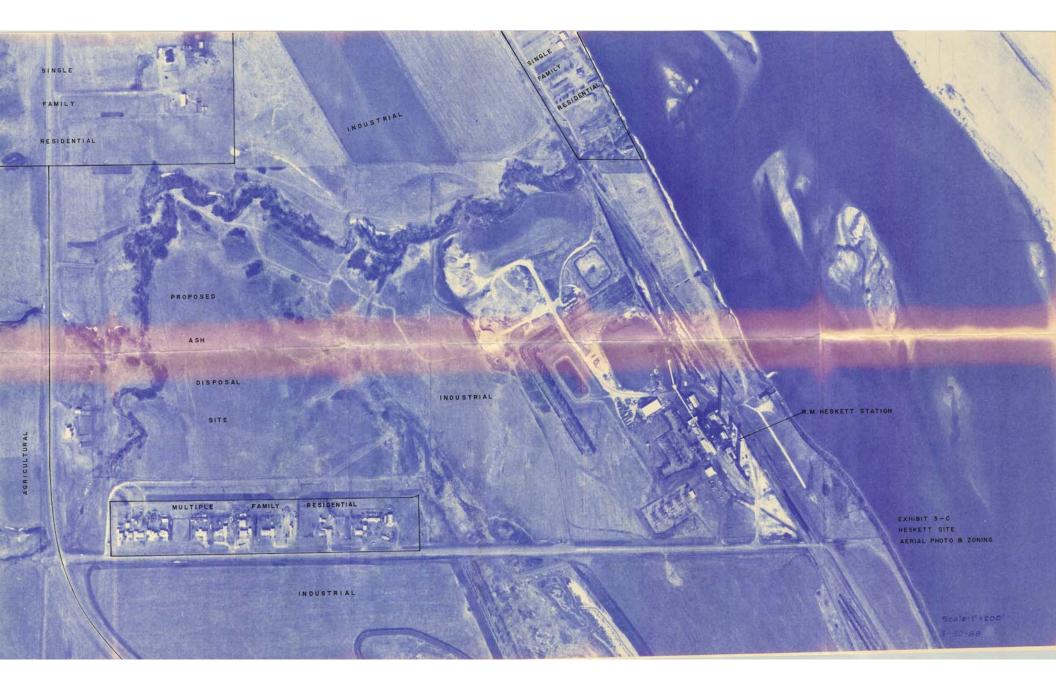
Sample Description: Unit II Fly Ash Sample Site: MDU Heskett

	As Receivo Result	ed	Method RL	Method Reference	Date Analyzed	Analyst
SPLP Extraction				1312	22 Jul 11	SS
рН	12.8	units	N/A	SM4500 H+ B	22 Jul 11 17:00	Claudette
Specific Conductance	27240	umhos/cm	N/A	SM2510-B	22 Jul 11 17:00	Claudette
Total Suspended Solids	13	mg/l	1	SM2540-D	22 Jul 11 14:00	CLB
Total Alkalinity	4570	mg/l CaCO3	4	SM2320-B	22 Jul 11 17:00	Claudette
Phenolphthalein Alk	4520	mg/l CaCO3	4	SM2320-B	22 Jul 11 17:00	Claudette
Bicarbonate	< 4	mg/l CaCO3	4	SM2320-B	22 Jul 11 17:00	Claudette
Carbonate	100	mg/l CaCO3	4	SM2320-B	22 Jul 11 17:00	Claudette
Hydroxide	4470	mg/l CaCO3	0	SM2320-B	22 Jul 11 17:00	Claudette
Tot Dis Solids (Summation)	16000	mg/l	NA	SM1030-F	3 Aug 11 8:40	Calculated
Total Hardness as CaCO3	1960	mg/l	NA	SM2340-B	3 Aug 11 8:40	Calculated
Hardness in grains/gallon	115	gr/gal	NA	SM2340-B	3 Aug 11 8:40	Calculated
Cation Summation	252	meg/L	NA	SM1030-F	9 Aug 11 9:09	Calculated
Anion Summation	247	meq/L	NA	SM1030-F	28 Jul 11 14:30	Calculated
Percent Error	1.00	do	NA	SM1030-F	9 Aug 11 9:09	Calculated
Sodium Adsorption Ratio	46.1		NA	USDA 20b	3 Aug 11 8:40	Calculated
Gross Alpha Radiation	Attached	pCi/l			22 Aug 11 2:03	
Radon 222	Attached				28 Jul 11 4:37	
Radium 226	Attached	pCi/l			22 Aug 11 22:20	
Radium 228	Attached	pCi/l			16 Aug 11 16:50	
Total Organic Carbon	1.6	mg/l	0.5	SM5310-C	1 Aug 11 8:00	Eric
Fluoride	3.60	mg/l	0.10	SM4500-F-C	4 Aug 11 17:00	CLB
Sulfate	7400	mg/l	5.00	ASTM D516-02	27 Jul 11 9:00	KMP
Chloride	66.0	mg/l	1.0	SM4500-Cl-E	27 Jul 11 14:00	KMP
Nitrate-Nitrite as N	0.38	mg/l	0.10	EPA 353.2	28 Jul 11 14:30	KMP
Ammonia-Nitrogen as N	15.0	mg/l	0.10	EPA 350.1	28 Jul 11 10:45	KMP
Phosphorus as P - Total	< 0.1	mg/l	0.10	EPA 365.1	28 Jul 11 13:00	KMP
Mercury - Total	< 0.0002	mg/l	0.0002	EPA 245.1	28 Jul 11 8:00	Eric
Chemical Oxygen Demand	9.4	mg/l	5.0	HACH 8000	1 Aug 11 8:30	Wayne
Calcium - Total	785	mg/l	1.0	6010	3 Aug 11 8:40	Stacy
Magnesium - Total	< 5	mg/l	1.0	6010	3 Aug 11 8:40	Stacy
Sodium - Total	4720	mg/l	1.0	6010	3 Aug 11 8:40	Stacy
Potassium - Total	275	mg/l	1.0	6010	3 Aug 11 8:40	Stacy
Aluminum - Total	< 1	mg/l	0.10	6010	9 Aug 11 9:09	Stacy
Iron - Total	< 1	mg/l	0.10	6010	9 Aug 11 9:09	Stacy
Strontium - Total	85.0	mg/l	0.10	6010	9 Aug 11 9:09	Stacy
Titanium - Total	< 1	mg/l	0.10	6010	9 Aug 11 9:09	Stacy
Boron - Total	< 1	mg/l	0.10	6010	11 Aug 11 8:40	Stacy

RL = Method Reporting Limit

CERTIFICATION: MN LAB # 038-999-267

Elevated "Less Than Result" (<): @ = Due to sample matrix ! = Due to sample quantity


ND # ND-00016

= Due to sample concentration + = Due to extract volume

MVTL guarantees the accuracy of the analysis done on the sample submitted for testing. It is not possible for MVTL to guarantee that a test result obtained on a particular sample will be the same on any other sample unless all conditions affecting the sample are the same, including sampling by MVTL. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

Appendix D

Aerial Photo (March 30, 1988)

Appendix E

Boring Logs

EXHIBIT 5-E

LITHOLOGIC LOGS

Wells 10, 11, 12 and 13

- 0-1 Top soil, silty, clayey, sandy, brown, calcareous; with some limestone pebbles.
- 1-11 Silt, clayey, brownish-tan, slightly indurated, very dry, calcareous; with thin coarse-grained, clean silt lenses and a few small (less than .5 in.) iron oxide concretions. Abundant small gypsum crystals (less than .13 in. long). Some small, black flakes of organic plant material. Cannonball-Ludlow Formations.
- 11-14 Silt, as above, with some (less than 20%) very fine- to fine-grained sand interspersed.
- 14-30 Silt, as above, clayey, less sand than above interval, oxidized; with very fine-grained silty sand lenses and very few gypsum crystals.
- 30-41 Silt, very clayey, with some (less than 20%) very fine-grained sand interspersed, steel-gray (color change), moderately indurated; with fewer small gypsum crystals than above intervals.
- 41-59 Silt, as above, very clayey, with some (less than 20%) fine- to medium-grained sand interspersed in a silt and clay matrix.
- 59-65 Silt, as above, with abundant (more than 20%) fine- to medium-grained sand interspersed.
- 65-81 Silt, clayey, steel-gray to bluish, moderately indurated; with thin coarse-grained silt to very fine-grained sand lenses in an otherwise fine silt to clay matrix.
- 81-84 Clay, silty, steel-gray to bluish, moderately indurated, dense.
- 84-91 Siltstone, sandy, clayey, steel-gray to bluish, slightly indurated; with small fine-grained sand lenses and abundant (more than 20%) sand interspersed in the matrix.
- 91-110 Silt, clayey, bluish-gray, moderately indurated; with thin (less than 1 foot) mudstone lenses.
- 110-120 Silt, very clayey, steel-gray to bluish, moderately indurated, very dense. Cannonball-Ludlow Formations.

Wells 20 and 21

1	Top soil, silty,	sandy, clayey,	dark-brown,
	calcareous; with	some limestone	and granite
	pebbles.		

- 1-21 Silt, clayey, with minor amounts (less than 10%) of very fine-grained sand interspersed, brownish-tan, slightly indurated, calcareous, oxidized; with small iron oxide concretions and abundant small gypsum crystals. Cannonball-Ludlow Formations.
- 21-26 Silt, as above, steel-gray (color change).
- 26-49 Silt, clayey, with some (less than 20%) very fine- to medium-grained sand interspersed, steel-gray to bluish, slightly indurated; with very few small gypsum crystals and some thin (less than 1 foot) siltstone lenses.
- 49-53 Silt, as above, with abundant (more than 20%) fine- to medium-grained sand interspersed.
- 53-63 Silt, as above, clayey, less sand, with thin (less than 1 foot) siltstone to mudstone lenses.
- 63-80 Silt, very clayey, steel-gray to bluish, moderately indurated, very dense. Cannonball-Ludlow Formations.

Wells 30, 31, 32 and 33

- 0-1 Top soil, silty, sandy, brownish, calcareous; with some granite and limestone pebbles.
- 1-2 Pebble-loam (glacial till), silty, sandy, clayey, yellowish-brown, dry, calcareous.
- 2-31 Silt, clayey, with minor amounts (less than 10%) of very fine-grained sand interspersed, brownish-tan, slightly indurated, calcareous, oxidized; with small iron oxide concretions. Some small, black flakes organic plant material. Cannonball-Ludlow Formations.
- 31-44 Silt, clayey, steel-gray (color change), slightly indurated, calcareous; with small iron oxide concretions, thin coarse silt lenses, small gypsum crystals and gray to reddish-brown mottling.

- 44-61 Silt, as above, with some (less than 20%) fineto medium-grained sand interspersed.
- 61-65 Silt, as above, with abundant (more than 20%) fine- to medium-grained sand interspersed, dense.
- 65-76 Silt, as above, clayey, less sand, some thin (less than 1 foot) lenses of siltstone to mudstone.
- 76-80 Siltstone, sandy, clayey, steel-gray to bluish, slightly indurated; with small fine-grained sand lenses and abundant (more than 20%) fine-grained sand interspersed in the matrix.
- 80-92 Silt, clayey, steel-gray to bluish, moderately indurated, with some (less than 20%) very fine- to fine grained sand interspersed.
- 92-120 Silt, very clayey, steel-gray to bluish, moderately indurated, very dense. Cannonball-Ludlow Formations.
- Well 40
- 0-1 Top soil, sandy, silty, brownish-tan, calcareous; with some granite and limestone pebbles.
- 1-5 Pebble-loam (glacial till), sandy, silty, with detrital lignite and organic matter, yellowish-brown, very dry, calcareous.
- 5-22 Sand, very fine- to medium-grained, unconsolidated, with thin lenses of clay and detrital lignite, brownish-yellow, calcareous.
- 22-40 Silt, clayey, with minor amounts (less than 10%) very fine-grained sand interspersed, brownish-tan, slightly indurated, calcareous, oxidized; with small iron oxide concretions and small gypsum crystals; Cannonball-Ludlow Formations.
- 40-51 Silt, clayey, with minor amounts (less than 10%) of very fine-grained sand interspersed, steel-gray (color change), moderately indurated; with some reddish-brown mottling and some very thin (less than 6 inches) mudstone lenses.
- 51-58 Silt, as above, with abundant (more than 20%) fine-grained sand and thin silty-clay lenses.

- 58-62 Siltstone, sandy, clayey, steel-gray to bluish, moderately indurated; with small fine-grained sand lenses and abundant (more than 20%) sand interspersed in the matrix.
- 62-70 Silt, clayey, with some (less than 20%) fine- to medium-grained sand interspersed, steel-gray to bluish, moderately indurated; with thin (less than 2 feet) sandy lenses.
- 70-80 Silt, as above, very clayey, some (less than 10%) fine-grained sand interspersed; less sand than above interval.
- 80-120 Silt, as above, dark-steel-gray. Cannonball-Ludlow Formations.
- Wells 41, 42 and 43
- 0-1 Top soil, sandy, silty, dark-brown, calcareous; with some granite and limestone pebbles.
- 1-4 Pebble-loam (glacial till), sandy, silty, clayey, yellowish-brown, very dry, calcareous.
- 4-40 Silt, clayey, with some (less than 20%) very fine-grained sand interspersed, brownish-tan, unconsolidated, noncompacted, calcareous to 25 feet, oxidized; with small iron oxide concretions and abundant small gypsum crystals. Cannonball-Ludlow Formations.
- 40-51 Silt, clayey, with minor amounts (less than 10%) of very fine-grained sand interspersed, steel-gray (color change), moderately indurated; with some reddish-brown mottling and some very thin (less than 6 inches) mudstone lenses.
- 51-58 Silt, as above, with abundant (more than 20%) fine-grained sand and thin silty-clay lenses.
- 58-62 Siltstone, sandy, clayey, steel-gray to bluish, moderately indurated; with small fine-grained sand lenses and abundant (more than 20%) sand interspersed in the matrix.
- 62-70 Silt, clayey, with some (less than 20%) fine- to medium-grained sand interspersed, steel-gray to bluish, moderately indurated; with thin (less than 2 feet) sandy lenses.

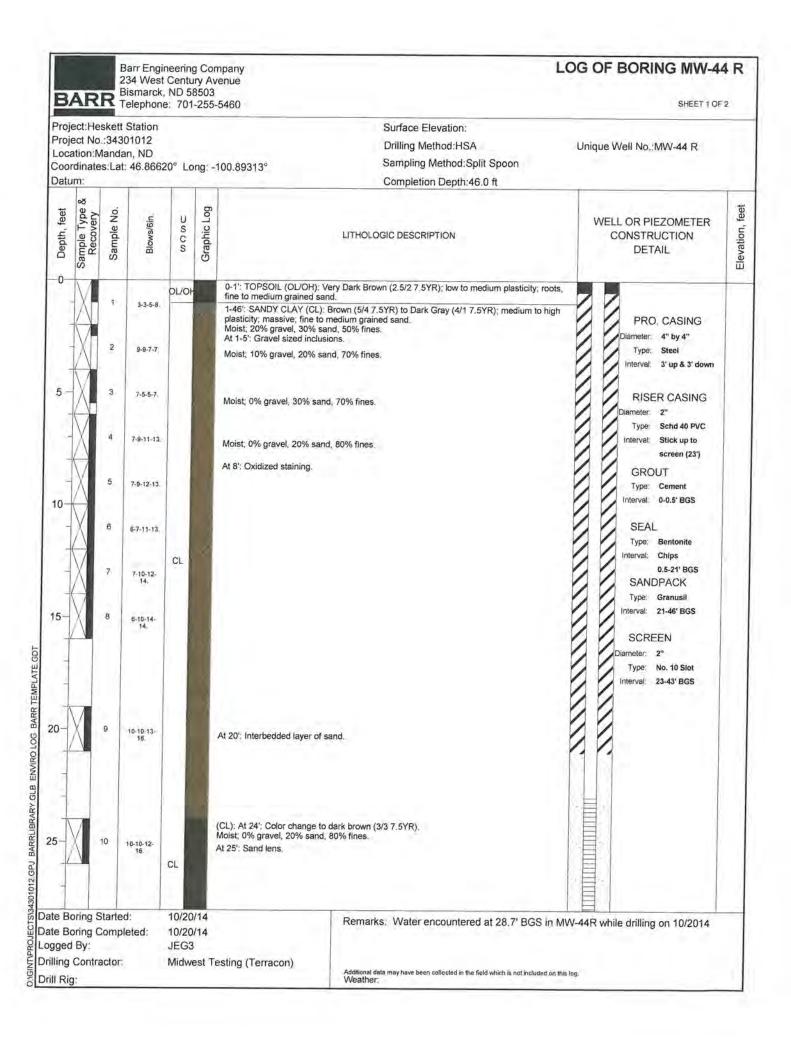
- 70-80 Silt, as above, very clayey, some (less than 10%) fine-grained sand interspersed; less sand than above interval.
- Wells 43 and 44
- 0-2 Top soil, clayey, silty, some sand, brownish-tan to light-gray, calcareous.
- 2-20 Silt, clayey, with some (less than 20%) fine-grained sand interspersed, brownish-tan, slightly indurated, very dry, calcareous; with small iron oxide concretions, abundant small gypsum crystals and occasional thin silt lenses. Cannonball-Ludlow Formations.
- 20-25 Silt, as above, very clayey, oxidized, with minor amounts (less than 10%) of fine-grained sand.
- 25-35 Silt, as above, dark-brownish-tan to bluish-gray (color change), with thin very fine-grained sand lenses.
- 35-60 Silt, clayey, with some (less than 20%) fine- to medium-grained sand interspersed, steel-gray to bluish, moderately indurated; with some indurated silty sand lenses. Cannonball-Ludlow Formations.

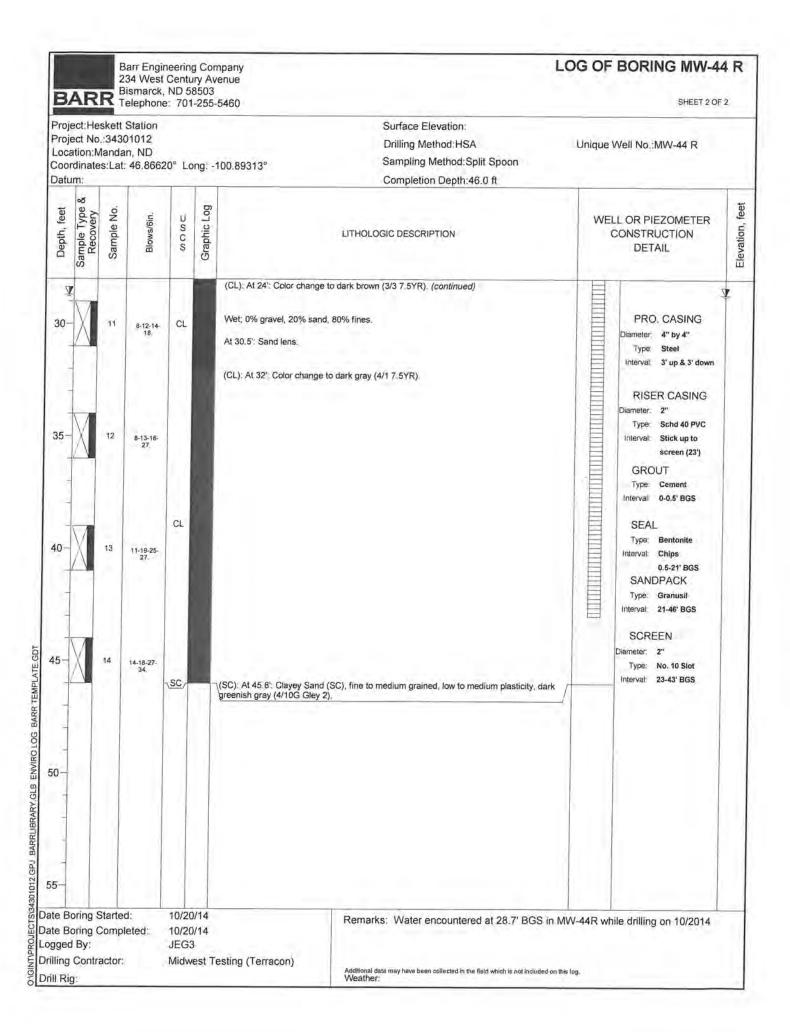
Wells 50, 51 and 52

- 0-4 Top soil, clayey, silty, very dark-brown.
- 4-10 Clay, silty, with some (less than 20%) fine-grained sand, dark-brownish-tan, soft, cohesive, wet, sticky; with some pebbles.
- 10-22 Silt, very clayey, with some (less than 20%) very fine-grained sand interspersed, brownish-tan, slightly indurated, calcareous, dense; with abundant small gypsum crystals and very thin silt and sand lenses; Cannonball-Ludlow Formations.
- 22-23 Sandstone, fine-grained, silty, indurated, oxidized, dark-brown.
- 23-30 Silt, very clayey, with some (less than 20%) very fine-grained sand interspersed, steel-gray (color change), moderately indurated; with thin medium grained sand lenses.

- 30-40 Silt, as above, very clayey, less sand than above interval, dark-steel-gray. Cannonball-Ludlow Formations.
- Wells 53 and 54
- 0-4 Top soil, clayey, silty, very dark-brown, wet, sticky.
- 4-15 Clay, silty, with some (less than 20%) fine- to medium-grained sand interspersed, brownish-tan, slightly indurated, dry, calcareous; with small iron oxide concretions, small gypsum crystals and occasional reddish-brown mottling; Cannonball-Ludlow Formations.
- 15-20 Sand, very fine-grained to medium-grained, silty, clayey, unconsolidated, yellowish-brown, oxidized.
- 20-30 Silt, clayey, with some (less than 20%) fine-grained sand interspersed, steel-gray (color change), slightly indurated; with clay and sand lenses, some small concretions and some small gypsum crystals.
- 30-45 Silt, as above, very clayey.
- 45-60 Silt, as above, clayey, brownish-gray, moderately indurated, some reddish-brown mottling. Cannonball-Ludlow Formations.
- Wells 55 and 56
- 0-5 Sandy-loam (glacial), with fine- to medium-grained sand, silty, calcareous; with small granite and limestone pebbles.
- 5-26 Clay, silty, with minor amounts (less than 10%) of very fine-grained sand, dark-brownish-tan, moderately indurated, brittle, very dry, calcareous; with small iron oxide concretions, small gypsum crystals and occasional thin sandstone laminae. Some small, black flakes of organic plant material. Cannonball-Ludlow Formations.
- 26-35 Clay, as above, very silty, sandy, brownish-tan, oxidized.

35-40 Silt, clayey, with some (less than 20%) very fine- to fine-grained sand interspersed, steel-gray (color change) moderately indurated; with small gypsum crystals and occasional clay lenses.

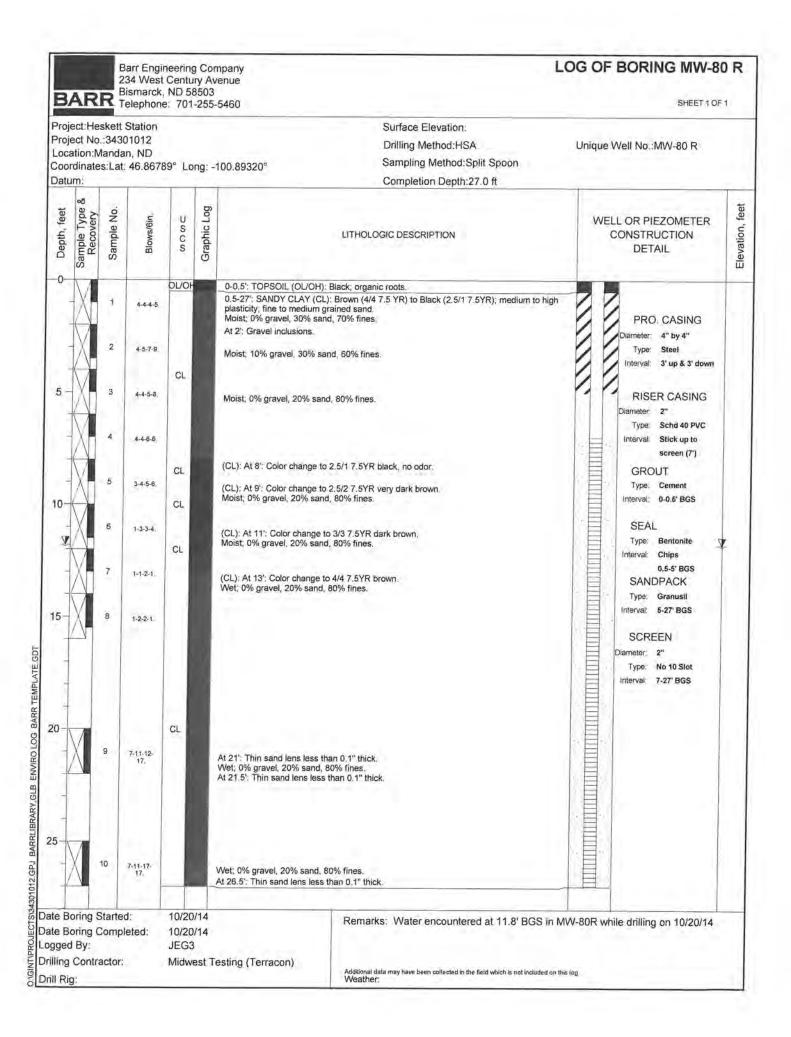

ة ريد


- 40-60 Silt, as above, with minor amounts (less than 10%) of fine-grained sand interspersed.
- 60-85 Silt, as above, clayey, less sand than above interval.
- 85-100 Silt, as above, very clayey, with minor amounts (less than 10%) of sand interspersed, light-gray. Cannonball-Ludlow Formations.
- Wells 60, 61 and 62
- 0-2 Top soil, silty, clayey, dark-brown to tanish-brown, calcareous.
- 2-25 Silt, very clayey, with some minor amounts (less than 10%) of very fine- to fine-grained sand interspersed, brownish-tan, slightly indurated, dry, calcareous; with abundant small gypsum crystals and thin silt and sand lenses; Cannonball-Ludlow Formations.
- 25-29 Silt, as above, with abundant (more than 20%) fine- to medium-grained sand interspersed.
- 29-36 Silt, as above, clayey, less sand than above interval, dark-brownish-tan, oxidized.
- 36-60 Silt, very clayey, with some (less than 20%) very fine-grained sand interspersed, steel-gray (color change), moderately indurated; with thin (less than 1 foot) sandy-silt lenses. Cannonball-Ludlow Formations.
- Well 70 0-2 Pebble-loam (glacial till), clayey, sandy, yellowish-brown, unconsolidated, damp, calcareous.
- 2-21 Silty, clayey, with some (less than 20%) fine-grained sand interspersed, brownish-tan, moderately indurated, very dry, calcareous, oxidized; with small iron oxide concretions and abundant small gypsum crystals. Cannonball-Ludlow Formations.

- 21-24 Shale, silty, steel- to dark-gray (color change), indurated, fissile, very dry; with occasional thin silt and sand lenses.
- 24-31 Silt, clayey, with abundant (more than 30%) sand, steel-gray, moderately indurated.
- 31-62 Silt, clayey, with some (less than 20%) very fine- to fine- grained sand interspersed, steel-gray, moderately indurated; with some small gypsum crystals and small iron oxide concretions.
- 62-76 Silt, as above, with some (less than 20%) fine-grained sand interspersed.
- 76-82 Silt, as above, with abundant (more than 20%) fine- to medium-grained sand.
- 82-100 Silt, as above, clayey, with some (less than 20%) fine-grained sand interspersed, dark-gray. Cannonball-Ludlow Formations.

The lithologic logs for wells 1-4 were described by personal from Water Supply Incorporated (WS), Bismarck, North Dakota. The wells were installed during a previous ground water investigation at Heskett Station.

Well WS 2 0-1 1-4	Top soil, silty, black. Pebble-loam(glacial till), silty, clayey, some cobbles, yellowish-brown.
4-7	Gravel, sand and rocks.
7-21	Sand, fine- to coarse-grained, some pebbles.
21-39	Clay, silty, sandy, yellowish-brown to gray.
39-52	Clay, silty, sandy, gray.
52-67	Sand, fine-grained, bluish, with some clay
	layers.
67-89	Clay, silty, sandy, brown to gray.
Wells WS 1,	A and IR
<u>0-1</u>	
1-4	Top soil, silty, black
T T	Clay, (glacial), silty, with pebbles, yellowish-brown.
4-21	Sand, fine- to medium-grained, yellowish-brown;
	with clay and silt lenses.
21-25	Clay, silty, yellowish-brown.
25-30	Sand, fine-grained, yellowish-brown, some
ана. 	indurated layers.
30-35	Clay, silty, yellowish-brown.
35-45	Sand, fine-grained, yellowish-brown.
45-50	Clay, silty, sandy, gray, about 50 percent shale.
50-56	Sand, fine-grained, with clay layers.
56-73	Clay, silty, sandy, gray.
WE11s WS 4, 4	A and AB
0-13	
0 10	Pebble-loam (glacial till), silty, sandy, with
13-23	some cobbles, yellowish-brown.
23-25	Sand, fine- to medium-grained, yellowish-brown.
25-27	Slay, silty, sandy, yellowish-brown.
27-30	Sandstone, indurated.
30-36	Clay, sandy, silty, gray.
36-52	Sand, fine-grained, gray.
30-32	Clay, silty, sandy, gray; with some sand layers.
Wells WS 3 an	d 3A
0-1	Top soil, silty, black.
1-12	Pebble-loam, clayey, silty, with some cobbles,
10.10	yellowish-brown.
12-16	Clay, silty, gray; with some shale layers.
16-18	Limestone, indurated.
18-23	Clay, silty, yellowish-brown; with some sand
00:00	layers.
23-44	Sand, fine- to medium-grained, gray; with some
14 50	clay layers.
44-50	Clay, silty, medium-gray.

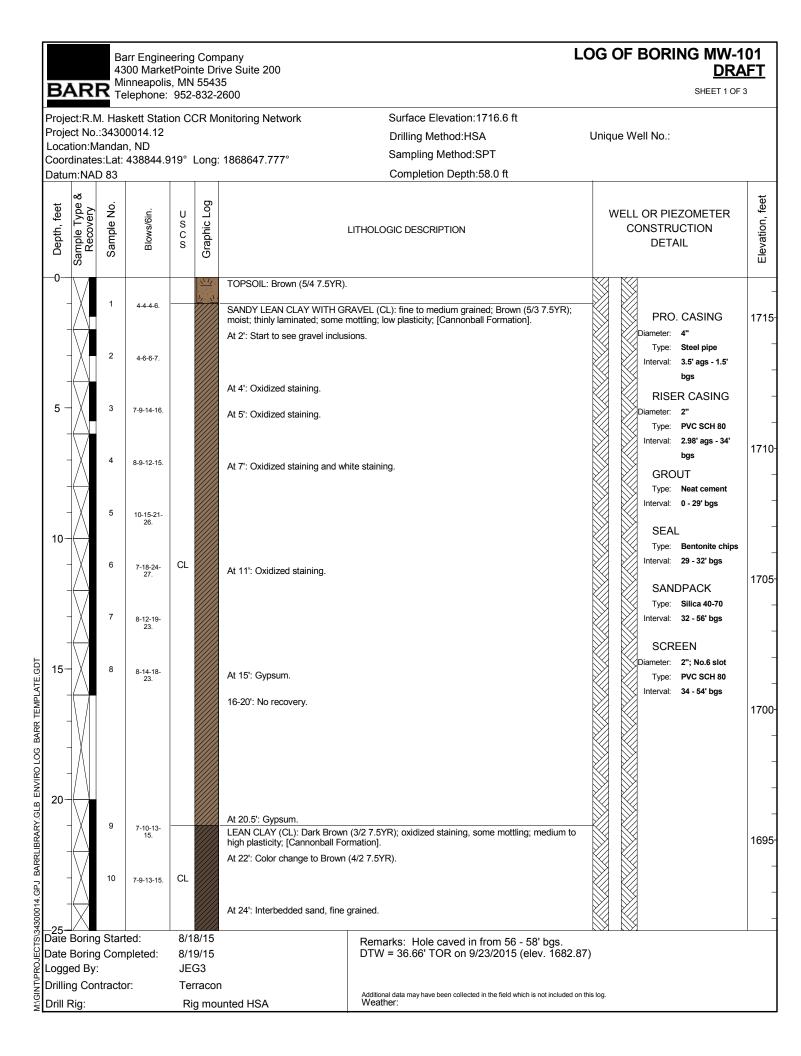


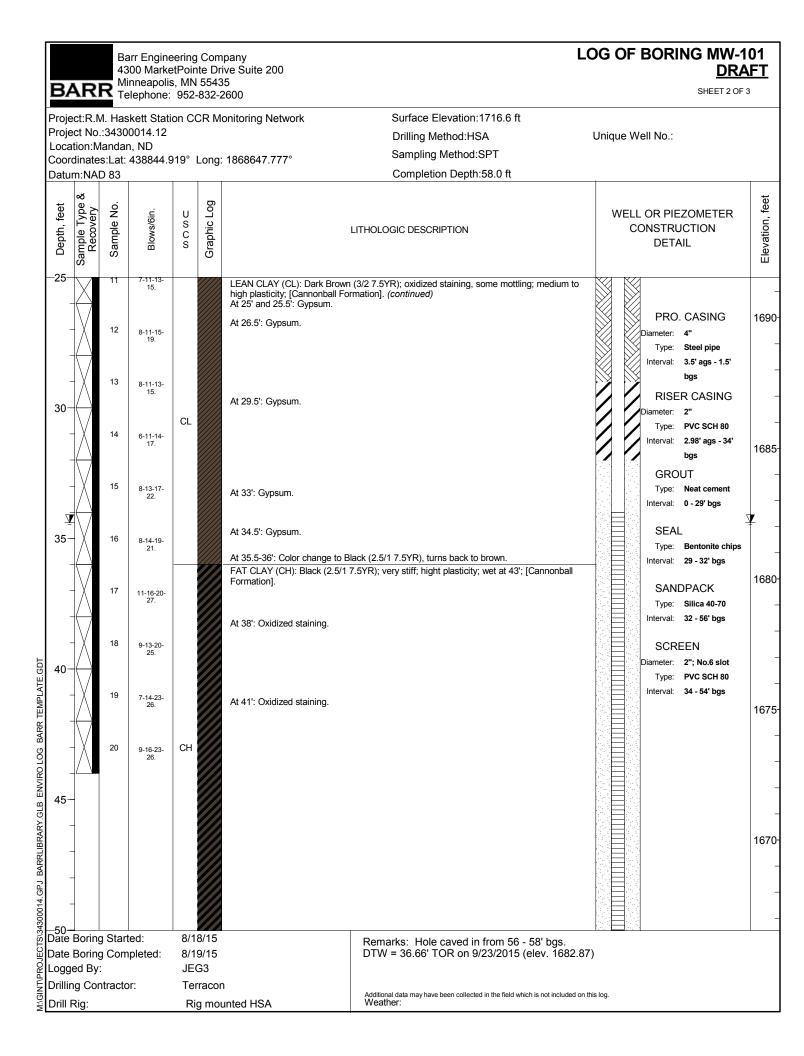
State of North Dakota BOARD OF WATER WELL CONTRACTORS

900 E. BOULEVARD • BISMARCK, NORTH DAKOTA 58505

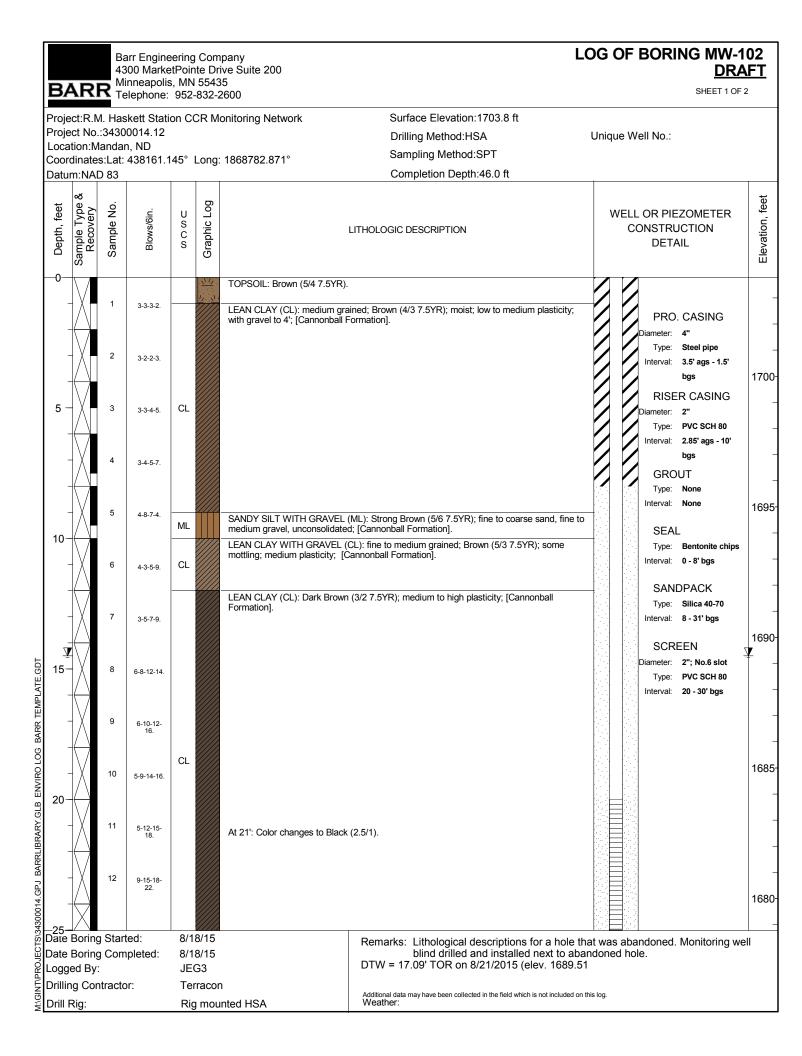
MONITORING WELL REPORT

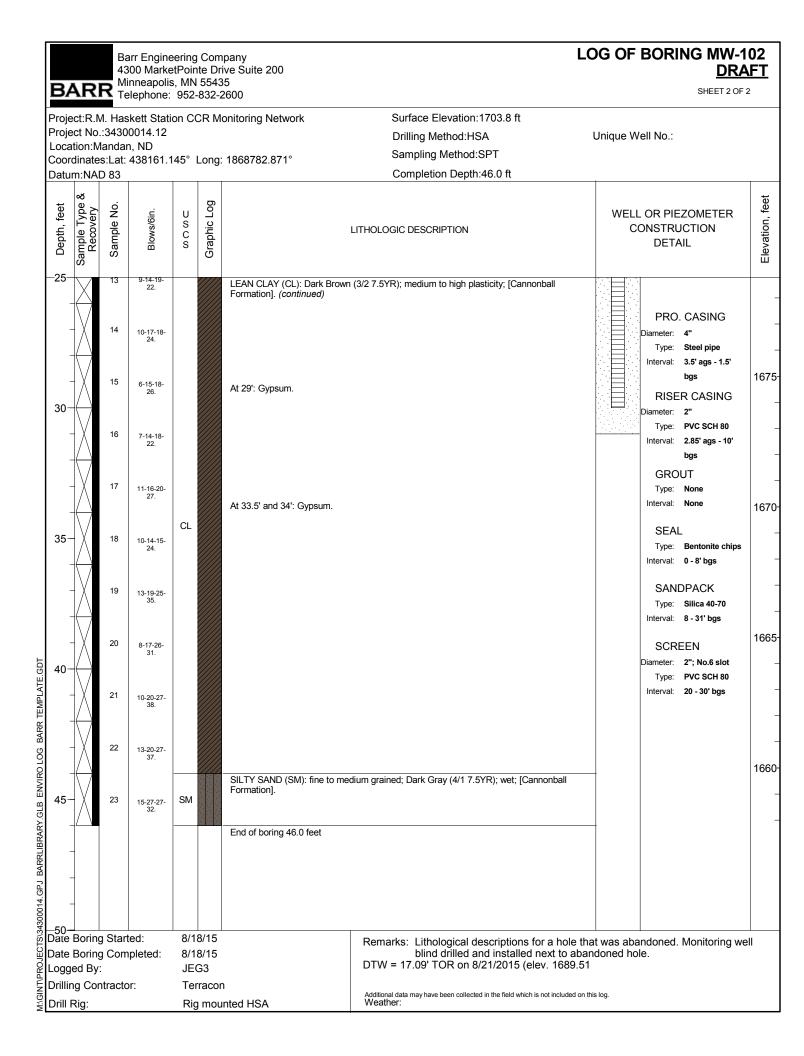
State law requires that this report be filed with the State Board of Water Well Cont	ractors within 30 days after completion or abandonment of the well.
1. WELL OWNER	Well head completion:
	24" above grade Other x
Name <u>MDU-Heskett Station</u>	If other, specify _4" x 4" x 5' steel cover
Address 2025 38 th Street	Was protective casing installed? ■ Yes □ No
Mandan, North Dakota	Was well disinfected upon completion? □ Yes ■ No
2. WELL LOCATION (MW-44R)	
Address (if in city) (see attached drawing)	5. WATER LEVEL
	Static water level 28.5 feet below surface
County Morton	If flowing: closed in pressure psi or ft. above land surface
<u>SE ¼ SE ¼ SW ¼</u> Sec. <u>10</u> Twp. <u>139</u> N. Rge. <u>81</u> W.	6. WELL LOG Depth (Ft.)
Lat. <u>46.86620</u> Long.: <u>-100.89313</u>	
Altitude:	Formation From To
3. METHOD DRILLED	Topsoil 0 0.5
Auger Other	Sandy lean clay 0.5 5
4. WELL CONSTRUCTION	Sandy fat clay 5 46
Diameter of Hole <u>8</u> inches Depth <u>46</u> feet	
Riser: ■ PVC □ Other	
■ Threaded □ Solvent □ Other	
Riser rating SDR Schedule40	
Diameter <u>2.0</u> inches	
From <u>+2</u> ft. to <u>23</u> ft.	
Was a well screen installed? ■ Yes □ No	
Material <u>Schedule 40 PVC</u> Diameter <u>2.0</u> inches	
Slot Size <u>#10</u> set from <u>23</u> feet to <u>43</u> feet	
Sand packed from21 ft to46 ft	(Use separate sheet if necessary)
Depth grouted from <u>1</u> ft to <u>21</u> ft	7. WAS THE HOLE PLUGGED OR ABANDONED?
Grouting Material	□ Yes ■ No
Bentonite Other	If so, how?
If other explain:	
One foot concrete collar at surface	8. REMARKS
	3 steel bumpers installed around well head
	9. DATE COMPLETED <u>10-21-14</u>
	10. CONTRACTOR CERTIFICATION
	This well was drilled under my jurisdiction and this report is true to the
	best of my knowledge. Midwest Testing Laboratory, Inc. 444
	Monitoring Well Contractor Certificate No.
	P.O. Box 2084, Bismarck, ND 58502-2084
	Address
	10-22-14
	Signature Date

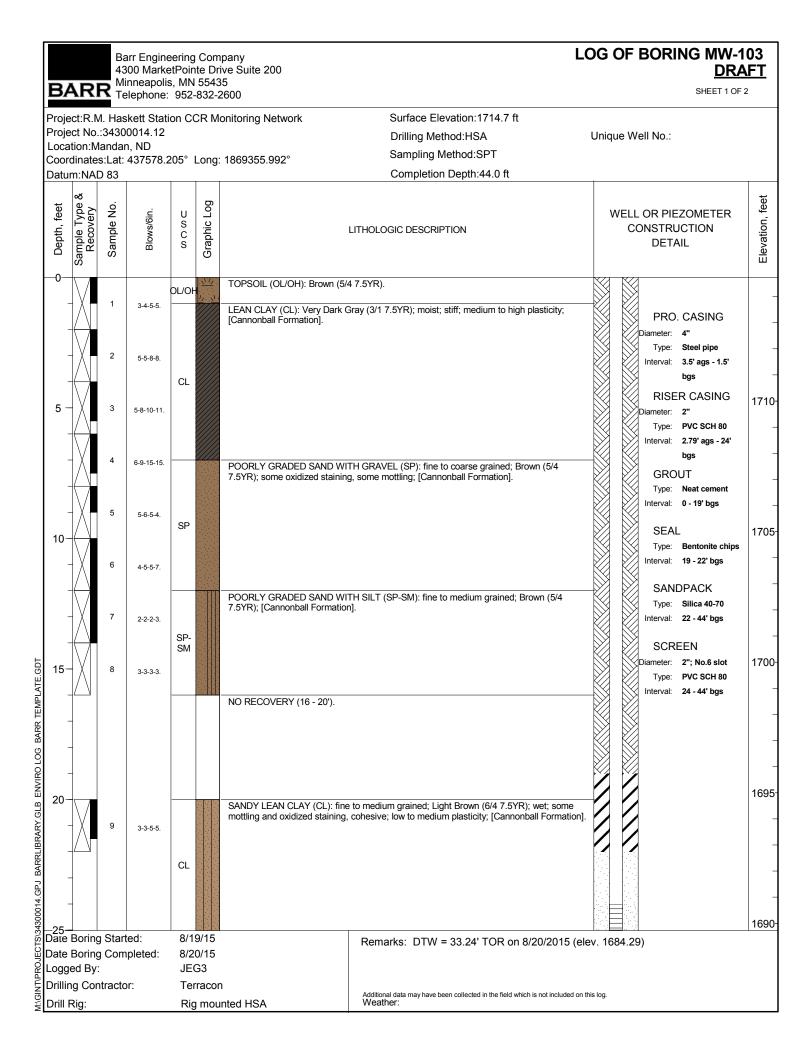

State of North Dakota BOARD OF WATER WELL CONTRACTORS

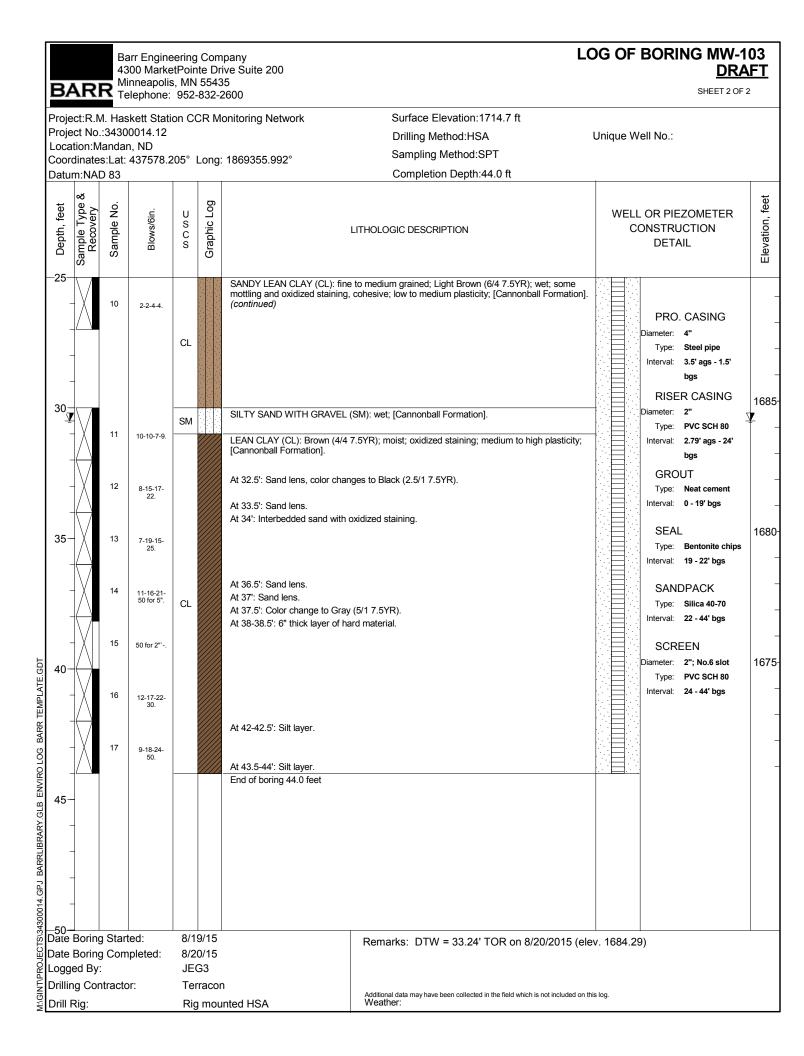

e

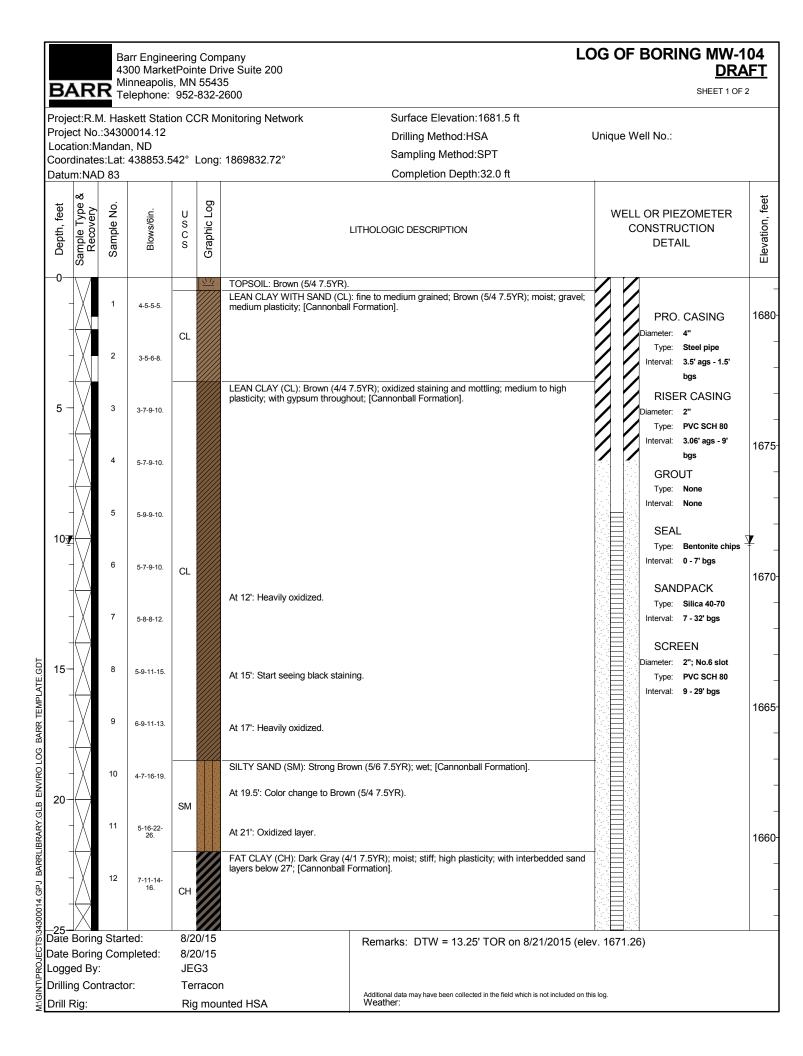
900 E. BOULEVARD • BISMARCK, NORTH DAKOTA 58505

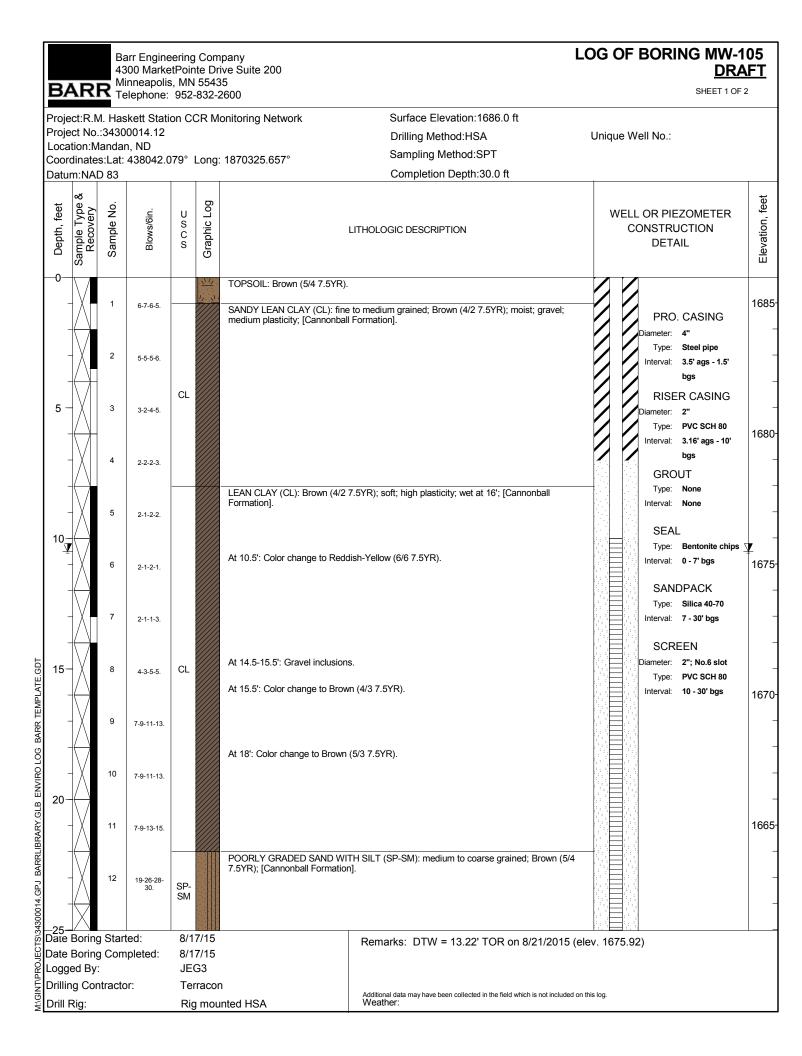

MONITORING WELL REPORT


State law requires that this report be filed with the State Board of Water Well Cont	ractors within 30 days after completion or abandonment of the well.
1. WELL OWNER	Well head completion:
	24" above grade Other x
Name MDU-Heskett Station	If other, specify <u>4" x 4" x 5' steel cover</u>
Address 2025 38 th Street	Was protective casing installed? ■ Yes □ No
Mandan, North Dakota	Was well disinfected upon completion? □ Yes ■ No
2. WELL LOCATION (MW-80R)	-
Address (if in city) (see attached drawing)	5. WATER LEVEL
	Static water level 12 feet below surface
County Morton	If flowing: closed in pressure psi or ft. above land surface
<u>NE ¼ SE ¼ SW ¼</u> Sec. <u>10</u> Twp. <u>139</u> N. Rge. <u>81</u> W.	6. WELL LOG Depth (Ft.)
Lat. <u>46.86789</u> Long.: <u>-100.89320</u>	
Altitude:	Formation To
3. METHOD DRILLED	Topsoil 0 0.5
Auger Other	Sandy lean clay 0.5 27
4. WELL CONSTRUCTION	
Diameter of Hole <u>8</u> inches Depth <u>27</u> feet	
Riser: ■ PVC □ Other	
■ Threaded □ Solvent □ Other	
Riser rating SDR Schedule40	
Diameter <u>2.0</u> inches	
From $+2.5$ ft. to 7 ft.	
Was a well screen installed? ■ Yes □ No	
Material <u>Schedule 40 PVC</u> Diameter <u>2.0</u> inches	
Slot Size <u>#10</u> set from <u>7</u> feet to <u>27</u> feet	
Sand packed from <u>5</u> ft to <u>27</u> ft	(Use separate sheet if necessary)
Depth grouted from <u>1</u> ft to <u>5</u> ft	7. WAS THE HOLE PLUGGED OR ABANDONED?
Grouting Material	🗆 Yes 🔳 No
Bentonite Other	If so, how?
If other explain:	
One foot concrete collar at surface	8. REMARKS
	3 steel bumpers installed around well head
	9. DATE COMPLETED 10-21-14
	10. CONTRACTOR CERTIFICATION
	This well was drilled under my jurisdiction and this report is true to the
	best of my knowledge.
	Midwest Testing Laboratory, Inc. 444
	Monitoring Well Contractor Certificate No.
	P.O. Box 2084, Bismarck, ND 58502-2084
	Address
	MAJAN 10-22-14
	Signature Date Date

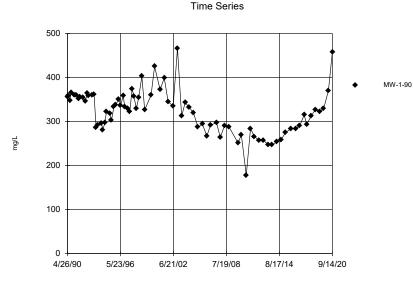





4300 M	gineering Company arketPointe Drive Suite 200 polis, MN 55435		LOG OF BORING MW-101 <u>DRAFT</u>		
BARR Minnea Teleph	one: 952-832-2600		SHEET 3 OF 3		
Project No.:34300014 Location:Mandan, ND		Surface Elevation:1716.6 ft Drilling Method:HSA Sampling Method:SPT Completion Depth:58.0 ft	Unique Well No.:		
Depth, feet Sample Type & Recovery Sample No.	s s s c s Graphic Log	LITHOLOGIC DESCRIPTION	WELL OR PIEZOMETER CONSTRUCTION DETAIL		
-50 	CH End of boring 58.0 feet	I 7.5YR); very stiff; hight plasticity; wet at 43'; [Cannonball	PRO. CASING 1665- Diameter: 4" Type: Steel pipe - Interval: 3.5' ags - 1.5' bgs - RISER CASING - Diameter: 2" Type: PVC SCH 80 - Interval: 2.98' ags - 34' bgs 1660- GROUT - Type: Neat cement Interval: 0 - 29' bgs		
60			SEAL Type: Bentonite chips Interval: 29 - 32' bgs SANDPACK Type: Silica 40-70 Interval: 32 - 56' bgs SCREEN Diameter: 2"; No.6 slot Type: PVC SCH 80 Interval: 34 - 54' bgs		
Date Boring Started: Date Boring Complete Logged By:	8/18/15 d: 8/19/15 JEG3	Remarks: Hole caved in from 56 - 58' bgs. DTW = 36.66' TOR on 9/23/2015 (elev. 1682	.87)		
Drilling Contractor: Drill Rig:	Terracon Rig mounted HSA	Additional data may have been collected in the field which is not included on this log. Weather:			

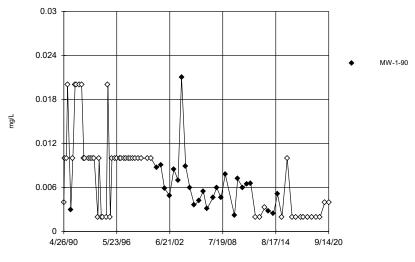


4300	Engineering Company MarketPointe Drive S		LOG OF BORING MW-104 <u>DRAFT</u>			
BARR Minn Telep	eapolis, MN 55435 phone: 952-832-2600		SHEET 2 OF 2			
Project:R.M. Haske Project No.:343000 Location:Mandan, N	tt Station CCR Monito 14.12	Drilling Method:HSA	Unique Well No.:			
Depth, feet Sample Type & Recovery Sample No.	Blows/6in. ∽ ∩ ∽ ⊂ Graphic Log	LITHOLOGIC DESCRIPTION	WELL OR PIEZOMETER CONSTRUCTION DETAIL			
	5-12-16- 17. FAT laye 3-12-16- 21. CH 3-12-16- 20.	CLAY (CH): Dark Gray (4/1 7.5YR); moist; stiff; high plasticity; with interbedded sa s below 27'; [Cannonball Formation]. <i>(continued)</i>	PRO. CASING Diameter: 4" Type: Steel pipe Interval: 3.5' ags - 1.5' bgs RISER CASING			
		r notes: sluff. of boring 32.0 feet	Diameter: 2" Type: PVC SCH 80 Interval: 3.06' ags - 9' bgs GROUT Type: None Interval: None SEAL Type: Bentonite chips Interval: 0 - 7' bgs			
40			SANDPACK Type: Silica 40-70 Interval: 7 - 32' bgs SCREEN Diameter: 2"; No.6 slot Type: PVC SCH 80 Interval: 9 - 29' bgs			
45						
Date Boring Started Date Boring Comple Logged By:		Remarks: DTW = 13.25' TOR on 8/21/2015	(elev. 1671.26)			
Drilling Contractor: Drill Rig:	Terracon Rig mounted	Additional data may have been collected in the field which is not included Weather:	Additional data may have been collected in the field which is not included on this log. Weather:			

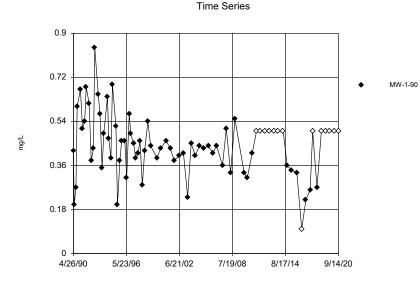


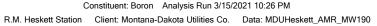
Barr Engineering Company 4300 MarketPointe Drive Suite 200 Minneapolis, MN 55435 Telephone: 952-832-2600								LOG OF	BORING MW-10 DRA	
BA	٩R	R Te	elephone:	952-	832-	2600			SHEET 2 OF 2	2
Proje Loca Coor	ect No. ition:M	:3430 andar s:Lat:	0014.12 n, ND			onitoring Network : 1870325.657°	Surface Elevation:1686.0 ft Drilling Method:HSA Sampling Method:SPT Completion Depth:30.0 ft	Unique W	/ell No.:	
Depth, feet	Sample Type & Recovery	Sample No.	Blows/6in.	U S C S	Graphic Log		LITHOLOGIC DESCRIPTION		OR PIEZOMETER ONSTRUCTION DETAIL	Elevation, feet
-25- - - - - - - - - - - - - - - - - - -		13	15-25-31- 40. 10-15-18- 30. 11-16-22- 32.	CL		FAT CLAY (CL): Dark Brown (Formation]. At 26': Color change to Gray (End of boring 30.0 feet	3/4 7.5YR); high plasticity; sand lens at 26.5'; [Cannonba		PRO. CASING Diameter: 4" Type: Steel pipe Interval: 3.5' ags - 1.5' bgs RISER CASING Diameter: 2" Type: PVC SCH 80	1660-
35-	-								Interval: 3.16' ags - 10' bgs GROUT Type: None Interval: None SEAL Type: Bentonite chips Interval: 0 - 7' bgs SANDPACK Type: Silica 40-70 Interval: 7 - 30' bgs SCREEN	
									Diameter: 2"; No.6 slot Type: PVC SCH 80 Interval: 10 - 30' bgs	
Date	Boring Boring ed By:	g Com	ted: pleted:		7/15 7/15 73		Remarks: DTW = 13.22' TOR on 8/21/2015	 (elev. 1675.92	2)	
Drillir	Drilling Contractor: Terracon Drill Rig: Rig mounted HSA			raco		Additional data may have been collected in the field which is not included on this log. Weather:				

Appendix F

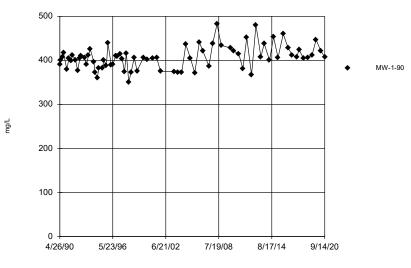

MW1-90 Time Series Plots

Sanitas™ v.9.6.28 For the statistical analyses of ground water by Barr Engineering Company only. UG

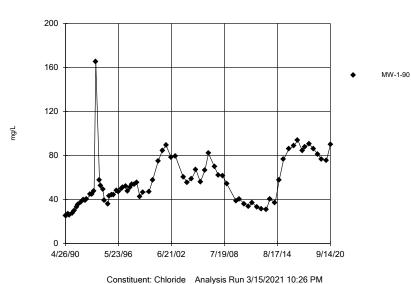

Constituent: Alkalinity, bicarbonate Analysis Run 3/15/2021 10:26 PM R.M. Heskett Station Client: Montana-Dakota Utilities Co. Data: MDUHeskett_AMR_MW190 Sanitas[™] v.9.6.28 For the statistical analyses of ground water by Barr Engineering Company only. UG Hollow symbols indicate censored values.


Time Series

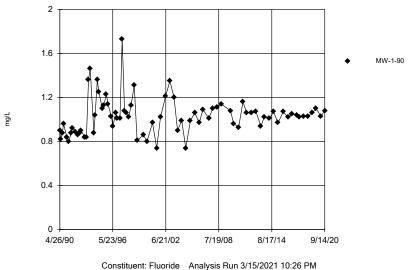
Constituent: Arsenic Analysis Run 3/15/2021 10:26 PM R.M. Heskett Station Client: Montana-Dakota Utilities Co. Data: MDUHeskett_AMR_MW190


Sanitas¹⁰ v.9.6.28 For the statistical analyses of ground water by Barr Engineering Company only. UG Hollow symbols indicate censored values.

Sanitas™ v.9.6.28 For the statistical analyses of ground water by Barr Engineering Company only. UG

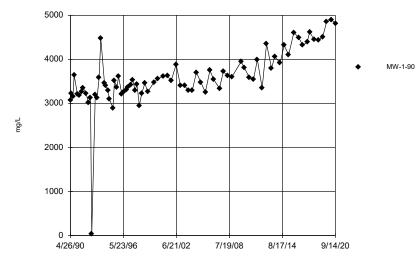

Time Series

Constituent: Calcium Analysis Run 3/15/2021 10:26 PM R.M. Heskett Station Client: Montana-Dakota Utilities Co. Data: MDUHeskett_AMR_MW190 Sanitas™ v.9.6.28 For the statistical analyses of ground water by Barr Engineering Company only. UG

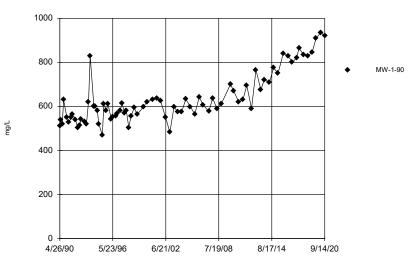

Sanitas™ v.9.6.28 For the statistical analyses of ground water by Barr Engineering Company only. UG

Time Series

Time Series


R.M. Heskett Station Client: Montana-Dakota Utilities Co. Data: MDUHeskett AMR MW190

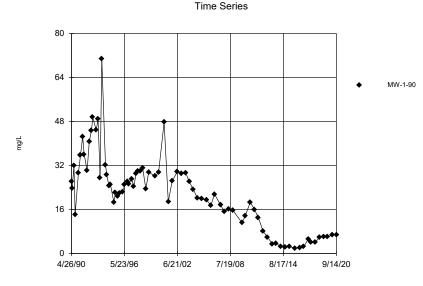
R.M. Heskett Station Client: Montana-Dakota Utilities Co. Data: MDUHeskett_AMR_MW190


Sanitas™ v.9.6.28 For the statistical analyses of ground water by Barr Engineering Company only. UG

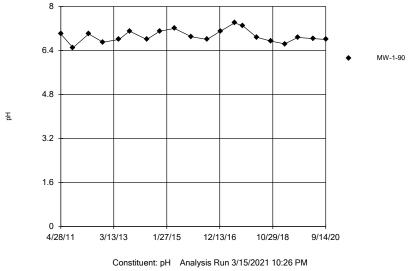
Time Series

Constituent: Hardness Analysis Run 3/15/2021 10:26 PM R.M. Heskett Station Client: Montana-Dakota Utilities Co. Data: MDUHeskett_AMR_MW190 Sanitas™ v.9.6.28 For the statistical analyses of ground water by Barr Engineering Company only. UG

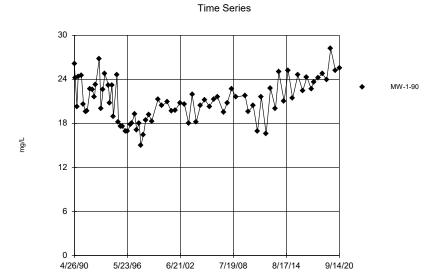
Time Series



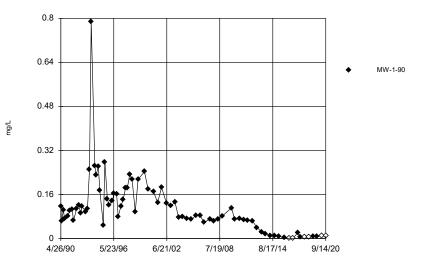
Constituent: Magnesium Analysis Run 3/15/2021 10:26 PM R.M. Heskett Station Client: Montana-Dakota Utilities Co. Data: MDUHeskett_AMR_MW190


Sanitas™ v.9.6.28 For the statistical analyses of ground water by Barr Engineering Company only. UG

Sanitas[™] v.9.6.28 For the statistical analyses of ground water by Barr Engineering Company only. UG



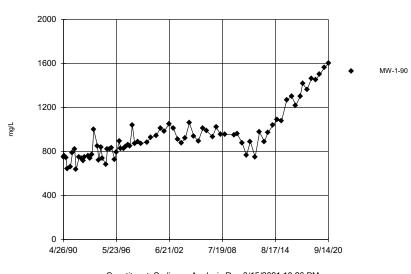
Constituent: Nitrogen Analysis Run 3/15/2021 10:26 PM R.M. Heskett Station Client: Montana-Dakota Utilities Co. Data: MDUHeskett_AMR_MW190


R.M. Heskett Station Client: Montana-Dakota Utilities Co. Data: MDUHeskett_AMR_MW190

Sanitas™ v.9.6.28 For the statistical analyses of ground water by Barr Engineering Company only. UG

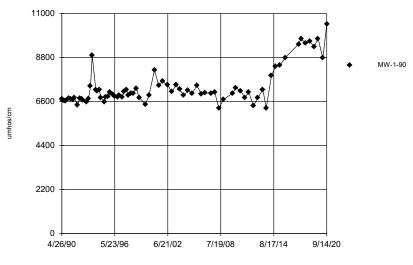
Constituent: Potassium Analysis Run 3/15/2021 10:26 PM R.M. Heskett Station Client: Montana-Dakota Utilities Co. Data: MDUHeskett_AMR_MW190 Sanitas^w v.9.6.28 For the statistical analyses of ground water by Barr Engineering Company only. UG Hollow symbols indicate censored values.

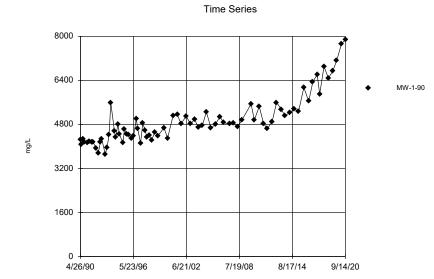
Time Series



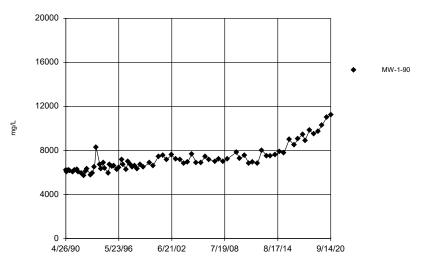
Constituent: Selenium Analysis Run 3/15/2021 10:26 PM R.M. Heskett Station Client: Montana-Dakota Utilities Co. Data: MDUHeskett_AMR_MW190

Sanitas™ v.9.6.28 For the statistical analyses of ground water by Barr Engineering Company only. UG




Time Series

Constituent: Sodium Analysis Run 3/15/2021 10:26 PM R.M. Heskett Station Client: Montana-Dakota Utilities Co. Data: MDUHeskett AMR MW190


Constituent: Specific conductance Analysis Run 3/15/2021 10:26 PM R.M. Heskett Station Client: Montana-Dakota Utilities Co. Data: MDUHeskett AMR MW190

Constituent: Sulfate Analysis Run 3/15/2021 10:26 PM R.M. Heskett Station Client: Montana-Dakota Utilities Co. Data: MDUHeskett_AMR_MW190 Sanitas[™] v.9.6.28 For the statistical analyses of ground water by Barr Engineering Company only. UG

Time Series

Constituent: TDS Analysis Run 3/15/2021 10:26 PM R.M. Heskett Station Client: Montana-Dakota Utilities Co. Data: MDUHeskett_AMR_MW190

Appendix G

Geochemist's Workbench Results

\$0. * * C/e 8 3 2 80 *Co. No *K 0 ъ 60 60 10×* 50% S 8 40 40 B 20 20 S S 3 3 \$ 8 8 8 Ca⁺⁺ < > CI-

% meq/kg

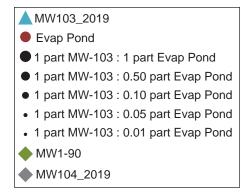
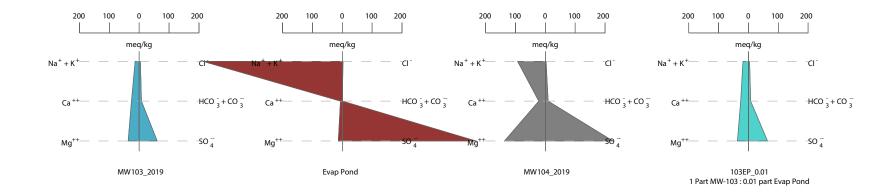



Figure G.1 Piper Plot for Mixing Evaporation Pond into MW-103 R.M. Heskett Station Alternative Source Demonstration April 2020 Event Montana Dakota Utilities Mandan, North Dakota

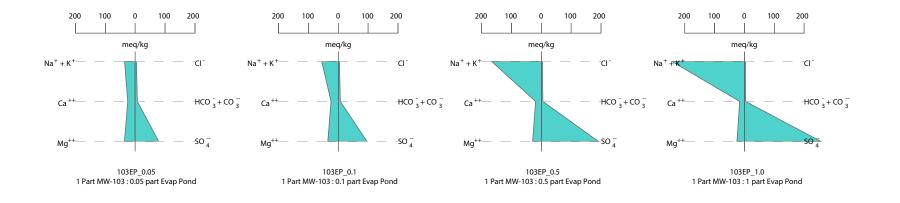


Figure G.2 Stiff Plot for Mixing Evaporation Pond into MW-103 R.M. Heskett Station Alternative Source Demonstration April 2020 Event Montana Dakota Utilities Mandan, North Dakota

Descrip	Description		Evap Pond	N	lixing Eva	Downgradient				
Sample	e ID	MW103	Evap Pond	1:0.01	1:0.05	1:0.1	1:0.5	1:1	MW1-90	MW-104
HCO3-	mg/l	457	20	452.7	436.2	417.3	311.3	238.5	259	591
Ca++	mg/l	530	125	526	510.7	493.2	395	327.5	453	448
CI-	mg/l	142	79.8	141.4	139	136.3	121.3	110.9	57.4	87.6
F-	mg/l	0.15	0.1	0.1495	0.1476	0.1455	0.1334	0.125	1.07	0.55
Mg++	mg/l	458	165	455.1	444.1	431.4	360.4	311.5	775	1700
рН	SU	6.5	10.7	6.502	6.511	6.523	6.643	6.854	7.1	6.8
K+	mg/l	18.8	734	25.88	52.87	83.85	257.3	376.6	25.2	37
Na+	mg/l	311	10600	412.9	801.2	1247	3742	5458	1090	2160
SO4	mg/l	2930	22100	3120	3843	4674	9323	12520	5350	11100
TDS	mg/kg	4860	34000	5152	6265	7541	14660.2	19527.5	7910	17700

Table G.1 Geochemist's Workbench Mixing Model Results

Alternative Source Demonstration: March 2021 Event

R.M. Heskett Station

Prepared for Montana-Dakota Utilities Co.

October 2021

4300 MarketPointe Drive, Suite 200 Minneapolis, MN 55435 952.832.2600 www.barr.com

Alternative Source Demonstration March 2021 Event

October 2021

Contents

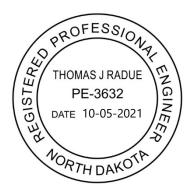
1.0	Introduction1
2.0	March 2021 SSIs2
2.1	March Sampling Event2
2.2	Verification Sampling2
3.0	Alternative Source Demonstration
3.1	Source Hypothesis #1: CCR Unit Release3
3.2	Source Hypothesis #2: Natural Variations of Pre-Landfill or Regional Groundwater Quality4
3.2	2.1 Fluoride at MW2-904
3.2	2.2 Sulfate and TDS at MW-1044
3.3	Source Hypothesis #3: Evaporation Pond Release5
3.3	3.1 TDS and Sulfate at MW-1045
4.0	Conclusions9
5.0	References10

List of Tables

- Table 1
 Detection Monitoring Results for Potential SSI Well-Parameter Pairs
- Table 2Fluoride Concentrations in Morton County, North Dakota
- Table 3
 Summary of SSIs and Alternative Sources

List of Figures

- Figure 1 Site Layout and CCR Monitoring Well Network
- Figure 2 Piper Plot
- Figure 3 Sulfate Concentrations
- Figure 4 TDS Concentrations


List of Appendices

- Appendix A Appendix III Time Series Plots
- Appendix B March 2021 Prediction Limit Plots
- Appendix C Ash SPLP Laboratory Report (2011)
- Appendix D Aerial Photo (March 30, 1988)
- Appendix E Boring Logs
- Appendix F MW1-90 Time Series Plots
- Appendix G Geochemist's Workbench Results

Certifications

I hereby certify that I, or my agent, have examined this written demonstration and attest that this Coal Combustion Residuals Facility Alternative Source Demonstration (ASD) is accurate and has been prepared in accordance with good engineering practice, including consideration of applicable industry standards and the requirements of 40 CFR §257.94. I further certify that this report was prepared by me or under my direct supervision and that I am a duly Licensed Professional Engineer under the laws of the state of North Dakota.

Revision	Date	Summary of Revisions
0	October 5, 2021	March 2021 Event Alternative Source Demonstration

Thomas J. Radue

1.0 Introduction

Montana-Dakota Utilities Co. (MDU) owns and operates R.M. Heskett Station (Site), a coal-fired generating station and a gas-fired turbine located in Mandan, Morton County, North Dakota (Figure 1). One CCR (coal combustion residual) unit, as defined by 40 CFR 257.53, is located on the property. The CCR unit contains coal combustion by-products, asbestos wastes generated from construction activity associated with MDU-owned facilities, and ash derived from burning tire-derived fuel (TDF) at the facility.

The CCR Rule (US EPA, 2015) §257.94(e)(2) allows for an alternative source demonstration (ASD) in the event of an identified statistically significant increase (SSI) in a water quality parameter in a downgradient monitoring well over background levels:

The owner or operator may demonstrate that a source other than the CCR unit caused the statistically significant increase over background levels for a constituent or that the statistically significant increase resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. The owner or operator must complete the written demonstration within 90 days of detecting a statistically significant increase over background levels to include obtaining a certification from a qualified professional engineer verifying the accuracy of the information in the report.

The purpose of this work is to evaluate the data collected as part of the March 2021 monitoring event, along with historical data, to demonstrate if the potential SSIs are the results of a "source other than the CCR unit" or due to natural variation in groundwater quality, an error in sampling, analysis, or statistical evaluation.

2.0 March 2021 SSIs

Sampling for the first detection monitoring event in 2021 was conducted March 22-23, 2021. Three potential SSIs over background were identified: sulfate and total dissolved solids (TDS) at MW-104 and fluoride at MW2-90 (see time series plots in Appendix A and prediction limit plots in Appendix B).

Evaluations were undertaken to review potential alternative sources for the SSIs. These evaluations included comparing leaching tests of on-site CCR materials, leachate collected in the Evaporation Pond (non-CCR unit), regional (background) groundwater quality data, and groundwater quality data collected at the site prior to construction of the CCR unit.

Several characteristics of the CCR unit site geology, groundwater monitoring well locations, and historic groundwater quality data prompted consideration of potential alternative sources for the potential SSIs, including elevated water quality parameters in pre-landfill groundwater monitoring data, site-specific geologic conditions, and/or leakage from the Evaporation Pond (non-CCR unit).

A successful demonstration of alternative source(s) for the potential SSIs are discussed in Section 3.0.

2.1 March Sampling Event

Methods used to evaluate potential alternative sources as the basis for water quality parameter concentrations over background from the March 2021 detection monitoring event are discussed below. Concentrations for potential SSIs observed in March 2021 are consistent with those observed during the prior six detection monitoring events (Table 1).

		Interwell	Interwell Detection Monitoring Results (mg/L)						
Well	Parameter	Prediction Limit (mg/L)	April 2018	Oct. 2018	April 2019	Sept. 2019	April 2020	Sept. 2020	March 2021
MW-104	Sulfate	7,300	10,700	11,000	11,100	11,300	10,300	10,700	11,000
MW-104	TDS	10,400	17,400	18,000	17,700	17,200	16,500	17,900	18,000
MW2-90	Fluoride	0.98	1.03	1.00	1.02	1.03	0.98	1.01	1.04

Table 1. Detection Monitoring Results for Potential SSI Well-Parameter Pairs

Bolded values indicate concentrations exceed the associated interwell predication limits.

Trend analysis results indicate TDS at MW-104 has a statistically significant increasing trend (95% confidence level).

2.2 Verification Sampling

No verification sampling was conducted on the potential SSIs.

3.0 Alternative Source Demonstration

Successful demonstrations of alternative sources have previously been documented for the three potential SSIs. The associated ASD Reports (Barr, 2018a; Barr, 2018b; Barr, 2019a; Barr, 2019b; Barr, 2020a; Barr, 2020b; Barr, 2021) documented that each of the SSIs could be explained by natural groundwater quality variability based on concentrations that were either present at the Site before the landfill was constructed, consistent with regional groundwater quality data, and/or associated with a release from the Evaporation Pond (non-CCR unit).

The purpose of this ASD Report is to validate the results of prior findings with the March 2021 data. For each potential SSI, three hypotheses regarding the potential source of the SSI are assessed: 1) a release of leachate from the CCR unit is the source of one or more of the potential SSIs; 2) natural variations of prelandfill or regional groundwater quality is the source of one or more of the potential SSIs; or 3) a release of leachate from the Evaporation Pond (non-CCR unit) is the source of one or more of the potential SSIs.

3.1 Source Hypothesis #1: CCR Unit Release

To accept the hypothesis that a release of leachate from the CCR unit is the source of one or more of the potential SSIs, it would be assumed that groundwater chemistry at one or both potentially impacted wells (MW2-90 and/or MW-104) would be geochemically similar to impacted water from the CCR unit represented by leach tests results. However, if they are geochemically dissimilar, this indicates that a source "other than the CCR unit" may be responsible for the potential SSI. Therefore, major ion chemistry from the CCR monitoring locations (upgradient and downgradient) was compared to CCR Synthetic Precipitation Leaching Procedure (SPLP; EPA Method 1312) data collected July 2011 (Appendix C).

To test this hypothesis, Piper diagrams were used to visually compare the CCR SPLP results (Appendix C) and the measured groundwater quality at the Site (Figure 2). Piper diagrams are plots of major ion chemistry of water samples (calcium, magnesium, potassium, sodium, chloride, sulfate, and alkalinity) that are used to differentiate between water types and to identify potential mixing of water types. This method is a means to identify or "fingerprint" water samples by their common characteristics (major ions) to assess which types of water are similar or dissimilar to potential source water types (Helsel and Hirsch, 2002). On the Piper diagram depicted in Figure 2, downgradient well compositions are shown as circular points, CCR SPLP compositions as red triangles, and the range of upgradient compositions as a blue polygon.

Downgradient water quality (including the potential SSI parameter-well pairs) is characterized as a Mg-SO₄ type water, whereas the ash SPLP results are Na-SO₄ type water. The major difference observed between the downgradient water quality and the SPLP results is the dominant cation concentration (magnesium vs. sodium). Because water quality data from SSI well-parameter pairs are clustered with data from that of the upgradient wells, which are Na-Mg-SO₄ to Mg-SO₄ type water, rather than near the SPLP results, it indicates that the water chemistry at those locations are more like upgradient groundwater than a potential release from the CCR unit. **Therefore, we reject the hypothesis that the CCR unit is the source of the sulfate and TDS observed at MW-104 and the fluoride at MW2-90.**

3.2 Source Hypothesis #2: Natural Variations of Pre-Landfill or Regional Groundwater Quality

As Source Hypothesis #1 (CCR Unit Release) was rejected as a potential source of the SSIs, natural variations of pre-landfill conditions and/or regional groundwater quality were evaluated for each of the potential SSIs. The second hypothesis evaluated is that concentrations of sulfate and TDS at MW-104 are consistent with historical (pre-landfill) or regional (background) groundwater data. To test this hypothesis, results of the March 2021 detection monitoring event were compared to pre-landfill data and/or regional groundwater quality data from the Cannonball Formation and associated units to determine if natural variation is a potential alternative source for the SSIs.

3.2.1 Fluoride at MW2-90

Source Hypothesis #2 was tested by comparing fluoride concentrations collected as part of several regional groundwater quality studies on the Cannonball Formation and associated units. A summary of the range of fluoride concentrations in the Cannonball Formation and associated units are included in the table below.

Reference	Fluoride Conc. Range	Formation/Units	Data Source Location
Ackerman, D.J., 1980. Ground-Water Resources of Morton County, North Dakota. North Dakota Geological Survey Bulletin 72, Part III. 51 p.	0.0 to 4.0 mg/L	Cannonball and Ludlow formations, undifferentiated	Morton County
Crosby, O.A. and Klausing, R.L., 1984. Hydrology of Area 47, Northern Great Plains and Rocky Mountain Coal Provinces, North Dakota, South Dakota, and Montana. USGS Water- Resources Investigations Open-File Report 83-221, 93 p.	0.1 to 6.3 mg/L	Entire Fort Union Formation (includes Cannonball Formation)	Morton County

Table 2. Fluoride Concentrations in Morton County, North Dakota

The Ackerman study provides summary statistics for the fluoride concentrations observed in Morton County. Forty-six samples were analyzed for fluoride; of those, 20 (or 43%) had concentrations greater than 1.3 mg/L (Ackerman, 1980). The fluoride concentration observed at MW-2-90 in March 2021 (1.04 mg/L) is within the range of values consistent with naturally occurring concentrations of fluoride associated with the Cannonball Formation in Morton County. **Therefore, we accept the hypothesis that fluoride concentrations observed at MW-2-90 are consistent with regional (background) groundwater data**.

3.2.2 Sulfate and TDS at MW-104

Analyses of groundwater samples collected prior to construction of the CCR unit included in the Permit Application notes that high sulfate and TDS was observed at the Site. Maximum sulfate and TDS concentrations reported in 1986 (pre-landfill) were 11,632 mg/L and 14,917 mg/L, respectively, in Well 60 (approximately 700 feet southwest of MW-104), with similar concentrations observed two years later. Sulfate concentrations reported in March 2021 at MW-104 (11,000 mg/L) are within range of historically observed concentrations (Figure 3), but TDS concentrations (18,000 mg/L) are at the upper end of concentrations historically observed (Figure 4). Figures 3 and 4 show the range of sulfate and TDS concentrations, respectively, across the Site, including recent and historical monitoring well data.

The mineralogy of the underlying Fort Union Formation may yield an explanation for the elevated sulfate concentrations (which leads to elevated TDS concentrations). The dominant lithology observed at the Site is unconsolidated silt in a clay matrix with interspersed fine to medium-grained sand (10% to 30%). Small gypsum crystals are documented discontinuously throughout the upper 30 feet of the surface materials, which have been presumed to be the result of diagenetic processes which occur above the water table during alternating wetting and drying cycles (Groenewold et al., 1983). Gypsum is a hydrated calcium sulfate mineral that can be a source of high sulfate concentrations in groundwater.

The boring log for MW-104 (Appendix E) notes gypsum present throughout the upper layer of the screened interval. Boring logs for other CCR wells and pre-landfill wells note gypsum occurrences across the Site (Appendix E). The water level and screened interval in MW-104 are within the gypsum-bearing unit. In other wells with lower sulfate and TDS concentrations, the water levels and/or screened units are below the documented gypsum occurrences. As groundwater fluctuates and surface water infiltration occurs, periodic dissolution of gypsum into the water column may occur, resulting in elevated sulfate concentrations (and therefore elevated TDS, too).

Based on presence of gypsum in native subsurface deposits and documentation of elevated sulfate and TDS in pre-landfill groundwater, the hypothesis that the SSI for sulfate and TDS at MW-104 may be due to natural conditions (a "source other than the CCR unit") is possible. However, a statistically significant increasing trend for TDS at MW-104 was observed. Natural/background groundwater can be affected by seasonality and/or site-wide aquifer changes, resulting in trending data; two other monitoring wells at the site have statistically significant increasing trends at the site: upgradient well MW-13 and downgradient well MW2-90 (conversely, MW-13 has a long-term (late 1980s to present) statistically significant decreasing trend). Seasonality was not detected in TDS or sulfate at MW-104. **Sulfate and TDS concentrations at MW-104 may be due to natural conditions, however additional source considerations were evaluated.**

3.3 Source Hypothesis #3: Evaporation Pond Release

Two conditions are necessary to accept the hypothesis that a release of Evaporation Pond water is the source of one or more of the potential SSIs: (1) mechanism of release (such as an issue with Evaporation Pond liner integrity) and (2) geochemically similar groundwater chemistry at one or more of the potentially impacted wells with water from the Evaporation Pond. Based on proximity, only the SSIs observed at MW-104 (TDS and sulfate) are being evaluated for this potential source.

3.3.1 TDS and Sulfate at MW-104

A statistically significant increasing trend in TDS was observed at MW-104 following the March 2021 detection monitoring event. The only statistically significant trend observed for other Appendix III

parameters at this location was for fluoride. Past ASD Reports (Barr, 2019b; Barr, 2020a; Barr, 2020b; Barr, 2021) attributed elevated sulfate and TDS concentrations at MW-104 to either natural conditions or a release from the Evaporation Pond. MW-104 is located between the CCR unit and the Evaporation Pond (a non-CCR unit). The Evaporation Pond was constructed to collect surface water run-off from the Site as well as leachate from the CCR Unit. Due to the relative proximity of MW-104 to the Evaporation Pond, an evaluation was conducted to assess the Evaporation Pond liner integrity, potential impacts to downgradient wells, and determine the geochemical feasibility of Evaporation Pond water contributing to the conditions observed at MW-104.

Liner Integrity Evaluation

In the 2010 Annual Report for the Special Waste Disposal Permit (SP-087), it was noted that erosion was encountered at the Evaporation Pond. More specifically, "cuts in the banks of the pond ranged from 8 to 24-inches. Erosion was caused from storm water running into the evaporation pond from closed Slots and the haul road" (MDU, 2011). No repairs were made at that time due to standing water in the pond. Similar erosional features were noted in the 2011 and 2012 Annual Reports, citing erosion cuts of 8 to 48-inches (MDU, 2012 and MDU, 2013). These erosion cuts were repaired in 2013 during the construction of Slot 10. Additionally, the 2013 Annual Report stated that "the west wall of the evaporation pond was raised and graded to reroute storm water that accumulates outside of the ash disposal area from the cover of Phase I ash disposal site away from the pond during rain events" (MDU, 2014).

These reports did not specify if the erosional cuts were 8 to 48-inches wide or 8 to 48-inches deep. Based on the Phase I Development "as-constructed" Plan Sheets (January and November 1990), the Evaporation Pond was built with a 3-foot-thick compacted clay liner (MDU, 1989 Exhibit 6-B). If the erosional cuts were up to 48-inches deep, then the cuts would extend through the entirety of the liner thickness, creating a conduit for Evaporation Pond water to enter the groundwater. Additionally, no details were provided on the materials used for repairing the Evaporation Pond (i.e., if the liner was impacted, were the erosion cuts filled in with a comparable clay liner material).

Additionally, the integrity of the Evaporation Pond liner may have been compromised due to cation exchange. Time series plots of groundwater quality at nearby well MW1-90 (Appendix F) show an increase in sodium; this increase is most apparent at MW1-90 between 2012 and 2019. The Evaporation Pond liner may be composed of a clay with sodium as its main interlayer cation (e.g., sodium-montmorillonite and/or sodium-bentonite, which are common in the area (Groenewold et al., 1983)), and cation exchange processes can occur between the sodium in the clay and positively charged cations concentrated in the evaporation pond water (calcium, magnesium, potassium, and aluminum), increasing the concentration of dissolved sodium as it is released from the clay structure. Over time this exchange may decrease swelling potential and increase hydraulic conductivity of the clay constituting the pond liner, resulting in increased leakage of Evaporation Pond water.

Downgradient Impacts

The base of the Evaporation Pond sits at approximately 1675 feet above MSL whereas historical groundwater elevations in MW-104 and MW1-90 remain below 1675 feet MSL. Therefore, any water

leaking from the Evaporation Pond would report radially downward into the groundwater, toward both MW-104 and MW1-90, reaching both wells downgradient of the Pond.

As MW-104 was installed on August 20, 2015, it is not possible to determine if the erosional cuts observed in the early 2010s impacted the water quality at this location. However, data has consistently been collected from nearby well MW1-90, also downgradient of the Evaporation Pond. As seen in the time series plots (Appendix F; 1990-2020), in approximately 2010 concentrations of chloride, sulfate, TDS, magnesium, sodium, and specific conductance at MW1-90 began increasing more rapidly. To a lesser extent, changes in concentrations were observed around this same time for potassium, nitrogen, and total alkalinity. This timing corresponds to when the erosional cuts at the Evaporation Pond were first observed in the Annual Monitoring Reports. The increasing trends have since continued, despite reports of the erosional cuts being repaired in 2013, except for chloride, which has since leveled off and is now decreasing.

Geochemical Feasibility

A simple mixing model was developed in April 2019 (Barr, 2019b) to determine the potential of producing a similar water quality observed at MW-104 (and MW1-90, as a historical analogue) when mixing Evaporation Pond water with unimpacted upgradient water. This mixing model was conducted in Geochemist's Workbench® v.12.0, using a water sample collected from the Evaporation Pond in September 2014 and a water sample from upgradient monitoring well MW-103 in April 2019. The mixing model assumes a starting concentration equal to the upgradient groundwater concentrations and then iteratively mixes it with incremental amounts of Evaporation Pond water.

The results of the April 2019 model are provided in Appendix G. Figure G.1 shows the results of the mixing model on a stiff diagram for MW-103. Downgradient wells MW-104 and MW1-90 are shown as gray and green diamonds, respectively. The blue line represents the various possible outcomes when mixing the upgradient water quality with the Evaporation Pond. The black circles represent specific proportions (1-part upgradient water to 0.01-, 0.05-, 0.1-, 0.5-, and 1-part Evaporation Pond water). Figure G.2 shows the results as Stiff plots. Table G.1 provides the numerical inputs and results of the various mixing proportions.

As shown on Figure G.1, the downgradient well compositions are similar to the chemistry anticipated if the Evaporation Pond is mixing with upgradient groundwater emanating from the proximity of monitoring well MW-103. The path of the mixing reaction from MW-103 to the Evaporation Pond transects MW-104 when 1-part upgradient (MW-103) water is mixed with as little as 0.05-part Evaporation Pond water. Therefore, it appears plausible that a relatively small portion of Evaporation Pond water would be needed to "impact" upgradient groundwater to get a similar chemistry as observed in MW-104. The geometry of the Stiff plots in Figure G.2 shows the similarity in anionic concentrations and calcium in the mixing models.

Based on the description of erosional features extending upwards of 48 inches into the liner of the Evaporation Pond in 2010-2013 corresponding with the increased concentrations of several parameters observed in downgradient monitoring well MW1-90, it is possible that a release from the Evaporation Pond occurred starting in approximately 2011. Furthermore, the results of the geochemical model along

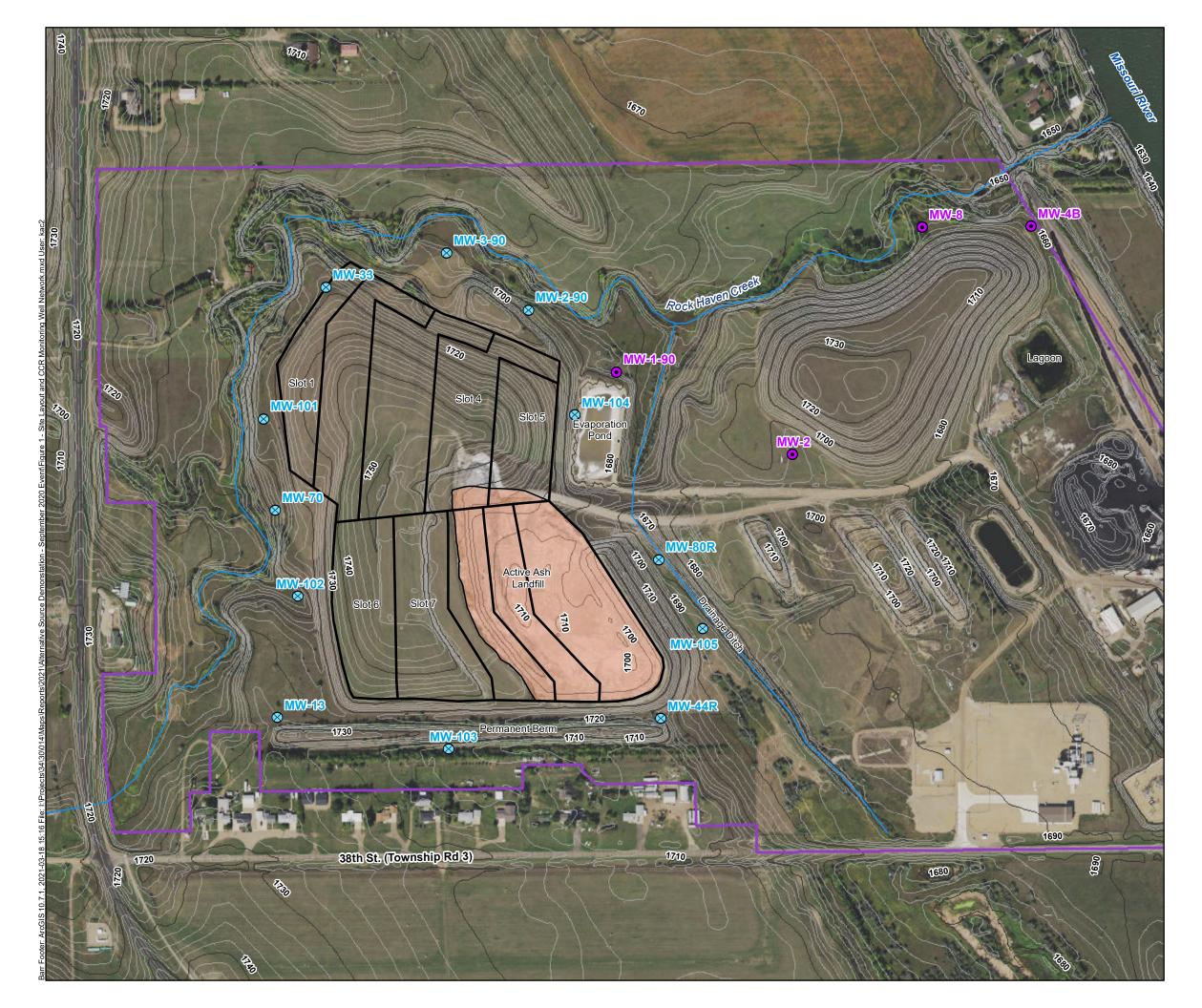
with the general proximity and hydraulic position of MW-104 relative to the Evaporation Pond supports the hypothesis that the SSI for TDS and sulfate at MW-104 is due to a "source other than the CCR unit." Therefore, we accept the hypothesis that TDS and sulfate concentrations observed at MW-104 are consistent with a potential release from the Evaporation Pond, a non CCR unit.

4.0 Conclusions

Three SSIs were identified from the March 2021 detection monitoring event. This report demonstrates that a "source other than the CCR unit" caused the potential SSIs (natural variation in regional and/or prelandfill groundwater quality and the Evaporation Pond), as allowed by §257.94(e)(2). The results of this alternative source demonstration are summarized in the table below.

Well	Parameter	Report Section	Evidence for Alternative Source
MW-104	Sulfate	3.2.2, 3.3.1	Natural variability and/or Other (Evaporation Pond, a non CCR unit)
MW-104	Total Dissolved Solids 3.2.2 3.3.1		Natural Variability and/or Other (Evaporation Pond, a non CCR unit)
MW-2-90	Fluoride	3.2.1	Natural variability (pre-landfill values and geologic background)

Table 3. Summary of SSIs and Alternative Sources

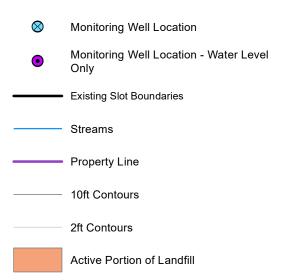
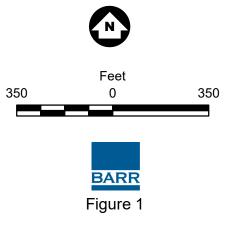
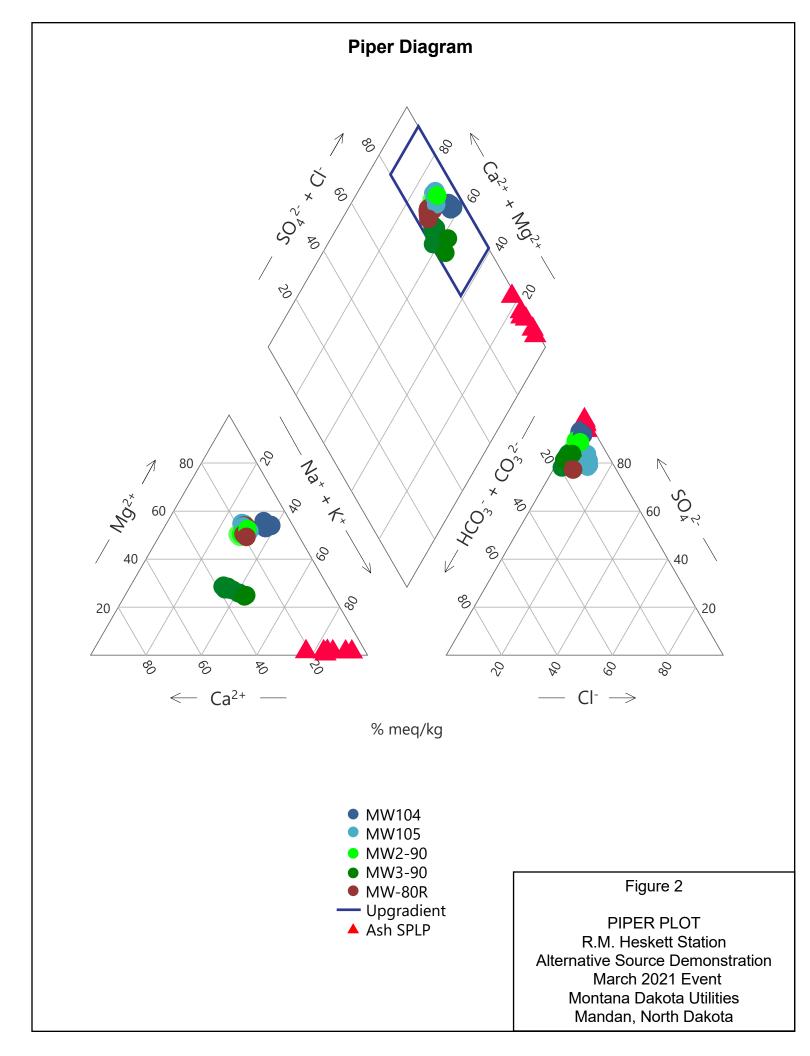

Based on the foregoing, the alternative source demonstration presented herein meets the requirements of CCR Rule §257.94(e)(2). As coal unit operations will cease around March 2022, MDU will work with the North Dakota Department of Environmental Quality (NDDEQ) on closure options for the Evaporation Pond as it is regulated under a permit through the NDDEQ.

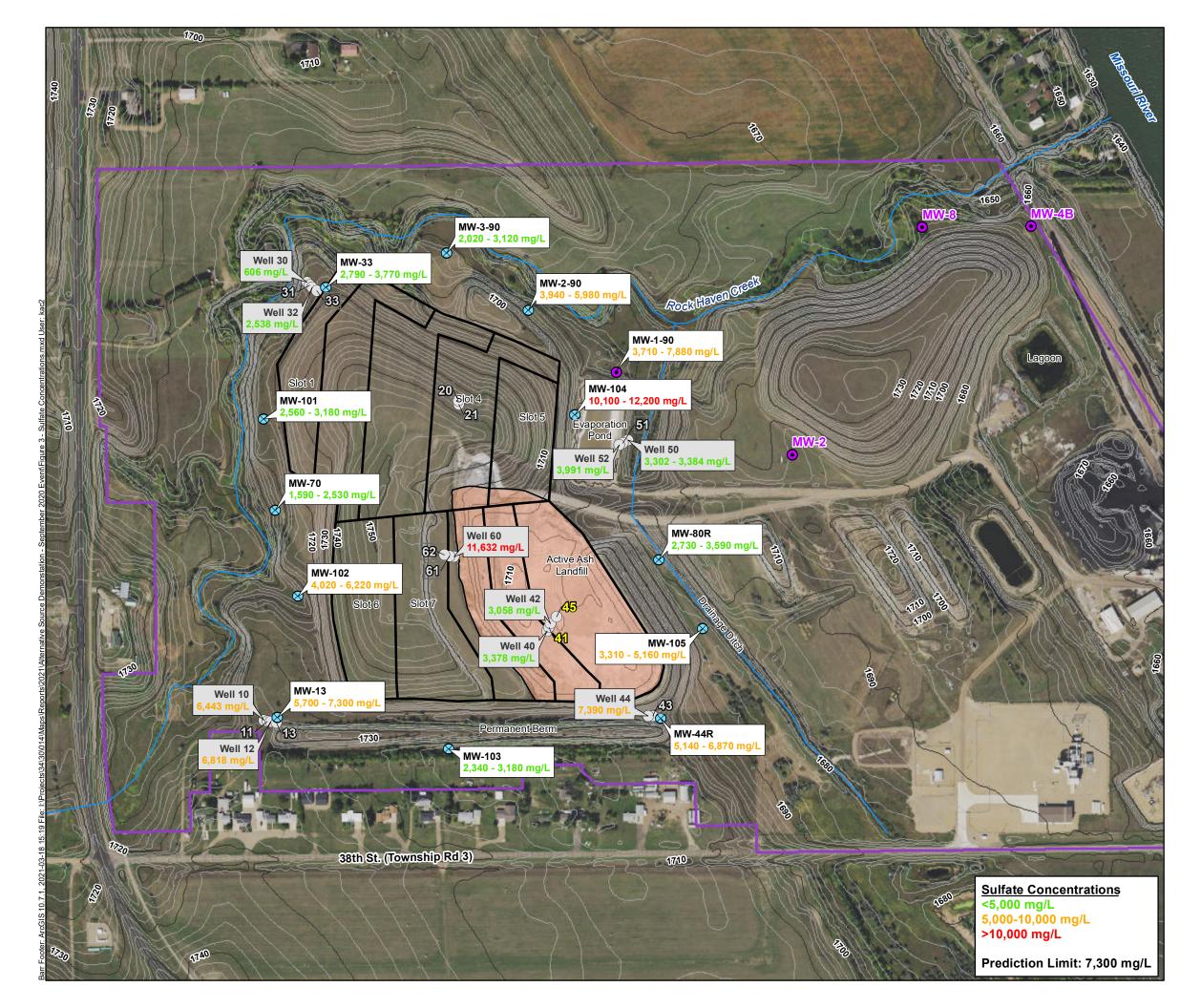
5.0 References

- Ackerman, D.J., 1980. Ground-Water Resources of Morton County, North Dakota. North Dakota Geological Survey Bulletin 72, Part III. 51 p.
- Barr Engineering Co., 2019a. Alternative Source Demonstration: October 2018 Event. R.M. Heskett Station. Prepared for Montana-Dakota Utilities Co. April 2019.
- Barr Engineering Co., 2019b. Alternative Source Demonstration: April 2019 Event. R.M. Heskett Station. Prepared for Montana-Dakota Utilities Co. November 2019.
- Barr Engineering Co., 2020a. Alternative Source Demonstration: September 2019 Event. R.M. Heskett Station. Prepared for Montana-Dakota Utilities Co. April 2020.
- Barr Engineering Co., 2020b. Alternative Source Demonstration: April 2020 Event. R.M. Heskett Station. Prepared for Montana-Dakota Utilities Co. July 2020.
- Barr Engineering Co., 2021. Alternative Source Demonstration: September 2020 Event. R.M. Heskett Station. Prepared for Montana-Dakota Utilities Co. March 2021.
- Crosby, O.A. and Klausing, R.L., 1984. Hydrology of Area 47, Northern Great Plains and Rocky Mountain Coal Provinces, North Dakota, South Dakota, and Montana. USGS Water-Resources Investigations Open-File Report 83-221, 93 p.
- Groenewold, G.H., Koob, G.J., McCarthy, B.W., and Peterson, W.M., 1983, Geologic and Geochemical Controls on the Chemical Evolution of Subsurface Water in Undisturbed and Surface-Mined Landscapes on Western North Dakota, North Dakota Geological Survey Report of Investigation 79, 151 p.
- Helsel, D.R. and R. M. Hirsch, 2002. Statistical Methods in Water Resources Techniques of Water Resources Investigations, Book 4, chapter A3. U.S. Geological Survey. 522 pages.
- Montana-Dakota Utilities Co. (MDU), 1989, R.M. Heskett Station Special Use Disposal Site Permit Application. Submitted to North Dakota State Department of Health, March 1, 1989.
- MDU, 2011, R.M. Heskett Station Special Waste Disposal Permit SP-087 2010 Annual Report. February 2011.
- MDU, 2012, R.M. Heskett Station Special Waste Disposal Permit SP-087 2011 Annual Report. February 2012.
- MDU, 2013, R.M. Heskett Station Special Waste Disposal Permit SP-087 2012 Annual Report. February 2013.
- MDU, 2014, R.M. Heskett Station Special Waste Disposal Permit SP-087 2013 Annual Report. February 2014.

US EPA, 2015, Hazardous and Solid Waste Management Systems; Management of Coal Combustion Residuals from Electric Utility, CFR Parts 257 and 261, Federal Register, Vol. 80, No. 74, April 17, 2015

Figures


Image Source: 2019 Statewide Imagery (ND GIS Hub)

CAD Data Source: Slot Linework.dwg

SITE LAYOUT AND CCR MONITORING WELL NETWORK R. M. Heskett Station Alternative Source Demonstration: March 2021 Event Montana Dakota Utilities Mandan, North Dakota

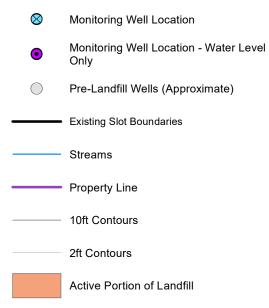


Image Source: 2018 Statewide Imagery (ND GIS Hub)

CAD Data Source: Slot Linework.dwg Pre-Landfill well concentrations are from 9/11/1986, 11/21/1986 (MDU, 1989), and CCR Rule monitoring well concentrations are from 2016-2019.

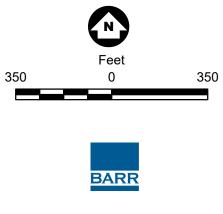
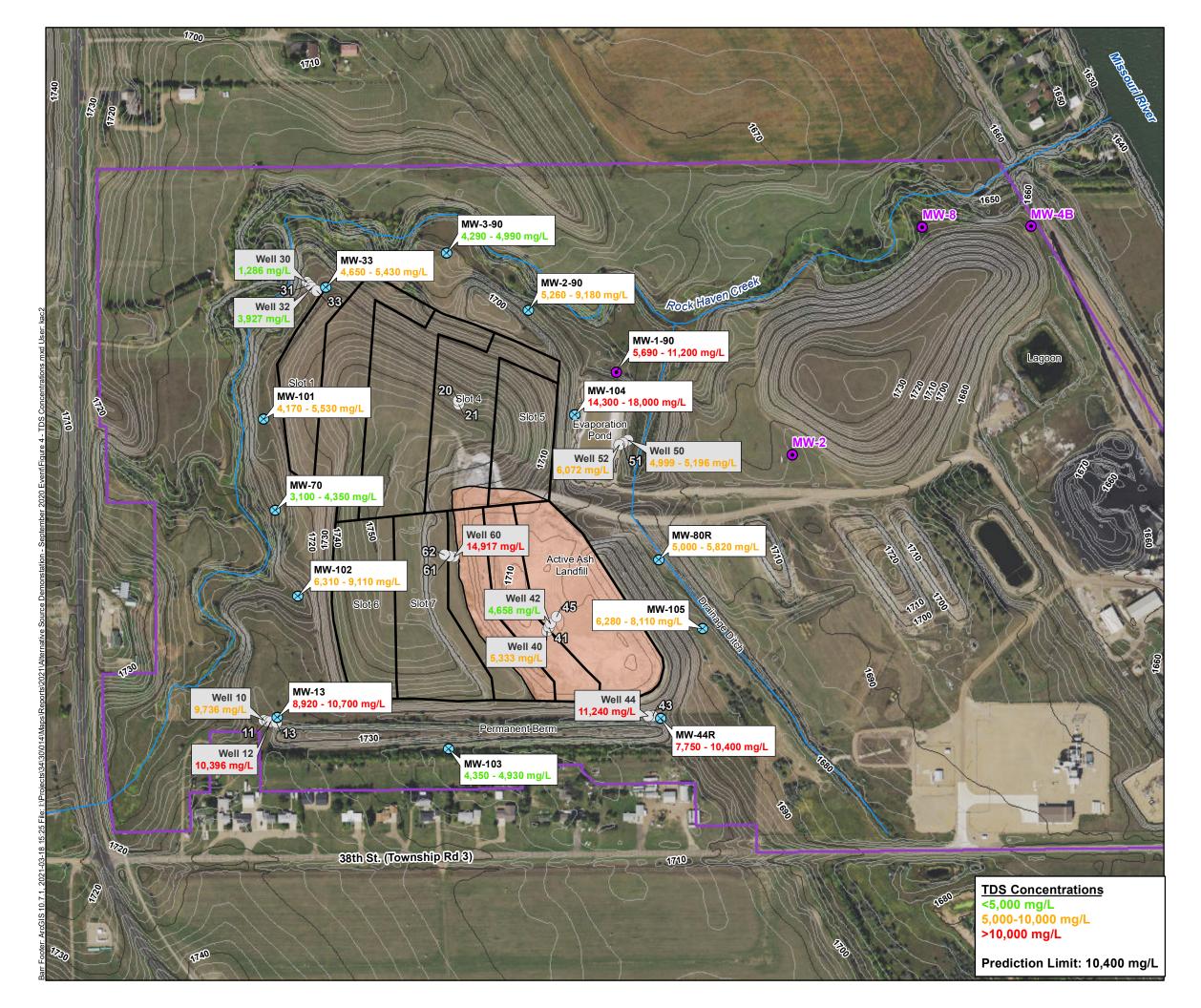



Figure 3

SULFATE CONCENTRATIONS R. M. Heskett Station Alternative Source Demonstration: March 2021 Event Montana Dakota Utilities Mandan, North Dakota

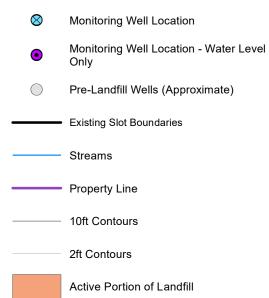


Image Source: 2018 Statewide Imagery (ND GIS Hub)

CAD Data Source: Slot Linework.dwg Pre-Landfill well concentrations are from 9/11/1986, 11/21/1986 (MDU, 1989), and CCR Rule monitoring well concentrations are from 2016-2019.

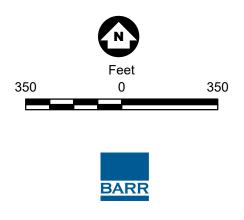
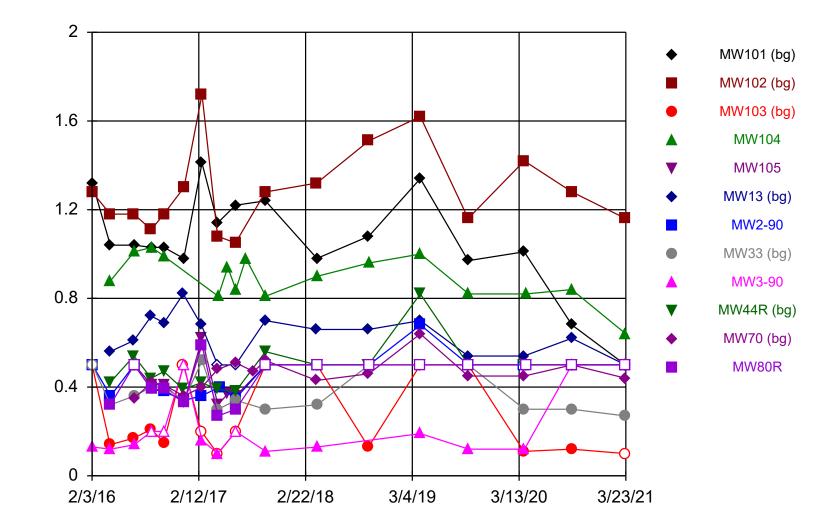
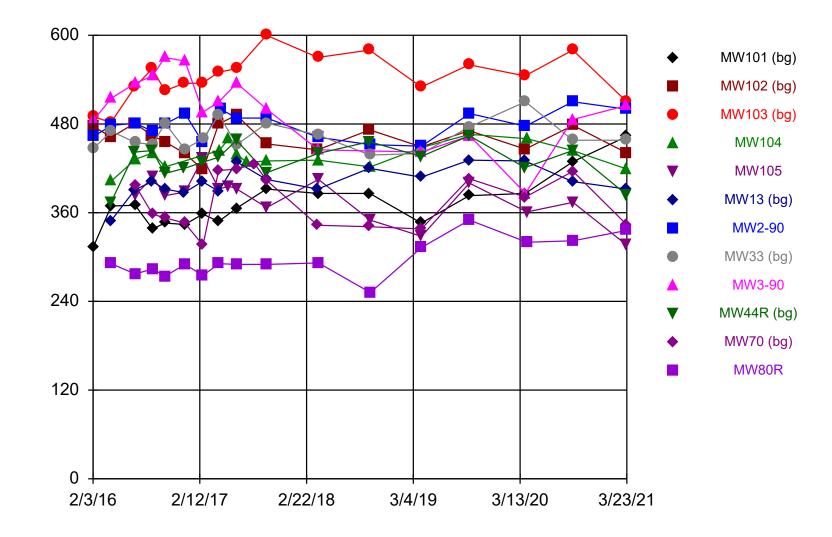


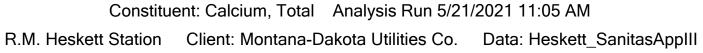
Figure 4

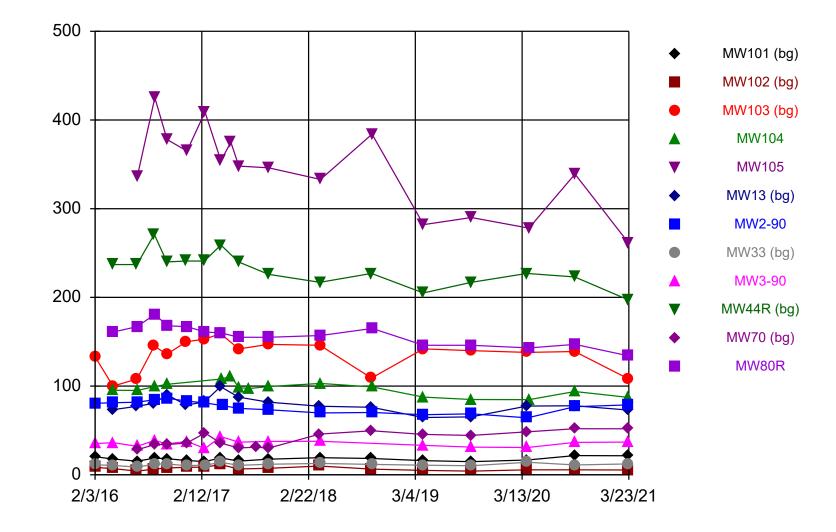

TDS CONCENTRATIONS R. M. Heskett Station Alternative Source Demonstration: March 2021 Event Montana Dakota Utilities Mandan, North Dakota

Appendix A


Appendix III Time Series Plots

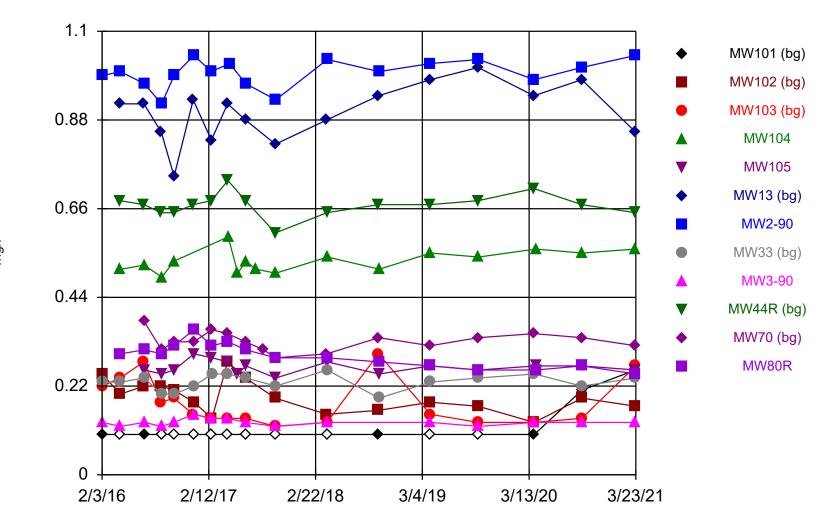
Sanitas[™] v.9.6.28 For the statistical analyses of ground water by Barr Engineering Company only. UG Hollow symbols indicate censored values.


Time Series

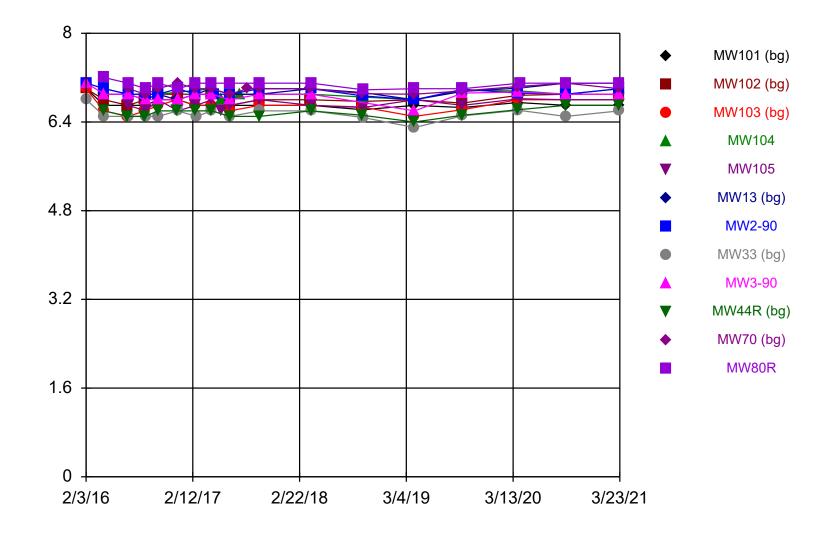


Constituent: Boron, total Analysis Run 5/21/2021 11:05 AM R.M. Heskett Station Client: Montana-Dakota Utilities Co. Data: Heskett_SanitasAppIII

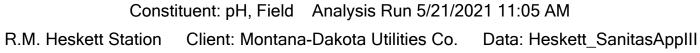
Time Series

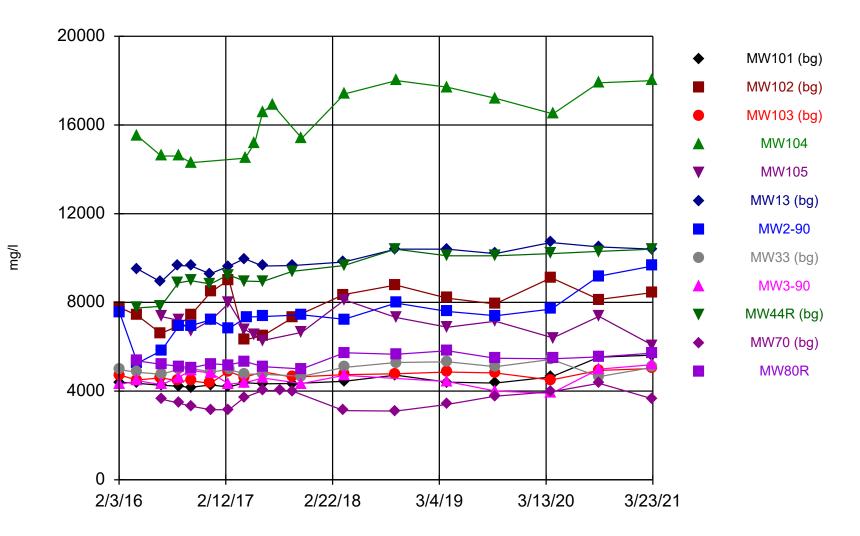


Time Series

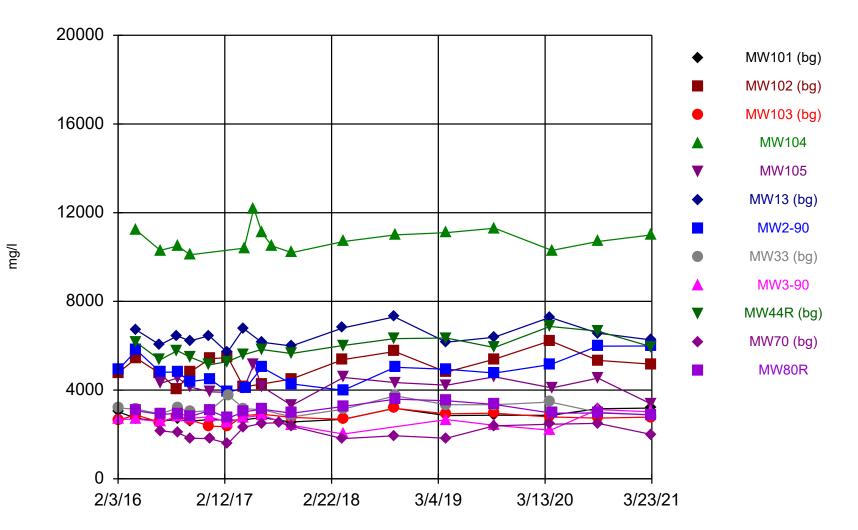

Constituent: Chloride Analysis Run 5/21/2021 11:05 AM R.M. Heskett Station Client: Montana-Dakota Utilities Co. Data: Heskett_SanitasAppIII

Sanitas[™] v.9.6.28 For the statistical analyses of ground water by Barr Engineering Company only. UG Hollow symbols indicate censored values.


Time Series


Constituent: Fluoride Analysis Run 5/21/2021 11:05 AM R.M. Heskett Station Client: Montana-Dakota Utilities Co. Data: Heskett_SanitasAppIII

Time Series



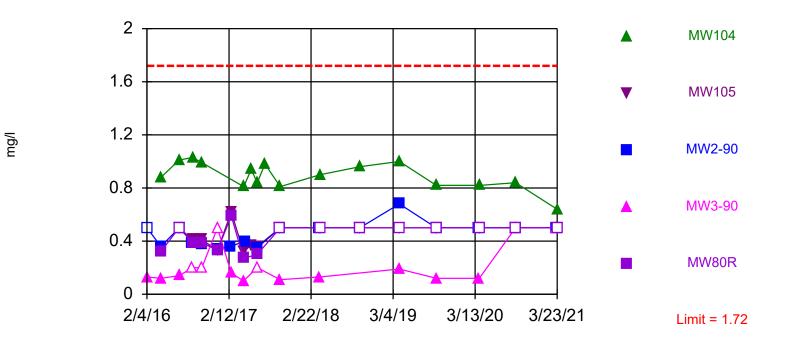
pH units

Time Series

Constituent: Solids, total dissolved Analysis Run 5/21/2021 11:05 AM R.M. Heskett Station Client: Montana-Dakota Utilities Co. Data: Heskett_SanitasAppIII

Time Series

Constituent: Sulfate, as SO4 Analysis Run 5/21/2021 11:05 AM R.M. Heskett Station Client: Montana-Dakota Utilities Co. Data: Heskett_SanitasAppIII

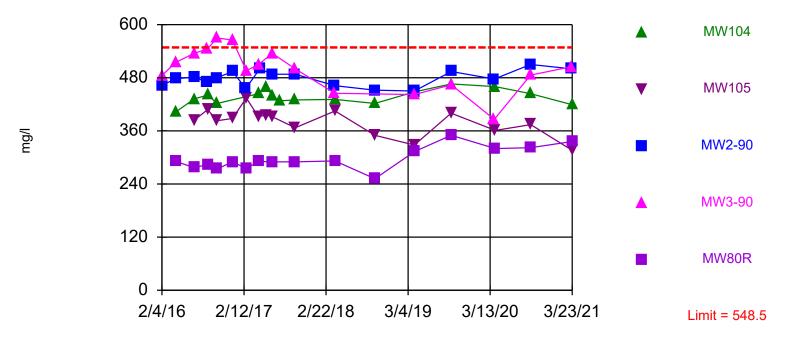

Appendix B

March 2021 Prediction Limit Plots

Sanitas[™] v.9.6.28 For the statistical analyses of ground water by Barr Engineering Company only. UG Hollow symbols indicate censored values.

Within Limit

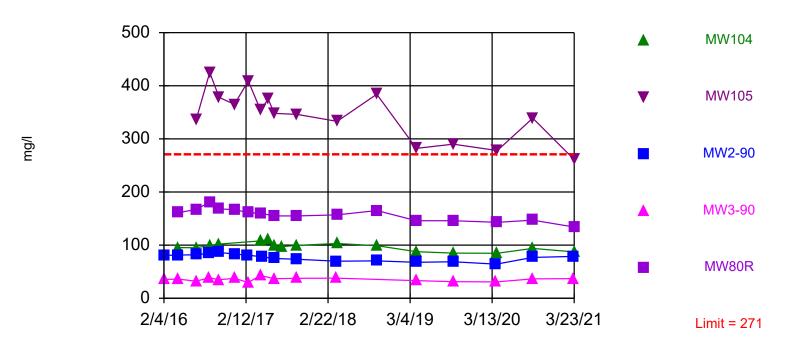
Boron, total



Interwell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Francia normality test showed the data to be non-normal at the 0.05 alpha level. Limit is highest of 88 background values. 17.05% NDs. Annual perconstituent alpha = 0.002497. Individual comparison alpha = 0.00025 (1 of 2). Comparing 5 points to limit. Seasonality was not detected with 95% confidence.

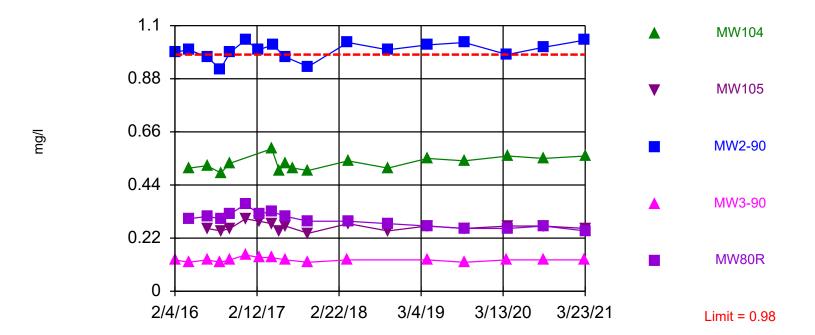
Within Limit


Calcium, Total Interwell Parametric

Background Data Summary: Mean=432.4, Std. Dev.=64.15, n=88. Seasonality was not detected with 95% confidence. Normality test: Shapiro Francia @alpha = 0.05, calculated = 0.9786, critical = 0.972. Kappa = 1.81 (c=7, w=5, 1 of 2, event alpha = 0.05132). Report alpha = 0.007498. Individual comparison alpha = 0.001504. Comparing 5 points to limit.

Within Limit

Chloride

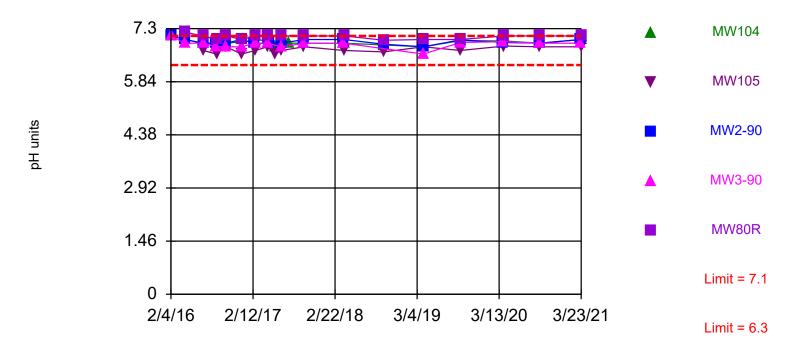


Interwell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Francia normality test showed the data to be non-normal at the 0.05 alpha level. Limit is highest of 88 background values. Annual per-constituent alpha = 0.002497. Individual comparison alpha = 0.00025 (1 of 2). Comparing 5 points to limit. Seasonality was not detected with 95% confidence.

Exceeds Limit: MW2-90

Fluoride

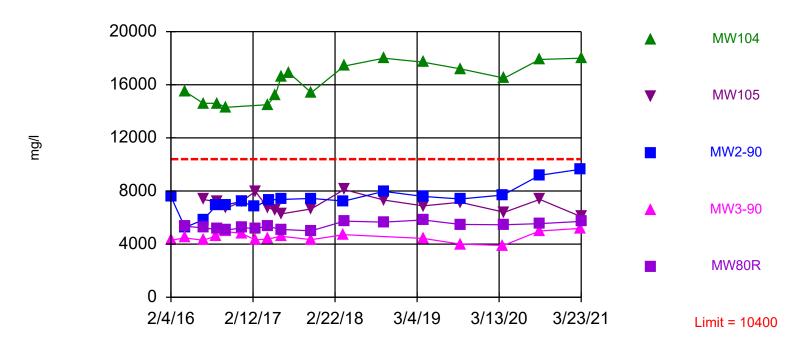


Interwell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Francia normality test showed the data to be non-normal at the 0.05 alpha level. Limit is highest of 88 background values. 11.36% NDs. Annual perconstituent alpha = 0.002497. Individual comparison alpha = 0.00025 (1 of 2). Comparing 5 points to limit. Seasonality was not detected with 95% confidence.

Within Limits

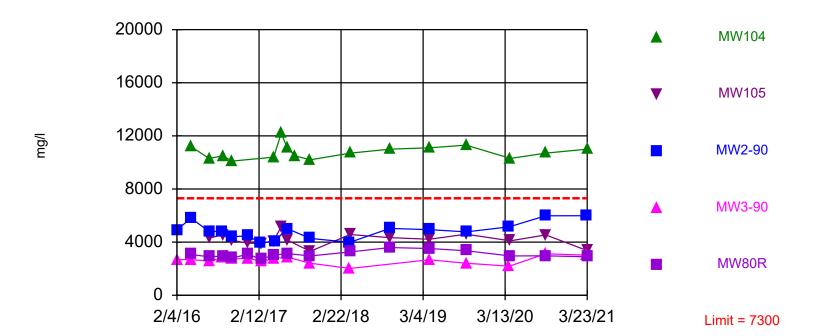
pH, Field



Interwell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Francia normality test showed the data to be non-normal at the 0.05 alpha level. Limits are highest and lowest of 88 background values. Annual perconstituent alpha = 0.004994. Individual comparison alpha = 0.0004999 (1 of 2). Comparing 5 points to limit. Seasonality was not detected with 95% confidence.

Exceeds Limit: MW104


Solids, total dissolved Interwell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Francia normality test showed the data to be non-normal at the 0.05 alpha level. Limit is highest of 84 background values. Annual per-constituent alpha = 0.002742. Individual comparison alpha = 0.0002746 (1 of 2). Comparing 5 points to limit. Seasonality was not detected with 95% confidence.

Exceeds Limit: MW104

Sulfate, as SO4

Interwell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Francia normality test showed the data to be non-normal at the 0.05 alpha level. Limit is highest of 88 background values. Annual per-constituent alpha = 0.002497. Individual comparison alpha = 0.00025 (1 of 2). Comparing 5 points to limit. Seasonality was not detected with 95% confidence.

Prediction Limit

R.M. Heskett Station Client: Montana-Dakota Utilities Co. Data: Heskett_SanitasAppIII Printed 5/21/2021, 11:53 AM

				D /		- -		0/ ND		A.L. I.	N (1)
<u>Constituent</u>	<u>Well</u>	Upper Lim.	Lower Lim.	<u>Date</u>	Observ.	<u>Sig.</u>	<u>Bg N</u>	<u>%NDs</u>	<u>Transform</u>	<u>Alpha</u>	<u>Method</u>
Boron, total (mg/l)	MW104	1.72	n/a	3/23/2021	0.64	No	88	17.05	n/a	0.00025	NP Inter (normality)
Boron, total (mg/l)	MW105	1.72	n/a	3/23/2021	0.5ND	No	88	17.05	n/a	0.00025	NP Inter (normality)
Boron, total (mg/l)	MW2-90	1.72	n/a	3/22/2021	0.5ND	No	88	17.05	n/a	0.00025	NP Inter (normality)
Boron, total (mg/l)	MW3-90	1.72	n/a	3/22/2021	0.5ND	No	88	17.05	n/a	0.00025	NP Inter (normality)
Boron, total (mg/l)	MW80R	1.72	n/a	3/23/2021	0.5ND	No	88	17.05	n/a	0.00025	NP Inter (normality)
Calcium, Total (mg/l)	MW104	548.5	n/a	3/23/2021	419	No	88	0	No	0.001504	Param Inter 1 of 2
Calcium, Total (mg/l)	MW105	548.5	n/a	3/23/2021	316	No	88	0	No	0.001504	Param Inter 1 of 2
Calcium, Total (mg/l)	MW2-90	548.5	n/a	3/22/2021	500	No	88	0	No	0.001504	Param Inter 1 of 2
Calcium, Total (mg/l)	MW3-90	548.5	n/a	3/22/2021	505	No	88	0	No	0.001504	Param Inter 1 of 2
Calcium, Total (mg/l)	MW80R	548.5	n/a	3/23/2021	336	No	88	0	No	0.001504	Param Inter 1 of 2
Chloride (mg/l)	MW104	271	n/a	3/23/2021	87.2	No	88	0	n/a	0.00025	NP Inter (normality)
Chloride (mg/l)	MW105	271	n/a	3/23/2021	261	No	88	0	n/a	0.00025	NP Inter (normality)
Chloride (mg/l)	MW2-90	271	n/a	3/22/2021	78.8	No	88	0	n/a	0.00025	NP Inter (normality)
Chloride (mg/l)	MW3-90	271	n/a	3/22/2021	36.9	No	88	0	n/a	0.00025	NP Inter (normality)
Chloride (mg/l)	MW80R	271	n/a	3/23/2021	134	No	88	0	n/a	0.00025	NP Inter (normality)
Fluoride (mg/l)	MW104	0.98	n/a	3/23/2021	0.56	No	88	11.36	n/a	0.00025	NP Inter (normality)
Fluoride (mg/l)	MW105	0.98	n/a	3/23/2021	0.26	No	88	11.36	n/a	0.00025	NP Inter (normality)
Fluoride (mg/l)	MW2-90	0.98	n/a	3/22/2021	1.04	Yes	88	11.36	n/a	0.00025	NP Inter (normality)
Fluoride (mg/l)	MW3-90	0.98	n/a	3/22/2021	0.13	No	88	11.36	n/a	0.00025	NP Inter (normality)
Fluoride (mg/l)	MW80R	0.98	n/a	3/23/2021	0.25	No	88	11.36	n/a	0.00025	NP Inter (normality)
pH, Field (pH units)	MW104	7.1	6.3	3/23/2021	7	No	88	0	n/a	0.000	NP Inter (normality)
pH, Field (pH units)	MW105	7.1	6.3	3/23/2021	6.8	No	88	0	n/a	0.000	NP Inter (normality)
pH, Field (pH units)	MW2-90	7.1	6.3	3/22/2021	7	No	88	0	n/a	0.000	NP Inter (normality)
pH, Field (pH units)	MW3-90	7.1	6.3	3/22/2021	6.9	No	88	0	n/a	0.000	NP Inter (normality)
pH, Field (pH units)	MW80R	7.1	6.3	3/23/2021	7.1	No	88	0	n/a	0.000	NP Inter (normality)
Solids, total dissolved (mg/l)	MW104	10400	n/a	3/23/2021	18000	Yes	84	0	n/a	0.000	NP Inter (normality)
Solids, total dissolved (mg/l)	MW105	10400	n/a	3/23/2021	6060	No	84	0	n/a	0.000	NP Inter (normality)
Solids, total dissolved (mg/l)	MW2-90	10400	n/a	3/22/2021	9640	No	84	0	n/a	0.000	NP Inter (normality)
Solids, total dissolved (mg/l)	MW3-90	10400	n/a	3/22/2021	5190	No	84	0	n/a	0.000	NP Inter (normality)
Solids, total dissolved (mg/l)	MW80R	10400	n/a	3/23/2021	5710	No	84	0	n/a	0.000	NP Inter (normality)
Sulfate, as SO4 (mg/l)	MW104	7300	n/a	3/23/2021	11000	Yes	88	0	n/a	0.00025	NP Inter (normality)
Sulfate, as SO4 (mg/l)	MW105	7300	n/a	3/23/2021	3360	No	88	0	n/a	0.00025	NP Inter (normality)
Sulfate, as SO4 (mg/l)	MW2-90	7300	n/a	3/22/2021	5990	No	88	0	n/a	0.00025	NP Inter (normality)
Sulfate, as SO4 (mg/l)	MW3-90	7300	n/a	3/22/2021	3020	No	88	0	n/a	0.00025	NP Inter (normality)
Sulfate, as SO4 (mg/l)	MW80R	7300	n/a	3/23/2021	2890	No	88	0	n/a	0.00025	NP Inter (normality)
Guilate, as OOT (ing/i)	WWWWWWW	1000	11/a	0/20/2021	2030	NO	00	0	174	0.00020	in inter (normainy)

Appendix C

Ash SPLP Laboratory Report (2011)

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 51 West Lincoln Way ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

Page: 1 of 2

Report Date: 8 Sep 11 Lab Number: 11-M2450 Work Order #:81-818 Account #: 013479 Date Sampled: Date Received: 28 Jun 11 9:00 PO #: 131460 OP

Duane Leingang Montana Dakota Utilities PO Box 40 Mandan ND 58554

Sample Description: Unit I Bottom Ash Sample Site: MDU Heskett

	As Receive Result	ed	Method RL	Method Reference	Date Analyzed	Analyst
SPLP Extraction				1312	22 Jul 11	SS
рН	12.2	units	N/A	SM4500 H+ B	22 Jul 11 17:00	
Specific Conductance	8778	umhos/cm	N/A	SM2510-B	22 Jul 11 17:00	
Total Suspended Solids	3	mg/l	1	SM2540-D	22 Jul 11 14:00	
Total Alkalinity	1120	mg/l CaCO3	4	SM2320-B	22 Jul 11 17:00	
Phenolphthalein Alk	1090	mg/l CaCO3	4	SM2320-B	22 Jul 11 17:00	
Bicarbonate	< 4	mg/l CaCO3	4	SM2320-B	22 Jul 11 17:00	
Carbonate	60	mg/l CaCO3	4	SM2320-B	22 Jul 11 17:0	
Hydroxide	1060	mg/l CaCO3	0	SM2320-B	22 Jul 11 17:00	
Tot Dis Solids (Summation)	4860	mg/l	NA	SM1030-F	3 Aug 11 8:4	2
Total Hardness as CaCO3	524	mg/l	NA	SM2340-B	3 Aug 11 8:4	
Hardness in grains/gallon	30.7	gr/gal	NA	SM2340-B	3 Aug 11 8:4	
Cation Summation	74,3	meg/L	NA	SM1030-F	3 Aug 11 8:4	
Anion Summation	74.6	meq/L	NA	SM1030-F	28 Jul 11 14:3	
Percent Error	-0.24	8	NA	SM1030-F	3 Aug 11 8:4	
Sodium Adsorption Ratio	27.1		NA	USDA 20b	3 Aug 11 8:4	
Gross Alpha Radiation	Attached	pCi/l			22 Aug 11 2:0	
Radon 222	Attached				28 Jul 11 4:3	
Radium 226	Attached	pCi/l			22 Aug 11 22:2	
Radium 228	Attached	pCi/l			16 Aug 11 16:5	
Total Organic Carbon	0.7	mg/l	0.5	SM5310-C	1 Aug 11 8:0	
Fluoride	< 0.1	mg/l	0.10	SM4500-F-C	4 Aug 11 17:0	
Sulfate	2440	mg/l	5.00	ASTM D516-02	27 Jul 11 9:0	
Chloride	50.5	mg/l	1.0	SM4500-Cl-E	27 Jul 11 14:0	
Nitrate-Nitrite as N	0.21	mg/l	0.10	EPA 353.2	28 Jul 11 14:3	
Ammonia-Nitrogen as N	0.32	mg/l	0.10	EPA 350.1	28 Jul 11 10:4	
Phosphorus as P - Total	< 0.1	mg/l	0.10	EPA 365.1	28 Jul 11 13:0	
Mercury - Total	< 0.0002	mg/l	0.0002	EPA 245.1	28 Jul 11 8:0	
Chemical Oxygen Demand	< 5	mg/l	5.0	HACH 8000	1 Aug 11 8:3	· · · · · · · · · · · · · · · · · · ·
Calcium - Total	210	mg/l	1.0	6010	3 Aug 11 8:4	-
Magnesium - Total	< 2.5	mg/l	1.0	6010	3 Aug 11 8:4	
Sodium - Total	1440	mg/l	1.0	6010	3 Aug 11 8:4	4
Potassium - Total	44.8	mg/l	1.0	6010	3 Aug 11 8:4	
Aluminum - Total	< 0.5	mg/l	0.10	6010	2 Aug 11 9:3	-
Iron - Total	< 0.5	mg/l	0.10	6010	2 Aug 11 9:3	-
Strontium - Total	28.2	mg/l	0.10	6010	2 Aug 11 9:3	-
Titanium - Total	< 0.5	mg/l	0.10	6010	2 Aug 11 9:3	4
Boron - Total	< 0,5	mg/l	0.10	6010	11 Aug 11 8:4	0 Stacy

RL = Method Reporting Limit

Elevated "Less Than Result" (<): @ = Due to sample matrix ! = Due to sample quantity # = Due to sample concentration

CERTIFICATION: MN LAB # 038-999-267 ND # ND-00016

+ = Due to extract volume

MVTL guarantees the accuracy of the analysis done on the sample submitted for testing. It is not possible for MVTL to guarantee that a test result obtained on a particular sample will be the same on any other sample unless all conditions affecting the sample are the same, including sampling by MVTL. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 51 West Lincoln Way ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

Page: 2 of 2

Report Date: 8 Sep 11 Lab Number: 11-M2450 Work Order #:81-818 Account #: 013479 Date Sampled: Date Received: 28 Jun 11 9:00 PO #: 131460 OP

Duane Leingang Montana Dakota Utilities PO Box 40 Mandan ND 58554

Sample Description: Unit I Bottom Ash Sample Site: MDU Heskett

	As Receive Result	ed	Method RL	Method Reference	Date Analyzed	Analyst
Antimony - Total	< 0.002	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Arsenic - Total	0.0044	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Barium - Total	0.1135	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Beryllium - Total	< 0.001	mg/l	0.0010	6020	25 Jul 11 16:18	Claudette
Cadmium - Total	0.00164	mg/l	0.00100	6020	25 Jul 11 16:18	Claudette
Chromium - Total	0.0065	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Cobalt - Total	< 0.002	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Copper - Total	0.0213	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Lead - Total	< 0.002	mg/l	0.0020	6020	25 Jul 11 16:18	
Manganese - Total	0.0027	mg/l	0.0010	6020	25 Jul 11 16:18	
Molybdenum - Total	0.6860	mg/l	0.0020	6020	26 Jul 11 12:46	7.
Nickel - Total	0.0074	mg/l	0.0020	6020	25 Jul 11 16:18	
Selenium - Total	0.0133	mg/l	0.0020	6020	26 Jul 11 9:46	Claudette
Silver - Total	< 0.001	mg/l	0.0010	6020	25 Jul 11 16:18	Claudette
Thallium - Total	< 0.002	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Tin - Total	< 0.05	mg/l	0.0500	6020	25 Jul 11 16:18	Claudette
Vanadium - Total	0.0189	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Zinc - Total	0.0151	mg/l	0.0100	6020	25 Jul 11 16:18	Claudette
Uranium	< 0.002	mg/l	0.002	6020	25 Jul 11 16:18	Claudette

All analyses were performed on the extract from Method 1312 (SPLP) with a modified solution to solids ratio of 4:1.

A Tander Approved by:

RL = Method Reporting Limit

CERTIFICATION: MN LAB # 038-999-267

Elevated "Less Than Result" (<): @ = Due to sample matrix | = Due to sample quantity

= Due to sample concentration
+ = Due to extract volume

MVTL guarantees the accuracy of the analysis done on the sample submitted for testing. It is not possible for MVTL to guarantee that a test result obtained on a particular sample will be the same on any other sample unless all conditions affecting the sample are the same, including sampling by MVTL. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

ND # ND-00016

l

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 51 West Lincoln Way ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

Page: 1 of 2

Report Date: 8 Sep 11 Lab Number: 11-M2451 Work Order #:81-818 Account #: 013479 Date Sampled: Date Received: 28 Jun 11 9:00 PO #: 131460 OP

Duane Leingang Montana Dakota Utilities PO Box 40 Mandan ND 58554

Sample Description: Unit II Sand Ash Sample Site: MDU Heskett

	As Receiv Result	ed	Method RL	Method Reference	Date Analyzed	Analyst
SPLP Extraction				1312	22 Jul 11	SS
pH	11.1	units	N/A	SM4500 H+ B	22 Jul 11 17:00	Claudette
Specific Conductance	20110	umhos/cm	N/A	SM2510-B	22 Jul 11 17:00	Claudette
Total Suspended Solids	21	mg/l	1	SM2540-D	22 Jul 11 14:00	CLB
Total Alkalinity	203	mg/l CaCO3	4	SM2320-B	22 Jul 11 17:00	Claudette
Phenolphthalein Alk	171	mg/l CaCO3	4	SM2320-B	22 Jul 11 17:00	Claudette
Bicarbonate	< 4	mg/l CaCO3	4	SM2320-B	22 Jul 11 17:00	Claudette
Carbonate	64	mg/l CaCO3	4	SM2320-B	22 Jul 11 17:00	Claudette
Hydroxide	139	mg/l CaCO3	0	SM2320-B	22 Jul 11 17:00	Claudette
Tot Dis Solids (Summation)	22500	mg/l	NA	SM1030-F	3 Aug 11 8:40	Calculated
Total Hardness as CaCO3	1200	mg/l	NA	SM2340-B	3 Aug 11 8:40	Calculated
Hardness in grains/gallon	70.2	gr/gal	NA	SM2340-B	3 Aug 11 8:40	Calculated
Cation Summation	318	meg/L	NA	SM1030-F	3 Aug 11 8:40	Calculated
Anion Summation	314	meg/L	NA	SM1030-F	28 Jul 11 14:30	Calculated
Percent Error	0.65	8	NA	SM1030-F	3 Aug 11 8:40	Calculated
Sodium Adsorption Ratio	80.9		NA	USDA 20b	3 Aug 11 8:40	Calculated
Gross Alpha Radiation	Attached	pCi/l			22 Aug 11 2:03	
Radon 222	See Attac	hed			28 Jul 11 4:37	
Radium 226	Attached	pCi/l			22 Aug 11 22:20	
Radium 228	Attached	pCi/l			16 Aug 11 16:50	
Total Organic Carbon	< 0.5	mg/l	0.5	SM5310-C	1 Aug 11 8:00	Eric
Fluoride	< 0.1	mg/l	0.10	SM4500-F-C	4 Aug 11 17:00	CLB
Sulfate	14900	mg/l	5.00	ASTM D516-02	27 Jul 11 9:00	KMP
Chloride	2.0	mg/l	1.0	SM4500-Cl-E	27 Jul 11 14:00	KMP
Nitrate-Nitrite as N	< 0.1	mg/l	0.10	EPA 353.2	28 Jul 11 14:30	KMP
Ammonia-Nitrogen as N	0.10	mg/l	0.10	EPA 350.1	28 Jul 11 10:45	KMP
Phosphorus as P - Total	< 0.1	mg/l	0.10	EPA 365.1	28 Jul 11 13:00	KMP
Mercury - Total	< 0.0002	mg/l	0.0002	EPA 245.1	28 Jul 11 8:00	Eric
Chemical Oxygen Demand	< 5	mg/l	5.0	HACH 8000	1 Aug 11 8:30	Wayne
Calcium - Total	481	mg/l	1.0	6010	3 Aug 11 8:40	Stacy
Magnesium - Total	< 5	mg/l	1.0	6010	3 Aug 11 8:40	Stacy
Sodium - Total	6500	mg/l	1.0	6010	3 Aug 11 8:40	Stacy
Potassium - Total	459	mg/l	1.0	6010	3 Aug 11 8:40	Stacy
Aluminum - Total	1.09	mg/l	0.10	6010	2 Aug 11 9:30	Stacy
Iron - Total	< 1	mg/l	0.10	6010	2 Aug 11 9:30	Stacy
Strontium - Total	66.0	mg/l	0.10	6010	2 Aug 11 9:30	Stacy
Titanium - Total	< 1	mg/l	0.10	6010	2 Aug 11 9:30	Stacy
Boron - Total	5.96	mg/l	0.10	6010	11 Aug 11 8:40	Stacy

RL = Method Reporting Limit

Elevated "Less Than Result" (<): \circledast = Due to sample matrix ! = Due to sample quantity # = Due to sample concentration
+ = Due to extract volume

CERTIFICATION: MN LAB # 038-999-267 ND # ND-00016

MVTL guarantees the accuracy of the analysis done on the sample submitted for testing. It is not possible for MVTL to guarantee that a test result obtained on a particular sample will be the same on any other sample unless all conditions affecting the sample are the same, including sampling by MVTL. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

I.

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 51 West Lincoln Way ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

Page: 2 of 2

Report Date: 8 Sep 11 Lab Number: 11-M2451 Work Order #:81-818 Account #: 013479 Date Sampled: Date Received: 28 Jun 11 9:00 PO #: 131460 OP

Duane Leingang Montana Dakota Utilities PO Box 40 Mandan ND 58554

.

Sample Description: Unit II Sand Ash Sample Site: MDU Heskett

	As Receive Result	ed	Method RL	Method Reference	Date Analyzed	Analyst
Antimony - Total	< 0.002	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Arsenic - Total	0.0822	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Barium - Total	0.0930	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Beryllium - Total	< 0.001	mg/l	0.0010	6020	25 Jul 11 16:18	Claudette
Cadmium - Total	0.00182	mg/l	0.00100	6020	25 Jul 11 16:18	Claudette
Chromium - Total	0.0244	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Cobalt - Total	< 0.002	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Copper - Total	0.1108	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Lead - Total	< 0.002	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Manganese - Total	0.0052	mg/l	0.0010	6020	25 Jul 11 16:18	Claudette
Molybdenum - Total	0.1000	mg/l	0.0020	6020	26 Jul 11 12:46	Claudette
Nickel - Total	0.0136	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Selenium - Total	0.0937	mg/l	0.0020	6020	26 Jul 11 9:46	Claudette
Silver - Total	< 0.001	mg/l	0.0010	6020	25 Jul 11 16:18	Claudette
Thallium - Total	< 0.002	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Tin - Total	< 0.05	mg/l	0.0500	6020	25 Jul 11 16:18	Claudette
Vanadium - Total	0.3026	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Zinc - Total	0,0327	mg/l	0.0100	6020	25 Jul 11 16:18	Claudette
Uranium	< 0.002	mg/l	0.002	6020	25 Jul 11 16:18	Claudette

All analyses were performed on the extract from Method 1312 (SPLP) with a modified solution to solids ratio of 4:1.

Tonde Approved by:

RL = Method Reporting Limit

CERTIFICATION: MN LAB # 038-999-267

Elevated "Less Than Result" (<): @ = Due to sample matrix ! = Due to sample quantity ND # ND-00016

= Due to sample concentration + = Due to extract volume

MVTL guarantees the accuracy of the analysis done on the sample submitted for testing. It is not possible for MVTL to guarantee that a test result obtained on a particular sample will be the same on any other sample unless all conditions affecting the sample are the same, including sampling by MVTL. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

1

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 51 West Lincoln Way ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

Page: 1 of 2

Report Date: 8 Sep 11 Lab Number: 11-M2452 Work Order #:81-818 Account #: 013479 Date Sampled: Date Received: 28 Jun 11 9:00 PO #: 131460 OP

Duane Leingang Montana Dakota Utilities PO Box 40 Mandan ND 58554

Sample Description: Unit I Fly Ash Sample Site: MDU Heskett

	As Receive Result	ed	Method RL	Method Reference	Date Analyzed	Analyst
SPLP Extraction				1312	22 Jul 11	SS
pH	12.9	units	N/A	SM4500 H+ B	22 Jul 11 17:00	
Specific Conductance	50660	umhos/cm	N/A	SM2510-B	22 Jul 11 17:00	
Total Suspended Solids	30	mg/l	1	SM2540-D	22 Jul 11 14:00	
Total Alkalinity	7020	mg/l CaCO3	4	SM2320-B	25 Jul 11 17:00	
Phenolphthalein Alk	6900	mg/l CaCO3	4	SM2320-B	25 Jul 11 17:00	
Bicarbonate	< 4	mg/l CaCO3	4	SM2320-B	25 Jul 11 17:00	
Carbonate	240	mg/l CaCO3	4	SM2320-B	25 Jul 11 17:00	
Hydroxide	6780	mg/l CaCO3	0	SM2320-B	25 Jul 11 17:00	
Tot Dis Solids (Summation)	42200	mg/l	NA	SM1030-F	3 Aug 11 8:40	1 C
Total Hardness as CaCO3	1750	mg/l	NA	SM2340-B	3 Aug 11 8:40	
Hardness in grains/gallon	102	gr/gal	NA	SM2340-B	3 Aug 11 8:40	
Cation Summation	663	meq/L	NA	SM1030-F	3 Aug 11 8:40	
Anion Summation	613	meq/L	NA	SM1030-F	28 Jul 11 14:30	
Percent Error	3,99	8	NA	SM1030-F	3 Aug 11 8:4	
Sodium Adsorption Ratio	143		NA	USDA 20b	3 Aug 11 8:4	
Gross Alpha Radiation	Attached	pCi/l			22 Aug 11 2:0	
Radon 222	Attached				28 Jul 11 4:3	
Radium 226	Attached	pCi/l			22 Aug 11 22:2	
Radium 228	Attached	pCi/l			16 Aug 11 16:5	
Total Organic Carbon	1.5	mg/l	0.5	SM5310-C	1 Aug 11 8:0	
Fluoride	5.60	mg/l	0.10	SM4500-F-C	10 Aug 11 17:0	
Sulfate	22600	mg/l	5.00	ASTM D516-02	27 Jul 11 9:0	
Chloride	53.8	mg/l	1.0	SM4500-Cl-E	27 Jul 11 14:0	
Nitrate-Nitrite as N	0.68	mg/l	0.10	EPA 353.2	28 Jul 11 14:3	
Ammonia-Nitrogen as N	7.22	mg/l	0.10	EPA 350.1	28 Jul 11 10:4	
Phosphorus as P - Total	< 0.1	mg/l	0.10	EPA 365.1	28 Jul 11 13:0	
Mercury - Total	< 0.0002	mg/l	0.0002	EPA 245.1	28 Jul 11 8:0	
Chemical Oxygen Demand	22.4	mg/l	5.0	HACH 8000	1 Aug 11 8:3	1
Calcium - Total	700	mg/l	1.0	6010	3 Aug 11 8:4	1
Magnesium - Total	< 25	mg/l	1.0	6010	3 Aug 11 8:4	-
Sodium - Total	14100	mg/l	1.0	6010	3 Aug 11 8:4	-
Potassium - Total	580	mg/l	1.0	6010	3 Aug 11 8:4	-
Aluminum - Total	< 5	mg/l	0.10	6010	2 Aug 11 9:3	-
Iron - Total	< 5	mg/l	0.10	6010	2 Aug 11 9:3	-
Strontium - Total	59.5	mg/l	0.10	6010	2 Aug 11 9:3	-
Titanium - Total	< 5	mg/l	0.10	6010	2 Aug 11 9:3	
Boron - Total	1.89	mg/l	0.10	6010	11 Aug 11 8:4	0 Stacy

RL = Method Reporting Limit

Elevated "Less Than Result" (<): @ = Due to sample matrix ! = Due to sample quantity

= Due to sample concentration
+ = Due to extract volume

CERTIFICATION: MN LAB # 038-999-267 ND # ND-00016

MVTL guarantees the accuracy of the analysis done on the sample submitted for testing. It is not possible for MVTL to guarantee that a test result obtained on a particular sample will be the same on any other sample unless all conditions affecting the sample are the same, including sampling by MVTLi As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 51 West Lincoln Way ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

Page: 2 of 2

Report Date: 8 Sep 11 Lab Number: 11-M2452 Work Order #:81-818 Account #: 013479 Date Sampled: Date Received: 28 Jun 11 9:00 PO #: 131460 OP

Duane Leingang Montana Dakota Utilities PO Box 40 Mandan ND 58554

Sample Description: Unit I Fly Ash Sample Site: MDU Heskett

	As Receiv Result	ed	Method RL	Method Reference	Date Analyzed	Analyst
Antimony - Total	< 0.002	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Arsenic - Total	0.1128	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Barium - Total	0.0906	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Beryllium - Total	< 0.001	mg/l	0.0010	6020	25 Jul 11 16:18	Claudette
Cadmium - Total	0.00244	mg/l	0.00100	6020	25 Jul 11 16:18	Claudette
Chromium - Total	0.0270	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Cobalt - Total	< 0.002	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Copper - Total	0.2934	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Lead - Total	0.0161	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Manganese - Total	0.0102	mg/l	0.0010	6020	25 Jul 11 16:18	Claudette
Molybdenum - Total	0,9246	mg/l	0.0020	6020	26 Jul 11 12:46	
Nickel - Total	0.0175	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Selenium - Total	0.1959	mg/l	0.0020	6020	26 Jul 11 9:46	Claudette
Silver - Total	< 0.001	mg/l	0.0010	6020	25 Jul 11 16:18	Claudette
Thallium - Total	< 0.002	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Tin - Total	< 0.05	mg/l	0.0500	6020	25 Jul 11 16:18	Claudette
Vanadium - Total	0.0158	mg/l	0.0020	6020	25 Jul 11 16:18	Claudette
Zinc - Total	0.3984	mg/l	0.0100	6020	25 Jul 11 16:18	Claudette
Uranium	< 0.002	mg/l	0.002	6020	25 Jul 11 16:18	Claudette

All analyses were performed on the extract from Method 1312 (SPLP) with a modified solution to solids ratio of 4:1.

Approved by:

Torda

RL = Method Reporting Limit

CERTIFICATION: MN LAB # 038-999-267

Elevated "Less Than Result" (c): @ = Due to sample matrix $\frac{1}{2}$ = Due to sample quantity

ND # ND-00016

= Due to sample concentration
+ = Due to extract volume

MVTL guarantees the accuracy of the analysis done on the sample submitted for testing. It is not possible for MVTL to guarantee that a test result obtained on a particular sample will be the same on any other sample unless all conditions affecting the sample are the same, including sampling by MVTL. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 51 West Lincoln Way ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

1 of 2 Page:

Report Date: 8 Sep 11 Lab Number: 11-M2453 Work Order #:81-818 Account #: 013479 Date Sampled: Date Received: 28 Jun 11 9:00 PO #: 131460 OP

Duane Leingang Montana Dakota Utilities PO Box 40 Mandan ND 58554

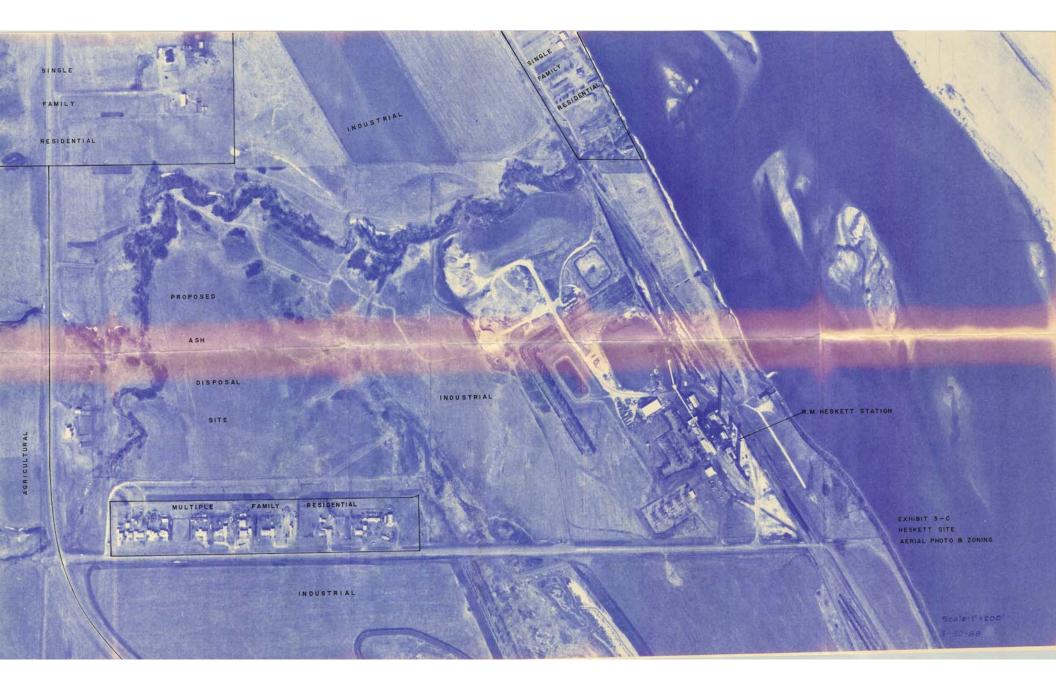
Sample Description: Unit II Fly Ash Sample Site: MDU Heskett

	As Receivo Result	ed	Method RL	Method Reference	Date Analyzed	Analyst
SPLP Extraction				1312	22 Jul 11	SS
рн	12.8	units	N/A	SM4500 H+ B	22 Jul 11 17:00	Claudette
Specific Conductance	27240	umhos/cm	N/A	SM2510-B	22 Jul 11 17:00	Claudette
Total Suspended Solids	13	mg/l	1	SM2540-D	22 Jul 11 14:00	CLB
Total Alkalinity	4570	mg/l CaCO3	4	SM2320-B	22 Jul 11 17:00	Claudette
Phenolphthalein Alk	4520	mg/l CaCO3	4	SM2320-B	22 Jul 11 17:00	Claudette
Bicarbonate	< 4	mg/l CaCO3	4	SM2320-B	22 Jul 11 17:00	Claudette
Carbonate	100	mg/l CaCO3	4	SM2320-B	22 Jul 11 17:00	Claudette
Hydroxide	4470	mg/l CaCO3	0	SM2320-B	22 Jul 11 17:00	Claudette
Tot Dis Solids (Summation)	16000	mg/l	NA	SM1030-F	3 Aug 11 8:40	Calculated
Total Hardness as CaCO3	1960	mg/l	NA	SM2340-B	3 Aug 11 8:40	Calculated
Hardness in grains/gallon	115	gr/gal	NA	SM2340-B	3 Aug 11 8:40	Calculated
Cation Summation	252	meg/L	NA	SM1030-F	9 Aug 11 9:09	Calculated
Anion Summation	247	meq/L	NA	SM1030-F	28 Jul 11 14:30	Calculated
Percent Error	1.00	do	NA	SM1030-F	9 Aug 11 9:09	Calculated
Sodium Adsorption Ratio	46.1		NA	USDA 20b	3 Aug 11 8:40	Calculated
Gross Alpha Radiation	Attached	pCi/l			22 Aug 11 2:03	
Radon 222	Attached				28 Jul 11 4:37	
Radium 226	Attached	pCi/l			22 Aug 11 22:20	
Radium 228	Attached	pCi/l			16 Aug 11 16:50	
Total Organic Carbon	1.6	mg/l	0.5	SM5310-C	1 Aug 11 8:00	Eric
Fluoride	3.60	mg/l	0.10	SM4500-F-C	4 Aug 11 17:00	CLB
Sulfate	7400	mg/l	5.00	ASTM D516-02	27 Jul 11 9:00	KMP
Chloride	66.0	mg/l	1.0	SM4500-Cl-E	27 Jul 11 14:00	KMP
Nitrate-Nitrite as N	0.38	mg/l	0.10	EPA 353.2	28 Jul 11 14:30	KMP
Ammonia-Nitrogen as N	15.0	mg/l	0.10	EPA 350.1	28 Jul 11 10:45	KMP
Phosphorus as P - Total	< 0.1	mg/l	0.10	EPA 365.1	28 Jul 11 13:00	KMP
Mercury - Total	< 0.0002	mg/l	0.0002	EPA 245.1	28 Jul 11 8:00	Eric
Chemical Oxygen Demand	9.4	mg/l	5.0	HACH 8000	1 Aug 11 8:30	Wayne
Calcium - Total	785	mg/l	1.0	6010	3 Aug 11 8:40	Stacy
Magnesium - Total	< 5	mg/l	1.0	6010	3 Aug 11 8:40	Stacy
Sodium - Total	4720	mg/l	1.0	6010	3 Aug 11 8:40	Stacy
Potassium - Total	275	mg/l	1.0	6010	3 Aug 11 8:40	Stacy
Aluminum - Total	< 1	mg/l	0.10	6010	9 Aug 11 9:09	Stacy
Iron - Total	< 1	mg/l	0.10	6010	9 Aug 11 9:09	Stacy
Strontium - Total	85.0	mg/l	0.10	6010	9 Aug 11 9:09	Stacy
Titanium - Total	< 1	mg/l	0.10	6010	9 Aug 11 9:09	Stacy
Boron - Total	< 1	mg/l	0.10	6010	11 Aug 11 8:40	Stacy

RL = Method Reporting Limit

CERTIFICATION: MN LAB # 038-999-267

Elevated "Less Than Result" (<): @ = Due to sample matrix ! = Due to sample quantity


ND # ND-00016

= Due to sample concentration + = Due to extract volume

MVTL guarantees the accuracy of the analysis done on the sample submitted for testing. It is not possible for MVTL to guarantee that a test result obtained on a particular sample will be the same on any other sample unless all conditions affecting the sample are the same, including sampling by MVTL. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

Appendix D

Aerial Photo (March 30, 1988)

Appendix E

Boring Logs

EXHIBIT 5-E

LITHOLOGIC LOGS

Wells 10, 11, 12 and 13

- 0-1 Top soil, silty, clayey, sandy, brown, calcareous; with some limestone pebbles.
- 1-11 Silt, clayey, brownish-tan, slightly indurated, very dry, calcareous; with thin coarse-grained, clean silt lenses and a few small (less than .5 in.) iron oxide concretions. Abundant small gypsum crystals (less than .13 in. long). Some small, black flakes of organic plant material. Cannonball-Ludlow Formations.
- 11-14 Silt, as above, with some (less than 20%) very fine- to fine-grained sand interspersed.
- 14-30 Silt, as above, clayey, less sand than above interval, oxidized; with very fine-grained silty sand lenses and very few gypsum crystals.
- 30-41 Silt, very clayey, with some (less than 20%) very fine-grained sand interspersed, steel-gray (color change), moderately indurated; with fewer small gypsum crystals than above intervals.
- 41-59 Silt, as above, very clayey, with some (less than 20%) fine- to medium-grained sand interspersed in a silt and clay matrix.
- 59-65 Silt, as above, with abundant (more than 20%) fine- to medium-grained sand interspersed.
- 65-81 Silt, clayey, steel-gray to bluish, moderately indurated; with thin coarse-grained silt to very fine-grained sand lenses in an otherwise fine silt to clay matrix.
- 81-84 Clay, silty, steel-gray to bluish, moderately indurated, dense.
- 84-91 Siltstone, sandy, clayey, steel-gray to bluish, slightly indurated; with small fine-grained sand lenses and abundant (more than 20%) sand interspersed in the matrix.
- 91-110 Silt, clayey, bluish-gray, moderately indurated; with thin (less than 1 foot) mudstone lenses.
- 110-120 Silt, very clayey, steel-gray to bluish, moderately indurated, very dense. Cannonball-Ludlow Formations.

Wells 20 and 21

1	Top soil, silty,	sandy, clayey,	dark-brown,
	calcareous; with	some limestone	and granite
	pebbles.		

- 1-21 Silt, clayey, with minor amounts (less than 10%) of very fine-grained sand interspersed, brownish-tan, slightly indurated, calcareous, oxidized; with small iron oxide concretions and abundant small gypsum crystals. Cannonball-Ludlow Formations.
- 21-26 Silt, as above, steel-gray (color change).
- 26-49 Silt, clayey, with some (less than 20%) very fine- to medium-grained sand interspersed, steel-gray to bluish, slightly indurated; with very few small gypsum crystals and some thin (less than 1 foot) siltstone lenses.
- 49-53 Silt, as above, with abundant (more than 20%) fine- to medium-grained sand interspersed.
- 53-63 Silt, as above, clayey, less sand, with thin (less than 1 foot) siltstone to mudstone lenses.
- 63-80 Silt, very clayey, steel-gray to bluish, moderately indurated, very dense. Cannonball-Ludlow Formations.

Wells 30, 31, 32 and 33

- 0-1 Top soil, silty, sandy, brownish, calcareous; with some granite and limestone pebbles.
- 1-2 Pebble-loam (glacial till), silty, sandy, clayey, yellowish-brown, dry, calcareous.
- 2-31 Silt, clayey, with minor amounts (less than 10%) of very fine-grained sand interspersed, brownish-tan, slightly indurated, calcareous, oxidized; with small iron oxide concretions. Some small, black flakes organic plant material. Cannonball-Ludlow Formations.
- 31-44 Silt, clayey, steel-gray (color change), slightly indurated, calcareous; with small iron oxide concretions, thin coarse silt lenses, small gypsum crystals and gray to reddish-brown mottling.

- 44-61 Silt, as above, with some (less than 20%) fineto medium-grained sand interspersed.
- 61-65 Silt, as above, with abundant (more than 20%) fine- to medium-grained sand interspersed, dense.
- 65-76 Silt, as above, clayey, less sand, some thin (less than 1 foot) lenses of siltstone to mudstone.
- 76-80 Siltstone, sandy, clayey, steel-gray to bluish, slightly indurated; with small fine-grained sand lenses and abundant (more than 20%) fine-grained sand interspersed in the matrix.
- 80-92 Silt, clayey, steel-gray to bluish, moderately indurated, with some (less than 20%) very fine- to fine grained sand interspersed.
- 92-120 Silt, very clayey, steel-gray to bluish, moderately indurated, very dense. Cannonball-Ludlow Formations.
- Well 40
- 0-1 Top soil, sandy, silty, brownish-tan, calcareous; with some granite and limestone pebbles.
- 1-5 Pebble-loam (glacial till), sandy, silty, with detrital lignite and organic matter, yellowish-brown, very dry, calcareous.
- 5-22 Sand, very fine- to medium-grained, unconsolidated, with thin lenses of clay and detrital lignite, brownish-yellow, calcareous.
- 22-40 Silt, clayey, with minor amounts (less than 10%) very fine-grained sand interspersed, brownish-tan, slightly indurated, calcareous, oxidized; with small iron oxide concretions and small gypsum crystals; Cannonball-Ludlow Formations.
- 40-51 Silt, clayey, with minor amounts (less than 10%) of very fine-grained sand interspersed, steel-gray (color change), moderately indurated; with some reddish-brown mottling and some very thin (less than 6 inches) mudstone lenses.
- 51-58 Silt, as above, with abundant (more than 20%) fine-grained sand and thin silty-clay lenses.

- 58-62 Siltstone, sandy, clayey, steel-gray to bluish, moderately indurated; with small fine-grained sand lenses and abundant (more than 20%) sand interspersed in the matrix.
- 62-70 Silt, clayey, with some (less than 20%) fine- to medium-grained sand interspersed, steel-gray to bluish, moderately indurated; with thin (less than 2 feet) sandy lenses.
- 70-80 Silt, as above, very clayey, some (less than 10%) fine-grained sand interspersed; less sand than above interval.
- 80-120 Silt, as above, dark-steel-gray. Cannonball-Ludlow Formations.
- Wells 41, 42 and 43
- 0-1 Top soil, sandy, silty, dark-brown, calcareous; with some granite and limestone pebbles.
- 1-4 Pebble-loam (glacial till), sandy, silty, clayey, yellowish-brown, very dry, calcareous.
- 4-40 Silt, clayey, with some (less than 20%) very fine-grained sand interspersed, brownish-tan, unconsolidated, noncompacted, calcareous to 25 feet, oxidized; with small iron oxide concretions and abundant small gypsum crystals. Cannonball-Ludlow Formations.
- 40-51 Silt, clayey, with minor amounts (less than 10%) of very fine-grained sand interspersed, steel-gray (color change), moderately indurated; with some reddish-brown mottling and some very thin (less than 6 inches) mudstone lenses.
- 51-58 Silt, as above, with abundant (more than 20%) fine-grained sand and thin silty-clay lenses.
- 58-62 Siltstone, sandy, clayey, steel-gray to bluish, moderately indurated; with small fine-grained sand lenses and abundant (more than 20%) sand interspersed in the matrix.
- 62-70 Silt, clayey, with some (less than 20%) fine- to medium-grained sand interspersed, steel-gray to bluish, moderately indurated; with thin (less than 2 feet) sandy lenses.

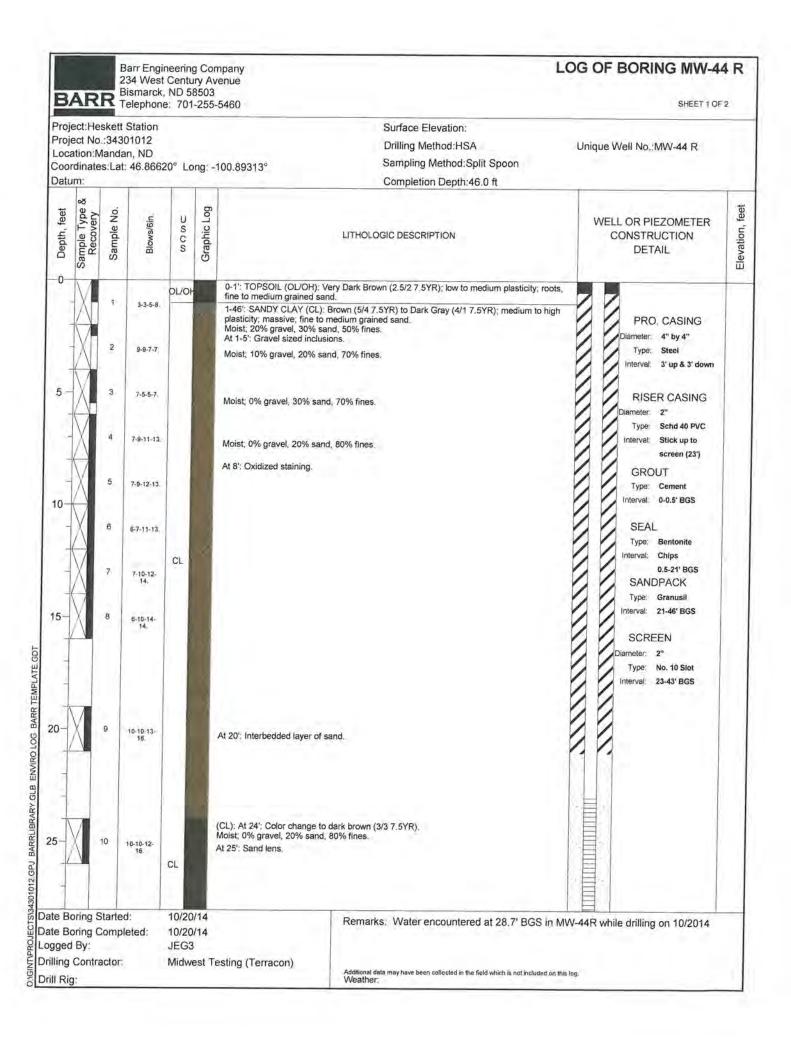
- 70-80 Silt, as above, very clayey, some (less than 10%) fine-grained sand interspersed; less sand than above interval.
- Wells 43 and 44
- 0-2 Top soil, clayey, silty, some sand, brownish-tan to light-gray, calcareous.
- 2-20 Silt, clayey, with some (less than 20%) fine-grained sand interspersed, brownish-tan, slightly indurated, very dry, calcareous; with small iron oxide concretions, abundant small gypsum crystals and occasional thin silt lenses. Cannonball-Ludlow Formations.
- 20-25 Silt, as above, very clayey, oxidized, with minor amounts (less than 10%) of fine-grained sand.
- 25-35 Silt, as above, dark-brownish-tan to bluish-gray (color change), with thin very fine-grained sand lenses.
- 35-60 Silt, clayey, with some (less than 20%) fine- to medium-grained sand interspersed, steel-gray to bluish, moderately indurated; with some indurated silty sand lenses. Cannonball-Ludlow Formations.

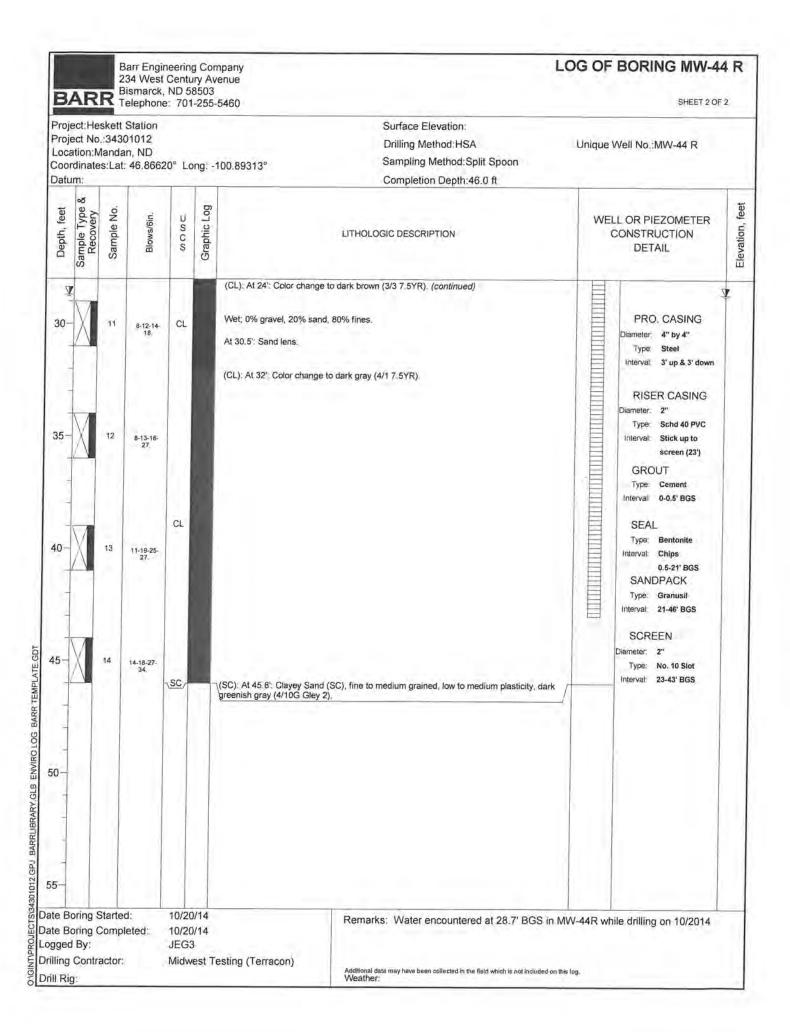
Wells 50, 51 and 52

- 0-4 Top soil, clayey, silty, very dark-brown.
- 4-10 Clay, silty, with some (less than 20%) fine-grained sand, dark-brownish-tan, soft, cohesive, wet, sticky; with some pebbles.
- 10-22 Silt, very clayey, with some (less than 20%) very fine-grained sand interspersed, brownish-tan, slightly indurated, calcareous, dense; with abundant small gypsum crystals and very thin silt and sand lenses; Cannonball-Ludlow Formations.
- 22-23 Sandstone, fine-grained, silty, indurated, oxidized, dark-brown.
- 23-30 Silt, very clayey, with some (less than 20%) very fine-grained sand interspersed, steel-gray (color change), moderately indurated; with thin medium grained sand lenses.

- 30-40 Silt, as above, very clayey, less sand than above interval, dark-steel-gray. Cannonball-Ludlow Formations.
- Wells 53 and 54
- 0-4 Top soil, clayey, silty, very dark-brown, wet, sticky.
- 4-15 Clay, silty, with some (less than 20%) fine- to medium-grained sand interspersed, brownish-tan, slightly indurated, dry, calcareous; with small iron oxide concretions, small gypsum crystals and occasional reddish-brown mottling; Cannonball-Ludlow Formations.
- 15-20 Sand, very fine-grained to medium-grained, silty, clayey, unconsolidated, yellowish-brown, oxidized.
- 20-30 Silt, clayey, with some (less than 20%) fine-grained sand interspersed, steel-gray (color change), slightly indurated; with clay and sand lenses, some small concretions and some small gypsum crystals.
- 30-45 Silt, as above, very clayey.
- 45-60 Silt, as above, clayey, brownish-gray, moderately indurated, some reddish-brown mottling. Cannonball-Ludlow Formations.
- Wells 55 and 56
- 0-5 Sandy-loam (glacial), with fine- to medium-grained sand, silty, calcareous; with small granite and limestone pebbles.
- 5-26 Clay, silty, with minor amounts (less than 10%) of very fine-grained sand, dark-brownish-tan, moderately indurated, brittle, very dry, calcareous; with small iron oxide concretions, small gypsum crystals and occasional thin sandstone laminae. Some small, black flakes of organic plant material. Cannonball-Ludlow Formations.
- 26-35 Clay, as above, very silty, sandy, brownish-tan, oxidized.

35-40 Silt, clayey, with some (less than 20%) very fine- to fine-grained sand interspersed, steel-gray (color change) moderately indurated; with small gypsum crystals and occasional clay lenses.

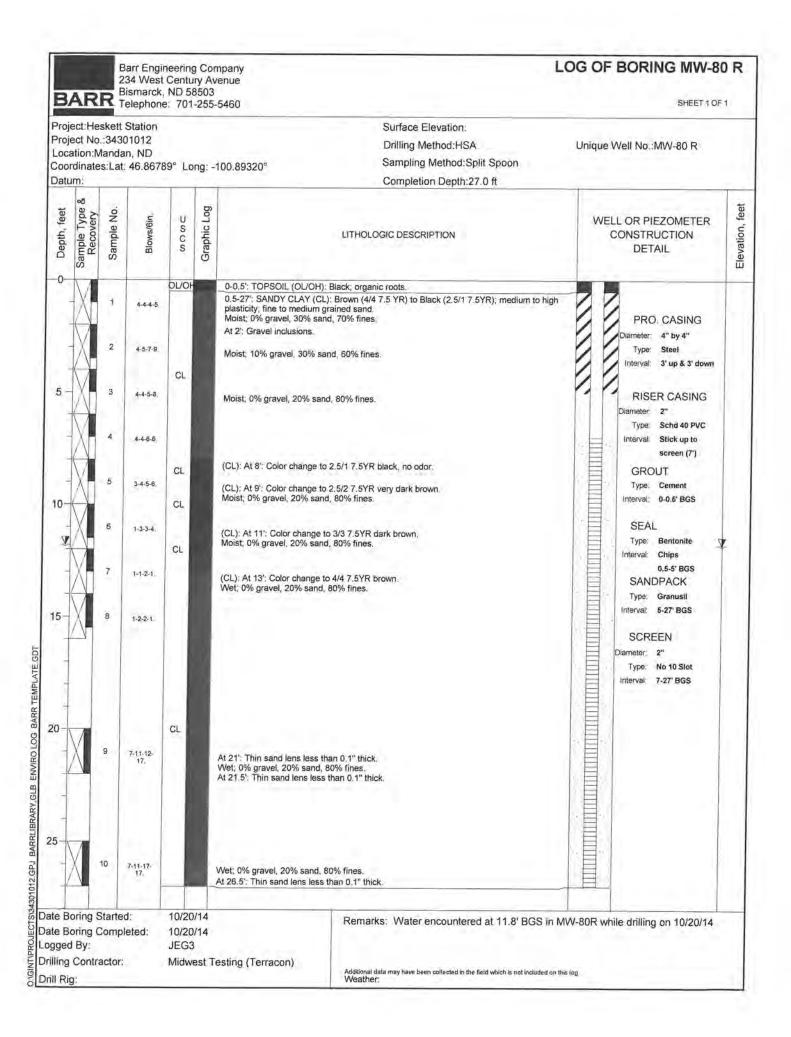

ة ريد


- 40-60 Silt, as above, with minor amounts (less than 10%) of fine-grained sand interspersed.
- 60-85 Silt, as above, clayey, less sand than above interval.
- 85-100 Silt, as above, very clayey, with minor amounts (less than 10%) of sand interspersed, light-gray. Cannonball-Ludlow Formations.
- Wells 60, 61 and 62
- 0-2 Top soil, silty, clayey, dark-brown to tanish-brown, calcareous.
- 2-25 Silt, very clayey, with some minor amounts (less than 10%) of very fine- to fine-grained sand interspersed, brownish-tan, slightly indurated, dry, calcareous; with abundant small gypsum crystals and thin silt and sand lenses; Cannonball-Ludlow Formations.
- 25-29 Silt, as above, with abundant (more than 20%) fine- to medium-grained sand interspersed.
- 29-36 Silt, as above, clayey, less sand than above interval, dark-brownish-tan, oxidized.
- 36-60 Silt, very clayey, with some (less than 20%) very fine-grained sand interspersed, steel-gray (color change), moderately indurated; with thin (less than 1 foot) sandy-silt lenses. Cannonball-Ludlow Formations.
- Well 70 0-2 Pebble-loam (glacial till), clayey, sandy, yellowish-brown, unconsolidated, damp, calcareous.
- 2-21 Silty, clayey, with some (less than 20%) fine-grained sand interspersed, brownish-tan, moderately indurated, very dry, calcareous, oxidized; with small iron oxide concretions and abundant small gypsum crystals. Cannonball-Ludlow Formations.

- 21-24 Shale, silty, steel- to dark-gray (color change), indurated, fissile, very dry; with occasional thin silt and sand lenses.
- 24-31 Silt, clayey, with abundant (more than 30%) sand, steel-gray, moderately indurated.
- 31-62 Silt, clayey, with some (less than 20%) very fine- to fine- grained sand interspersed, steel-gray, moderately indurated; with some small gypsum crystals and small iron oxide concretions.
- 62-76 Silt, as above, with some (less than 20%) fine-grained sand interspersed.
- 76-82 Silt, as above, with abundant (more than 20%) fine- to medium-grained sand.
- 82-100 Silt, as above, clayey, with some (less than 20%) fine-grained sand interspersed, dark-gray. Cannonball-Ludlow Formations.

The lithologic logs for wells 1-4 were described by personal from Water Supply Incorporated (WS), Bismarck, North Dakota. The wells were installed during a previous ground water investigation at Heskett Station.

Well WS 2 0-1 1-4	Top soil, silty, black. Pebble-loam(glacial till), silty, clayey, some cobbles, yellowish-brown.
4-7	Gravel, sand and rocks.
7-21	Sand, fine- to coarse-grained, some pebbles.
21-39	Clay, silty, sandy, yellowish-brown to gray.
39-52	Clay, silty, sandy, gray.
52-67	Sand, fine-grained, bluish, with some clay
	layers.
67-89	Clay, silty, sandy, brown to gray.
Wells WS 1,	A and IR
<u>0-1</u>	
1-4	Top soil, silty, black
T T	Clay, (glacial), silty, with pebbles, yellowish-brown.
4-21	Sand, fine- to medium-grained, yellowish-brown;
	with clay and silt lenses.
21-25	Clay, silty, yellowish-brown.
25-30	Sand, fine-grained, yellowish-brown, some
ана. 	indurated layers.
30-35	Clay, silty, yellowish-brown.
35-45	Sand, fine-grained, yellowish-brown.
45-50	Clay, silty, sandy, gray, about 50 percent shale.
50-56	Sand, fine-grained, with clay layers.
56-73	Clay, silty, sandy, gray.
WE11s WS 4, 4	A and AB
0-13	
0 10	Pebble-loam (glacial till), silty, sandy, with
13-23	some cobbles, yellowish-brown.
23-25	Sand, fine- to medium-grained, yellowish-brown.
25-27	Slay, silty, sandy, yellowish-brown.
27-30	Sandstone, indurated.
30-36	Clay, sandy, silty, gray.
36-52	Sand, fine-grained, gray.
50-52	Clay, silty, sandy, gray; with some sand layers.
Wells WS 3 an	d 3A
0-1	Top soil, silty, black.
1-12	Pebble-loam, clayey, silty, with some cobbles,
10.10	yellowish-brown.
12-16	Clay, silty, gray; with some shale layers.
16-18	Limestone, indurated.
18-23	Clay, silty, yellowish-brown; with some sand
00:00	layers.
23-44	Sand, fine- to medium-grained, gray; with some
14 50	clay layers.
44-50	Clay, silty, medium-gray.

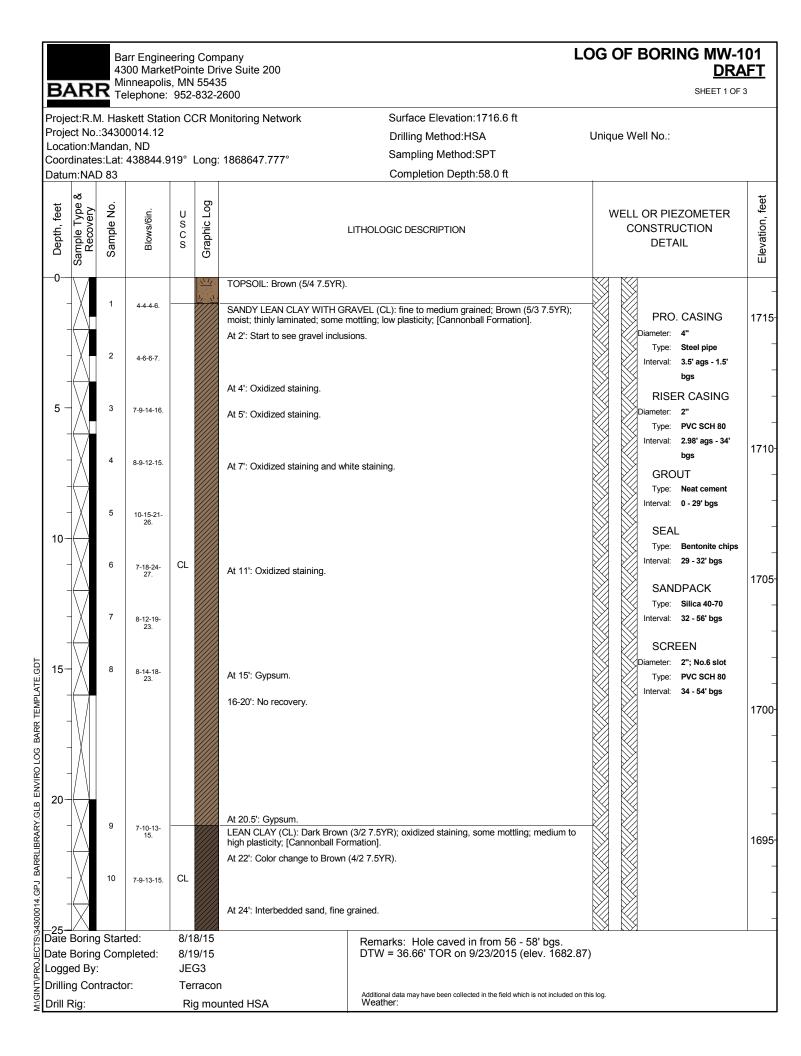


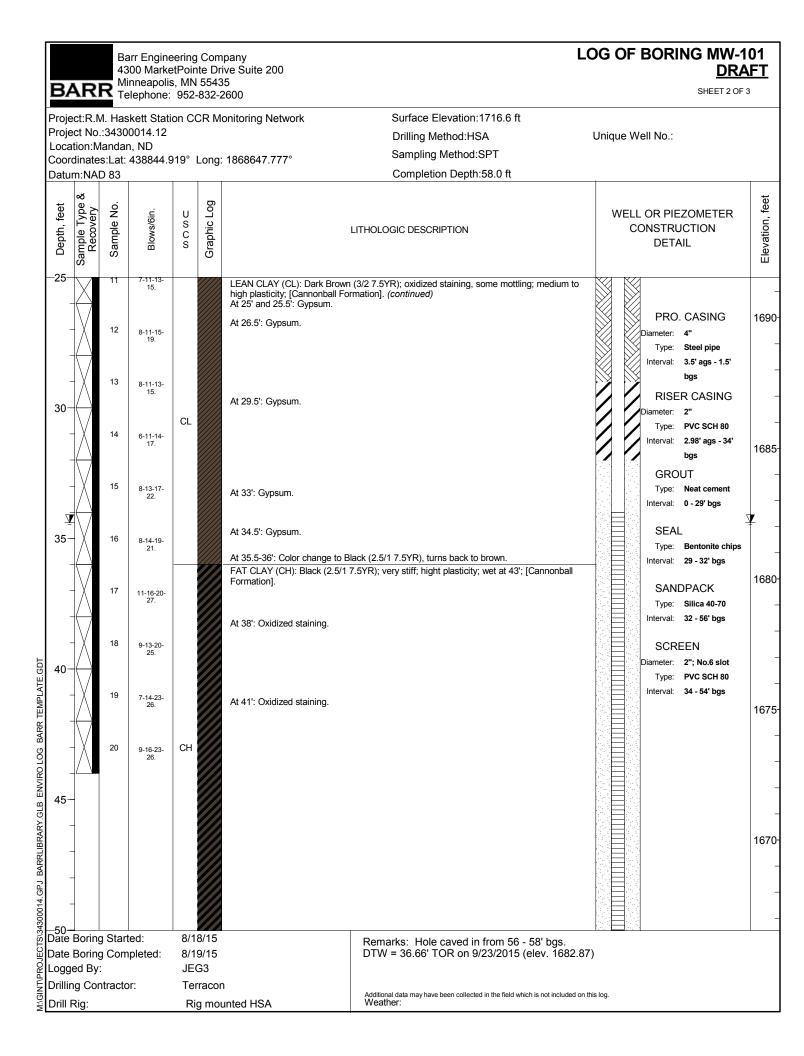
State of North Dakota BOARD OF WATER WELL CONTRACTORS

900 E. BOULEVARD • BISMARCK, NORTH DAKOTA 58505

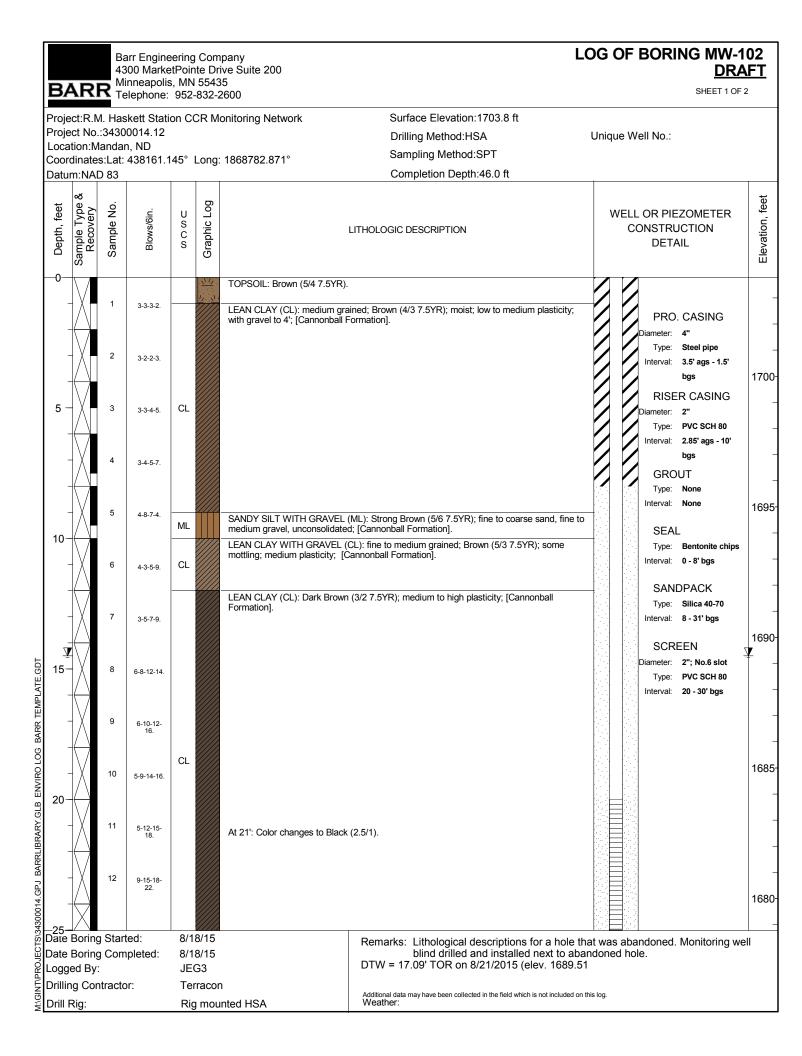
MONITORING WELL REPORT

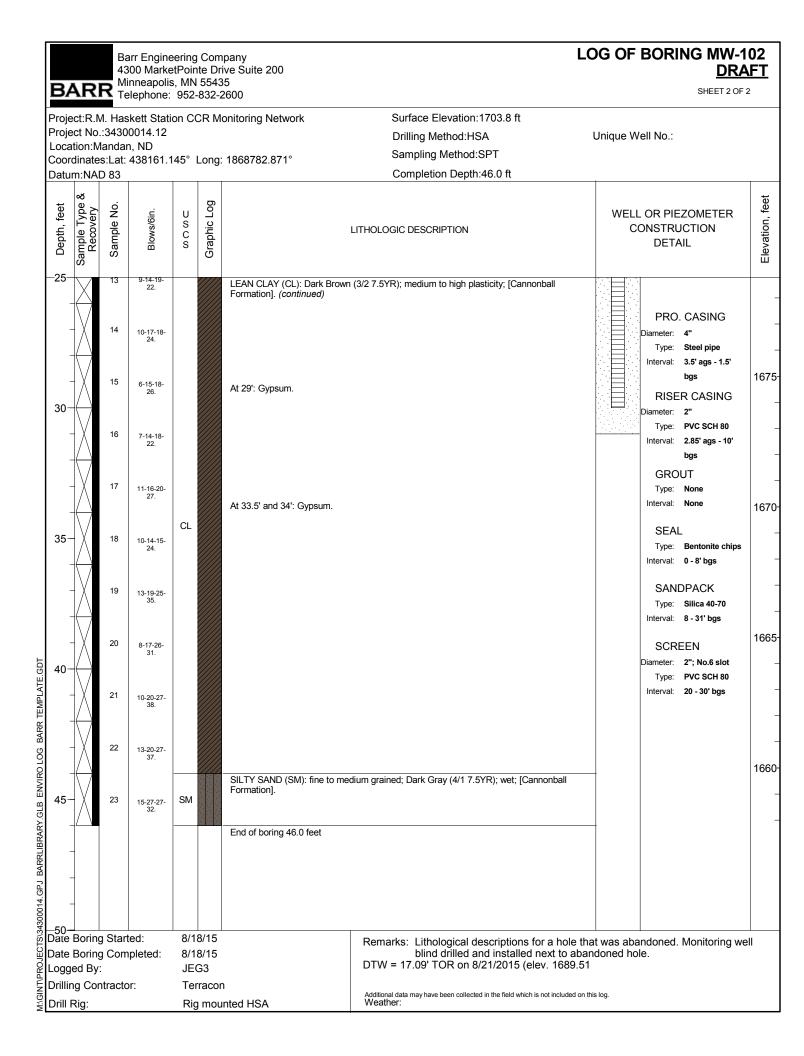
State law requires that this report be filed with the State Board of Water Well Cont	ractors within 30 days after completion or abandonment of the well.
1. WELL OWNER	Well head completion:
	24" above grade Other x
Name <u>MDU-Heskett Station</u>	If other, specify _4" x 4" x 5' steel cover
Address 2025 38 th Street	Was protective casing installed? ■ Yes □ No
Mandan, North Dakota	Was well disinfected upon completion? □ Yes ■ No
2. WELL LOCATION (MW-44R)	
Address (if in city) (see attached drawing)	5. WATER LEVEL
	Static water level 28.5 feet below surface
County Morton	If flowing: closed in pressure psi or ft. above land surface
<u>SE ¼ SE ¼ SW ¼</u> Sec. <u>10</u> Twp. <u>139</u> N. Rge. <u>81</u> W.	6. WELL LOG Depth (Ft.)
Lat. <u>46.86620</u> Long.: <u>-100.89313</u>	
Altitude:	Formation From To
3. METHOD DRILLED	Topsoil 0 0.5
Auger Other	Sandy lean clay 0.5 5
4. WELL CONSTRUCTION	Sandy fat clay 5 46
Diameter of Hole <u>8</u> inches Depth <u>46</u> feet	
Riser: ■ PVC □ Other	
■ Threaded □ Solvent □ Other	
Riser rating SDR Schedule40	
Diameter <u>2.0</u> inches	
From <u>+2</u> ft. to <u>23</u> ft.	
Was a well screen installed? ■ Yes □ No	
Material <u>Schedule 40 PVC</u> Diameter <u>2.0</u> inches	
Slot Size <u>#10</u> set from <u>23</u> feet to <u>43</u> feet	
Sand packed from21 ft to46 ft	(Use separate sheet if necessary)
Depth grouted from <u>1</u> ft to <u>21</u> ft	7. WAS THE HOLE PLUGGED OR ABANDONED?
Grouting Material	□ Yes ■ No
Bentonite Other	If so, how?
If other explain:	
One foot concrete collar at surface	8. REMARKS
	3 steel bumpers installed around well head
	9. DATE COMPLETED <u>10-21-14</u>
	10. CONTRACTOR CERTIFICATION
	This well was drilled under my jurisdiction and this report is true to the
	best of my knowledge. Midwest Testing Laboratory, Inc. 444
	Monitoring Well Contractor Certificate No.
	P.O. Box 2084, Bismarck, ND 58502-2084
	Address
	10-22-14
	Signature Date

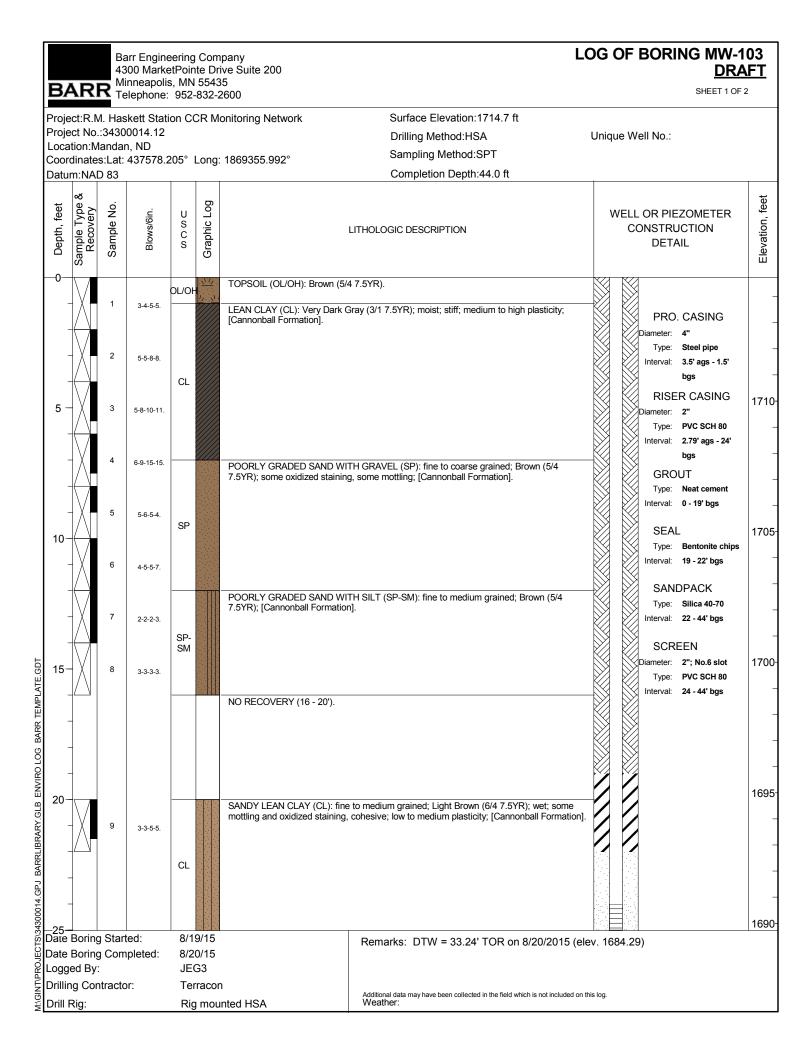

State of North Dakota BOARD OF WATER WELL CONTRACTORS

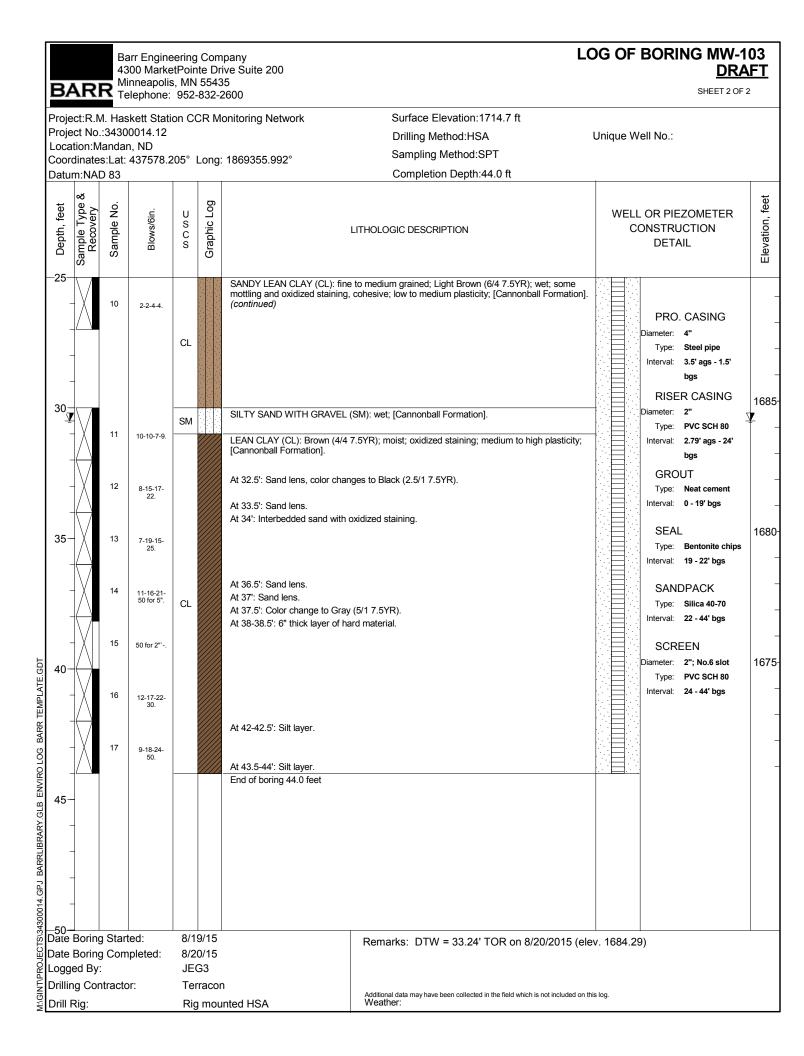

e

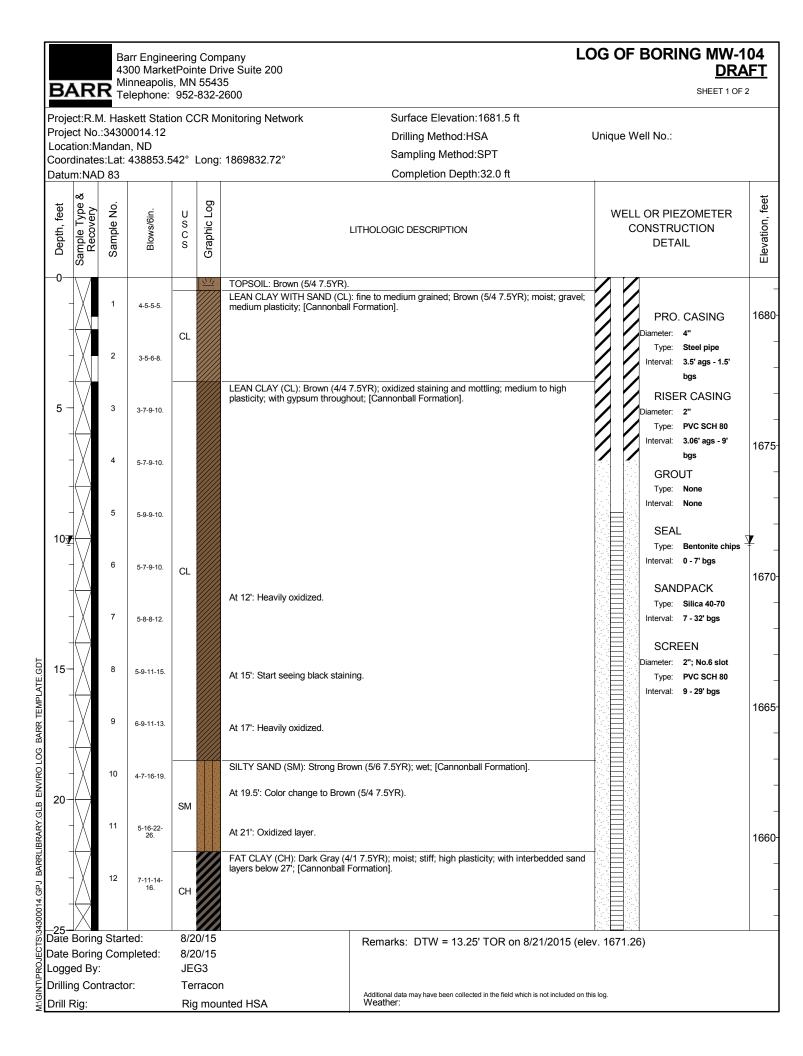
900 E. BOULEVARD • BISMARCK, NORTH DAKOTA 58505

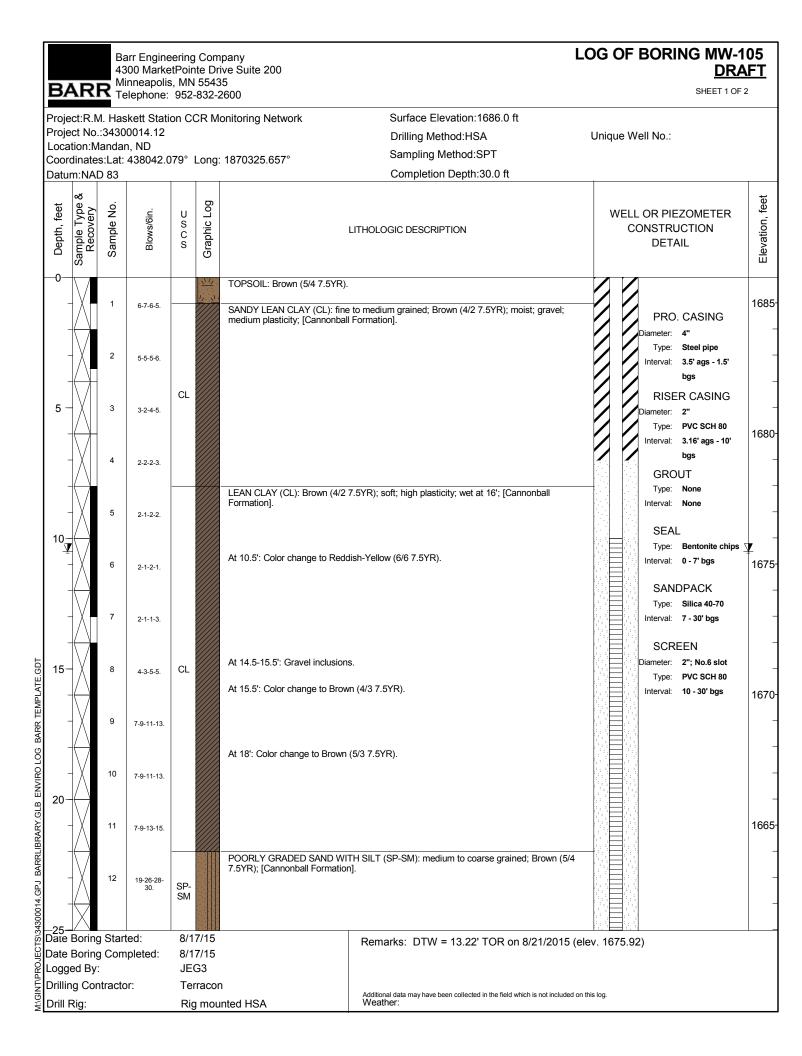

MONITORING WELL REPORT


State law requires that this report be filed with the State Board of Water Well Cont	ractors within 30 days after completion or abandonment of the well.
1. WELL OWNER	Well head completion:
	24" above grade Other x
Name MDU-Heskett Station	If other, specify <u>4" x 4" x 5' steel cover</u>
Address 2025 38 th Street	Was protective casing installed? ■ Yes □ No
Mandan, North Dakota	Was well disinfected upon completion? □ Yes ■ No
2. WELL LOCATION (MW-80R)	-
Address (if in city) (see attached drawing)	5. WATER LEVEL
	Static water level 12 feet below surface
County Morton	If flowing: closed in pressure psi or ft. above land surface
<u>NE ¼ SE ¼ SW ¼</u> Sec. <u>10</u> Twp. <u>139</u> N. Rge. <u>81</u> W.	6. WELL LOG Depth (Ft.)
Lat. <u>46.86789</u> Long.: <u>-100.89320</u>	
Altitude:	Formation To
3. METHOD DRILLED	Topsoil 0 0.5
Auger Other	Sandy lean clay 0.5 27
4. WELL CONSTRUCTION	
Diameter of Hole <u>8</u> inches Depth <u>27</u> feet	
Riser: ■ PVC □ Other	
■ Threaded □ Solvent □ Other	
Riser rating SDR Schedule40	
Diameter <u>2.0</u> inches	
From $+2.5$ ft. to 7 ft.	
Was a well screen installed? ■ Yes □ No	
Material <u>Schedule 40 PVC</u> Diameter <u>2.0</u> inches	
Slot Size <u>#10</u> set from <u>7</u> feet to <u>27</u> feet	
Sand packed from <u>5</u> ft to <u>27</u> ft	(Use separate sheet if necessary)
Depth grouted from <u>1</u> ft to <u>5</u> ft	7. WAS THE HOLE PLUGGED OR ABANDONED?
Grouting Material	🗆 Yes 🔳 No
Bentonite Other	If so, how?
If other explain:	
One foot concrete collar at surface	8. REMARKS
	3 steel bumpers installed around well head
	9. DATE COMPLETED 10-21-14
	10. CONTRACTOR CERTIFICATION
	This well was drilled under my jurisdiction and this report is true to the
······································	best of my knowledge.
	Midwest Testing Laboratory, Inc. 444
	Monitoring Well Contractor Certificate No.
	P.O. Box 2084, Bismarck, ND 58502-2084
	Address
	MAJAN 10-22-14
	Signature Date Date

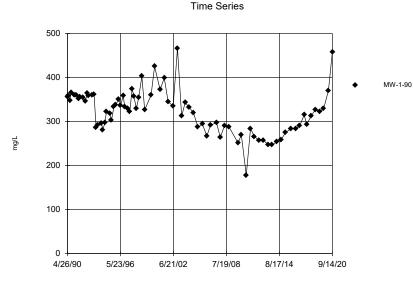





4300 M	gineering Company arketPointe Drive Suite 200 polis, MN 55435		LOG OF BORING MW-101 <u>DRAFT</u>			
BARR Minnea Teleph	one: 952-832-2600		SHEET 3 OF 3			
Project No.:34300014 Location:Mandan, ND		Surface Elevation:1716.6 ft Drilling Method:HSA Sampling Method:SPT Completion Depth:58.0 ft	Unique Well No.:			
Depth, feet Sample Type & Recovery Sample No.	s s s c s Graphic Log	LITHOLOGIC DESCRIPTION	WELL OR PIEZOMETER CONSTRUCTION DETAIL			
-50 	CH End of boring 58.0 feet	I 7.5YR); very stiff; hight plasticity; wet at 43'; [Cannonball	PRO. CASING 1665- Diameter: 4" Type: Steel pipe - Interval: 3.5' ags - 1.5' bgs - RISER CASING - Diameter: 2" Type: PVC SCH 80 - Interval: 2.98' ags - 34' bgs 1660- GROUT - Type: Neat cement Interval: 0 - 29' bgs			
60			SEAL Type: Bentonite chips Interval: 29 - 32' bgs SANDPACK Type: Silica 40-70 Interval: 32 - 56' bgs SCREEN Diameter: 2"; No.6 slot Type: PVC SCH 80 Interval: 34 - 54' bgs			
Date Boring Started: Date Boring Complete Logged By:	8/18/15 d: 8/19/15 JEG3	Remarks: Hole caved in from 56 - 58' bgs. DTW = 36.66' TOR on 9/23/2015 (elev. 1682	.87)			
Drilling Contractor: Drill Rig:	Terracon Rig mounted HSA	Additional data may have been collected in the field which is not included on this log. Weather:				

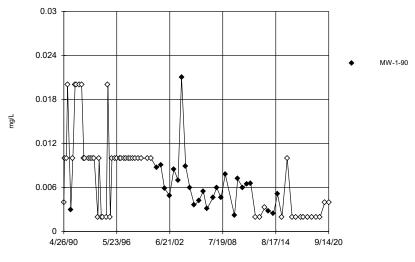


4300	Engineering Company MarketPointe Drive S		LOG OF BORING MW-104 <u>DRAFT</u>			
BARR Minn Telep	eapolis, MN 55435 phone: 952-832-2600		SHEET 2 OF 2			
Project:R.M. Haske Project No.:343000 Location:Mandan, N	tt Station CCR Monito 14.12	Drilling Method:HSA	Unique Well No.:			
Depth, feet Sample Type & Recovery Sample No.	Blows/6in. ∽ ∩ ∽ ⊂ Graphic Log	LITHOLOGIC DESCRIPTION	WELL OR PIEZOMETER CONSTRUCTION DETAIL			
	5-12-16- 17. FAT laye 3-12-16- 21. CH 3-12-16- 20.	CLAY (CH): Dark Gray (4/1 7.5YR); moist; stiff; high plasticity; with interbedded sa s below 27'; [Cannonball Formation]. <i>(continued)</i>	PRO. CASING Diameter: 4" Type: Steel pipe Interval: 3.5' ags - 1.5' bgs RISER CASING			
		r notes: sluff. of boring 32.0 feet	Diameter: 2" Type: PVC SCH 80 Interval: 3.06' ags - 9' bgs GROUT Type: None Interval: None SEAL Type: Bentonite chips Interval: 0 - 7' bgs			
40			SANDPACK Type: Silica 40-70 Interval: 7 - 32' bgs SCREEN Diameter: 2"; No.6 slot Type: PVC SCH 80 Interval: 9 - 29' bgs			
45						
Date Boring Started Date Boring Comple Logged By:		Remarks: DTW = 13.25' TOR on 8/21/2015	(elev. 1671.26)			
Drilling Contractor: Drill Rig:	Terracon Rig mounted	Additional data may have been collected in the field which is not included Weather:	Additional data may have been collected in the field which is not included on this log. Weather:			

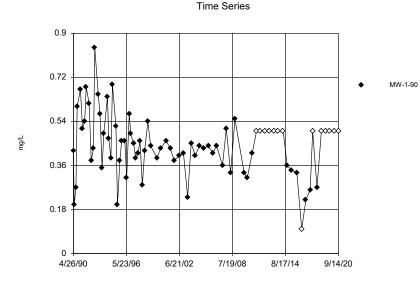


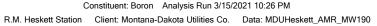
		43		tPoin	te Dr	ive Suite 200		LOG OF	BORING MW-10 DRA	
BA	٩R	R Te	inneapolis elephone:	952-	832-	2600			SHEET 2 OF 2	2
Proje Loca Coor	ect No. tion:M	:3430 andar s:Lat:	0014.12 n, ND			onitoring Network : 1870325.657°	Surface Elevation:1686.0 ft Drilling Method:HSA Sampling Method:SPT Completion Depth:30.0 ft	Unique W	/ell No.:	
Depth, feet	Sample Type & Recovery	Sample No.	Blows/6in.	U S C S	Graphic Log		LITHOLOGIC DESCRIPTION		OR PIEZOMETER ONSTRUCTION DETAIL	Elevation, feet
-25- - - - - - - - - - - - - - - - - - -		13	15-25-31- 40. 10-15-18- 30. 11-16-22- 32.	CL		FAT CLAY (CL): Dark Brown (Formation]. At 26': Color change to Gray (End of boring 30.0 feet	3/4 7.5YR); high plasticity; sand lens at 26.5'; [Cannonba		PRO. CASING Diameter: 4" Type: Steel pipe Interval: 3.5' ags - 1.5' bgs RISER CASING Diameter: 2" Type: PVC SCH 80	1660-
35-	-								Interval: 3.16' ags - 10' bgs GROUT Type: None Interval: None SEAL Type: Bentonite chips Interval: 0 - 7' bgs SANDPACK Type: Silica 40-70 Interval: 7 - 30' bgs SCREEN	
40- 40-									Diameter: 2"; No.6 slot Type: PVC SCH 80 Interval: 10 - 30' bgs	
Date	Boring Boring Boring ed By:	g Com	ted: pleted:		7/15 7/15 73		Remarks: DTW = 13.22' TOR on 8/21/2015	 (elev. 1675.92	2)	
Drillir	Drilling Contractor: Terracon Drill Rig: Rig mounted HSA							d on this log.		

Appendix F

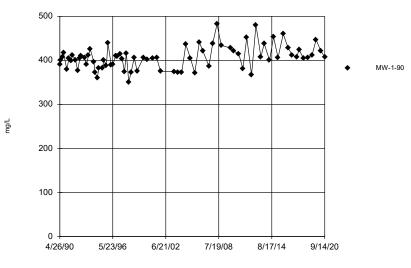

MW1-90 Time Series Plots

Sanitas™ v.9.6.28 For the statistical analyses of ground water by Barr Engineering Company only. UG

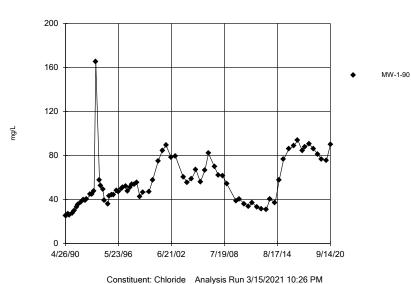

Constituent: Alkalinity, bicarbonate Analysis Run 3/15/2021 10:26 PM R.M. Heskett Station Client: Montana-Dakota Utilities Co. Data: MDUHeskett_AMR_MW190 Sanitas[™] v.9.6.28 For the statistical analyses of ground water by Barr Engineering Company only. UG Hollow symbols indicate censored values.


Time Series

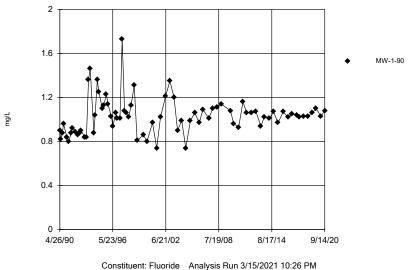
Constituent: Arsenic Analysis Run 3/15/2021 10:26 PM R.M. Heskett Station Client: Montana-Dakota Utilities Co. Data: MDUHeskett_AMR_MW190


Sanitas¹⁰ v.9.6.28 For the statistical analyses of ground water by Barr Engineering Company only. UG Hollow symbols indicate censored values.

Sanitas™ v.9.6.28 For the statistical analyses of ground water by Barr Engineering Company only. UG

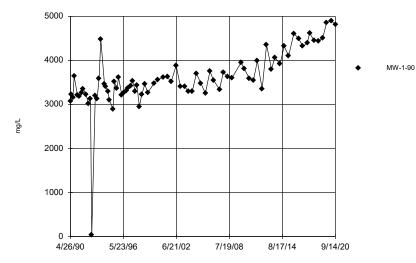

Time Series

Constituent: Calcium Analysis Run 3/15/2021 10:26 PM R.M. Heskett Station Client: Montana-Dakota Utilities Co. Data: MDUHeskett_AMR_MW190 Sanitas™ v.9.6.28 For the statistical analyses of ground water by Barr Engineering Company only. UG

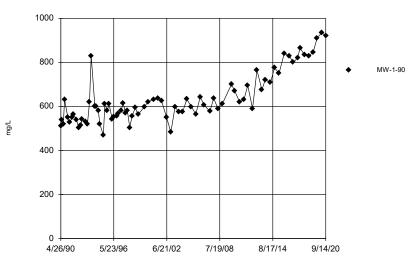

Sanitas™ v.9.6.28 For the statistical analyses of ground water by Barr Engineering Company only. UG

Time Series

Time Series


R.M. Heskett Station Client: Montana-Dakota Utilities Co. Data: MDUHeskett AMR MW190

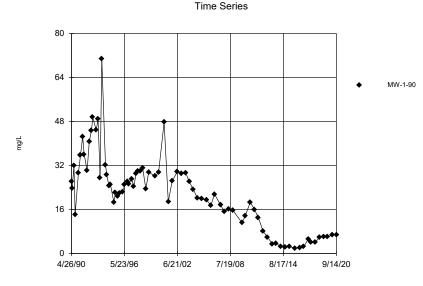
R.M. Heskett Station Client: Montana-Dakota Utilities Co. Data: MDUHeskett_AMR_MW190


Sanitas™ v.9.6.28 For the statistical analyses of ground water by Barr Engineering Company only. UG

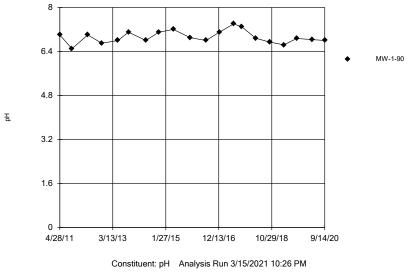
Time Series

Constituent: Hardness Analysis Run 3/15/2021 10:26 PM R.M. Heskett Station Client: Montana-Dakota Utilities Co. Data: MDUHeskett_AMR_MW190 Sanitas™ v.9.6.28 For the statistical analyses of ground water by Barr Engineering Company only. UG

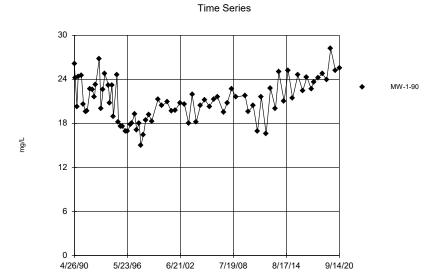
Time Series



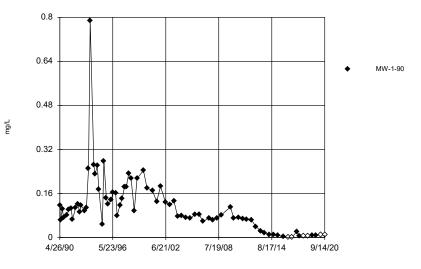
Constituent: Magnesium Analysis Run 3/15/2021 10:26 PM R.M. Heskett Station Client: Montana-Dakota Utilities Co. Data: MDUHeskett_AMR_MW190


Sanitas™ v.9.6.28 For the statistical analyses of ground water by Barr Engineering Company only. UG

Sanitas[™] v.9.6.28 For the statistical analyses of ground water by Barr Engineering Company only. UG



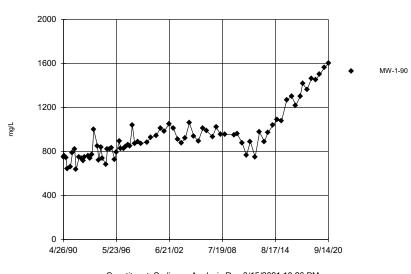
Constituent: Nitrogen Analysis Run 3/15/2021 10:26 PM R.M. Heskett Station Client: Montana-Dakota Utilities Co. Data: MDUHeskett_AMR_MW190


R.M. Heskett Station Client: Montana-Dakota Utilities Co. Data: MDUHeskett_AMR_MW190

Sanitas™ v.9.6.28 For the statistical analyses of ground water by Barr Engineering Company only. UG

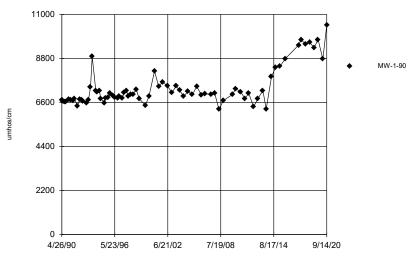
Constituent: Potassium Analysis Run 3/15/2021 10:26 PM R.M. Heskett Station Client: Montana-Dakota Utilities Co. Data: MDUHeskett_AMR_MW190 Sanitas^w v.9.6.28 For the statistical analyses of ground water by Barr Engineering Company only. UG Hollow symbols indicate censored values.

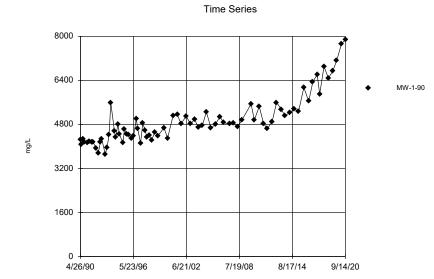
Time Series



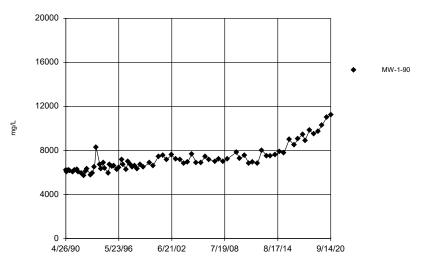
Constituent: Selenium Analysis Run 3/15/2021 10:26 PM R.M. Heskett Station Client: Montana-Dakota Utilities Co. Data: MDUHeskett_AMR_MW190

Sanitas™ v.9.6.28 For the statistical analyses of ground water by Barr Engineering Company only. UG




Time Series

Constituent: Sodium Analysis Run 3/15/2021 10:26 PM R.M. Heskett Station Client: Montana-Dakota Utilities Co. Data: MDUHeskett AMR MW190


Constituent: Specific conductance Analysis Run 3/15/2021 10:26 PM R.M. Heskett Station Client: Montana-Dakota Utilities Co. Data: MDUHeskett AMR MW190

Constituent: Sulfate Analysis Run 3/15/2021 10:26 PM R.M. Heskett Station Client: Montana-Dakota Utilities Co. Data: MDUHeskett_AMR_MW190 Sanitas[™] v.9.6.28 For the statistical analyses of ground water by Barr Engineering Company only. UG

Time Series

Constituent: TDS Analysis Run 3/15/2021 10:26 PM R.M. Heskett Station Client: Montana-Dakota Utilities Co. Data: MDUHeskett_AMR_MW190

Appendix G

Geochemist's Workbench Results

\$0. * * C/e 8 3 2 80 *Co. No *K 0 В 60 60 ** ON 50% S 8 40 40 B 20 20 S S 3 3 \$ 8 8 8 Ca⁺⁺ < > CI-

% meq/kg

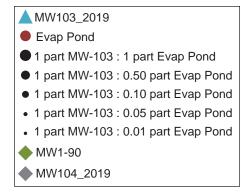
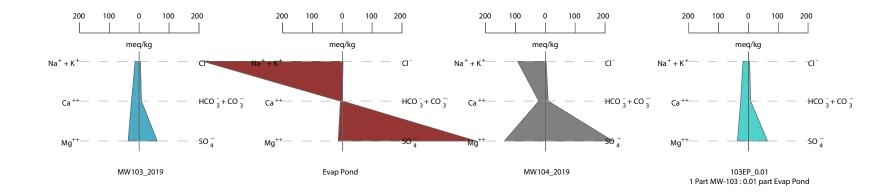



Figure G.1 Piper Plot for Mixing Evaporation Pond into MW-103 R.M. Heskett Station Alternative Source Demonstration March 2021 Event Montana Dakota Utilities Mandan, North Dakota

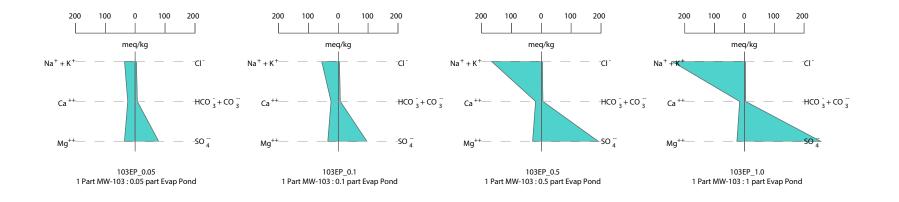


Figure G.2 Stiff Plot for Mixing Evaporation Pond into MW-103 R.M. Heskett Station Alternative Source Demonstration March 2021 Event Montana Dakota Utilities Mandan, North Dakota

Descrip	tion	Upgradient	Evap Pond	Mixing Evap Pond into MW-103					Downgradient	
Sample ID		MW103	Evap Pond	1:0.01	1:0.05	1:0.1	1:0.5	1:1	MW1-90	MW-104
HCO3-	mg/l	457	20	452.7	436.2	417.3	311.3	238.5	259	591
Ca++	mg/l	530	125	526	510.7	493.2	395	327.5	453	448
CI-	mg/l	142	79.8	141.4	139	136.3	121.3	110.9	57.4	87.6
F-	mg/l	0.15	0.1	0.1495	0.1476	0.1455	0.1334	0.125	1.07	0.55
Mg++	mg/l	458	165	455.1	444.1	431.4	360.4	311.5	775	1700
рН	SU	6.5	10.7	6.502	6.511	6.523	6.643	6.854	7.1	6.8
K+	mg/l	18.8	734	25.88	52.87	83.85	257.3	376.6	25.2	37
Na+	mg/l	311	10600	412.9	801.2	1247	3742	5458	1090	2160
SO4	mg/l	2930	22100	3120	3843	4674	9323	12520	5350	11100
TDS	mg/kg	4860	34000	5152	6265	7541	14660.2	19527.5	7910	17700

Table G.1 Geochemist's Workbench Mixing Model Results