

2023 Annual Groundwater Monitoring and Corrective Action Report

Scrubber Ponds

Lewis & Clark Station Sidney, Montana

Prepared for Montana Dakota Utilities

January 2024

2023 Annual Groundwater Monitoring and Corrective Action Report

Scrubber Ponds

Lewis & Clark Station Sidney, Montana

January 2024

Contents

E>	recutive	Summary	. i۱
1	In	Summary itroduction	
	1.1	Purpose	1
	1.2	Status of the Groundwater Monitoring and Corrective Action Program	1
	1.3	CCR Rule Requirements	2
2	G	roundwater Monitoring and Corrective Action Program	3
	2.1	Groundwater Monitoring System	3
	2.1.1	Documentation	3
	2.1.2	Changes to Monitoring System	3
	2.2	Monitoring and Analytical Results	3
	2.2.1	Appendix III Background Concentration Levels	3
	2.2.2	Appendix IV Groundwater Protection Standards (GWPS)	3
	2.2.3	Monitoring Actions and Results	4
	2.2.4	Groundwater Flow	4
	2.3	Corrective Action Program Status	[
	2.4	Key Actions Completed/Problems Encountered	5
	2.5	Key Activities for Upcoming Year	5
3	Re	eferences	6

List of Tables

Table 1	CCR Rule Requirements
Table 2	Background Concentration Levels (Appendix III)
Table 3	Groundwater Protection Standards (Appendix IV)
Table 4	Groundwater Analytical Data Summary
Table 5	Summary of Statistical Results – April 2023 Assessment Monitoring

List of Figures

Figure 1	Groundwater Monitoring System
Figure 2	Groundwater Elevation Contours, Spring 2023

List of Appendices

Appendix A	Laboratory Reports and Field Sheets
Appendix B	Alternative Source Demonstrations – Scrubber Ponds
Appendix C	Groundwater Flow Rate Calculations

Acronyms

Acronym	Description
ACM	Assessment of Corrective Measure
ASD	Alternative Source Demonstration
CCR	Coal Combustion Residuals
CFR	Code of Federal Regulations
EPA	Environmental Protection Agency
FGD	Flue-Gas Desulfurization
GWPS	Groundwater Protection Standard
MCL	Maximum Contaminant Level
MDU	Montana Dakota Utilities Company
RICE	Reciprocating Internal Combustion Engine
RL	Reporting Limit
RSL	Regional Screening Level
SSI	Statistically Significant Increase
TSP	Temporary Storage Pad

Executive Summary

This summary provides an overview of the Groundwater Monitoring & Corrective Action Program status as required by 40 CFR 257.94(e)(6). The Site operated under the assessment monitoring program described in § 257.95 at the start of the 2023 annual reporting period through spring 2023. Lithium was detected at statistically significant levels above the groundwater protection standards (GWPS) for the spring semiannual monitoring event at all downgradient monitoring wells. An alternative source demonstration showed that the elevated lithium levels resulted from a source other than the CCR unit for the fall 2022 and spring 2023 monitoring events.

The CCR unit was decommissioned by removal of CCR in 2022, and the site was regraded to establish positive drainage and minimize infiltration. Decommissioning construction was complete October 24, 2022. The coal-fired generating plant was demolished, leaving only gas-fired reciprocating internal combustion engine (RICE) generation at the site. Assessment monitoring continued through spring 2023 until it was demonstrated that closure by removal requirements (§ 257.102(c) Closure by removal of CCR) were met, at which time assessment monitoring was terminated. No remedial activities were initiated in 2023.

Closure of the Scrubber Ponds was certified by a Qualified Professional Engineer on December 18, 2023, based on the results of the fall 2022 and spring 2023 monitoring results, both events conducted after closure construction was completed. Since the site has been closed under § 257.102(c) Closure by Removal of CCR, groundwater quality monitoring is no longer required under the rule and groundwater quality monitoring is not being done at this time. This is the last Groundwater Monitoring & Corrective Action Report to be prepared for the Lewis & Clark Station CCR units under the current CCR Rule.

1 Introduction

Montana-Dakota Utilities Co. (MDU) owns and operates Lewis & Clark Station near Sidney, Montana (Figure 1). The coal-fired electrical generation unit was retired in 2021 and demolished by mid-2022. A gas-fired reciprocating internal combustion engine (RICE) generation unit continues to operate on the property. Coal combustion residuals (CCR) were managed in two storage ponds at the property and regulated by the US Environmental Protection Agency (EPA) CCR Rule (40 CFR Parts 257 and 261, Disposal of Coal Combustion Residuals from Electric Utilities), referred to herein as the CCR Rule. The storage ponds—which comprised a single, multi-unit CCR surface impoundment under the CCR Rule—were named the East and West Scrubber Ponds, or collectively the Scrubber Ponds.

The Scrubber Ponds stored sluiced flue-gas desulfurization (FGD) solids. A Temporary Storage Pad (TSP) received material from the Scrubber Ponds for conditioning before disposal. Monitoring and reporting requirements in the CCR Rule did not apply to the decommissioned TSP because it qualified for the CCR pile exemptions in the CCR Rule while it was still in place. The former TSP, which was located in the same location as the current TSP, is closed.

The coal-fired Lewis & Clark generating plant was retired on March 31, 2021. Decommissioning and demolition of the plant and supporting facilities were substantially completed October 24, 2022. CCR solids and impacted liquids removal from the CCR unit was complete June 24, 2022. Regrading of the Scrubber Ponds area was completed September 19, 2022.

The locations of the former Scrubber Ponds and TSP are shown on Figure 1. This 2023 Annual Groundwater Monitoring and Corrective Action Report (Annual Report) describes the groundwater monitoring program and results for the Scrubber Ponds at MDU's Lewis & Clark Station.

1.1 Purpose

As stated in Section § 257.90(e), the purpose of the Annual Report is to:

- Document the status of monitoring and corrective action program for the CCR unit
- Summarize key actions completed
- Describe any problems encountered
- Discuss actions to resolve the problems
- Project key activities for the upcoming year

1.2 Status of the Groundwater Monitoring and Corrective Action Program

The Scrubber Ponds were in assessment monitoring until the spring 2023 monitoring results were received and analyzed, and a certification of closure was completed on December 18, 2023. Baseline groundwater monitoring was completed in 2017, as documented in the 2017 Annual Groundwater Monitoring and Corrective Action Report, Scrubber Pond and Temporary Storage Area (Barr, 2018a). Statistical evaluation of detection monitoring program results began on October 17, 2017, and continued

until April 14, 2018 (Barr, 2019a). A statistically significant increase (SSI) over background levels was determined for constituents listed in appendix III to the CCR Rule in 2018, so the site transitioned to an assessment monitoring program (§ 257.95(a)) on April 15, 2018. Assessment monitoring continued through spring 2023, after which time the CCR unit was closed under the provisions of § 257.102(c) Closure by Removal of CCR.

It was determined on January 2, 2019, that the initial assessment monitoring event resulted in detections of lithium and selenium at statistically significant levels above applicable groundwater protection standards (GWPS). An assessment of corrective measures (ACM) was initiated on April 2, 2019, and completed on August 29, 2019 (Barr, 2019b). Selection of remedy, as described in § 257.97, was initiated after completion of the ACM, subject to the ongoing evaluation of a potential alternative source. An ASD showing that lithium and selenium levels above GWPS are attributable to a source other than the CCR unit was completed on January 28, 2021 (Barr, 2021), and the selection of remedy was terminated. The Site returned to assessment monitoring after termination of the selection of remedy.

1.3 CCR Rule Requirements

This Annual Report has been prepared in accordance with the requirements of § 257.90(e) of the CCR Rule, as outlined in Table 1.

2 Groundwater Monitoring and Corrective Action Program

This section documents the status of the groundwater monitoring and corrective action program for the CCR unit for 2023. The groundwater monitoring system is described in Section 2.1, monitoring and analytical results are described in Section 2.2, the corrective action program status is described in Section 2.3, key actions completed and problems encountered are described in Section 2.4, and key activities planned for 2024 are described in Section 2.5.

2.1 Groundwater Monitoring System

2.1.1 Documentation

Figure 1 is an aerial image of the CCR unit and all upgradient (or background) and downgradient monitoring wells in the groundwater monitoring system, including well identification numbers, that are part of the groundwater monitoring program, as required by § 257.90(e)(1). The coal-fired plant, Scrubber Ponds, and the TSP were removed and the site regraded in 2022, so the aerial imagery no longer represents current conditions. Further details on the groundwater monitoring system are included in Groundwater Monitoring System Certification, Lewis & Clark Station (Barr, 2018b).

2.1.2 Changes to Monitoring System

The Scrubber Ponds were closed in accordance with the requirements of CCR Rule § 257.102(c) following the completion of an alternative source demonstration for lithium for the spring 2023 monitoring results (Barr, 2023). There were no changes to the monitoring system in 2023.

2.2 Monitoring and Analytical Results

The background concentrations, GWPS, groundwater sampling activities, and analytical results are described in the following sections.

2.2.1 Appendix III Background Concentration Levels

Background concentration levels established in accordance with § 257.94(b) are presented in Table 2 in compliance with § 257.95(d)(3).

2.2.2 Appendix IV Groundwater Protection Standards (GWPS)

In compliance with CCR Rule § 257.95(d)(2), GWPS were established for all appendix IV constituents detected in groundwater. GWPS are defined as the highest of the following values: the applicable maximum contaminant level (MCL); or, in the case of cobalt, lead, lithium and molybdenum, the default GWPS values established under the CCR Rule; or, for any constituent, a site-specific background concentration established from background sampling. Background levels of lithium and selenium at the site were demonstrated to be higher than the default GWPS and MCL, respectively. Thus, site-specific GWPS were determined in accordance with the statistical methods established in § 257.93(f-g) and the Statistical Method Selection Certification (Barr, 2017) using the monitoring results from samples collected

from upgradient/background monitoring wells. The background concentrations for other appendix IV parameters are lower than the default GWPS or MCL for each parameter. The site-specific GWPS values are presented in Table 3.

Lithium groundwater monitoring results for upgradient samples (from monitoring wells MW-103, MW-110, and MW-119) collected during the baseline period defined by the CCR Rule (ending in October 2017) were reported as non-detect with a reporting limit (RL) of 100 μ g/L; therefore, the initial background lithium concentration level was set as the RL of 100 μ g/L for lithium. On July 30, 2018, EPA promulgated for the first time a default GWPS (40 μ g/L) for lithium in the agency's Phase I revision to CCR Rule § 257.95(h)(2).

After the Phase I CCR Rule revision was published, all wells in the groundwater monitoring system were sampled and analyzed three times for lithium concentrations with a lower RL of 40 μ g/L. A lithium GWPS was determined in 2018 using the upgradient lithium monitoring results from the three events that used the lower RL (a total of nine samples; Barr, 2020). Five additional samples from each well were analyzed for lithium in 2019 and 2020. With eight baseline events (the minimum number specified for baseline monitoring in § 257.94(b)) at the lower RL, the lithium GWPS was recalculated in 2020 (Barr, 2021). The lithium GWPS was again recalculated in March 2021 to match the update schedule for other parameters, as described in the 2021 annual report (Barr, 2022).

2.2.3 Monitoring Actions and Results

The following actions and results occurred during assessment monitoring in 2023:

- A total of seven samples (seven monitoring wells during one sampling event) were collected from the CCR groundwater monitoring system. Samples were analyzed for the constituents listed in appendices III and IV (Part 257). The assessment monitoring sampling event (April 24, 2023) was consistent with the requirements of § 257.95(b) and § 257.95(d)(1).
- The monitoring results for the event were statistically analyzed to determine if any constituent was detected at statistically significant levels above the GWPS.
- Lithium was detected at statistically significant levels above the GWPS for the spring 2023 monitoring event at all downgradient monitoring wells.

Sampling dates are reported on the field data sheets and analytical laboratory reports in Appendix A. A summary of the analytical results and measured groundwater elevations is provided in Table 4.

Statistical analyses were conducted for each monitoring event to evaluate analytical results against background concentrations and the GWPS, as required by § 257.93(f) through § 257.93(h). Statistical analysis was conducted in accordance with the Statistical Method Selection Certification as amended in the ASD that was attached to the 2020 Annual Groundwater Monitoring and Corrective Action Report (Barr, 2021). Results of the statistical analyses for the spring 2023 event are presented in Table 5.

2.2.4 Groundwater Flow

Groundwater is generally encountered at 5 to 15 feet below ground surface (Table 4). The groundwater flows generally from west to east across the Site, then radially outward to the north and north-northeast

toward Richland County Irrigation Ditch #12 and the east toward the Yellowstone River. Groundwater flow direction and rate were evaluated for the spring 2023 event. Groundwater level contour maps showing flow direction are included as Figure 2 for spring 2023. Groundwater flow rate calculation results are provided in Appendix C.

2.3 Corrective Action Program Status

An assessment of corrective measures (ACM) was initiated on April 2, 2019, as required by § 257.95(g)(4) after an alternative source demonstration (ASD) could not be prepared within the time allowed by the CCR Rule. The ACM was completed on August 29, 2019 (Barr, 2019b). After completion of the ACM, the corrective action program entered the selection of remedy phase (§ 257.97).

An alternative source demonstration (ASD) was completed for lithium and selenium and published with the 2020 groundwater monitoring and corrective action report. The results of the ASD demonstrated that a source other than the CCR unit caused lithium and selenium levels above GWPS (Barr, 2021). Therefore, the selection of remedy phase was terminated, and the site is not in corrective action.

2.4 Key Actions Completed/Problems Encountered

The following key actions were completed for the groundwater monitoring program in 2023:

- Completed semiannual assessment monitoring sampling for each background and downgradient well.
- Determined that lithium was detected at statistically significant levels above background at all downgradient wells during the spring 2023 monitoring event.
- Completed an ASD for lithium for the fall 2022 and spring 2023 monitoring events (Appendix B)
- Determined the monitoring and ASD results supported closure of the CCR unit under § 257.102(c),
 Closure by removal of CCR.

No problems were encountered.

The CCR unit was decommissioned by removal of CCR in 2022, and the site was regraded to establish positive drainage and minimize infiltration. Closure construction for the CCR unit was completed October 4, 2022.

2.5 Key Activities for Upcoming Year

The CCR unit is considered closed under § 257.102(c), Closure by removal of CCR. No further groundwater monitoring program activities are planned.

3 References

- Barr, 2023, Lewis & Clark Station Scrubber Ponds, Notification of Closure, Prepared for Montana Dakota Utilities Company. December 2023.
- Barr, 2022. 2021 Annual Groundwater Monitoring and Corrective Action Report, Scrubber Pond and Temporary Storage Area. Prepared for Montana Dakota Utilities Company. January 2022.
- Barr, 2021. 2020 Annual Groundwater Monitoring and Corrective Action Report, Scrubber Pond and Temporary Storage Area. Prepared for Montana Dakota Utilities Company. January 2021.
- Barr, 2020. 2019 Annual Groundwater Monitoring and Corrective Action Report, Scrubber Pond and Temporary Storage Area. Prepared for Montana Dakota Utilities Company. January 2020.
- Barr, 2019a. 2018 Annual Groundwater Monitoring and Corrective Action Report, Scrubber Pond and Temporary Storage Area. Prepared for Montana Dakota Utilities Company. January 2019.
- Barr, 2019b. Assessment of Corrective Measures, Lewis & Clark Station. Prepared for Montana Dakota Utilities Company. August 2019.
- Barr, 2018a. 2017 Annual Groundwater Monitoring and Corrective Action Report, Scrubber Pond and Temporary Storage Area. Prepared for Montana Dakota Utilities Company. January 2018.
- Barr, 2018b. Groundwater Monitoring System Certification. Prepared for Montana Dakota Utilities Company. November 2018.
- Barr, 2017. Statistical Method Selection Certification. Prepared for Montana Dakota Utilities Company. October 2017.

Tables

Table 1 CCR Rule Requirements Lewis & Clark Station; Sidney, Montana

CCR Rule Reference	Content Required in Report	Location
§ 257.90(e)(1)	Map showing the CCR unit and all monitoring wells that are part of the groundwater monitoring system	Section 2.1.1 Documentation; see Figure 1
§ 257.90(e)(2)	Discuss any new or decommissioned monitoring wells	Section 2.1.2 Changes to Monitoring System
§ 257.90(e)(3)	Provide the number and date groundwater samples were collected, and the monitoring data (i.e., detection or assessment)	Section 2.2 Monitoring and Analytical Results
§ 257.90(e)(4)	Discuss any transition between monitoring programs	Not applicable in 2023
§ 257.90(e)(5)	Other information specified in § 257.90 through § 257.98	See § 257.95(d)(3) and § 257.95(a) in this Table
§ 257.90(e)(6)	Overview of the current status of groundwater monitoring and corrective action programs	Executive Summary
§ 257.95(d)(3)	Assessment monitoring concentrations, background concentrations, and groundwater protection standards	Table 2, Section 2.2.2 Appendix IV Groundwater Protection Standards, Table 3 through Table 5, and Appendix A
§ 257.95(g)(3)(ii)	Demonstrate that a source other than the CCR unit caused the contamination, or that the statistically significant increase resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality.	Appendix B

Table **2**Background Concentration Levels (Appendix III)
Lewis & Clark Station; Sidney, Montana

Parameter	Units	Background Concentration Level
Boron	mg/L	2.4
Calcium	mg/L	105
Chloride	mg/L	27
Fluoride	mg/L	0.87
рН	pH units	7.2 – 7.5
Sulfate	mg/L	516
Total Dissolved Solids	mg/L	1,080

Background concentration level based on statistical methods established in 40 CFR 257.93 (f-g). Background concentration levels may exhibit slight variability among monitoring event evaluations due to corrections for seasonal variability as required by 40 CFR 257.93(g)(6).

Table **3**Groundwater Protection Standards (Appendix IV)
Lewis & Clark Station; Sidney, Montana

Parameter	Units	Groundwater Protection Standard	MCL or RSL	Background Concentration Level
Antimony	μg/L	6	6	5.7
Arsenic	μg/L	10	10	3.4
Barium	μg/L	2000	2000	40.2
Beryllium	μg/L	4	4	0.5
Cadmium	μg/L	5	5	0.9
Chromium	μg/L	100	100	2.3
Cobalt	μg/L	6	6	2.7
Fluoride	mg/L	4	4	0.87
Lead	μg/L	15	15	0.7
Lithium	μg/L	63.1	40	63.1
Mercury	μg/L	2	2	0.2
Molybdenum	μg/L	100	100	29.2
Selenium	μg/L	70.5	50	70.5
Thallium	μg/L	2	2	0.5
Radium, combined (226+228)	pCi/L	5	5	2.5

MCL: Maximum Contaminant Level, as established in 40 CFR 141.62 and 141.66.

RSL: Regional Screening Level (default GWPS), as included in the Phase I revision to 40 CFR 259.95(h) issued on July 30, 2018. Background concentration level based on statistical methods established in 40 CFR 257.93 (f-g).

Table 4 Groundwater Analytical Data Summary Lewis & Clark Montana-Dakota Utilities Company

Location			MW1	03	MW110	MW111	MW117	MW118	MW119	MW120	MW121	QC
Date			4/24/2	.023	4/24/2023	4/25/2023	4/24/2023	4/25/2023	4/24/2023	4/24/2023	4/25/2023	4/25/2023
Sample Type			N	FD	N	N	N	N	N	N	N	FB
Parameter	Analysis Location	Units										
Appendix III												
Boron, Total	Lab	mg/l	< 1 U	< 1 U	0.22	8.01	7.53	1.42	0.22	10.0	6.71	< 0.1 U
Calcium, Total	Lab	mg/l	93.2	94.3	92.4	182	322	101	91.2	458	102	< 1 U
Chloride	Lab	mg/l	24.3	24.3	38.6	40.6	41.5	27.2	36.8	64.6	17.7	< 2.0 U
Fluoride	Lab	mg/l	0.65	0.62	0.46	1.98	0.19	0.85	0.42	0.41	2.61	< 0.1 U
рН	Field	pH units	7.67		7.75	7.52	7.52	7.75	7.65	6.95	7.44	
Solids, total dissolved	Lab	mg/l	912	914	719	3760	7040	1260	698	7130	1610	< 10 U
Sulfate, as SO4	Lab	mg/l	332	356	184	2060	4580	579	178	4060	738	< 5 U
Appendix IV												
Antimony, Total	Lab	mg/l	0.0068	0.0059	< 0.001 U	< 0.001 U	< 0.001 U	< 0.001 U	< 0.001 U	< 0.001 U	< 0.001 U	< 0.001 U
Arsenic, Total	Lab	mg/l	0.0043	0.0033	< 0.002 U	< 0.002 U	< 0.002 U	< 0.002 U	< 0.002 U	< 0.002 U	< 0.002 U	< 0.002 U
Barium, Total	Lab	mg/l	0.0514	0.0502	0.0396	0.0205	0.0130	0.0234	0.0296	0.0154	0.0330	< 0.002 U
Beryllium, Total	Lab	mg/l	< 0.0005 U	< 0.0005 U	< 0.0005 U	< 0.0005 U	< 0.0005 U	< 0.0005 U	< 0.0005 U	< 0.0005 U	< 0.0005 U	< 0.0005 U
Cadmium, Total	Lab	mg/l	< 0.0005 U	< 0.0005 U	< 0.0005 U	< 0.0005 U	< 0.0005 U	< 0.0005 U	< 0.0005 U	< 0.0005 U	< 0.0005 U	< 0.0005 U
Chromium, Total	Lab	mg/l	< 0.002 U	< 0.002 U	< 0.002 U	< 0.002 U	0.0032	< 0.002 U	< 0.002 U	< 0.002 U	< 0.002 U	< 0.002 U
Cobalt, Total	Lab	mg/l	0.0109	0.0110	< 0.002 U	< 0.002 U	< 0.002 U	< 0.002 U	< 0.002 U	< 0.002 U	< 0.002 U	< 0.002 U
Lead, Total	Lab	mg/l	0.0007	0.0007	0.0008	< 0.0005 U	< 0.0005 U	< 0.0005 U	< 0.0005 U	< 0.0005 U	< 0.0005 U	< 0.0005 U
Lithium, Total	Lab	mg/l	0.0430	0.0447	0.0329	0.158	0.107	0.0648	0.0333	0.109	0.119	< 0.02 U
Mercury, Total	Lab	mg/l	< 0.0002 U	0.0003	< 0.0002 U	< 0.0002 U	< 0.0002 U	< 0.0002 U	< 0.0002 U	< 0.0002 U	< 0.0002 U	< 0.0002 U
Molybdenum, Total	Lab	mg/l	0.0201	0.0209	0.0030	0.0546	0.0032	0.0233	0.0035	0.0020	0.0627	< 0.002 U
Selenium, Total	Lab	mg/l	0.0404	0.0328	< 0.005 U	0.0777	0.0320	0.0637	< 0.005 U	< 0.005 U	0.0162	< 0.005 U
Thallium, Total	Lab	mg/l	< 0.0005 U	< 0.0005 U	< 0.0005 U	< 0.0005 U	< 0.0005 U	< 0.0005 U	< 0.0005 U	< 0.0005 U	< 0.0005 U	< 0.0005 U
Radium 226	Lab	pCi/l	0.2 +/- 0.2 ND	0.2 +/- 0.2 ND	0.03 +/- 0.04 ND	0.09 +/- 0.1 ND	0.4 +/- 0.2	-0.08 +/- 0.1 ND	0.004 +/- 0.04 ND	-0.02 +/- 0.1 ND		-0.03 +/- 0.1 ND
Radium 228	Lab	pCi/l	0.04 +/- 0.8 ND	0.2 +/- 0.9 ND	-0.6 +/- 0.8 ND	0.08 +/- 0.7 ND	1.2 +/- 0.6	0.2 +/- 0.9 ND	-0.6 +/- 0.8 ND	-0.2 +/- 0.8 ND		0.4 +/- 0.9 ND
Radium, combined (226+228) [Barr Calculation]	Lab	pCi/l	0.2 +/- 0.8 ND	0.4 +/- 1.0 ND	0.03 +/- 0.04 ND	0.17 +/- 0.7 ND	1.6 +/- 0.6	0.2 +/- 0.9 ND	0.004 +/- 0.04 ND	ND		0.4 +/- 0.9 ND
Water Levels												
Depth to water	Field	ft	10.39		8.91	7.49	5	8.15	8.74	14.81	12.49	
Elevation	Calc.	ft amsl	1916.94		1917.39	1915.71	1915.34	1915.96	1917.54	1910.41	1892.1	

Not analyzed/Not available.

N Sample Type: Normal.

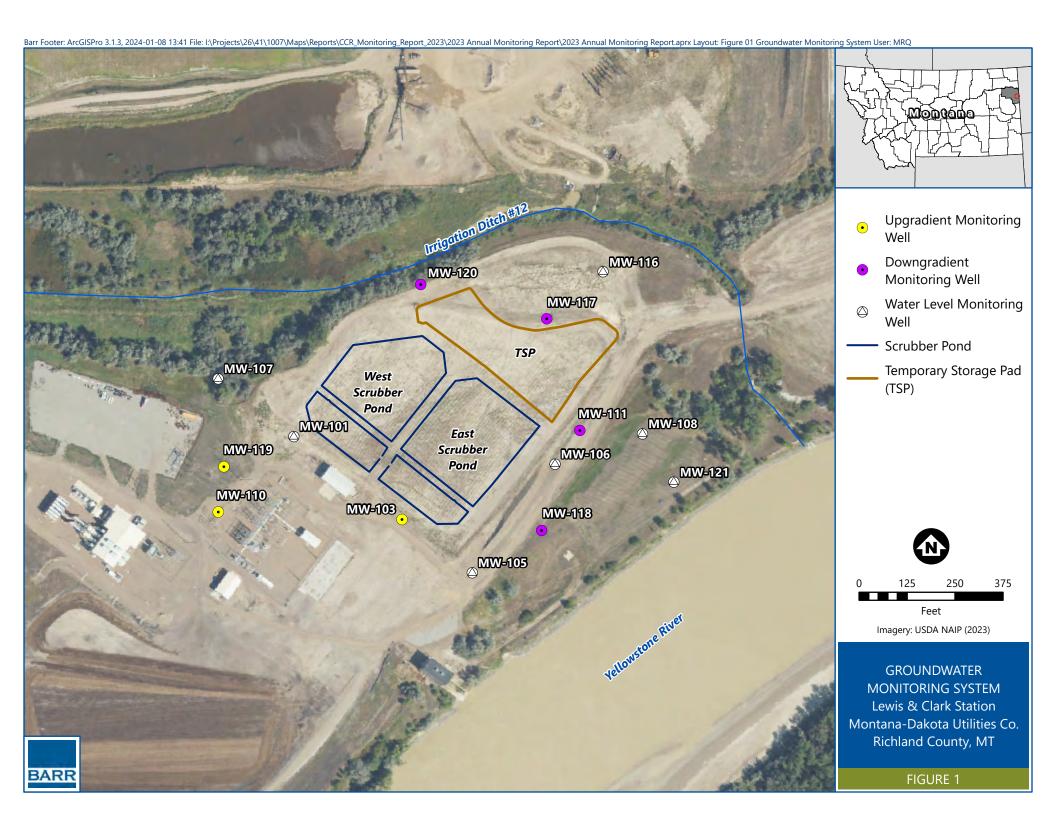
FD Sample Type: Field Duplicate.

FB Sample Type: Field Blank.

U The analyte was analyzed for, but was not detected.

ND Not detected. Radium result was below uncertainity

Table 5 Summary of Statistical Results April 2023 Assessment Monitoring Lewis Clark Station


	Parameter	Units	GWPS	PL/TL	Analysis Type	MW111	MW117	MW118	MW120
	Boron	mg/L	n/a	2.4	NP PL (d)	8.78	8.3	2.19	10.70
= &	Calcium	mg/L	n/a	105	P PL	182	322	101	458
ix I	Chloride	mg/L	n/a	27	P PL	40.6	41.5	27.2	64.6
end	Fluoride	mg/L	n/a	0.87	NP PL	1.98	0.19	0.85	0.41
Appendix III Constituents	pН	units	n/a	7.0 - 7.5	NP PL (d)	7.46	7.46	7.69	6.89
۵ ۵	Sulfate	mg/L	n/a	516	NP PL	2060	4580	579	4060
	TDS	mg/L	n/a	1080	NP PL	3760	7040	1260	7130
	Antimony	μg/L	6	5.7	NP TL	< 1	< 1	< 1	< 1
	Arsenic	μg/L	10	3.4	NP TL	< 2	< 2	< 2	< 2
	Barium	μg/L	2000	40.2	P TL	20.5	13.0	23.4	15.4
छ	Beryllium	μg/L	4	0.5	NP TL	< 0.5	< 0.5	< 0.5	< 0.5
Constituents	Cadmium	μg/L	5	0.9	NP TL	< 0.5	< 0.5	< 0.5	< 0.5
iti	Chromium	μg/L	100	2.3	NP TL	< 2	3.2	< 2	< 2
ons	Cobalt	μg/L	6	2.7	NP TL	< 2	< 2	< 2	< 2
	Fluoride	mg/L	4	0.87	P TL	1.98	0.19	0.85	0.41
×	Lead	μg/L	15	0.7	NP TL	< 0.5	< 0.5	< 0.5	< 0.5
pu	Lithium	μg/L	63.1	63.1	P TL	158	107	64.8	109
Appendix IV	Mercury	μg/L	2	0.2	NP TL	< 0.2	< 0.2	< 0.2	< 0.2
⋖	Molybdenum	μg/L	100	29.2	P TL	54.6	3.20	23.3	2.00
	Selenium*	μg/L	70.5	70.5	Trend, NP TL	77.7	32.0	63.7	5
	Thallium	μg/L	2	0.5	NP TL	< 0.5	< 0.5	< 0.5	< 0.5
	Radium 226+228	pCi/L	5	2.5	NP TL	< 0.17	1.6	< 0.2	n/a

Notes

- -Pink: Sample was a statistically significant increase over upgradient background (Appx III to 40 CFR 257) or GWPS (Appx IV).
- -Green: Sample was not a statistically significant increase over upgradient background (Appx III) or GWPS (Appx IV).
- -pH: two-sided prediction limit; color indicates sample higher or lower than prediction limits.
- -Parametric (P) interwell prediction limits (PL, Appx III) or tolerance limits (TL, Appx IV) used if background data satisfied normality test. If not, non-parametric (NP) prediction/tolerance limits of highest background value used.
- -Upgradient (background) wells: MW119, MW110, MW103; data through March 2021.
- -GWPS comparison used lower confidence limits (LCLs) of the mean, median, or trend line.
- n/a: both radium 226 and radium 228 had negative non-detect results
- -Boron and pH data were deseasonalized (d). Adjustments may result in additional SSIs.
- *Selenium SSIs evaluated by linear trend analysis due to significantly trending data (MW111, MW117, MW118).

The lower confidence limit of a linear trend line is compared to the GW protection standard.

Figures

Appendices

Appendix A

Laboratory Reports and Field Sheets

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890
2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724
1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885

www.MVTL.com

Account #: 2800

Client:

Montana-Dakota Utilities - Bismarck

Workorder: MDU Lewis & Clark Spring 2023

PO:

190709 OP

CCR_APP III

Todd Peterson Montana-Dakota Utilities 400 N 4th St Bismarck, ND 58501

Certificate of Analysis

Approval

All data reported has been reviewed and approved by:

Claudette Carroll, Lab Manager Bismarck, ND

Analyses performed under Minnesota Department of Health Accreditation conforms to the current TNI standards.

NEW ULM LAB CERTIFICATIONS: MN LAB # 027-015-125 ND WW/DW # R-040

BISMARCK LAB CERTIFICATIONS: MN LAB # 038-999-267 ND W/DW # ND-016

MVTL guarantees the accuracy of the analysis done on the sample submitted for testing. It is not possible for MVTL to guarantee that a test result obtained on a particular sample will be the same on any other sample unless all conditions affecting the sample are the same, including sampling by MVTL. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

Report Date: Friday, May 5, 2023 3:41:14 PM

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890
2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724
1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885

www.MVTL.com

Account #: 2800 Client: Montana-Dakota Utilities - Bismarck

Workorder Summary

Workorder Comments

All analytes with dilution factors greater than 1 (displayed in DF column) required dilution due to matrix or high concentration of target analyte unless otherwise noted and reporting limits (RDL column) have been adjusted accordingly.

Analysis Results Comments

13561001 (MW103)

Sample analyzed beyond holding time.(pH)

13561002 (MW110)

Sample analyzed beyond holding time.(pH)

13561003 (MW119)

Sample analyzed beyond holding time.(pH)

13561004 (MW111)

Sample analyzed beyond holding time.(pH)

13561005 (MW117)

Sample analyzed beyond holding time.(pH)

13561006 (MW118)

Sample analyzed beyond holding time.(pH)

13561007 (MW120)

Sample analyzed beyond holding time.(pH)

13561008 (Dup 1)

Sample analyzed beyond holding time (pH)

13561009 (Field Blank (FB))

Sample analyzed beyond holding time.(pH)

Account #: 2800 Client: Montana-Dakota Utilities - Bismarck

Analytical Results

 Lab ID:
 13561001
 Date Collected:
 04/24/2023 14:52
 Matrix:
 Groundwater

 Sample ID:
 MW103
 Date Received:
 04/26/2023 08:00
 Collector:
 MVTL Field Service

M-4bb-400.4								
Method: 120.1 Parameter	Results	Units	RDL	DF	Prepared	Analyzed	Ву	Qual
Specific Conductance - Field	1225	umhos/cm	1	1	04/24/2023 14:52	04/24/2023 14:52	JSM	
Method: 150.2								
Parameter	Results	Units	RDL	DF	Prepared	Analyzed	Ву	Qual
pH - Field	7.67	units	0.01	1	04/24/2023 14:52	04/24/2023 14:52	JSM	
Method: 170.1								
Parameter	Results	Units	RDL	DF	Prepared	Analyzed	Ву	Qual
Temperature - Field C	8.78	degrees C		1	04/24/2023 14:52	04/24/2023 14:52	JSM	
Method: ASTM D516-16								
Parameter	Results	Units	RDL	DF	Prepared	Analyzed	Ву	Qua
Sulfate	332	mg/L	25	5	04/27/2023 10:49	04/27/2023 10:49	EJV	
Method: EPA 6010D								
Parameter	Results	Units	RDL	DF	Prepared	Analyzed	Ву	Qual
Boron	<1	mg/L	1	10	04/26/2023 18:02	04/28/2023 16:49	SLZ	
Calcium	93.2	mg/L	1	1	04/26/2023 18:02	04/27/2023 11:43	SLZ	
Method: SM4500 H+ B-2011								
Parameter	Results	Units	RDL	DF	Prepared	Analyzed	Ву	Qual
рН	7.9	units	0.1	1	04/26/2023 22:19	04/26/2023 22:19	RAA	*
Method: SM4500-CI-E 2011								
Parameter	Results	Units	RDL	DF	Prepared	Analyzed	Ву	Qua
Chloride	24.3	mg/L	2.0	1	04/28/2023 10:27	04/28/2023 10:27	EJV	
Method: SM4500-F-C-2011								
Method: SM4500-F-C-2011 Parameter	Results	Units	RDL	DF	Prepared	Analyzed	Ву	Qual

MVTL guarantees the accuracy of the analysis done on the sample submitted for testing. It is not possible for MVTL to guarantee that a test result obtained on a particular sample will be the same on any other sample unless all conditions affecting the sample are the same, including sampling by MVTL. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

Report Date: Friday, May 5, 2023 3:41:14 PM

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.MVTL.com

Account #: 2800 Client: Montana-Dakota Utilities - Bismarck

Analytical Results

 Lab ID:
 13561001
 Date Collected:
 04/24/2023 14:52
 Matrix:
 Groundwater

 Sample ID:
 MW103
 Date Received:
 04/26/2023 08:00
 Collector:
 MVTL Field Service

Temp @ Receipt (C): 3.4

Method: USGS I-1750-85

Parameter	Results	Units	RDL	DF	Prepared	Analyzed	Ву	Qual
Total Dissolved Solids	912	mg/L	10	1	05/01/2023 12:53	05/01/2023 12:53	RAA	

Account #: 2800 Client: Montana-Dakota Utilities - Bismarck

Analytical Results

 Lab ID:
 13561002
 Date Collected:
 04/24/2023 09:25
 Matrix:
 Groundwater

 Sample ID:
 MW110
 Date Received:
 04/26/2023 08:00
 Collector:
 MVTL Field Service

Method: 120.1								
Parameter	Results	Units	RDL	DF	Prepared	Analyzed	Ву	Qual
Specific Conductance - Field	1065	umhos/cm	1	1	04/24/2023 09:25	04/24/2023 09:25	JSM	
Method: 150.2								
Parameter	Results	Units	RDL	DF	Prepared	Analyzed	Ву	Qual
pH - Field	7.75	units	0.01	1	04/24/2023 09:25	04/24/2023 09:25	JSM	
Method: 170.1								
Parameter	Results	Units	RDL	DF	Prepared	Analyzed	Ву	Qual
Temperature - Field C	7.31	degrees C		1	04/24/2023 09:25	04/24/2023 09:25	JSM	
Method: ASTM D516-16								
Parameter	Results	Units	RDL	DF	Prepared	Analyzed	Ву	Qual
Sulfate	184	mg/L	25	5	04/27/2023 10:51	04/27/2023 10:51	EJV	
Method: EPA 6010D								
Parameter	Results	Units	RDL	DF	Prepared	Analyzed	Ву	Qual
Boron	0.22	mg/L	0.1	1	04/26/2023 18:02	04/28/2023 16:03	SLZ	
Calcium	92.4	mg/L	1	1	04/26/2023 18:02	04/27/2023 11:45	SLZ	
Method: SM4500 H+ B-2011								
Parameter	Results	Units	RDL	DF	Prepared	Analyzed	Ву	Qual
рН	7.5	units	0.1	1	04/27/2023 03:45	04/27/2023 03:45	RAA	*
Method: SM4500-CI-E 2011								
Parameter	Results	Units	RDL	DF	Prepared	Analyzed	Ву	Qual
Chloride	38.6	mg/L	2.0	1	04/28/2023 10:29	04/28/2023 10:29	EJV	
Method: SM4500-F-C-2011								
Parameter	Results	Units	RDL	DF	Prepared	Analyzed	Ву	Qual
					04/27/2023	04/27/2023		
Fluoride	0.46	mg/L	0.1	1	03:45	03:45	RAA	

MVTL guarantees the accuracy of the analysis done on the sample submitted for testing. It is not possible for MVTL to guarantee that a test result obtained on a particular sample will be the same on any other sample unless all conditions affecting the sample are the same, including sampling by MVTL. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

Report Date: Friday, May 5, 2023 3:41:14 PM

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.MVTL.com

Account #: 2800 Client: Montana-Dakota Utilities - Bismarck

Analytical Results

 Lab ID:
 13561002
 Date Collected:
 04/24/2023 09:25
 Matrix:
 Groundwater

 Sample ID:
 MW110
 Date Received:
 04/26/2023 08:00
 Collector:
 MVTL Field Service

Temp @ Receipt (C): 3.4

Method: USGS I-1750-85

Parameter	Results	Units	RDL	DF	Prepared	Analyzed	Ву	Qual
Total Dissolved Solids	719	mg/L	10	1	05/01/2023 12:53	05/01/2023 12:53	RAA	

Account #: 2800 Client: Montana-Dakota Utilities - Bismarck

Analytical Results

 Lab ID:
 13561003
 Date Collected:
 04/24/2023 10:55
 Matrix:
 Groundwater

 Sample ID:
 MW119
 Date Received:
 04/26/2023 08:00
 Collector:
 MVTL Field Service

Method: 120.1		
Method: 150.2	Ву	Qual
Parameter Results Units RDL DF Prepared Analyzed	JSM	
Method: 170.1 Method: 170.		
Method: 170.1 Method: 170.1 Method: 170.1 Method: 170.1	Ву	Qual
Parameter Results Units RDL DF Prepared Analyzed	JSM	
Temperature - Field C 7.8 degrees C 1 04/24/2023 10:55 10:55		
Method: ASTM D516-16 Method: ASTM D516-16	Ву	Qua
Parameter Results Units RDL DF Prepared Analyzed Sulfate 178 mg/L 25 5 04/27/2023 10:52 04/27/2023 10:52 Method: EPA 6010D Parameter Results Units RDL DF Prepared Analyzed Boron 0.22 mg/L 0.1 1 04/26/2023 18:02 16:05	JSM	
Sulfate 178 mg/L 25 5 04/27/2023 10:52 04/27/2023 10:52 Method: EPA 6010D Parameter Results Units RDL DF Prepared Analyzed Boron 0.22 mg/L 0.1 1 04/26/2023 18:02 16:05 1		
Method: EPA 6010D Results Units RDL DF Prepared Analyzed Boron 0.22 mg/L 0.1 1 04/26/2023 18:02 16:05	Ву	Qual
Results Units RDL DF Prepared Analyzed	EJV	
Boron 0.22 mg/L 0.1 1 04/26/2023 16:05 16:05 04/28/2023 18:02 04/27/2023 18:02 04/27/2023 18:02 04/27/2023 18:02 11:45 11:		
Method: SM4500-F-C-2011 Method: SM4500-F	Ву	Qual
Method: SM4500 H+ B-2011 Results Units RDL DF Prepared Analyzed pH 7.4 units 0.1 1 04/27/2023 03:35 04/27/2023 03:35 Method: SM4500-CI-E 2011 Results Units RDL DF Prepared Analyzed Chloride 36.8 mg/L 2.0 1 04/28/2023 10:30 04/28/2023 10:30 Method: SM4500-F-C-2011 Method: SM4500-F-C-2011 Method: SM4500-F-C-2011 Method: SM4500-F-C-2011 Method: SM4500-F-C-2011	SLZ	
Parameter Results Units RDL DF Prepared Analyzed pH 7.4 units 0.1 1 04/27/2023 03:35 04/27/2023 03:35 Method: SM4500-CI-E 2011 Parameter Results Units RDL DF Prepared Analyzed Chloride 36.8 mg/L 2.0 1 04/28/2023 10:30 04/28/2023 10:30 Method: SM4500-F-C-2011 Method: SM4500-F-C-2011	SLZ	
PH 7.4 units 0.1 1 04/27/2023 04/27/2023 03:35 Method: SM4500-CI-E 2011 Parameter Results Units RDL DF Prepared Analyzed Chloride 36.8 mg/L 2.0 1 04/28/2023 10:30 Method: SM4500-F-C-2011		
Method: SM4500-CI-E 2011 Parameter Results Units RDL DF Prepared Analyzed Chloride 36.8 mg/L 2.0 1 04/28/2023 10:30 Method: SM4500-F-C-2011	Ву	Qual
Parameter Results Units RDL DF Prepared Analyzed Chloride 36.8 mg/L 2.0 1 04/28/2023 10:30 04/28/2023 10:30 Method: SM4500-F-C-2011 Method: SM4500-F-C-2011 Method: SM4500-F-C-2011 Method: SM4500-F-C-2011	RAA	*
Chloride 36.8 mg/L 2.0 1 04/28/2023 04/28/2023 10:30 Method: SM4500-F-C-2011		
Method: SM4500-F-C-2011	Ву	Qual
	EJV	
Percentage Percentage PDI DE Proposed Applyand		
Parameter Results Units RDL DF Prepared Analyzed	Ву	Qual
Fluoride 0.42 mg/L 0.1 1 04/27/2023 04/27/2023 03:35	RAA	

MVTL guarantees the accuracy of the analysis done on the sample submitted for testing. It is not possible for MVTL to guarantee that a test result obtained on a particular sample will be the same on any other sample unless all conditions affecting the sample are the same, including sampling by MVTL. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

Report Date: Friday, May 5, 2023 3:41:14 PM

Page 7 of 28

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.MVTL.com

Account #: 2800 Client: Montana-Dakota Utilities - Bismarck

Analytical Results

 Lab ID:
 13561003
 Date Collected:
 04/24/2023 10:55
 Matrix:
 Groundwater

 Sample ID:
 MW119
 Date Received:
 04/26/2023 08:00
 Collector:
 MVTL Field Service

Temp @ Receipt (C): 3.4

Method: USGS I-1750-85

Parameter	Results	Units	RDL	DF	Prepared	Analyzed	Ву	Qual
Total Dissolved Solids	698	mg/L	10	1	05/01/2023 12:53	05/01/2023 12:53	RAA	

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.MVTL.com

Account #: 2800 Client: Montana-Dakota Utilities - Bismarck

Analytical Results

 Lab ID:
 13561004
 Date Collected:
 04/25/2023 07:13
 Matrix:
 Groundwater

 Sample ID:
 MW111
 Date Received:
 04/26/2023 08:00
 Collector:
 MVTL Field Service

Sample ID: MW111	Di	ate Received:	02	1/26/2023	3 08:00	Collector: M\	/TL Field Se	ervice
Temp @ Receipt (C): 3.4								
Method: 120.1 Parameter	Results	Units	RDL	DF	Prepared	Analyzed	Ву	Qua
Specific Conductance - Field	3468	umhos/cm		1	04/25/2023 07:13	04/25/2023 07:13	JSM	Qua
Method: 150.2								
Parameter	Results	Units	RDL	DF	Prepared	Analyzed	Ву	Qua
pH - Field	7.52	units	0.01	1	04/25/2023 07:13	04/25/2023 07:13	JSM	
Method: 170.1								
Parameter	Results	Units	RDL	DF	Prepared	Analyzed	Ву	Qua
Temperature - Field C	4.69	degrees C		1	04/25/2023 07:13	04/25/2023 07:13	JSM	
Method: ASTM D516-16								
Parameter	Results	Units	RDL	DF	Prepared	Analyzed	Ву	Qua
Sulfate	2060	mg/L	250	50	04/27/2023 10:59	04/27/2023 10:59	EJV	
Method: EPA 6010D								
Parameter	Results	Units	RDL	DF	Prepared	Analyzed	Ву	Qua
Boron	8.01	mg/L	2	20	04/26/2023 18:02	04/28/2023 16:06	SLZ	
Calcium	182	mg/L	1	1	04/26/2023 18:02	04/27/2023 11:48	SLZ	
Method: SM4500 H+ B-2011								
Parameter	Results	Units	RDL	DF	Prepared	Analyzed	Ву	Qua
рН	7.8	units	0.1	1	04/27/2023 02:17	04/27/2023 02:17	RAA	*
Method: SM4500-CI-E 2011								
Parameter	Results	Units	RDL	DF	Prepared	Analyzed	Ву	Qua
Chloride	40.6	mg/L	2.0	1	04/28/2023 10:31	04/28/2023 10:31	EJV	
Method: SM4500-F-C-2011								
Parameter	Results	Units	RDL	DF	Prepared	Analyzed	Ву	Qua
Fluoride	1.98	mg/L	0.1	1	04/27/2023 02:17	04/27/2023 02:17	RAA	

MVTL guarantees the accuracy of the analysis done on the sample submitted for testing. It is not possible for MVTL to guarantee that a test result obtained on a particular sample will be the same on any other sample unless all conditions affecting the sample are the same, including sampling by MVTL. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

Report Date: Friday, May 5, 2023 3:41:14 PM

Page 9 of 28

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.MVTL.com

Account #: 2800 Client: Montana-Dakota Utilities - Bismarck

Analytical Results

 Lab ID:
 13561004
 Date Collected:
 04/25/2023 07:13
 Matrix:
 Groundwater

 Sample ID:
 MW111
 Date Received:
 04/26/2023 08:00
 Collector:
 MVTL Field Service

Temp @ Receipt (C): 3.4

Method: USGS I-1750-85

Parameter	Results	Units	RDL	DF	Prepared	Analyzed	Ву	Qual
Total Dissolved Solids	3760	mg/L	10	1	05/01/2023 12:53	05/01/2023 12:53	RAA	

MVTL guarantees the accuracy of the analysis done on the sample submitted for testing. It is not possible for MVTL to guarantee that a test result obtained on a particular sample will be the same on any other sample unless all conditions affecting the sample are the same, including sampling by MVTL. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

Report Date: Friday, May 5, 2023 3:41:14 PM

Page 10 of 28

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.MVTL.com

Account #: 2800 Client: Montana-Dakota Utilities - Bismarck

Analytical Results

 Lab ID:
 13561005
 Date Collected:
 04/24/2023 13:47
 Matrix:
 Groundwater

 Sample ID:
 MW117
 Date Received:
 04/26/2023 08:00
 Collector:
 MVTL Field Service

Parameter	Results	Units	RDL	DF	Prepared	Analyzed	Ву	Qual
Specific Conductance - Field	6000	umhos/cm	1	1	04/24/2023 13:47	04/24/2023 13:47	JSM	
Method: 150.2								
Parameter	Results	Units	RDL	DF	Prepared	Analyzed	Ву	Qual
pH - Field	7.52	units	0.01	1	04/24/2023 13:47	04/24/2023 13:47	JSM	
Method: 170.1								
Parameter	Results	Units	RDL	DF	Prepared	Analyzed	Ву	Qual
Temperature - Field C	6.75	degrees C		1	04/24/2023 13:47	04/24/2023 13:47	JSM	
Method: ASTM D516-16								
Parameter	Results	Units	RDL	DF	Prepared	Analyzed	Ву	Qual
Sulfate	4580	mg/L	250	50	04/27/2023 11:01	04/27/2023 11:01	EJV	
Method: EPA 6010D								
Parameter	Results	Units	RDL	DF	Prepared	Analyzed	Ву	Qual
Boron	7.53	mg/L	0.5	5	04/26/2023	04/28/2023	SLZ	
Calcium	322	mg/L	5	5	18:02 04/26/2023 18:02	16:07 04/27/2023 11:49	SLZ	
Method: SM4500 H+ B-2011								
Parameter	Results	Units	RDL	DF	Prepared	Analyzed	Ву	Qual
pH	7.3	units	0.1	1	04/27/2023 02:40	04/27/2023 02:40	RAA	*

Method:	SM4500-F-C-2011

Parameter

Chloride

Parameter	Results	Units	RDL	DF	Prepared	Analyzed	Ву	Qual
Fluoride	0.19	mg/L	0.1	1	04/27/2023 02:40	04/27/2023 02:40	RAA	

RDL

2.0

MVTL guarantees the accuracy of the analysis done on the sample submitted for testing. It is not possible for MVTL to guarantee that a test result obtained on a particular sample will be the same on any other sample unless all conditions affecting the sample are the same, including sampling by MVTL. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

DF

1

Prepared

10:32

04/28/2023

Analyzed

04/28/2023

10:32

Qual

By

EJV

Report Date: Friday, May 5, 2023 3:41:14 PM

Results

41.5

Units

mg/L

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.MVTL.com

Account #: 2800 Client: Montana-Dakota Utilities - Bismarck

Analytical Results

 Lab ID:
 13561005
 Date Collected:
 04/24/2023 13:47
 Matrix:
 Groundwater

 Sample ID:
 MW117
 Date Received:
 04/26/2023 08:00
 Collector:
 MVTL Field Service

Temp @ Receipt (C): 3.4

Method: USGS I-1750-85

Parameter	Results	Units	RDL	DF	Prepared	Analyzed	Ву	Qual
Total Dissolved Solids	7040	mg/L	10	1	05/01/2023 12:53	05/01/2023 12:53	RAA	

Account #: 2800 Client: Montana-Dakota Utilities - Bismarck

Analytical Results

 Lab ID:
 13561006
 Date Collected:
 04/25/2023 08:21
 Matrix:
 Groundwater

 Sample ID:
 MW118
 Date Received:
 04/26/2023 08:00
 Collector:
 MVTL Field Service

Results	Units	RDL	DF	Prepared	Analyzed	Ву	Qual
1571	umhos/cm	1	1	04/25/2023 08:21	04/25/2023 08:21	JSM	
Results	Units	RDL	DF	Prepared	Analyzed	Ву	Qual
7.75	units	0.01	1	04/25/2023 08:21	04/25/2023 08:21	JSM	
Results	Units	RDL	DF	Prepared	Analyzed	Ву	Qual
5.72	degrees C		1	04/25/2023 08:21	04/25/2023 08:21	JSM	
Results	Units	RDL	DF	Prepared	Analyzed	Ву	Qual
579	mg/L	25	5	04/27/2023 10:55	04/27/2023 10:55	EJV	
Results	Units	RDL	DF	Prepared	Analyzed	Ву	Qual
1.42	mg/L	0.5	5	18:02	16:07	SLZ	
101	mg/L	1	1	18:02	11:50	SLZ	
Results	Units	RDL	DF	Prepared	Analyzed	Ву	Qual
Results 8.0	Units units	RDL 0.1	DF 1	Prepared 04/27/2023 03:24	Analyzed 04/27/2023 03:24	By RAA	Qual *
				04/27/2023	04/27/2023		
				04/27/2023	04/27/2023		
8.0	units	0.1	1	04/27/2023 03:24	04/27/2023 03:24	RAA	*
8.0 Results	units Units	0.1 RDL	1 DF	04/27/2023 03:24 Prepared 04/28/2023	04/27/2023 03:24 Analyzed 04/28/2023	RAA	*
8.0 Results	units Units	0.1 RDL	1 DF	04/27/2023 03:24 Prepared 04/28/2023	04/27/2023 03:24 Analyzed 04/28/2023	RAA	*
	Results 7.75 Results 5.72 Results 579 Results	Results Units 7.75 units Results Units 5.72 degrees C Results Units 579 mg/L Results Units mg/L	Results Units RDL 7.75 units 0.01 Results Units RDL 5.72 degrees C Results Units RDL 579 mg/L 25 Results Units RDL 1.42 mg/L 0.5	Results Units RDL DF 7.75 units 0.01 1 Results Units RDL DF 5.72 degrees C 1 Results Units RDL DF 579 mg/L 25 5 Results Units RDL DF 1.42 mg/L 0.5 5	1571 umhos/cm 1 1 04/25/2023 08:21 Results Units RDL DF Prepared 7.75 units 0.01 1 04/25/2023 08:21 Results Units RDL DF Prepared 5.72 degrees C 1 04/25/2023 08:21 Results Units RDL DF Prepared 579 mg/L 25 5 04/27/2023 10:55 Results Units RDL DF Prepared 1.42 mg/L 0.5 5 04/26/2023 18:02 04/26/2023 18:02 04/26/2023 101 mg/L 1 1 1 0.4/26/2023 18:02 04/26/2023	1571 umhos/cm 1 1 04/25/2023 08:21 04/25/2023 08:21 Results Units RDL DF Prepared Analyzed 7.75 units 0.01 1 04/25/2023 08:21 04/25/2023 08:21 Results Units RDL DF Prepared Analyzed 5.72 degrees C 1 04/25/2023 08:21 04/25/2023 08:21 Results Units RDL DF Prepared Analyzed 579 mg/L 25 5 04/27/2023 04/27/2023 04/27/2023 04/27/2023 04/25/2023 04/28/2023 04/28/2023 04/28/2023 04/28/2023 04/28/2023 04/26/2023 04/26/2023 04/27/2023 04/	Name

MVTL guarantees the accuracy of the analysis done on the sample submitted for testing. It is not possible for MVTL to guarantee that a test result obtained on a particular sample will be the same on any other sample unless all conditions affecting the sample are the same, including sampling by MVTL. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

Report Date: Friday, May 5, 2023 3:41:14 PM

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.MVTL.com

Account #: 2800 Client: Montana-Dakota Utilities - Bismarck

Analytical Results

 Lab ID:
 13561006
 Date Collected:
 04/25/2023 08:21
 Matrix:
 Groundwater

 Sample ID:
 MW118
 Date Received:
 04/26/2023 08:00
 Collector:
 MVTL Field Service

Temp @ Receipt (C): 3.4

Method: USGS I-1750-85

Parameter	Results	Units	RDL	DF	Prepared	Analyzed	Ву	Qual
Total Dissolved Solids	1260	mg/L	10	1	05/01/2023 12:53	05/01/2023 12:53	RAA	

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.MVTL.com

Account #: 2800 Client: Montana-Dakota Utilities - Bismarck

Analytical Results

 Lab ID:
 13561007
 Date Collected:
 04/24/2023 12:30
 Matrix:
 Groundwater

 Sample ID:
 MW120
 Date Received:
 04/26/2023 08:00
 Collector:
 MVTL Field Service

Specific Conductance - Field 5786	Parameter	Results	Units	RDL	DF	Prepared	Analyzed	Ву	Qual
Parameter Results Units RDL DF Prepared Analyzed By	Specific Conductance - Field	5786	umhos/cm	1	1		04/24/2023	JSM	
PH - Field	Method: 150.2								
Method: 170.1 Parameter Results Units RDL DF Prepared Analyzed By	Parameter	Results	Units	RDL	DF	Prepared	Analyzed	Ву	Qual
Parameter Results Units RDL DF Prepared Analyzed By	pH - Field	6.95	units	0.01	1			JSM	
Temperature - Field C T.69 degrees C 1 04/24/2023 12:30 JS	Method: 170.1								
Method: ASTM D516-16 Results Units RDL DF Prepared Analyzed By	Parameter	Results	Units	RDL	DF	Prepared	Analyzed	Ву	Qual
Parameter Results Units RDL DF Prepared Analyzed By	Temperature - Field C	7.69	degrees C		1			JSM	
Sulfate 4060 mg/L 500 100 04/27/2023 11:02 04/27/2023 11:02 EJ Method: EPA 6010D Method: EPA 6010D Parameter Results Units RDL DF Prepared Analyzed By Boron 10.0 mg/L 0.5 5 04/26/2023 16:08 04/27/2023 16:08 04/27/2023 04/27/2023 11:51 SL Calcium 458 mg/L 5 5 04/26/2023 04/27/2023 04/27/2023 04/27/2023 11:51 SL Method: SM4500 H+ B-2011 Parameter Results Units RDL DF Prepared Analyzed By pH 7.2 units 0.1 1 04/27/2023 02:51 04/27/2023 02:51 RA Method: SM4500-CI-E 2011 Parameter Results Units RDL DF Prepared Analyzed By Method: SM4500-F-C-2011 Parameter Results Units RDL DF Prepared Analyzed By Fluoride 0.41 D0/4/27/2023 04/27/2023 <	Method: ASTM D516-16								
Method: EPA 6010D Method: EPA 6010D Method: EPA 6010D Results Units RDL DF Prepared Analyzed By	Parameter	Results	Units	RDL	DF	•		Ву	Qual
Parameter Results Units RDL DF Prepared Analyzed By	Sulfate	4060	mg/L	500	100			EJV	
Boron 10.0 mg/L 0.5 5 04/26/2023 04/28/2023 16:08 SL	Method: EPA 6010D								
Method: SM4500-CI-E 2011 Method: SM4500-F-C-2011 Method: SM4500-	Parameter	Results	Units	RDL	DF	Prepared	Analyzed	Ву	Qual
Method: SM4500 H+ B-2011 Results Units RDL DF Prepared Analyzed By pH 7.2 units 0.1 1 04/27/2023 02:51 04/27/2023 02:51 RA Method: SM4500-CI-E 2011 Parameter Results Units RDL DF Prepared Analyzed By Chloride 64.6 mg/L 2.0 1 04/28/2023 10:39 04/28/2023 10:39 EJ Method: SM4500-F-C-2011 Parameter Results Units RDL DF Prepared Analyzed By Fluoride 0.41 mg/L 0.1 1 04/27/2023 04/27/2023 04/27/2023	Boron	10.0	mg/L	0.5	5	18:02	16:08	SLZ	
Parameter Results Units RDL DF Prepared Analyzed By pH 7.2 units 0.1 1 04/27/2023 02:51 04/27/2023 02:51 RA Method: SM4500-CI-E 2011 Results Units RDL DF Prepared Analyzed By Chloride 64.6 mg/L 2.0 1 04/28/2023 10:39 04/28/2023 10:39 EJ Method: SM4500-F-C-2011 Results Units RDL DF Prepared Analyzed By Fluoride 0.41 mg/L 0.1 1 04/27/2023 04/27/2023 04/27/2023	Calcium	458	mg/L	5	5			SLZ	
PH 7.2 units 0.1 1 04/27/2023 04/27/2023 02:51 RA Method: SM4500-CI-E 2011 Parameter Results Units RDL DF Prepared Analyzed By Chloride 64.6 mg/L 2.0 1 04/28/2023 04/28/2023 10:39 EJ Method: SM4500-F-C-2011 Parameter Results Units RDL DF Prepared Analyzed By Chloride O4.6 mg/L 2.0 1 04/28/2023 04/28/2023 10:39 EJ Method: SM4500-F-C-2011 Parameter Results Units RDL DF Prepared Analyzed By Elucride 0.41 mg/L 0.1 1 04/27/2023 04/27/2023 RA	Method: SM4500 H+ B-2011								
Method: SM4500-CI-E 2011 Parameter Results Units RDL DF Prepared Analyzed By Chloride 64.6 mg/L 2.0 1 04/28/2023 04/28/2023 10:39 EJ Method: SM4500-F-C-2011 Parameter Results Units RDL DF Prepared Analyzed By Chloride Results Units RDL DF Prepared Analyzed By	Parameter	Results	Units	RDL	DF	•		Ву	Qual
Parameter Results Units RDL DF Prepared Analyzed By Chloride 64.6 mg/L 2.0 1 04/28/2023 10:39 04/28/2023 10:39 EJ Method: SM4500-F-C-2011 Results Units RDL DF Prepared Analyzed By Eluoride 0.41 mg/L 0.1 1 04/27/2023 04/27/2023 RA	рН	7.2	units	0.1	1			RAA	*
Chloride 64.6 mg/L 2.0 1 04/28/2023 10:39 04/28/2023 10:39 EJ Method: SM4500-F-C-2011 Results Units RDL DF Prepared Analyzed By Fluoride 0.41 mg/L 0.1 1 04/27/2023 04/27/2023 84	Method: SM4500-CI-E 2011								
Method: SM4500-F-C-2011 Results Units RDL DF Prepared Analyzed By Fluoride 0.41 mg/L 2.0 1 1 04/27/2023 04/27/2023 8/2	Parameter	Results	Units	RDL	DF	Prepared	Analyzed	Ву	Qual
Parameter Results Units RDL DF Prepared Analyzed By Fluoride 0.41 mg/l 0.1 1 04/27/2023 04/27/2023 84	Chloride	64.6	mg/L	2.0	1			EJV	
Fluoride 0.41 mg/l 0.1 1 04/27/2023 04/27/2023 RA	Method: SM4500-F-C-2011								
	Parameter	Results	Units	RDL	DF	•		Ву	Qual
	Fluoride	0.41	mg/L	0.1	1			RAA	

MVTL guarantees the accuracy of the analysis done on the sample submitted for testing. It is not possible for MVTL to guarantee that a test result obtained on a particular sample will be the same on any other sample unless all conditions affecting the sample are the same, including sampling by MVTL. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.MVTL.com

Account #: 2800 Client: Montana-Dakota Utilities - Bismarck

Analytical Results

 Lab ID:
 13561007
 Date Collected:
 04/24/2023 12:30
 Matrix:
 Groundwater

 Sample ID:
 MW120
 Date Received:
 04/26/2023 08:00
 Collector:
 MVTL Field Service

Temp @ Receipt (C): 3.4

Method: USGS I-1750-85

Parameter	Results	Units	RDL	DF	Prepared	Analyzed	Ву	Qual
Total Dissolved Solids	7130	mg/L	10	1	05/01/2023 12:53	05/01/2023 12:53	RAA	

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.MVTL.com

Account #: 2800 Client: Montana-Dakota Utilities - Bismarck

Analytical Results

Lab ID: 13561008 **Date Collected:** 04/24/2023 14:52 Matrix: Groundwater Sample ID: Date Received: 04/26/2023 08:00 MVTL Field Service Dup 1 Collector:

Temp @ Receipt (C): 3.4

Results	Units	RDL	DF	Prepared	Analyzed	Ву	Qual
356	mg/L	25	5	04/27/2023 10:57	04/27/2023 10:57	EJV	
Results	Units	RDL	DF	Prepared	Analyzed	Ву	Qual
<1	mg/L	1	10	04/26/2023 18:02	04/28/2023 16:09	SLZ	
94.3	mg/L	1	1	04/26/2023 18:02	04/27/2023 11:51	SLZ	
	356 Results <1	Results Units <1 mg/L	356 mg/L 25 Results Units RDL <1	356 mg/L 25 5 Results Units RDL DF <1	Results Units RDL DF Prepared <1	Results Units RDL DF Prepared Analyzed <1	356 mg/L 25 5 04/27/2023 10:57 04/27/2023 10:57 EJV Results Units RDL DF Prepared Analyzed By <1

Method: SM4500 H+ B-2011

Parameter	Results	Units	RDL	DF	Prepared	Analyzed	Ву	Qual
рН	8.2	units	0.1	1	04/27/2023 00:22	04/27/2023	RAA	*

Method: SM4500-CI-E 2011

Parameter	Results	Units	RDL	DF	Prepared	Analyzed	Ву	Qual
Chloride	24.3	mg/L	2.0	1	04/28/2023 10:40	04/28/2023 10:40	EJV	

Method: SM4500-F-C-2011

Parameter	Results	Units	RDL	DF	Prepared	Analyzed	Ву	Qual
Fluoride	0.62	mg/L	0.1	1	04/27/2023 00:22	04/27/2023 00:22	RAA	

Method: USGS I-1750-85

Parameter	Results	Units	RDL	DF	Prepared	Analyzed	Ву	Qual
Total Dissolved Solids	914	mg/L	10	1	05/01/2023 12:53	05/01/2023 12·53	RAA	

MVTL guarantees the accuracy of the analysis done on the sample submitted for testing. It is not possible for MVTL to guarantee that a test result obtained on a particular sample will be the same on any other sample unless all conditions affecting the sample are the same, including sampling by MVTL. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

Report Date: Friday, May 5, 2023 3:41:14 PM

Page 17 of 28

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.MVTL.com

Account #: 2800 Client: Montana-Dakota Utilities - Bismarck

Analytical Results

Lab ID:13561009Date Collected:04/25/2023 06:40Matrix:GroundwaterSample ID:Field Blank (FB)Date Received:04/26/2023 08:00Collector:MVTL Field Service

Temp @ Receipt (C): 3.4

Method: ASTM D516-16

Method: ASTM D516-16								
Parameter	Results	Units	RDL	DF	Prepared	Analyzed	Ву	Qual
Sulfate	<5	mg/L	5	1	04/27/2023 10:58	04/27/2023 10:58	EJV	
Method: EPA 6010D								
Parameter	Results	Units	RDL	DF	Prepared	Analyzed	Ву	Qual
Boron	<0.1	mg/L	0.1	1	04/26/2023 18:02	04/28/2023 16:10	SLZ	
Calcium	<1	mg/L	1	1	04/26/2023 18:02	04/27/2023 11:52	SLZ	

Method: SM4500 H+ B-2011

Parameter	Results	Units	RDL	DF	Prepared	Analyzed	Ву	Qual
рН	6.7	units	0.1	1	04/27/2023 02:08	04/27/2023 02:08	RAA	*

Method: SM4500-CI-E 2011

Parameter	Results	Units	RDL	DF	Prepared	Analyzed	Ву	Qual
Chloride	<2.0	mg/L	2.0	1	04/28/2023 10:42	04/28/2023 10:42	EJV	

Method: SM4500-F-C-2011

Parameter	Results	Units	RDL	DF	Prepared	Analyzed	Ву	Qual
Fluoride	<0.1	mg/L	0.1	1	04/27/2023 02:08	04/27/2023 02:08	RAA	

Method: USGS I-1750-85

Parameter	Results	Units	RDL	DF	Prepared	Analyzed	Ву	Qual
Total Dissolved Solids	<10	mg/L	10	1	05/01/2023 12:53	05/01/2023 12:53	RAA	

MVTL guarantees the accuracy of the analysis done on the sample submitted for testing. It is not possible for MVTL to guarantee that a test result obtained on a particular sample will be the same on any other sample unless all conditions affecting the sample are the same, including sampling by MVTL. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

Report Date: Friday, May 5, 2023 3:41:14 PM

Page 18 of 28

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.MVTL.com

Account #: 2800 Client: Montana-Dakota Utilities - Bismarck

MVTL Field Services

Sampling Report

MDU Lewis & Clark

 Sample Event:
 Spring 2023
 Work Order #:
 13561

 Sampling Dates:
 April 24-25, 2023
 13560

Well Condition: All wells were found to be in good condition.

Lock Condition: Good

 Samples collected
 Duplicate Sample Location

 MW103
 MW103

 MW110
 MW103

 MW111
 MW111

 MW117
 MW118

 MW120
 MW121

Samples collected were placed on ice and transported back to the MVTL Laboratory in Bismarck, ND for analysis.

Jeremy Meyer MVTL Field Services

Account #: 2800 Client: Montana-Dakota Utilities - Bismarck

MV	Minnesota Valley Testing Lab 2616 E. Broadway Ave Bismarck, ND 58501 (701) 258-9720					Montana – Dakota W0: 13561					1	Ch			nain of Custody Record		
Report To: Attn:	MDU Todd Peterson			CC:										Project N	ame:	М	DU Lewis & Clark
Address:	400 N. 4th St Bismarck, ND 58501													Event: Spring 2023			
Phone: Email:	701-425-2427 Todd.Peterson@mdu.c											_	Sampled	Ву: _),	-8h		
	Sam	ple Information	1				5a	mpl	le Co	ntai	ners			Field Readings			
Lab Number	Sample ID	Date	Time	Sample Type	1 Liter Raw	500 mL HNO3	500 mL HNO3 (filtered)						Temp (°C)	Spec. Cond.	Hd	Turbidity (NTU)	Analysis Required
001	MW103	244-23	1452	GW	X	X	X	X					8.78	5221	7.67	42.15	
002	MW110	24A+- 23	0925	GW	X	X	X						7.31	1065	7,75	44.63	
003	MW119	244-23	1055	GW	X	Х	X	-	Н	+	\sqcup	_	7. BO	1048	7.65	13.42	
004	MW111	25 Ag- 23	0713	GW	X	X	X	X	\perp	+	1	+	4.69	3468	7.52	1.24	
005	MW117	24 Ag 23	1347	GW -	X	X	Х	X	\vdash	+	+	+	6.75	6000	7.52	4.98	MDU Lewis & Clark List
006	MW118 MW120	25 Apr 23	0821	GW	X	X	X	X	+	+	+	+	5,72	1571	7.75	1.36	No. of Contract of
007	Dup 1	244-23	1230	GW	X	X	X	X	-	+	+	+	7.69	5786	6.95	0.26	
009	Field Blank (FB)	25 At- 23	0640	GW	X	X	X	-		+		#	NA	NA NA	NA	NA	
Comments:					_			_		-							
	Relinquished By			Samo	e C	ond	itio	n	_		_		_		Receive	ed By	
	Name /					Sample Condition				_	Name Name				by	Date/Time	

3.4 TM562 /TM805

Log In Walk In #2

MVTL guarantees the accuracy of the analysis done on the sample submitted for testing. It is not possible for MVTL to guarantee that a test result obtained on a particular sample will be the same on any other sample unless all conditions affecting the sample are the same, including sampling by MVTL. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

Account #: 2800 Client: Montana-Dakota Utilities - Bismarck

MVTL	
2616 E. Broadway Ave, Bismarck, N	(
Phone: (701) 258-9720	
eather Conditions:	

Field Datasheet

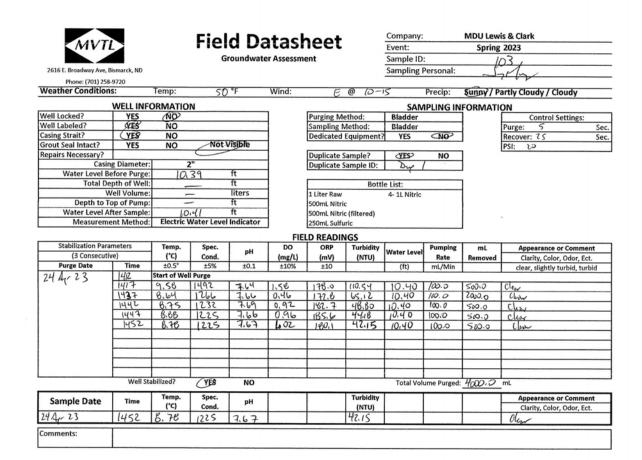
Surface water Assessment

Company: MDU Lewis & Clark
Event: Spring 2023

Sampling Personal:

Weather Conditions	: Temp:	45	°F	Wind:	E (0 10-15	Precip: (Sunny / Partly Cloudy / Cloudy
Well ID	Date	Time	Casing Diameter	Water Level (ft)			Comments
MW101		1146	2"	8.97			
MW105	. 1 23	1406	2"	B.56			
MW106	24 Ap- 23	1404	2"	9.08			
MW107		1144	2"	4.20			
MW108		1620	2"	16.92			
MW116		1402	2"	[3,82			

MVTL guarantees the accuracy of the analysis done on the sample submitted for testing. It is not possible for MVTL to guarantee that a test result obtained on a particular sample will be the same on any other sample unless all conditions affecting the sample are the same, including sampling by MVTL. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

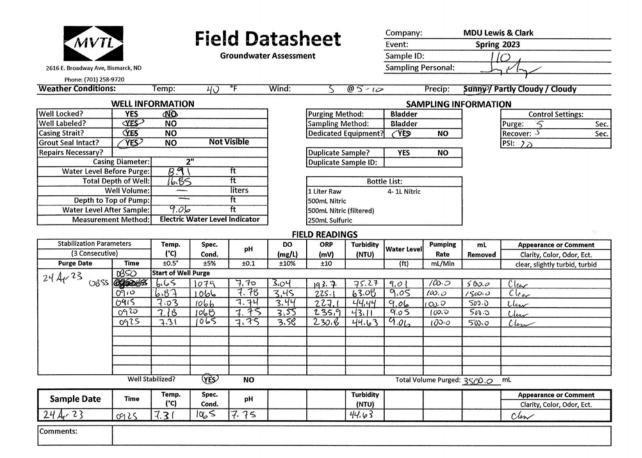


1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890
2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724
1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885

www.MVTL.com

Account #: 2800 Client: Montana-Dakota Utilities - Bismarck

MVTL guarantees the accuracy of the analysis done on the sample submitted for testing. It is not possible for MVTL to guarantee that a test result obtained on a particular sample will be the same on any other sample unless all conditions affecting the sample are the same, including sampling by MVTL. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

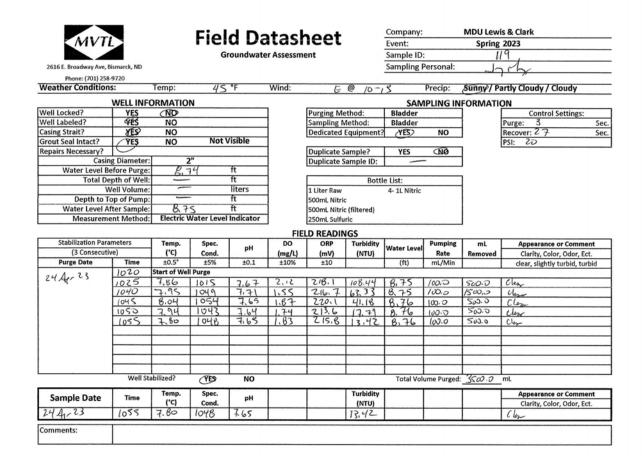


1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890
2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724
1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885

www.MVTL.com

Account #: 2800 Client: Montana-Dakota Utilities - Bismarck

MVTL guarantees the accuracy of the analysis done on the sample submitted for testing. It is not possible for MVTL to guarantee that a test result obtained on a particular sample will be the same on any other sample unless all conditions affecting the sample are the same, including sampling by MVTL. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.



1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890
2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724
1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885

www.MVTL.com

Account #: 2800 Client: Montana-Dakota Utilities - Bismarck

MVTL guarantees the accuracy of the analysis done on the sample submitted for testing. It is not possible for MVTL to guarantee that a test result obtained on a particular sample will be the same on any other sample unless all conditions affecting the sample are the same, including sampling by MVTL. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.MVTL.com

Client: Montana-Dakota Utilities - Bismarck Account #: 2800

ne: (701) 258-9720

Field Datasheet

Groundwater Assessment

MDU Lewis & Clark Company: Event: Spring 2023 Sample ID: Sampling Personal:

Precip: Sunny / Partly Cloudy / Cloudy

Purge:

Recover: 25

PSI: 20

Control Settings:

Sec.

Sec.

Weather Conditions: Wind: Temp: WELL INFORMATION Well Locked? NO NO Well Labeled? Casing Strait? YES NO Not Visible Grout Seal Intact? YES NO Repairs Necessary? Casing Diameter: Water Level Before Purge: Total Depth of Well: Well Volume: liters Depth to Top of Pump ft Water Level After Sample ft

Measurement Method: Electric Water Level Indicator

SAMPLING INFORMATION Purging Method: Bladder Sampling Method: Bladder **Dedicated Equipment?**

N @5-10

Duplicate Sample? YES < NØ Duplicate Sample ID:

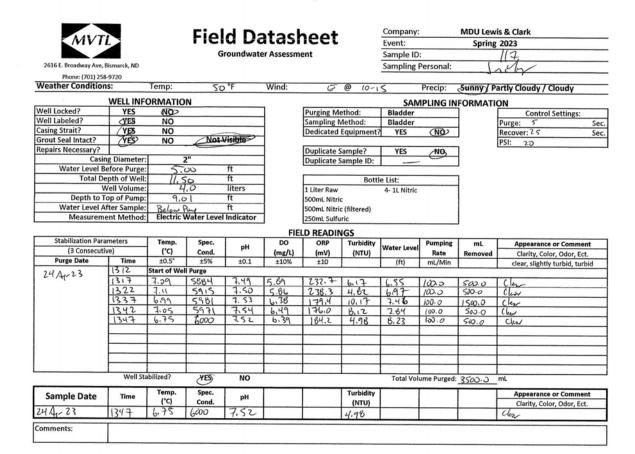
Bottle List: 1 Liter Raw 4- 1L Nitric 500mL Nitric 500mL Nitric (filtered) 250mL Sulfuric

FIELD READINGS

Stabilization Par		Temp.	Spec.	pH	DO	ORP	Turbidity	Water Level	Pumping	mL	Appearance or Comment
(3 Consecut	ive)	(°C)	Cond.	pπ	(mg/L)	(mV)	(NTU)	water Level	Rate	Removed	Clarity, Color, Odor, Ect.
Purge Date	Time	±0.5°	±5%	±0.1	±10%	±10		(ft)	mL/Min		clear, slightly turbid, turbid
25 A1-23	0633	Start of Wel	l Purge								
37.1	0638	5.48	4209	7.32	1,06	162.3	40.16	7.61	100:0	5000	Clear
	0653		3498	7,48	3,96	141.7	18,17	7,60	100.0	1500.0	Clear
	0658		3431	7,58	4.17	136.7	9.80	7.60	G,00	500.0	Class
	0703	4.73	3 380	7,58	4.57	150.3	6.25	7.61	C.c01	500.0	Clem
	0708	4.73	3436	7.54	4.62	12/3.6	2.74	7.61	100.0	500.0	Clear
	0713	4.69	3468	7.52	4.55	141.7	1,24	7.61	100.0	500.0	Clear
			0								
	Well St	abilized?	YES /	NO				Total Volu	ume Purged:	HODO O	mL.

Sample Date	Time	Temp.	Spec.	pH	Turbidity	Appearance or Comment
		(°C)	Cond.	,	(NTU)	Clarity, Color, Odor, Ect.
25 Au 23	0713	4.69	3468	7.52	1.24	Ck
Comments:	Collecte	d Field	d blank 6	0640		

MVTL guarantees the accuracy of the analysis done on the sample submitted for testing. It is not possible for MVTL to guarantee that a test result obtained on a particular sample will be the same on any other sample unless all conditions affecting the sample are the same, including sampling by MVTL. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

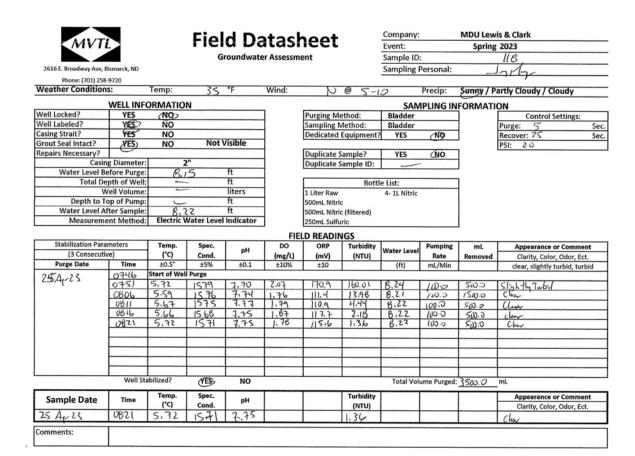


1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890
2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724
1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885

www.MVTL.com

Account #: 2800 Client: Montana-Dakota Utilities - Bismarck

MVTL guarantees the accuracy of the analysis done on the sample submitted for testing. It is not possible for MVTL to guarantee that a test result obtained on a particular sample will be the same on any other sample unless all conditions affecting the sample are the same, including sampling by MVTL. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

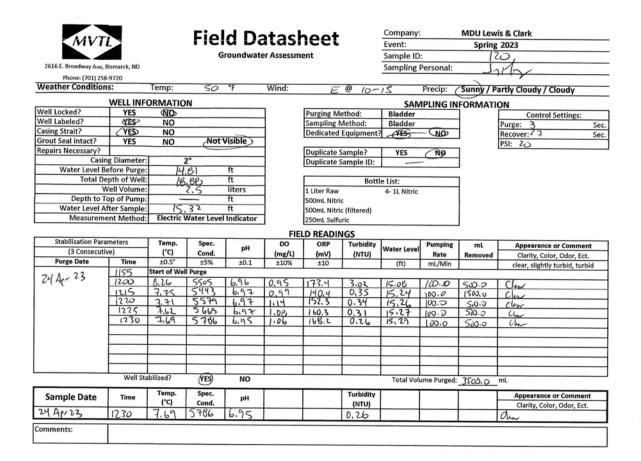


1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890
2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724
1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885

www.MVTL.com

Account #: 2800 Client: Montana-Dakota Utilities - Bismarck

MVTL guarantees the accuracy of the analysis done on the sample submitted for testing. It is not possible for MVTL to guarantee that a test result obtained on a particular sample will be the same on any other sample unless all conditions affecting the sample are the same, including sampling by MVTL. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.



1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890
2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724
1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885

www.MVTL.com

Account #: 2800 Client: Montana-Dakota Utilities - Bismarck

MVTL guarantees the accuracy of the analysis done on the sample submitted for testing. It is not possible for MVTL to guarantee that a test result obtained on a particular sample will be the same on any other sample unless all conditions affecting the sample are the same, including sampling by MVTL. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

Original Sampl∉QC Type	Analyte	Analysis Date	QC Result	Original Sample R	Re Units	Spike Amoι Spi	ke Resu Spike	% RecoviSpike	Duplicate Spike D	ouplicate RPD (%	b) Lower Co	ontrol Limi Upper Cont	rol Limi RPD Limi	it (%)
13560001 PDS	Boron	04/28/2023 16:48:00	104	6.71	mg/L	8	15	104				75	125	
13560001 PDSD	Boron	04/28/2023 16:49:00	99.5	6.71	mg/L				14.67	99.5	2.22	75	125	20
13692001 MS	Boron	04/28/2023 16:13:59	96.8	0.92	mg/L	0.4	1.308	96.8				70	130	
13692001 MSD	Boron	04/28/2023 16:14:39	98	0.92	mg/L				1.313	98	0.38	70	130	20
13692002 MS	Boron		91.5	1.90	mg/L	0.4	2.262	91.5				70	130	
13692002 MSD	Boron	04/28/2023 16:19:08	88	1.90	mg/L				2.248	88	0.62	70	130	20
LFB-OE	Boron	04/28/2023 15:59:51	106		mg/L	0.4	0.4223	106				85	115	
LFB-OE	Boron	04/28/2023 16:12:42	103		mg/L	0.4	0.4118	103				85	115	
LFB-OE	Boron	04/28/2023 16:17:08	106		mg/L	0.4	0.424	106				85	115	
MB	Boron	04/28/2023 15:58:57	<0.1		mg/L									
MB	Boron	04/28/2023 16:11:48	<0.1		mg/L									
MB	Boron	04/28/2023 16:16:14	<0.1		mg/L									
12882001 PDS	Calcium	04/27/2023 11:08:51	99.9	42.6	mg/L	100	142.5	99.9				75	125	
12882001 PDSD	Calcium	04/27/2023 11:09:57	101	42.6	mg/L	400	0.40.4	0.4.0	143.2	101	0.49	75 	125	20
13208001 PDS	Calcium		91.8	149	mg/L	100	240.4	91.8	000.0		0.00	75 	125	
13208001 PDSD	Calcium		90.3	149	mg/L				238.9	90.3	0.63	75	125	20
13561001 DUP	Calcium		94.97	93.2	mg/L	400	100.4	00.0			1.88	7.5	405	20
13561003 PDS	Calcium	04/27/2023 11:46:36	98.2	91.2	mg/L	100	189.4	98.2	100.0	07.4	0.50	75 75	125	00
13561003 PDSD	Calcium		97.1	91.2	mg/L	400	450.0	404	188.3	97.1	0.58	75 75	125	20
13563002 PDS	Calcium		101	58.4	mg/L	100	158.9	101	450.7	400	0.40	75 75	125	00
13563002 PDSD	Calcium	04/27/2023 11:58:30	100	58.4	mg/L				158.7	100	0.13	75	125	20
13571006 DUP	Calcium		572.2	567	mg/L						0.91			20
13571009 DUP	Calcium	04/27/2023 12:16:14	506.8	527	mg/L	400	040.0	05.4			3.91	7.5	405	20
13571016 PDS	Calcium		95.4	124	mg/L	100	219.2	95.4	040.0	04.0	0.07	75 75	125	20
13571016 PDSD	Calcium	04/27/2023 12:24:30	94.8	124	mg/L				218.6	94.8	0.27	75	125	20
13571020 DUP	Calcium	04/27/2023 12:27:36	464.5	475	mg/L	100	155	102			2.24	75	105	20
13571023 PDS	Calcium	04/27/2023 12:33:55	103	52.3 52.3	mg/L	100	155	103	155 E	102	0.22	75 75	125 125	20
13571023 PDSD 13692003 DUP	Calcium Calcium	04/27/2023 12:34:57 04/27/2023 12:41:19	103	110	mg/L				155.5	103	0.32 1.53	75	125	20 20
LFB-MI	Calcium		108	110	mg/L mg/L	100	108.3	108			1.55	85	115	20
LFB-MI	Calcium	04/27/2023 12:10:33			mg/L	100	110.1	110				85	115	
LFB-MI	Calcium	04/27/2023 11:39:11			mg/L	100	109.6	110				85	115	
MB	Calcium	04/27/2023 12:38:01			mg/L	100	100.0	110				00	110	
MB	Calcium	04/27/2023 11:37:58			mg/L									
MB	Calcium		<1		mg/L									
13571004 MS	Chloride	04/28/2023 10:51:35		154	mg/L	30	189	115.7				80	120	
13571004 MSD	Chloride	04/28/2023 10:52:46		154	mg/L				189	113.9	0.00	80	120	20
13592001 MS	Chloride	04/28/2023 11:28:14		124	mg/L	30	161	123.3				80	120	
13592001 MSD	Chloride		123.4	124	mg/L				161	123.4	0.00	80	120	20
13736001 MS	Chloride		105.4	160	mg/L	30	192	105.4		-		80	120	
13736001 MSD	Chloride	04/28/2023 12:10:46		160	mg/L				192	105.5	0.00	80	120	20
13849001 MS	Chloride		89.7	201	mg/L	30	228	89.7				80	120	
13849001 MSD	Chloride	04/28/2023 12:27:19		201	mg/L				228	90.4	0.00	80	120	20
LFB	Chloride	04/28/2023 12:14:19	95.4		mg/L	30	28.6	95.4				90	110	
LFB	Chloride	04/28/2023 11:53:03	94.7		mg/L	30	28.4	94.7				90	110	
LFB	Chloride	04/28/2023 11:12:51	95		mg/L	30	28.5	95				90	110	
LFB	Chloride	04/28/2023 11:31:46	95.3		mg/L	30	28.6	95.3				90	110	
LFB	Chloride	04/28/2023 12:29:41	95.7		mg/L	30	28.7	95.7				90	110	
LFB	Chloride	04/28/2023 10:19:39	90.1		mg/L	30	27	90.1				90	110	
LFB	Chloride	04/28/2023 10:55:07	94.9		mg/L	30	28.5	94.9				90	110	
LFB	Chloride	04/28/2023 10:36:13	95.1		mg/L	30	28.5	95.1				90	110	
MB	Chloride	04/28/2023 12:28:30	<2.0		mg/L									
MB	Chloride	04/28/2023 12:13:08	<2.0		mg/L									
MB	Chloride	04/28/2023 11:51:52	<2.0		mg/L									
MB	Chloride	04/28/2023 11:30:35	<2.0		mg/L									
MB	Chloride	04/28/2023 11:11:40	<2.0		mg/L									
MB	Chloride	04/28/2023 10:53:57	<2.0		mg/L									

MB	Chloride	04/28/2023 10:35:03	<20		mg/L									
MB	Chloride		<2.0		mg/L									
13561001 MS-F	Fluoride		102	0.65	mg/L	0.5	1.16	102				80	120	
13561001 MSD-F	Fluoride		104	0.65	mg/L	0.0	0	.02	1.17	104	0.86	80	120	20
13561004 MS-F	Fluoride		96	1.98	mg/L	0.5	2.46	96			0.00	80	120	
13561004 MSD-F	Fluoride	04/27/2023 02:34:19		1.98	mg/L				2.44	92	0.82	80	120	20
13563002 MS-F	Fluoride		108	0.46	mg/L	0.5	1	108				80	120	
13563002 MSD-F	Fluoride	04/26/2023 13:05:20		0.46	mg/L				1.01	110	1.00	80	120	20
13571020 MS-F	Fluoride	04/26/2023 18:19:22	92	0.65	mg/L	0.5	1.11	92				80	120	
13571020 MSD-F	Fluoride	04/26/2023 18:25:11	94	0.65	mg/L				1.12	94	0.90	80	120	20
CRM-F	Fluoride	04/26/2023 10:33:33	103		mg/L	3.39	3.5	103				83.8	111	
LFB-F	Fluoride	04/26/2023 16:19:41	104		mg/L	0.5	0.52	104				90	110	
LFB-F	Fluoride	04/26/2023 21:02:13	102		mg/L	0.5	0.51	102				90	110	
LFB-F	Fluoride	04/26/2023 10:45:58	102		mg/L	0.5	0.51	102				90	110	
LFB-F	Fluoride	04/27/2023 01:28:34	102		mg/L	0.5	0.51	102				90	110	
LFB-F	Fluoride	04/27/2023 04:33:42	102		mg/L	0.5	0.51	102				90	110	
MB-F	Fluoride	04/26/2023 10:39:30	<0.1		mg/L									
MB-F	Fluoride	04/27/2023 04:27:23	<0.1		mg/L									
MB-F	Fluoride	04/27/2023 01:22:15	<0.1		mg/L									
MB-F	Fluoride	04/26/2023 20:55:54	<0.1		mg/L									
MB-F	Fluoride	04/26/2023 16:13:22	<0.1		mg/L									
13561007 MS	Sulfate	04/27/2023 11:03:11	94.6	4060	mg/L	10000	13500	94.6				85	115	
13561007 MSD	Sulfate	04/27/2023 11:04:17	94.4	4060	mg/L				13500	94.4	0.00	85	115	20
13563001 MS	Sulfate		86.2	895	mg/L	1000	1760	86.2				85	115	
13563001 MSD	Sulfate	04/27/2023 11:24:09		895	mg/L				1700	81.1	3.50	85	115	20
13571008 MS	Sulfate	04/27/2023 11:40:43		2560	mg/L	2000	4440	94.5				85	115	
13571008 MSD	Sulfate	04/27/2023 11:41:48		2560	mg/L				4380	91.2	1.40	85	115	20
13571018 MS	Sulfate	04/27/2023 12:01:43		9160	mg/L	10000	18100	89.2				85	115	
13571018 MSD	Sulfate	04/27/2023 12:02:48		9160	mg/L				18400	92.5	1.60	85	115	20
13702001 MS	Sulfate		94.6	582	mg/L	2000	2470	94.6	0500	0= 0	4.00	85	115	00
13702001 MSD	Sulfate	04/27/2023 12:20:29		582	mg/L	400	0.4	0.4	2500	95.8	1.20	85	115	20
LFB	Sulfate	04/27/2023 12:22:41			mg/L	100	94	94				85	115	
LFB	Sulfate	04/27/2023 10:45:32			mg/L	100	101	101				85	115	
LFB LFB	Sulfate	04/27/2023 11:46:14 04/27/2023 11:06:30	94.6		mg/L	100	94.6	94.6				85	115 115	
LFB	Sulfate Sulfate	04/27/2023 11:06:30			mg/L	100 100	99.6 95	99.6 95				85 85	115	
LFB	Sulfate	04/27/2023 12:06:07			mg/L mg/L	100	97.9	97.9				85	115	
MB	Sulfate	04/27/2023 11:20:22			mg/L	100	31.3	37.9				00	113	
MB	Sulfate	04/27/2023 12:05:01			mg/L									
MB	Sulfate	04/27/2023 11:45:08			mg/L									
MB	Sulfate	04/27/2023 11:25:15			mg/L									
MB	Sulfate	04/27/2023 11:05:23			mg/L									
MB	Sulfate	04/27/2023 10:44:25			mg/L									
13561007 DUP	Total Dissolved Solids	05/01/2023 12:53:00		7130	mg/L						0.98			20
13703004 DUP	Total Dissolved Solids	05/01/2023 12:53:00	8280	8230	mg/L						0.60			20
13843005 DUP	Total Dissolved Solids	05/01/2023 12:53:00	1920	1930	mg/L						0.52			20
CRM	Total Dissolved Solids	05/01/2023 12:53:00	106		mg/L	736	784	106				90.35	110.33	
CRM	Total Dissolved Solids	05/01/2023 12:53:00	99		mg/L	736	728	99				90.35	110.33	
MB	Total Dissolved Solids	05/01/2023 12:53:00	<10		mg/L									
MB	Total Dissolved Solids	05/01/2023 12:53:00	<10		mg/L									
13561002 DUP	рН	04/27/2023 03:55:25	8.03	7.5	units						6.82			20
13571001 DUP	рН	04/26/2023 13:27:47	7.16	7.3	units						1.94			20
13571012 DUP	рН	04/26/2023 23:13:57	7.58	7.6	units						0.26			20
13571021 DUP	рН	04/26/2023 17:53:09	7.34	7.7	units						4.79			20
CRM-PH	рН	04/27/2023 04:51:21	98.83		units	6	5.9	98.83				98.33	101.67	
CRM-PH	рН	04/27/2023 01:46:09			units	6	5.9	98.33				98.33	101.67	
CRM-PH	рН	04/26/2023 21:19:52			units	6	5.9	99				98.33	101.67	
CRM-PH	рН		99.83		units	6	6	99.83				98.33	101.67	
CRM-PH	рН	04/26/2023 16:37:25	99.33		units	6	6	99.33				98.33	101.67	

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.MVTL.com

Account #: 2800

Client:

Montana-Dakota Utilities - Bismarck

190709 OP

Workorder: MD

MDU Lewis & Clark Spring 2023

PO:

CCR APP IV

(13561)

Todd Peterson Montana-Dakota Utilities 400 N 4th St Bismarck, ND 58501

Certificate of Analysis

Approval

All data reported has been reviewed and approved by:

Claudette Carroll, Lab Manager Bismarck, ND

Analyses performed under Minnesota Department of Health Accreditation conforms to the current TNI standards.

NEW ULM LAB CERTIFICATIONS: MN LAB # 027-015-125 ND WW/DW # R-040

BISMARCK LAB CERTIFICATIONS: MN LAB # 038-999-267 ND W/DW # ND-016

MVTL guarantees the accuracy of the analysis done on the sample submitted for testing. It is not possible for MVTL to guarantee that a test result obtained on a particular sample will be the same on any other sample unless all conditions affecting the sample are the same, including sampling by MVTL. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.MVTL.com

Account #: 2800 Client: Montana-Dakota Utilities - Bismarck

Workorder Summary

Workorder Comments

All analytes with dilution factors greater than 1 (displayed in DF column) required dilution due to matrix or high concentration of target analyte unless otherwise noted and reporting limits (RDL column) have been adjusted accordingly.

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.MVTL.com

Account #: 2800 Client: Montana-Dakota Utilities - Bismarck

Analytical Results

 Lab ID:
 13561001
 Date Collected:
 04/24/2023 14:52
 Matrix:
 Groundwater

 Sample ID:
 MW103
 Date Received:
 04/26/2023 08:00
 Collector:
 MVTL Field Service

Temp @ Receipt (C): 3.4

Method: EPA 245.1

Parameter	Results	Units	RDL	DF	Prepared	Analyzed	Ву	Qual
Mercury	<0.0002	mg/L	0.0002	1	05/02/2023 16·20	05/03/2023 11·15	MDE	

Method: EPA 6010D

Parameter	Results	Units	RDL	DF	Prepared	Analyzed	Ву	Qual
Lithium	0.0430	mg/L	0.02	1	04/26/2023 18:02	04/28/2023 10:37	SLZ	

Method: EPA 6020B

Parameter	Results	Units	RDL	DF	Prepared	Analyzed	Ву	Qual
Antimony	0.0068	mg/L	0.001	5	04/26/2023 18:02	05/03/2023 16:43	MDE	
Arsenic	0.0043	mg/L	0.002	5	04/26/2023 18:02	05/03/2023 16:43	MDE	
Barium	0.0514	mg/L	0.002	5	04/26/2023 18:02	05/03/2023 16:43	MDE	
Beryllium	<0.0005	mg/L	0.0005	5	04/26/2023 18:02	05/03/2023 16:43	MDE	
Cadmium	<0.0005	mg/L	0.0005	5	04/26/2023 18:02	05/03/2023 16:43	MDE	
Chromium	<0.002	mg/L	0.002	5	04/26/2023 18:02	05/03/2023 16:43	MDE	
Cobalt	0.0109	mg/L	0.002	5	04/26/2023 18:02	05/03/2023 16:43	MDE	
Lead	0.0007	mg/L	0.0005	5	04/26/2023 18:02	05/03/2023 16:43	MDE	
Molybdenum	0.0201	mg/L	0.002	5	04/26/2023 18:02	05/03/2023 16:43	MDE	
Selenium	0.0404	mg/L	0.005	5	04/26/2023 18:02	05/03/2023 16:43	MDE	
Thallium	<0.0005	mg/L	0.0005	5	04/26/2023 18:02	05/03/2023 16:43	MDE	

MVTL guarantees the accuracy of the analysis done on the sample submitted for testing. It is not possible for MVTL to guarantee that a test result obtained on a particular sample will be the same on any other sample unless all conditions affecting the sample are the same, including sampling by MVTL. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

Report Date: Friday, May 5, 2023 3:42:28 PM

Page 3 of 21

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.MVTL.com

Account #: 2800 Client: Montana-Dakota Utilities - Bismarck

Analytical Results

 Lab ID:
 13561002
 Date Collected:
 04/24/2023 09:25
 Matrix:
 Groundwater

 Sample ID:
 MW110
 Date Received:
 04/26/2023 08:00
 Collector:
 MVTL Field Service

Temp @ Receipt (C): 3.4

Method: EPA 245.1

Parameter	Results	Units	RDL	DF	Prepared	Analyzed	Ву	Qual
Mercury	<0.0002	mg/L	0.0002	1	05/02/2023 16:20	05/03/2023 11·15	MDE	

Method: EPA 6010D

Parameter	Results	Units	RDL	DF	Prepared	Analyzed	Ву	Qual
Lithium	0.0329	mg/L	0.02	1	04/26/2023 18:02	04/28/2023 10:37	SLZ	

Method: EPA 6020B

Parameter	Results	Units	RDL	DF	Prepared	Analyzed	Ву	Qual
Antimony	<0.001	mg/L	0.001	5	04/26/2023 18:02	05/03/2023 16:47	MDE	
Arsenic	<0.002	mg/L	0.002	5	04/26/2023 18:02	05/03/2023 16:47	MDE	
Barium	0.0396	mg/L	0.002	5	04/26/2023 18:02	05/03/2023 16:47	MDE	
Beryllium	<0.0005	mg/L	0.0005	5	04/26/2023 18:02	05/03/2023 16:47	MDE	
Cadmium	<0.0005	mg/L	0.0005	5	04/26/2023 18:02	05/03/2023 16:47	MDE	
Chromium	<0.002	mg/L	0.002	5	04/26/2023 18:02	05/03/2023 16:47	MDE	
Cobalt	<0.002	mg/L	0.002	5	04/26/2023 18:02	05/03/2023 16:47	MDE	
Lead	0.0008	mg/L	0.0005	5	04/26/2023 18:02	05/03/2023 16:47	MDE	
Molybdenum	0.0030	mg/L	0.002	5	04/26/2023 18:02	05/03/2023 16:47	MDE	
Selenium	<0.005	mg/L	0.005	5	04/26/2023 18:02	05/03/2023 16:47	MDE	
Thallium	<0.0005	mg/L	0.0005	5	04/26/2023 18:02	05/03/2023 16:47	MDE	

MVTL guarantees the accuracy of the analysis done on the sample submitted for testing. It is not possible for MVTL to guarantee that a test result obtained on a particular sample will be the same on any other sample unless all conditions affecting the sample are the same, including sampling by MVTL. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

Report Date: Friday, May 5, 2023 3:42:28 PM

Page 4 of 21

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.MVTL.com

Account #: 2800 Client: Montana-Dakota Utilities - Bismarck

Analytical Results

 Lab ID:
 13561003
 Date Collected:
 04/24/2023 10:55
 Matrix:
 Groundwater

 Sample ID:
 MW119
 Date Received:
 04/26/2023 08:00
 Collector:
 MVTL Field Service

Temp @ Receipt (C): 3.4

Method: EPA 245.1

Parameter	Results	Units	RDL	DF	Prepared	Analyzed	Ву	Qual
Mercury	<0.0002	mg/L	0.0002	1	05/02/2023 16:20	05/03/2023 11·15	MDE	

Method: EPA 6010D

Parameter	Results	Units	RDL	DF	Prepared	Analyzed	Ву	Qual
Lithium	0.0333	mg/L	0.02	1	04/26/2023 18:02	04/28/2023 10:38	SLZ	

Method: EPA 6020B

Parameter	Results	Units	RDL	DF	Prepared	Analyzed	Ву	Qual
Antimony	<0.001	mg/L	0.001	5	04/26/2023 18:02	05/03/2023 16:51	MDE	
Arsenic	<0.002	mg/L	0.002	5	04/26/2023 18:02	05/03/2023 16:51	MDE	
Barium	0.0296	mg/L	0.002	5	04/26/2023 18:02	05/03/2023 16:51	MDE	
Beryllium	<0.0005	mg/L	0.0005	5	04/26/2023 18:02	05/03/2023 16:51	MDE	
Cadmium	<0.0005	mg/L	0.0005	5	04/26/2023 18:02	05/03/2023 16:51	MDE	
Chromium	<0.002	mg/L	0.002	5	04/26/2023 18:02	05/03/2023 16:51	MDE	
Cobalt	<0.002	mg/L	0.002	5	04/26/2023 18:02	05/03/2023 16:51	MDE	
Lead	<0.0005	mg/L	0.0005	5	04/26/2023 18:02	05/03/2023 16:51	MDE	
Molybdenum	0.0035	mg/L	0.002	5	04/26/2023 18:02	05/03/2023 16:51	MDE	
Selenium	<0.005	mg/L	0.005	5	04/26/2023 18:02	05/03/2023 16:51	MDE	
Thallium	<0.0005	mg/L	0.0005	5	04/26/2023 18:02	05/03/2023 16:51	MDE	

MVTL guarantees the accuracy of the analysis done on the sample submitted for testing. It is not possible for MVTL to guarantee that a test result obtained on a particular sample will be the same on any other sample unless all conditions affecting the sample are the same, including sampling by MVTL. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

Report Date: Friday, May 5, 2023 3:42:28 PM

Page 5 of 21

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.MVTL.com

Account #: 2800 Client: Montana-Dakota Utilities - Bismarck

Analytical Results

 Lab ID:
 13561004
 Date Collected:
 04/25/2023 07:13
 Matrix:
 Groundwater

 Sample ID:
 MW111
 Date Received:
 04/26/2023 08:00
 Collector:
 MVTL Field Service

Temp @ Receipt (C): 3.4

Method: EPA 245.1

Parameter	Results	Units	RDL	DF	Prepared	Analyzed	Ву	Qual
Mercury	<0.0002	mg/L	0.0002	1	05/02/2023 16·20	05/03/2023 11·15	MDE	

Method: EPA 6010D

Parameter	Results	Units	RDL	DF	Prepared	Analyzed	Ву	Qual
Lithium	0.158	mg/L	0.02	1	04/26/2023 18:02	04/28/2023 10:38	SLZ	

Method: EPA 6020B

Parameter	Results	Units	RDL	DF	Prepared	Analyzed	Ву	Qual
Antimony	<0.001	mg/L	0.001	5	04/26/2023 18:02	05/03/2023 16:55	MDE	
Arsenic	<0.002	mg/L	0.002	5	04/26/2023 18:02	05/03/2023 16:55	MDE	
Barium	0.0205	mg/L	0.002	5	04/26/2023 18:02	05/03/2023 16:55	MDE	
Beryllium	<0.0005	mg/L	0.0005	5	04/26/2023 18:02	05/03/2023 16:55	MDE	
Cadmium	<0.0005	mg/L	0.0005	5	04/26/2023 18:02	05/03/2023 16:55	MDE	
Chromium	<0.002	mg/L	0.002	5	04/26/2023 18:02	05/03/2023 16:55	MDE	
Cobalt	<0.002	mg/L	0.002	5	04/26/2023 18:02	05/03/2023 16:55	MDE	
Lead	<0.0005	mg/L	0.0005	5	04/26/2023 18:02	05/03/2023 16:55	MDE	
Molybdenum	0.0546	mg/L	0.002	5	04/26/2023 18:02	05/03/2023 16:55	MDE	
Selenium	0.0777	mg/L	0.005	5	04/26/2023 18:02	05/03/2023 16:55	MDE	
Thallium	<0.0005	mg/L	0.0005	5	04/26/2023 18:02	05/03/2023 16:55	MDE	

MVTL guarantees the accuracy of the analysis done on the sample submitted for testing. It is not possible for MVTL to guarantee that a test result obtained on a particular sample will be the same on any other sample unless all conditions affecting the sample are the same, including sampling by MVTL. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

Report Date: Friday, May 5, 2023 3:42:28 PM

Page 6 of 21

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.MVTL.com

Account #: 2800 Client: Montana-Dakota Utilities - Bismarck

Analytical Results

 Lab ID:
 13561005
 Date Collected:
 04/24/2023 13:47
 Matrix:
 Groundwater

 Sample ID:
 MW117
 Date Received:
 04/26/2023 08:00
 Collector:
 MVTL Field Service

Temp @ Receipt (C): 3.4

Method: EPA 245.1

Parameter	Results	Units	RDL	DF	Prepared	Analyzed	Ву	Qual
Mercury	<0.0002	mg/L	0.0002	1	05/02/2023 16:20	05/03/2023 11·15	MDE	

Method: EPA 6010D

Parameter	Results	Units	RDL	DF	Prepared	Analyzed	Ву	Qual
Lithium	0.107	mg/L	0.1	5	04/26/2023 18:02	04/28/2023 10:39	SLZ	

Method: EPA 6020B

Parameter	Results	Units	RDL	DF	Prepared	Analyzed	Ву	Qual
Antimony	<0.001	mg/L	0.001	5	04/26/2023 18:02	05/03/2023 16:59	MDE	
Arsenic	<0.002	mg/L	0.002	5	04/26/2023 18:02	05/03/2023 16:59	MDE	
Barium	0.0130	mg/L	0.002	5	04/26/2023 18:02	05/03/2023 16:59	MDE	
Beryllium	<0.0005	mg/L	0.0005	5	04/26/2023 18:02	05/03/2023 16:59	MDE	
Cadmium	<0.0005	mg/L	0.0005	5	04/26/2023 18:02	05/03/2023 16:59	MDE	
Chromium	0.0032	mg/L	0.002	5	04/26/2023 18:02	05/03/2023 16:59	MDE	
Cobalt	<0.002	mg/L	0.002	5	04/26/2023 18:02	05/03/2023 16:59	MDE	
Lead	<0.0005	mg/L	0.0005	5	04/26/2023 18:02	05/03/2023 16:59	MDE	
Molybdenum	0.0032	mg/L	0.002	5	04/26/2023 18:02	05/03/2023 16:59	MDE	
Selenium	0.0320	mg/L	0.005	5	04/26/2023 18:02	05/03/2023 16:59	MDE	
Thallium	<0.0005	mg/L	0.0005	5	04/26/2023 18:02	05/03/2023 16:59	MDE	

MVTL guarantees the accuracy of the analysis done on the sample submitted for testing. It is not possible for MVTL to guarantee that a test result obtained on a particular sample will be the same on any other sample unless all conditions affecting the sample are the same, including sampling by MVTL. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

Report Date: Friday, May 5, 2023 3:42:28 PM

Page 7 of 21

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.MVTL.com

Account #: 2800 Client: Montana-Dakota Utilities - Bismarck

Analytical Results

 Lab ID:
 13561006
 Date Collected:
 04/25/2023 08:21
 Matrix:
 Groundwater

 Sample ID:
 MW118
 Date Received:
 04/26/2023 08:00
 Collector:
 MVTL Field Service

Temp @ Receipt (C): 3.4

Method: EPA 245.1

Parameter	Results	Units	RDL	DF	Prepared	Analyzed	Ву	Qual
Mercury	<0.0002	mg/L	0.0002	1	05/02/2023 16:20	05/03/2023 11·15	MDE	

Method: EPA 6010D

Parameter	Results	Units	RDL	DF	Prepared	Analyzed	Ву	Qual
Lithium	0.0648	mg/L	0.02	1	04/26/2023 18:02	04/28/2023	SLZ	

Method: EPA 6020B

Parameter	Results	Units	RDL	DF	Prepared	Analyzed	Ву	Qual
Antimony	<0.001	mg/L	0.001	5	04/26/2023 18:02	05/03/2023 17:20	MDE	
Arsenic	<0.002	mg/L	0.002	5	04/26/2023 18:02	05/03/2023 17:20	MDE	
Barium	0.0234	mg/L	0.002	5	04/26/2023 18:02	05/03/2023 17:20	MDE	
Beryllium	<0.0005	mg/L	0.0005	5	04/26/2023 18:02	05/03/2023 17:20	MDE	
Cadmium	<0.0005	mg/L	0.0005	5	04/26/2023 18:02	05/03/2023 17:20	MDE	
Chromium	<0.002	mg/L	0.002	5	04/26/2023 18:02	05/03/2023 17:20	MDE	
Cobalt	<0.002	mg/L	0.002	5	04/26/2023 18:02	05/03/2023 17:20	MDE	
Lead	<0.0005	mg/L	0.0005	5	04/26/2023 18:02	05/03/2023 17:20	MDE	
Molybdenum	0.0233	mg/L	0.002	5	04/26/2023 18:02	05/03/2023 17:20	MDE	
Selenium	0.0637	mg/L	0.005	5	04/26/2023 18:02	05/03/2023 17:20	MDE	
Thallium	<0.0005	mg/L	0.0005	5	04/26/2023 18:02	05/03/2023 17:20	MDE	

MVTL guarantees the accuracy of the analysis done on the sample submitted for testing. It is not possible for MVTL to guarantee that a test result obtained on a particular sample will be the same on any other sample unless all conditions affecting the sample are the same, including sampling by MVTL. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

Report Date: Friday, May 5, 2023 3:42:28 PM

Page 8 of 21

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.MVTL.com

Account #: 2800 Client: Montana-Dakota Utilities - Bismarck

Analytical Results

 Lab ID:
 13561007
 Date Collected:
 04/24/2023 12:30
 Matrix:
 Groundwater

 Sample ID:
 MW120
 Date Received:
 04/26/2023 08:00
 Collector:
 MVTL Field Service

Temp @ Receipt (C): 3.4

Method: EPA 245.1

Parameter	Results	Units	RDL	DF	Prepared	Analyzed	Ву	Qual
Mercury	<0.0002	mg/L	0.0002	1	05/02/2023 16:20	05/03/2023 11·15	MDE	

Method: EPA 6010D

Parameter	Results	Units	RDL	DF	Prepared	Analyzed	Ву	Qual
Lithium	0.109	mg/L	0.1	5	04/26/2023 18:02	04/28/2023	SLZ	

Method: EPA 6020B

Parameter	Results	Units	RDL	DF	Prepared	Analyzed	Ву	Qual
Antimony	<0.001	mg/L	0.001	5	04/26/2023 18:02	05/03/2023 17:25	MDE	
Arsenic	<0.002	mg/L	0.002	5	04/26/2023 18:02	05/03/2023 17:25	MDE	
Barium	0.0154	mg/L	0.002	5	04/26/2023 18:02	05/03/2023 17:25	MDE	
Beryllium	<0.0005	mg/L	0.0005	5	04/26/2023 18:02	05/03/2023 17:25	MDE	
Cadmium	<0.0005	mg/L	0.0005	5	04/26/2023 18:02	05/03/2023 17:25	MDE	
Chromium	<0.002	mg/L	0.002	5	04/26/2023 18:02	05/03/2023 17:25	MDE	
Cobalt	<0.002	mg/L	0.002	5	04/26/2023 18:02	05/03/2023 17:25	MDE	
Lead	<0.0005	mg/L	0.0005	5	04/26/2023 18:02	05/03/2023 17:25	MDE	
Molybdenum	0.0020	mg/L	0.002	5	04/26/2023 18:02	05/03/2023 17:25	MDE	
Selenium	<0.005	mg/L	0.005	5	04/26/2023 18:02	05/03/2023 17:25	MDE	
Thallium	<0.0005	mg/L	0.0005	5	04/26/2023 18:02	05/03/2023 17:25	MDE	

MVTL guarantees the accuracy of the analysis done on the sample submitted for testing. It is not possible for MVTL to guarantee that a test result obtained on a particular sample will be the same on any other sample unless all conditions affecting the sample are the same, including sampling by MVTL. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

Report Date: Friday, May 5, 2023 3:42:28 PM

Page 9 of 21

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.MVTL.com

Account #: 2800 Client: Montana-Dakota Utilities - Bismarck

Analytical Results

 Lab ID:
 13561008
 Date Collected:
 04/24/2023 14:52
 Matrix:
 Groundwater

 Sample ID:
 Dup 1
 Date Received:
 04/26/2023 08:00
 Collector:
 MVTL Field Service

Temp @ Receipt (C): 3.4

Method: EPA 245.1

Parameter	Results	Units	RDL	DF	Prepared	Analyzed	Ву	Qual
Mercury	0.0003	mg/L	0.0002	1	05/02/2023 16·20	05/03/2023 11·15	MDE	

Method: EPA 6010D

Parameter	Results	Units	RDL	DF	Prepared	Analyzed	Ву	Qual
Lithium	0.0447	mg/L	0.02	1	04/26/2023 18:02	04/28/2023 10:40	SLZ	

Method: EPA 6020B

Parameter	Results	Units	RDL	DF	Prepared	Analyzed	Ву	Qual
Antimony	0.0059	mg/L	0.001	5	04/26/2023 18:02	05/03/2023 17:29	MDE	
Arsenic	0.0033	mg/L	0.002	5	04/26/2023 18:02	05/03/2023 17:29	MDE	
Barium	0.0502	mg/L	0.002	5	04/26/2023 18:02	05/03/2023 17:29	MDE	
Beryllium	<0.0005	mg/L	0.0005	5	04/26/2023 18:02	05/03/2023 17:29	MDE	
Cadmium	<0.0005	mg/L	0.0005	5	04/26/2023 18:02	05/03/2023 17:29	MDE	
Chromium	<0.002	mg/L	0.002	5	04/26/2023 18:02	05/03/2023 17:29	MDE	
Cobalt	0.0110	mg/L	0.002	5	04/26/2023 18:02	05/03/2023 17:29	MDE	
Lead	0.0007	mg/L	0.0005	5	04/26/2023 18:02	05/03/2023 17:29	MDE	
Molybdenum	0.0209	mg/L	0.002	5	04/26/2023 18:02	05/03/2023 17:29	MDE	
Selenium	0.0328	mg/L	0.005	5	04/26/2023 18:02	05/03/2023 17:29	MDE	
Thallium	<0.0005	mg/L	0.0005	5	04/26/2023 18:02	05/03/2023 17:29	MDE	

MVTL guarantees the accuracy of the analysis done on the sample submitted for testing. It is not possible for MVTL to guarantee that a test result obtained on a particular sample will be the same on any other sample unless all conditions affecting the sample are the same, including sampling by MVTL. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

Report Date: Friday, May 5, 2023 3:42:28 PM

Page 10 of 21

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.MVTL.com

Account #: 2800 Client: Montana-Dakota Utilities - Bismarck

Analytical Results

Lab ID:13561009Date Collected:04/25/2023 06:40Matrix:GroundwaterSample ID:Field Blank (FB)Date Received:04/26/2023 08:00Collector:MVTL Field Service

Temp @ Receipt (C): 3.4

Method: EPA 245.1

Parameter	Results	Units	RDL	DF	Prepared	Analyzed	Ву	Qual
Mercury	<0.0002	mg/L	0.0002	1	05/02/2023 16:20	05/03/2023 11·15	MDE	

Method: EPA 6010D

Parameter	Results	Units	RDL	DF	Prepared	Analyzed	Ву	Qual
Lithium	<0.02	mg/L	0.02	1	04/26/2023 18:02	04/28/2023 10:41	SLZ	

Method: EPA 6020B

Parameter	Results	Units	RDL	DF	Prepared	Analyzed	Ву	Qual
Antimony	<0.001	mg/L	0.001	5	04/26/2023 18:02	05/03/2023 17:33	MDE	
Arsenic	<0.002	mg/L	0.002	5	04/26/2023 18:02	05/03/2023 17:33	MDE	
Barium	<0.002	mg/L	0.002	5	04/26/2023 18:02	05/03/2023 17:33	MDE	
Beryllium	<0.0005	mg/L	0.0005	5	04/26/2023 18:02	05/03/2023 17:33	MDE	
Cadmium	<0.0005	mg/L	0.0005	5	04/26/2023 18:02	05/03/2023 17:33	MDE	
Chromium	<0.002	mg/L	0.002	5	04/26/2023 18:02	05/03/2023 17:33	MDE	
Cobalt	<0.002	mg/L	0.002	5	04/26/2023 18:02	05/03/2023 17:33	MDE	
Lead	<0.0005	mg/L	0.0005	5	04/26/2023 18:02	05/03/2023 17:33	MDE	
Molybdenum	<0.002	mg/L	0.002	5	04/26/2023 18:02	05/03/2023 17:33	MDE	
Selenium	<0.005	mg/L	0.005	5	04/26/2023 18:02	05/03/2023 17:33	MDE	
Thallium	<0.0005	mg/L	0.0005	5	04/26/2023 18:02	05/03/2023 17:33	MDE	

MVTL guarantees the accuracy of the analysis done on the sample submitted for testing. It is not possible for MVTL to guarantee that a test result obtained on a particular sample will be the same on any other sample unless all conditions affecting the sample are the same, including sampling by MVTL. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

Report Date: Friday, May 5, 2023 3:42:28 PM

Page 11 of 21

Account #: 2800 Client: Montana-Dakota Utilities - Bismarck

MVTL Field Services

Sampling Report

MDU Lewis & Clark

 Sample Event:
 Spring 2023
 Work Order #:
 13561

 Sampling Dates:
 April 24-25, 2023
 13560

Well Condition: All wells were found to be in good condition.

Lock Condition: Good

 Samples collected
 Duplicate Sample Location

 MW103
 MW103

 MW110
 MW103

 MW111
 MW111

 MW117
 MW118

 MW120
 MW121

Samples collected were placed on ice and transported back to the MVTL Laboratory in Bismarck, ND for analysis.

Jeremy Meyer MVTL Field Services

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.MVTL.com

Account #: 2800 Client: Montana-Dakota Utilities - Bismarck

erson h St , ND 58501 2427 erson@mdu.co	om ple Information	n	cc:		3	_		Conta	iners	I		Project Na Event: Sampled I Field Re	By:	MI Sh	DU Lewis & Clark Spring 2023
h St , ND 58501 2427 erson@mdu.co		n	- de			_		Conta	iners	T		Sampled	<u></u>	,8L	Spring 2023
2427 erson@mdu.c		n	- d		8	_		Conta	iners	T			<u></u>	-8L	Spring 2025
erson@mdu.c		n	- d		8	_		Conta	iners	T			<u></u>	586	
Samp	ple Information	n	be d		8	_		Conta	iners	T		Field Re	adings		
			be		8	_				T		Tield Ne	Lungs		
mple ID	Date	Time	Sample Type	1 Liter Raw		500 mL HNO3 (filtered)					Temp (°C)	Spec. Cond.	Hd	Turbidity (NTU)	Analysis Required
/W103	244-23	1452	GW	-	X	X			\perp		8.78	5221	7.67	42.15	
				-	-	_	-				_				
		1055	_	-	-	X	X				7. BO	1048		13.42	
		0713		-	-	-					4.69	3468		1.24	
			_	_	_		-	11	\perp		6.75				MDU Lewis & Clark List
			_	-	-	-		\perp	\perp	_				1.36	me como o ciam por
			_	-	-	-	_	1	1		7.69	5786	6.95	0.26	
			_	-	-	_	_	++			-	_	-	_	
Blank (FB)	25 Apr 23	0640	GW	X	X	Х	Х	++	+		NA	NA	NA	NA	
1	MW110 MW119 MW111 MW117 MW118 MW120 Dup 1 Blank (FB)	MW110 24Ar 23 MW119 24Ar 23 MW111 25Ar 23 MW117 24Ar 23 MW118 25Ar 23 MW120 24Ar 23 Dup 1 24Ar 23	MW110 24A+23 6725 MW119 24A+23 1055 MW111 25A+23 0713 MW117 24A+23 1347 MW118 25A+23 0821 MW120 24A+23 1230 Dup 1 24A+23 1452	MW110	AW110 24Ar 23 G2S GW X AW119 24Ar 23 105S GW X AW111 25Ar 23 0713 GW X AW117 24Ar 23 (347 GW X AW118 25Ar 23 0821 GW X AW120 24Ar 23 1230 GW X Dup 1 24Ar 23 1457 GW X	MW110	MW110	AW110 24Ar 23 6725 GW X X X AW119 24Ar 23 1055 GW X X X AW111 25Ar 23 0713 GW X X X AW117 24Ar 23 1347 GW X X X AW118 25Ar 23 0821 GW X X X AW120 24Ar 23 1230 GW X X X Dup 1 24Ar 23 1452 GW X X X	MW110 24A-23 G25 GW X X X X M MW119 24A-23 1055 GW X X X X X M MW111 25A-23 0713 GW X X X X X MW117 24A-23 (347 GW X X X X M MW117 24A-23 0821 GW X X X X M MW120 24A-23 1230 GW X X X X M Dup 1 24A-23 1452 GW X X X X	MW110	MW110	AW110 24Af 23 6925 GW X	AW110 24Ap 23 CA2S GW X <td>AW110 24Ag 23 0925 GW X<td>AW110</td></td>	AW110 24Ag 23 0925 GW X <td>AW110</td>	AW110

Temp (°C)

3.4 TM562 /TM805

Location

Login

Walk In #2

Date/Time

26Ay 23

0700

MVTL guarantees the accuracy of the analysis done on the sample submitted for testing. It is not possible for MVTL to guarantee that a test result obtained on a particular sample will be the same on any other sample unless all conditions affecting the sample are the same, including sampling by MVTL. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

Received By

Date/Time

Name

Report Date: Friday, May 5, 2023 3:42:28 PM

Relinquished By

Name

Account #: 2800 Client: Montana-Dakota Utilities - Bismarck

MVT	
2616 E. Broadway Ave,	, Bismarck, ND
Phone: (701) 25	8-9720
eather Conditio	ns:
	Τ.

Field Datasheet

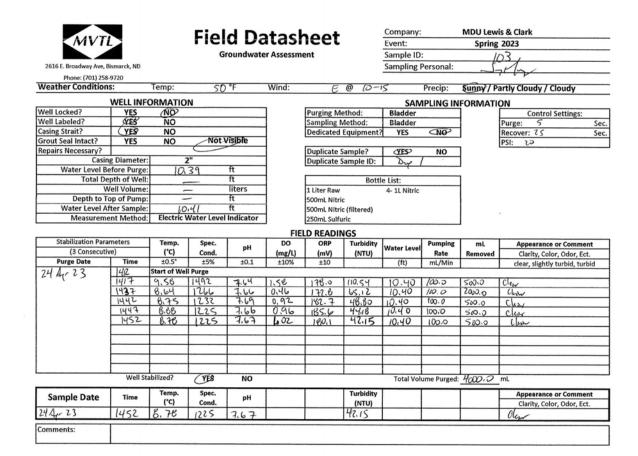
Surface water Assessment

Company: MDU Lewis & Clark
Event: Spring 2023

Sampling Personal:

Weather Condition		45	°F	Wind:	Precip: Sunny / Partly Cloudy / Cloudy
Well ID	Date	Time	Casing Diameter	Water Level (ft)	Comments
MW101		1146	2"	8.97	
MW105	24/4-23	1406	2"	B.56	
MW106		1404	2"	9.08	
MW107		1144	2"	4.20	
MW108		1620	2"	16.92	
MW116		1402	2"	[3,82	
	ļ				

MVTL guarantees the accuracy of the analysis done on the sample submitted for testing. It is not possible for MVTL to guarantee that a test result obtained on a particular sample will be the same on any other sample unless all conditions affecting the sample are the same, including sampling by MVTL. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

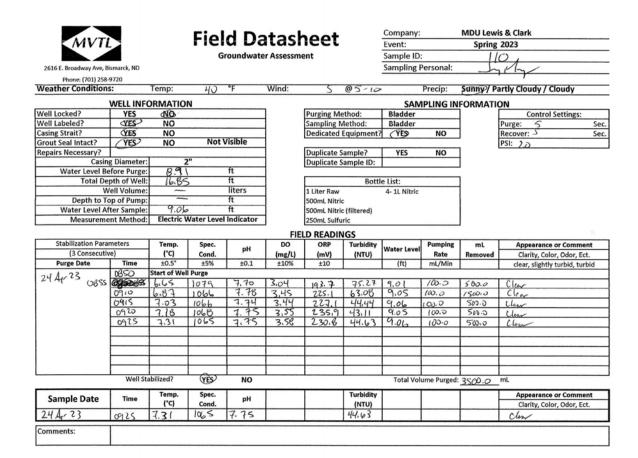


1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890
2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724
1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885

www.MVTL.com

Account #: 2800 Client: Montana-Dakota Utilities - Bismarck

MVTL guarantees the accuracy of the analysis done on the sample submitted for testing. It is not possible for MVTL to guarantee that a test result obtained on a particular sample will be the same on any other sample unless all conditions affecting the sample are the same, including sampling by MVTL. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

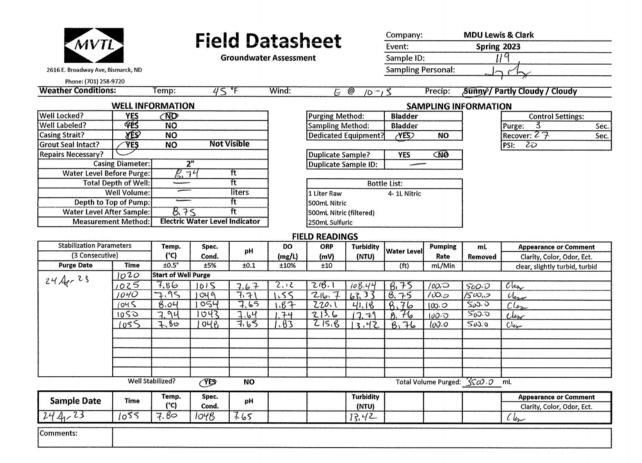


1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890
2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724
1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885

www.MVTL.com

Account #: 2800 Client: Montana-Dakota Utilities - Bismarck

MVTL guarantees the accuracy of the analysis done on the sample submitted for testing. It is not possible for MVTL to guarantee that a test result obtained on a particular sample will be the same on any other sample unless all conditions affecting the sample are the same, including sampling by MVTL. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.



1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890
2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724
1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885

www.MVTL.com

Account #: 2800 Client: Montana-Dakota Utilities - Bismarck

MVTL guarantees the accuracy of the analysis done on the sample submitted for testing. It is not possible for MVTL to guarantee that a test result obtained on a particular sample will be the same on any other sample unless all conditions affecting the sample are the same, including sampling by MVTL. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.MVTL.com

Client: Montana-Dakota Utilities - Bismarck Account #: 2800

ne: (701) 258-9720

Field Datasheet

Groundwater Assessment

MDU Lewis & Clark Company: Event: Spring 2023 Sample ID: Sampling Personal:

Precip: Sunny / Partly Cloudy / Cloudy

Purge:

Recover: 25

PSI: 20

Control Settings:

Sec.

Sec.

Weather Conditions: Wind: Temp: WELL INFORMATION Well Locked? NO NO Well Labeled? Casing Strait? YES NO Not Visible Grout Seal Intact? YES NO Repairs Necessary? Casing Diameter: Water Level Before Purge: Total Depth of Well: Well Volume: liters Depth to Top of Pump ft Water Level After Sample ft

Measurement Method: Electric Water Level Indicator

SAMPLING INFORMATION Purging Method: Bladder Sampling Method: Bladder **Dedicated Equipment?** YES

N @5-10

Duplicate Sample? YES < NØ Duplicate Sample ID:

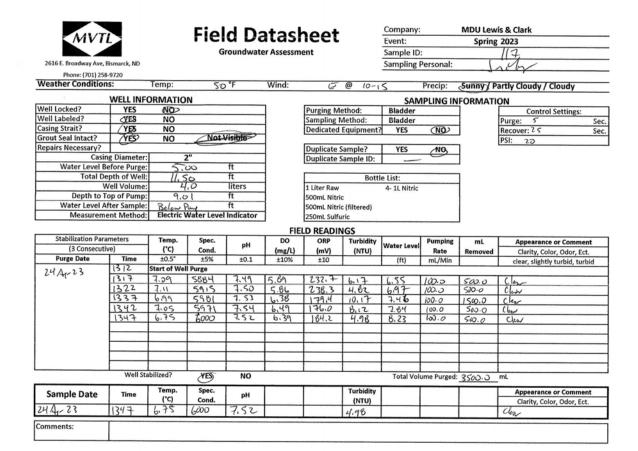
Bottle List: 1 Liter Raw 4- 1L Nitric 500mL Nitric 500mL Nitric (filtered) 250mL Sulfuric

FIELD READINGS

Stabilization Para		Temp.	Spec.	pH	DO	ORP	Turbidity	Water Level	Pumping	mL	Appearance or Comment
(3 Consecutive)		(°C)	Cond.	Cond.	(mg/L)	(mV)	(NTU)	water Level	Rate	Removed	Clarity, Color, Odor, Ect.
Purge Date	Time	±0.5°	±5%	±0.1	±10%	±10		(ft)	mL/Min		clear, slightly turbid, turbid
25 A1-23		Start of Well Purge									
37.1	0638	5.48	4209	7.32	1.06	162.3	40.16	7.61	100.0	5000	Clear
	0653	4.80	3498	7,48	3.96	141.7	18,17	7,60	100.0	1500.0	Clear
	0 6 58	4.77	3431	7,58	4.17	136.7	9.80	7.60	G.00	500.0	Class
	0703	4.73	3 380	7.58	4.57	1503	6.25	7.61	C.c01	500.0	Clem
	0708	4.73	3436	7.54	4.62	12/3.6	2.74	7.61	100.0	500.0	Clear
	0713	4.69	3466	7.52	4,55	141.7	1,24	7.61	100.0	500.0	Clear
	Well Stabilized? YES				Total Volume Purged: LIONO.2 mL						

Sample Date	Time	Temp. (°C)	Spec. Cond.	pН	Turbidity	на		Appearance or Comment
					(NTU)	,	(NTU)	Clarity, Color, Odor, Ect.
25 Apr 23	0713	4.69	3468	7.52	1.24	.52	1.24	Cke
Comments:	Collecte	ed field	d blank 6	0640		0640		

MVTL guarantees the accuracy of the analysis done on the sample submitted for testing. It is not possible for MVTL to guarantee that a test result obtained on a particular sample will be the same on any other sample unless all conditions affecting the sample are the same, including sampling by MVTL. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

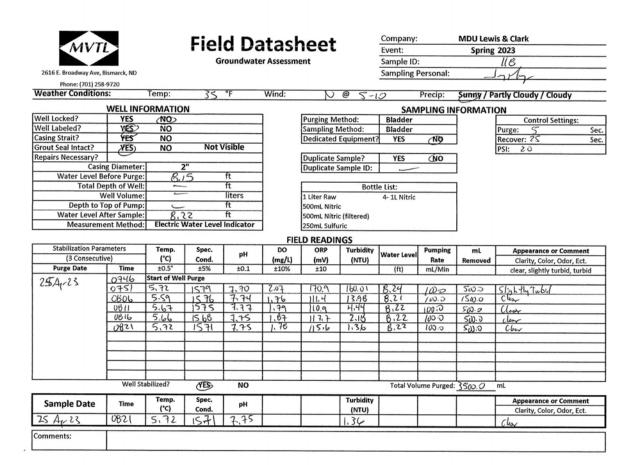


1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890
2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724
1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885

www.MVTL.com

Account #: 2800 Client: Montana-Dakota Utilities - Bismarck

MVTL guarantees the accuracy of the analysis done on the sample submitted for testing. It is not possible for MVTL to guarantee that a test result obtained on a particular sample will be the same on any other sample unless all conditions affecting the sample are the same, including sampling by MVTL. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

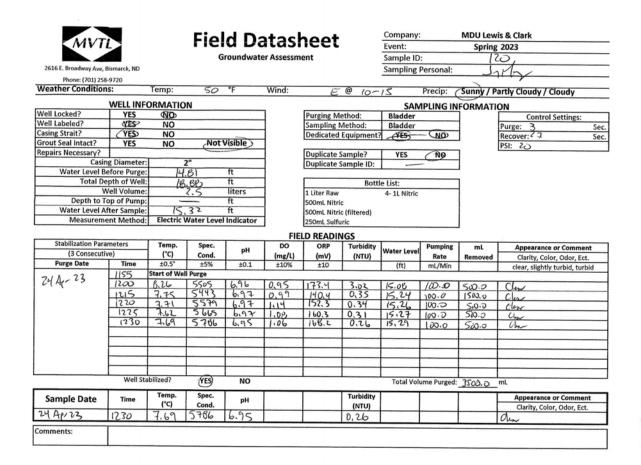


1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890
2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724
1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885

www.MVTL.com

Account #: 2800 Client: Montana-Dakota Utilities - Bismarck

MVTL guarantees the accuracy of the analysis done on the sample submitted for testing. It is not possible for MVTL to guarantee that a test result obtained on a particular sample will be the same on any other sample unless all conditions affecting the sample are the same, including sampling by MVTL. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.



1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890
2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724
1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885

www.MVTL.com

Account #: 2800 Client: Montana-Dakota Utilities - Bismarck

MVTL guarantees the accuracy of the analysis done on the sample submitted for testing. It is not possible for MVTL to guarantee that a test result obtained on a particular sample will be the same on any other sample unless all conditions affecting the sample are the same, including sampling by MVTL. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

Report Date: Friday, May 5, 2023 3:42:28 PM

Original Sampl∢QC Type	Analyte	Analysis Date	QC Result	Original Sam	ple Re Units	Spike Amoι Sp	oike Resu Spi	ike % RecovເSpik	e Duplicate Spike	Duplicate RPD (%) Lov	wer Control Limi Upper C	ontrol Limi⊧RPD	Limit (%)
13560001 MS	Antimony	05/03/2023 16:30:54	101	<0.001	mg/L	0.4	0.404	101				75	125	
13560001 MSD	Antimony	05/03/2023 16:35:01	98.9	<0.001	mg/L				0.396	98.9	2.00	75	125	20
13601001 MS	Antimony	05/04/2023 14:12:00	99.9		mg/L	0.4	0.403	99.9				70	130	
13601001 MSD	Antimony	05/04/2023 14:16:00	100		mg/L				0.404	100	0.25	70	130	20
LFB-MS	Antimony	05/04/2023 13:43:00	98.4		mg/L	0.1	0.0984	98.4				85	115	
LFB-MS	Antimony	05/03/2023 16:18:35	101		mg/L	0.1	0.101	101				80	120	
MB	Antimony	05/04/2023 13:39:00	<0.001		mg/L									
MB	Antimony	05/03/2023 16:14:28	<0.001		mg/L									
13560001 MS	Arsenic	05/03/2023 16:30:54	100	<0.002	mg/L	0.4	0.4	100				75	125	
13560001 MSD	Arsenic	05/03/2023 16:35:01	107	<0.002	mg/L				0.43	107	7.23	75	125	20
LFB-MS	Arsenic	05/03/2023 16:18:35	102		mg/L	0.1	0.102	102				80	120	
MB	Arsenic	05/03/2023 16:14:28	<0.002		mg/L									
13560001 MS	Barium	05/03/2023 16:30:54	94.7	0.0330	mg/L	0.4	0.412	94.7				75	125	
13560001 MSD	Barium	05/03/2023 16:35:01	93.6	0.0330	mg/L				0.407	93.6	1.22	75	125	20
13601001 MS	Barium	05/04/2023 14:12:00	82.7		mg/L	0.4	0.331	82.7				70	130	
13601001 MSD	Barium	05/04/2023 14:16:00	82.3		mg/L				0.329	82.3	0.61	70	130	20
LFB-MS	Barium	05/03/2023 16:18:35	96.8		mg/L	0.1	0.0968	96.8				80	120	
MB	Barium	05/04/2023 13:39:00	<0.002		mg/L									
MB	Barium	05/03/2023 16:14:28	<0.002		mg/L									
13560001 MS	Beryllium	05/03/2023 16:30:54	109	<0.0005	mg/L	0.4	0.436	109				75	125	
13560001 MSD	Beryllium	05/03/2023 16:35:01	117	<0.0005	mg/L				0.467	117	6.87	75	125	20
13601001 MS	Beryllium	05/04/2023 14:12:00	107		mg/L	0.4	0.428	107				70	130	
13601001 MSD	Beryllium	05/04/2023 14:16:00	107		mg/L				0.427	107	0.23	70	130	20
LFB-MS	Beryllium	05/03/2023 16:18:35	110		mg/L	0.1	0.11	110				80	120	
LFB-MS	Beryllium	05/04/2023 13:43:00	101		mg/L	0.1	0.101	101				85	115	
MB	Beryllium	05/04/2023 13:39:00	<0.0005		mg/L									
MB	Beryllium	05/03/2023 16:14:28	<0.0005		mg/L									
13560001 MS	Cadmium	05/03/2023 16:30:54	96.7	<0.0005	mg/L	0.4	0.387	96.7				75	125	
13560001 MSD	Cadmium	05/03/2023 16:35:01	99.2	<0.0005	mg/L				0.397	99.2	2.55	75	125	20
13601001 MS	Cadmium	05/04/2023 14:12:00	92.7	<0.001	mg/L	0.4	0.371	92.7				70	130	
13601001 MSD	Cadmium	05/04/2023 14:16:00	94.2	<0.001	mg/L				0.377	94.2	1.60	70	130	20
LFB-MS	Cadmium	05/03/2023 16:18:35	102		mg/L	0.1	0.102	102				80	120	
LFB-MS	Cadmium		96.2		mg/L	0.1	0.0962	96.2				85	115	
MB	Cadmium	05/03/2023 16:14:28	<0.0005		mg/L									
MB	Cadmium	05/04/2023 13:39:00	<0.0005		mg/L									
13560001 MS	Chromium	05/03/2023 16:30:54	104	<0.002	mg/L	0.4	0.414	104				75	125	
13560001 MSD	Chromium	05/03/2023 16:35:01	109	<0.002	mg/L				0.438	109	5.63	75	125	20
13601001 MS	Chromium	05/04/2023 14:12:00	101	<0.05	mg/L	0.4	0.406	101				70	130	
13601001 MSD	Chromium		98.7	<0.05	mg/L				0.395	98.7	2.75	70	130	20
LFB-MS	Chromium		97.2		mg/L	0.1	0.0972	97.2				85	115	
LFB-MS	Chromium	05/03/2023 16:18:35	106		mg/L	0.1	0.106	106				80	120	
MB	Chromium	05/04/2023 13:39:00	<0.002		mg/L									
MB	Chromium	05/03/2023 16:14:28	<0.002		mg/L									
13560001 MS	Cobalt	05/03/2023 16:30:54	103	<0.002	mg/L	0.4	0.412	103				75	125	
13560001 MSD	Cobalt	05/03/2023 16:35:01	108	<0.002	mg/L				0.431	108	4.51	75	125	20
13601001 MS	Cobalt	05/04/2023 14:12:00	99.9		mg/L	0.4	0.4	99.9				70	130	
13601001 MSD	Cobalt	05/04/2023 14:16:00	98.3		mg/L				0.393	98.3	1.76	70	130	20
LFB-MS	Cobalt	05/04/2023 13:43:00	96.8		mg/L	0.1	0.0968	96.8				85	115	
LFB-MS	Cobalt	05/03/2023 16:18:35	105		mg/L	0.1	0.105	105				80	120	
MB	Cobalt	05/04/2023 13:39:00	<0.002		mg/L									
MB	Cobalt	05/03/2023 16:14:28	<0.002		mg/L									
13560001 MS	Lead	05/03/2023 16:30:54	96.4	<0.0005	mg/L	0.4	0.386	96.4				75	125	
13560001 MSD	Lead	05/03/2023 16:35:01	98.4	<0.0005	mg/L				0.393	98.4	1.80	75	125	20
13601001 MS	Lead	05/04/2023 14:12:00	96.7	<0.001	mg/L	0.4	0.387	96.7				70	130	
13601001 MSD	Lead		95.2	<0.001	mg/L				0.381	95.2	1.56	70	130	20
LFB-MS	Lead		99.7		mg/L	0.1	0.0997	99.7				85	115	
LFB-MS	Lead	05/03/2023 16:18:35	99		mg/L	0.1	0.099	99				80	120	

	MB	Lead	05/04/2023 13:39:00	<0.0005		mg/L									
	MB	Lead	05/03/2023 16:14:28	<0.0005		mg/L									
13560001	MS	Lithium	04/28/2023 10:35:48	101	0.119	mg/L	0.4	0.523	101				70	130	
13560001	MSD	Lithium	04/28/2023 10:36:26	97.8	0.119	mg/L				0.5097	97.8	2.58	70	130	20
	LFB-OE	Lithium	04/28/2023 10:34:34	108		mg/L	0.4	0.4302	108				85	115	
	MB	Lithium	04/28/2023 10:34:00	<0.04		mg/L									
13591001	MS	Mercury	05/03/2023 11:15:00	115	<0.0002	mg/L	0.002	0.0023	115				70	130	
13591001	MSD	Mercury	05/03/2023 11:15:00	113	<0.0002	mg/L				0.0023	113	0.00	70	130	20
	LFB	Mercury	05/03/2023 11:15:00	108		mg/L	0.002	0.0022	108				85	115	
	LFB	Mercury	05/03/2023 11:15:00	106		mg/L	0.002	0.0021	106				85	115	
	LFB	Mercury	05/03/2023 11:15:00	111		mg/L	0.002	0.0022	111				85	115	
	LRB	Mercury	05/03/2023 11:15:00	<0.0002		mg/L									
	LRB	Mercury	05/03/2023 11:15:00	<0.0002		mg/L									
	MB	Mercury	05/03/2023 11:15:00	<0.0002		mg/L									
13560001	MS	Molybdenum	05/03/2023 16:30:54	94.8	0.0627	mg/L	0.4	0.442	94.8				75	125	
13560001	MSD	Molybdenum	05/03/2023 16:35:01	96.4	0.0627	mg/L				0.448	96.4	1.35	75	125	20
13601001	MS	Molybdenum	05/04/2023 14:12:00	95.7	<0.1	mg/L	0.4	0.4	95.7				70	130	
13601001	MSD	Molybdenum	05/04/2023 14:16:00	79.2	<0.1	mg/L				0.334	79.2	18.00	70	130	20
	LFB-MS	Molybdenum	05/03/2023 16:18:35	100		mg/L	0.1	0.1	100				80	120	
	LFB-MS	Molybdenum	05/04/2023 13:43:00	91.6		mg/L	0.1	0.0916	91.6				85	115	
	MB	Molybdenum	05/04/2023 13:39:00	<0.002		mg/L									
	MB	Molybdenum	05/03/2023 16:14:28	<0.002		mg/L									
13560001		Selenium	05/03/2023 16:30:54	110	0.0162	mg/L	0.4	0.457	110				75	125	
13560001		Selenium	05/03/2023 16:35:01	91.7	0.0162	mg/L				0.383	91.7	17.60	75	125	20
	LFB-MS	Selenium	05/03/2023 16:18:35	101		mg/L	0.1	0.101	101				80	120	
	MB	Selenium	05/03/2023 16:14:28	<0.005		mg/L									
13560001		Thallium	05/03/2023 16:30:54	97	<0.0005	mg/L	0.4	0.388	97				75	125	
13560001		Thallium	05/03/2023 16:35:01	98	<0.0005	mg/L				0.392	98	1.02	75	125	20
13601001		Thallium	05/04/2023 14:12:00	96.2		mg/L	0.4	0.385	96.2				70	130	
13601001		Thallium		94.7		mg/L				0.379	94.7	1.57	70	130	20
	LFB-MS	Thallium		98		mg/L	0.1	0.098	98				85	115	
	LFB-MS	Thallium		97.4		mg/L	0.1	0.0974	97.4				80	120	
	MB	Thallium	05/03/2023 16:14:28	<0.0005		mg/L									
	MB	Thallium	05/04/2023 13:39:00	<0.0005		mg/L									

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890
2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724
1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885

www.MVTL.com

Account #: 2800 Client: Montana-Dakota Utilities - Bismarck

Workorder: MDU Lewis & Clark Spring 2023 PO: 190709 OP

(13567)

Todd Peterson Montana-Dakota Utilities 400 N 4th St Bismarck, ND 58501

Certificate of Analysis

Approval

All data reported has been reviewed and approved by:

Claudette Carroll, Lab Manager Bismarck, ND

Analyses performed under Minnesota Department of Health Accreditation conforms to the current TNI standards.

NEW ULM LAB CERTIFICATIONS: MN LAB # 027-015-125 ND WW/DW # R-040

BISMARCK LAB CERTIFICATIONS: MN LAB # 038-999-267 ND W/DW # ND-016 SD SDWA

Subcontracted Analyses

Analyzed By	Company	Address	Phone	Certification
SUB1	Energy Labs Billings	1120 South 27th St, Billings. MT 59101		CERT

MVTL guarantees the accuracy of the analysis done on the sample submitted for testing. It is not possible for MVTL to guarantee that a test result obtained on a particular sample will be the same on any other sample unless all conditions affecting the sample are the same, including sampling by MVTL. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

Report Date: Wednesday, May 24, 2023 11:21:03 AM

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.MVTL.com

Account #: 2800 Client: Montana-Dakota Utilities - Bismarck

Workorder Summary

Workorder Comments

All analytes with dilution factors greater than 1 (displayed in DF column) required dilution due to matrix or high concentration of target analyte unless otherwise noted and reporting limits (RDL column) have been adjusted accordingly.

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.MVTL.com

Account #: 2800 Client: Montana-Dakota Utilities - Bismarck

Analytical Results

 Lab ID:
 13567001
 Date Collected:
 04/24/2023 14:52
 Matrix:
 Groundwater

 Sample ID:
 MW103
 Date Received:
 04/26/2023 08:00
 Collector:
 MVTL Field Service

Temp @ Receipt (C): 8.6

Contract Lab

Parameter	Results	Units	RDL	DF	Prepared	Analyzed	Ву	Qual
Radium 226	See Attached			1	05/23/2023 15:05	05/23/2023 15:05	SUB1	
Radium 228	See Attached			1	05/23/2023 15:06	05/23/2023 15:06	SUB1	

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.MVTL.com

Account #: 2800 Client: Montana-Dakota Utilities - Bismarck

Analytical Results

 Lab ID:
 13567002
 Date Collected:
 04/24/2023 09:25
 Matrix:
 Groundwater

 Sample ID:
 MW110
 Date Received:
 04/26/2023 08:00
 Collector:
 MVTL Field Service

Temp @ Receipt (C): 8.6

Contract Lab

Parameter	Results	Units	RDL	DF	Prepared	Analyzed	Ву	Qual
Radium 226	See Attached			1	05/23/2023 15:06	05/23/2023 15:06	SUB1	
Radium 228	See Attached			1	05/23/2023 15:06	05/23/2023 15:06	SUB1	

Account #: 2800 Client: Montana-Dakota Utilities - Bismarck

Analytical Results

 Lab ID:
 13567003
 Date Collected:
 04/24/2023 10:55
 Matrix:
 Groundwater

 Sample ID:
 MW119
 Date Received:
 04/26/2023 08:00
 Collector:
 MVTL Field Service

Temp @ Receipt (C): 8.6

Contract Lab

Parameter	Results	Units	RDL	DF	Prepared	Analyzed	Ву	Qual
Radium 226	See Attached			1	05/23/2023 15:06	05/23/2023 15:06	SUB1	
Radium 228	See Attached			1	05/23/2023 15:06	05/23/2023 15:06	SUB1	

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.MVTL.com

Account #: 2800 Client: Montana-Dakota Utilities - Bismarck

Analytical Results

 Lab ID:
 13567004
 Date Collected:
 04/25/2023 07:13
 Matrix:
 Groundwater

 Sample ID:
 MW111
 Date Received:
 04/26/2023 08:00
 Collector:
 MVTL Field Service

Temp @ Receipt (C): 8.6

Contract Lab

Parameter	Results	Units	RDL	DF	Prepared	Analyzed	Ву	Qual
Radium 226	See Attached			1	05/23/2023 15:06	05/23/2023 15:06	SUB1	
Radium 228	See Attached			1	05/23/2023 15:06	05/23/2023 15:06	SUB1	

Account #: 2800 Client: Montana-Dakota Utilities - Bismarck

Analytical Results

 Lab ID:
 13567005
 Date Collected:
 04/24/2023 13:47
 Matrix:
 Groundwater

 Sample ID:
 MW117
 Date Received:
 04/26/2023 08:00
 Collector:
 MVTL Field Service

Temp @ Receipt (C): 8.6

Contract Lab

Parameter	Results	Units	RDL	DF	Prepared	Analyzed	Ву	Qual
Radium 226	See Attached			1	05/23/2023 15:06	05/23/2023 15:06	SUB1	
Radium 228	See Attached			1	05/23/2023 15:06	05/23/2023 15:06	SUB1	

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.MVTL.com

Account #: 2800 Client: Montana-Dakota Utilities - Bismarck

Analytical Results

 Lab ID:
 13567006
 Date Collected:
 04/25/2023 08:21
 Matrix:
 Groundwater

 Sample ID:
 MW118
 Date Received:
 04/26/2023 08:00
 Collector:
 MVTL Field Service

Temp @ Receipt (C): 8.6

Contract Lab

Parameter	Results	Units	RDL	DF	Prepared	Analyzed	Ву	Qual
Radium 226	See Attached			1	05/23/2023 15:06	05/23/2023 15:06	SUB1	
Radium 228	See Attached			1	05/23/2023 15:06	05/23/2023 15:06	SUB1	

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.MVTL.com

Account #: 2800 Client: Montana-Dakota Utilities - Bismarck

Analytical Results

 Lab ID:
 13567007
 Date Collected:
 04/24/2023 12:30
 Matrix:
 Groundwater

 Sample ID:
 MW120
 Date Received:
 04/26/2023 08:00
 Collector:
 MVTL Field Service

Temp @ Receipt (C): 8.6

Contract Lab

Parameter	Results	Units	RDL	DF	Prepared	Analyzed	Ву	Qual
Radium 226	See Attached			1	05/23/2023 15:06	05/23/2023 15:06	SUB1	
Radium 228	See Attached			1	05/23/2023 15:06	05/23/2023 15:06	SUB1	

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.MVTL.com

Account #: 2800 Client: Montana-Dakota Utilities - Bismarck

Analytical Results

 Lab ID:
 13567008
 Date Collected:
 04/24/2023 14:52
 Matrix:
 Groundwater

 Sample ID:
 Dup 1
 Date Received:
 04/26/2023 08:00
 Collector:
 MVTL Field Service

Temp @ Receipt (C): 8.6

Contract Lab

Method: Contracted Result

Parameter	Results	Units	RDL	DF	Prepared	Analyzed	Ву	Qual
Radium 226	See Attached			1	05/23/2023 15:06	05/23/2023 15:06	SUB1	
Radium 228	See Attached			1	05/23/2023 15:06	05/23/2023 15:06	SUB1	

MVTL guarantees the accuracy of the analysis done on the sample submitted for testing. It is not possible for MVTL to guarantee that a test result obtained on a particular sample will be the same on any other sample unless all conditions affecting the sample are the same, including sampling by MVTL. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

Report Date: Wednesday, May 24, 2023 11:21:03 AM

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.MVTL.com

Account #: 2800 Client: Montana-Dakota Utilities - Bismarck

Analytical Results

 Lab ID:
 13567009
 Date Collected:
 04/25/2023 06:40
 Matrix:
 Groundwater

 Sample ID:
 Field Blank (FB)
 Date Received:
 04/26/2023 08:00
 Collector:
 MVTL Field Service

Temp @ Receipt (C): 8.6

Contract Lab

Method: Contracted Result

Parameter	Results	Units	RDL	DF	Prepared	Analyzed	Ву	Qual
Radium 226	See Attached			1	05/23/2023 15:06	05/23/2023 15:06	SUB1	
Radium 228	See Attached			1	05/23/2023 15:06	05/23/2023 15:06	SUB1	

MVTL guarantees the accuracy of the analysis done on the sample submitted for testing. It is not possible for MVTL to guarantee that a test result obtained on a particular sample will be the same on any other sample unless all conditions affecting the sample are the same, including sampling by MVTL. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890
2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724
1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885

www.MVTL.com

Account #: 2

2800

Client: Montana-Dakota Utilities - Bismarck

Trust our People, Trust our Data.

Billings, MT 800,735,4489 + Casper, WY 888,235,0515 Gillette, WY 866,586,7175 + Helena, MT 877,472,8711

ANALYTICAL SUMMARY REPORT

May 22, 2023

Minnesota Valley Testing Laboratories

C23040892

1126 N Front St

New Ulm, MN 56073-1176

Work Order:

Quote ID: C15480

Project Name: 13567

Energy Laboratories, Inc. Casper WY received the following 9 samples for Minnesota Valley Testing Laboratories on 4/28/2023 for analysis

Lab ID	Client Sample ID	Collect Date	Receive Date	Matrix	Test
C23040892-001	13567001;MW103	04/24/23 14:52	04/28/23	Groundwater	Radium 226 + Radium 228, Total Radium 226, Total Radium 228, Total
C23040892-002	13567002;MW110	04/24/23 9:25	04/28/23	Groundwater	Same As Above
C23040892-003	1356003;MW119	04/24/23 10:55	04/28/23	Groundwater	Same As Above
C23040892-004	13567004;MW111	04/25/23 7:13	04/28/23	Groundwater	Same As Above
C23040892-005	13567005;MW117	04/24/23 13:47	04/28/23	Groundwater	Same As Above
C23040892-006	13567006;MW118	04/25/23 8:21	04/28/23	Groundwater	Same As Above
C23040892-007	13567007;MW120	04/24/23 12:30	04/28/23	Groundwater	Same As Above
C23040892-008	13567008;Dup 1	04/24/23 14:52	04/28/23	Groundwater	Same As Above
C23040892-009	13567009; Fleld Blank	04/25/23 6:40	04/28/23	Groundwater	Same As Above

The analyses presented in this report were performed by Energy Laboratories, Inc., 2393 Salt Creek Hwy., Casper, WY 82601, unless otherwise noted. Any exceptions or problems with the analyses are noted in the report package. Any issues encountered during sample receipt are documented in the Work Order Receipt Checklist.

The results as reported relate only to the item(s) submitted for testing. This report shall be used or copied only in its entirety. Energy Laboratories, Inc. is not responsible for the consequences arising from the use of a partial report.

If you have any questions regarding these test results, please contact your Project Manager.

Report Approved By:

Michele L. Davis Date: 2023.05.22 15:13:59 -06:00

Page 1 of 14

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.MVTL.com

Client: Montana-Dakota Utilities - Bismarck Account #: 2800

Result Units

Trust our People. Trust our Data. Billings, MT 800.735,4489 + Casper, WY 888,235.0515 Gillette, WY 866,686,7175 + Relena, MT 877,472,0711

Qualifiers

LABORATORY ANALYTICAL REPORT Prepared by Casper, WY Branch

Client: Minnesota Valley Testing Laboratories

13567 Project: C23040892-001 Lab ID: Client Sample ID: 13567001;MW103

Analyses

Report Date: 05/22/23 Collection Date: 04/24/23 14:52 DateReceived: 04/28/23 Matrix: Groundwater

Analysis Date / By

Law out a Venue ago Abrillon					
RADIONUCLIDES, TOTAL					
Radium 226	0.2 pCi/L	· U	E903.0	05/17/23 15:50 / kdk	
Radium 226 precision (±)	0.2 pCi/L		E903.0	05/17/23 15:50 / kdk	
Radium 226 MDC	0.2 pCi/L		E903.0	05/17/23 15:50 / kdk	
Radium 228	0.04 pCi/L	U	RA-05	05/08/23 13:21 / trs	
Radium 228 precision (±)	0.8 pCi/L		RA-05	05/08/23 13:21 / trs	
Radium 228 MDC	1.3 pGi/L		RA-05	05/08/23 13:21 / trs	
Radium 226 + Radium 228	0.8 pCi/L	U	A7500-RA	05/19/23 12:44 / dmf	
Radium 226 + Radium 228 precision (±)	0.8 pCi/L		A7500-RA	05/19/23 12:44 / dmf	
Radium 226 + Radium 228 MDC	1.4 pCi/L		A7500-RA	05/19/23 12:44 / dmf	

Report Definitions:

RL - Analyte Reporting Limit QCL - Quality Control Limit

U - Not detected at Minimum Detectable Concentration

MCL - Maximum Contaminant Level ND - Not detected at the Reporting Limit (RL)

Page 2 of 14

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.MVTL.com

Client: Montana-Dakota Utilities - Bismarck Account #: 2800

> Trust our People, Trust our Data. Billings, MT 800.735,4489 + Casper, WY 888,235.0515 Gillette, WY 866,686.7175 + Relena, MT 877,472,0711

LABORATORY ANALYTICAL REPORT

Prepared by Casper, WY Branch

Minnesota Valley Testing Laboratories 13567 Project: Lab ID: C23040892-002 Client Sample ID: 13567002;MW110

Client:

Report Date: 05/22/23 Collection Date: 04/24/23 09:25 DateReceived: 04/28/23

Matrix: Groundwater

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
. maryout	Hosair	Grand.	quantities			mounta	rately side Bate (Dy
RADIONUCLIDES, TOTAL							
Radium 226	0.03	pCi/L	·U			E903.0	05/18/23 08:34 / kdk
Radium 226 precision (±)	0.04	pCi/L				E903.0	05/18/23 08:34 / kdk
Radium 226 MDC	0.06	pCi/L				E903,0	05/18/23 08:34 / kdk
Radium 228	-0.6	pCi/L	U			RA-05	05/08/23 13:21 / trs
Radium 228 precision (±)	0.8	pCi/L				RA-05	05/08/23 13:21 / trs
Radium 228 MDC	1.4	pCi/L				RA-05	05/08/23 13:21 / trs
Radium 226 + Radium 228	0.7	pCi/L	u			A7500-RA	05/19/23 12:44 / dmf
Radium 226 + Radium 228 precision (±)	0.8	pCi/L				A7500-RA	05/19/23 12:44 / dmf
Radium 226 + Radium 228 MDC	1.4	pCi/L				A7500-RA	05/19/23 12:44 / dmf

Report Definitions:

RL - Analyte Reporting Limit

QCL - Quality Control Limit

U - Not detected at Minimum Detectable Concentration

MCL - Maximum Contaminant Level

ND - Not detected at the Reporting Limit (RL)

Page 3 of 14

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.MVTL.com

Account #: 2800 Client: Montana-Dakota Utilities - Bismarck

ENERGY Trust our People, Trust our Data.

Billings, MT 800,735,4489 + Casper, WY 888,235,0515

Entertie, WY 866,686,7175 + Helena, MT 877,472,0711

LABORATORY ANALYTICAL REPORT

Prepared by Casper, WY Branch Minnesota Valley Testing Laboratories

 Client:
 Minnesota Valley

 Project:
 13567

 Lab ID:
 C23040892-003

 Client Sample ID:
 1356003;MW119

Report Date: 05/22/23 Collection Date: 04/24/23 10:55 DateReceived: 04/28/23

Matrix: Groundwater

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
RADIONUCLIDES, TOTAL							
Radium 226	0.004	pCi/L	- 0			E903.0	05/18/23 08:34 / kdk
Radium 226 precision (±)	0.04	pCi/L				E903.0	05/18/23 08:34 / kdk
Radium 226 MDC	0.07	pCi/L				E903.0	05/18/23 08:34 / kdk
Radium 228	-0.6	pCi/L	U			RA-05	05/08/23 13:21 / trs
Radium 228 precision (±)	0.8	pCi/L				RA-05	05/08/23 13:21 / trs
Radium 228 MDC	1.4	pCi/L				RA-05	05/08/23 13:21 / trs
Radium 226 + Radium 228	0.7	pCi/L	U			A7500-RA	05/19/23 12:44 / dmf
Radium 226 + Radium 228 precision (±)	0.8	pCi/L				A7500-RA	05/19/23 12:44 / dmf
Radium 226 + Radium 228 MDC	1.4	pCi/L				A7500-RA	05/19/23 12:44 / dmf

Report Definitions: RL - Analyte Reporting Limit QCL - Quality Control Limit

U - Not detected at Minimum Detectable Concentration (MDC)

MCL - Maximum Contaminant Level ND - Not detected at the Reporting Limit (RL)

Page 4 of 14

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.MVTL.com

Client: Montana-Dakota Utilities - Bismarck Account #: 2800

> Trust our People, Trust our Data. Billings, MT 800.735,4489 + Casper, WY 888,235.0515 Gillette, WY 866,686,7175 + Relena, MT 877,472,0711

LABORATORY ANALYTICAL REPORT

Prepared by Casper, WY Branch

Report Date: 05/22/23 Client: Minnesota Valley Testing Laboratories 13567 Collection Date: 04/25/23 07:13 Project: DateReceived: 04/28/23 Lab ID: C23040892-004 Client Sample ID: 13567004;MW111 Matrix: Groundwater

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
RADIONUCLIDES, TOTAL							
Radium 226	0.09	pCi/L	- 0			E903.0	05/18/23 11:10 / kdk
Radium 226 precision (±)	0.1	pCi/L				E903.0	05/18/23 11:10 / kdk
Radium 226 MDC	0.2	pCi/L				E903.0	05/18/23 11:10 / kdk
Radium 228	0.08	pCi/L	U			RA-05	05/08/23 13:21 / trs
Radium 228 precision (±)	0.7	pCi/L				RA-05	05/08/23 13:21 / trs
Radium 228 MDC	1.2	pCi/L				RA-05	05/08/23 13:21 / trs
Radium 226 + Radium 228	0.7	pCi/L	U			A7500-RA	05/19/23 12:44 / dmf
Radium 226 + Radium 228 precision (±)	0.8	pCi/L				A7500-RA	05/19/23 12:44 / dmf
Radium 226 + Radium 228 MDC	1.3	pCi/L				A7500-RA	05/19/23 12:44 / dmf

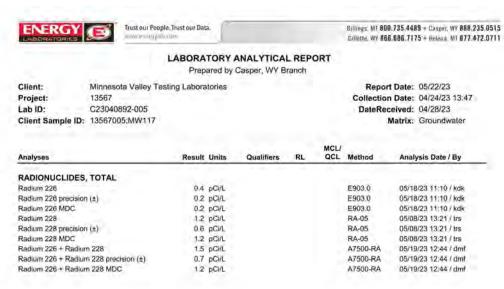
Report Definitions:

RL - Analyte Reporting Limit QCL - Quality Control Limit

U - Not detected at Minimum Detectable Concentration

MCL - Maximum Contaminant Level ND - Not detected at the Reporting Limit (RL)

Page 5 of 14



1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890
2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724
1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885

www.MVTL.com

Account #: 2800 Client: Montana-Dakota Utilities - Bismarck

 Report
 RL - Analyte Reporting Limit
 MCL - Maximum Contaminant Level

 Definitions:
 QCL - Quality Control Limit:
 ND - Not detected at the Reporting Limit (RL)

Page 5 of 14

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.MVTL.com

Client: Montana-Dakota Utilities - Bismarck Account #: 2800

> Trust our People, Trust our Data. Billings, MT 800.735,4489 + Casper, WY 888,235.0515 Gillette, WY 866,686,7175 + Relena, MT 877,472,0711

LABORATORY ANALYTICAL REPORT

Prepared by Casper, WY Branch

Report Date: 05/22/23 Client: Minnesota Valley Testing Laboratories 13567 Collection Date: 04/25/23 08:21 Project: DateReceived: 04/28/23 Lab ID: C23040892-006 Client Sample ID: 13567006:MW118 Matrix: Groundwater

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
LOUIS TO THE PROPERTY OF THE PARTY OF THE PA							
RADIONUCLIDES, TOTAL							
Radium 226	-0.08	pCi/L	- U			E903.0	05/16/23 11:36 / kdk
Radium 226 precision (±)	0.1	pCi/L				E903.0	05/16/23 11:36 / kdk
Radium 226 MDC	0.2	pCi/L				E903.0	05/16/23 11:36 / kdk
Radium 228	0.2	pCi/L	U			RA-05	05/09/23 15:25 / trs
Radium 228 precision (±)	0.9	pCi/L				RA-05	05/09/23 15:25 / trs
Radium 228 MDC	1.5	pCi/L				RA-05	05/09/23 15:25 / trs
Radium 226 + Radium 228	0.9	pCi/L	u			A7500-RA	05/17/23 14:44 / dmf
Radium 226 + Radium 228 precision (±)	0.9	pCi/L				A7500-RA	05/17/23 14:44 / dmf
Radium 226 + Radium 228 MDC	1.5	pCi/L				A7500-RA	05/17/23 14:44 / dmf

Report Definitions:

RL - Analyte Reporting Limit QCL - Quality Control Limit

U - Not detected at Minimum Detectable Concentration

MCL - Maximum Contaminant Level ND - Not detected at the Reporting Limit (RL)

Page 7 of 14

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.MVTL.com

Client: Montana-Dakota Utilities - Bismarck Account #: 2800

> Trust our People, Trust our Data. Billings, MT 800.735,4489 + Casper, WY 888,235.0515 Gillette, WY 866,686,7175 + Relena, MT 877,472,0711

LABORATORY ANALYTICAL REPORT

Prepared by Casper, WY Branch

Report Date: 05/22/23 Client: Minnesota Valley Testing Laboratories 13567 Collection Date: 04/24/23 12:30 Project: DateReceived: 04/28/23 Lab ID: C23040892-007 Client Sample ID: 13567007;MW120 Matrix: Groundwater

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
RADIONUCLIDES, TOTAL							
Radium 226	-0.02	pCi/L	-0			E903.0	05/16/23 11:36 / kdk
Radium 226 precision (±)	0.1	pCi/L				E903.0	05/16/23 11:36 / kdk
Radium 226 MDC	0.2	pCi/L				E903.0	05/16/23 11:36 / kdk
Radium 228	-0.2	pCi/L	U			RA-05	05/09/23 15:25 / trs
Radium 228 precision (±)	0.8	pCi/L				RA-05	05/09/23 15:25 / trs
Radium 228 MDC	1.4	pCi/L				RA-05	05/09/23 15:25 / trs
Radium 226 + Radium 228	0.8	pCi/L	U			A7500-RA	05/17/23 14:44 / dmi
Radium 226 + Radium 228 precision (±)	0.9	pCi/L				A7500-RA	05/17/23 14:44 / dmf
Radium 226 + Radium 228 MDC	1.5	pCi/L				A7500-RA	05/17/23 14:44 / dmf

Report Definitions:

RL - Analyte Reporting Limit QCL - Quality Control Limit

U - Not detected at Minimum Detectable Concentration

MCL - Maximum Contaminant Level ND - Not detected at the Reporting Limit (RL)

Page 8 of 14

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.MVTL.com

Client: Montana-Dakota Utilities - Bismarck Account #: 2800

> Trust our People, Trust our Data. Billings, MT 800.735,4489 + Casper, WY 888,235.0515 Gillette, WY 866,686,7175 + Relena, MT 877,472,0711

LABORATORY ANALYTICAL REPORT

Prepared by Casper, WY Branch

Client: Minnesota Valley Testing Laboratories 13567 Project: C23040892-008 Lab ID: Client Sample ID: 13567008;Dup 1

Report Date: 05/22/23 Collection Date: 04/24/23 14:52 DateReceived: 04/28/23

Matrix: Groundwater

Analyses	Result Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
RADIONUCLIDES, TOTAL						
Radium 226	0.2 pCi/L	- 0			E903.0	05/16/23 11:36 / kdk
Radium 226 precision (±)	0.2 pCi/L				E903.0	05/16/23 11:36 / kdk
Radium 226 MDC	0.2 pCi/L				E903.0	05/16/23 11:36 / kdk
Radium 228	0.2 pCi/L	U			RA-05	05/09/23 15:25 / trs
Radium 228 precision (±)	0.9 pCi/L				RA-05	05/09/23 15:25 / trs
Radium 228 MDC	1.5 pCi/L				RA-05	05/09/23 15:25 / trs
Radium 226 + Radium 228	0.9 pCi/L	U			A7500-RA	05/17/23 14:44 / dmf
Radium 226 + Radium 228 precision (±)	0.9 pCi/L				A7500-RA	05/17/23 14:44 / dmf
Radium 226 + Radium 228 MDC	1.6 pCi/L				A7500-RA	05/17/23 14:44 / dmf

Report Definitions:

RL - Analyte Reporting Limit

QCL - Quality Control Limit

ND - Not detected at the Reporting Limit (RL)

MCL - Maximum Contaminant Level

U - Not detected at Minimum Detectable Concentration

Page 9 of 14

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.MVTL.com

Client: Montana-Dakota Utilities - Bismarck Account #: 2800

> Trust our People, Trust our Data. Billings, MT 800.735,4489 + Casper, WY 888,235.0515 Gillette, WY 866,686,7175 + Relena, MT 877,472,0711

LABORATORY ANALYTICAL REPORT

Prepared by Casper, WY Branch

Client: Minnesota Valley Testing Laboratories Report Date: 05/22/23 13567 Collection Date: 04/25/23 06:40 Project: Lab ID: C23040892-009 DateReceived: 04/28/23 Client Sample ID: 13567009; Field Blank Matrix: Groundwater

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
RADIONUCLIDES, TOTAL							
Radium 226	-0.03	pCi/L	· U			E903.0	05/16/23 11:36 / kdk
Radium 226 precision (±)	0.1	pCi/L				E903.0	05/16/23 11:36 / kdk
Radium 226 MDC	0.2	pCi/L				E903.0	05/16/23 11:36 / kdk
Radium 228	0.4	pCi/L	U			RA-05	05/09/23 15:25 / trs
Radium 228 precision (±)	0.9	pCi/L				RA-05	05/09/23 15:25 / trs
Radium 228 MDC	1.5	pCi/L				RA-05	05/09/23 15:25 / trs
Radium 226 + Radium 228	0.9	pCi/L	U			A7500-RA	05/17/23 14:44 / dmf
Radium 226 + Radium 228 precision (±)	0.9	pCi/L				A7500-RA	05/17/23 14:44 / dmf
Radium 226 + Radium 228 MDC	1.5	pCi/L				A7500-RA	05/17/23 14:44 / dmf

Report Definitions:

RL - Analyte Reporting Limit QCL - Quality Control Limit

U - Not detected at Minimum Detectable Concentration

MCL - Maximum Contaminant Level ND - Not detected at the Reporting Limit (RL)

Page 10 of 14

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.MVTL.com

Account #: 2800

Client: Montana-Dakota Utilities - Bismarck

LABORA	TORIES	00-11-1	ngyaab.com				G	illette, WY 866.68	6.7175 =	Hetena, MT 87	7.472.071
					Summary by Casper, W						
Client:	Minnesota Valley Tes	sting L		, ichaica	Work Order:			Repo	rt Date:	: 05/19/23	
Analyte		Coun	t Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	E903.0									Batch: RA	226-1088
Lab ID:	LCS-RA226-10881	3	Laboratory Con	trol Sample	2		Run: G5000	W 230502A		05/16	/23 11:35
Radium 2	26		9.2	pCi/L		92	70	130			31100
Radium 2	26 precision (±)		1.8	pCI/L		1.50		1.02			
Radium 2			0.24	pCi/L							
Lab ID:	MB-RA226-10881	3	Method Blank				Run: G5000	W 230502A		05/16	/23 11:36
Radium 2	26		-0.1	pCi/L				T. Labourger		30	U
	26 precision (±)		0.1	DCI/L							2
Radium 2			0.2	pCi/L							
Lab ID:	C23040902-001CDUF	3	Sample Duplica	ate			Run: G5000	W 230502A		05/16	/23 13:08
Radium 2	26		0.44	pCi/L			4,000,000,000		16	30	7 - 11 - 11
	26 precision (±)		0.19	pGi/L							
Radium 2			0.24	pCi/L							
- The REF	result is 0.28.		4.37								
Method:	E903.0	- 7	7				7			Batch: RA22	6-10880
Lab ID:	LCS-RA226-10880	3	Laboratory Con	trol Sample	9		Run: G5000	W_230502B		05/17	/23 12:50
Radium 2	26		7.0	pCVL		70	70	130			
Radium 2	26 precision (±)		1.4	pCi/L							
Radium 2	26 MDC		0.23	pCI/L							
Lab ID:	MB-RA226-10880	3	Method Blank				Run: G5000	W_230502B		05/17	/23 12:50
Radium 2	26		-0.03	pCi/L							U
Radium 2	26 precision (±)		0.1	pCi/L							
Radium 2	26 MDC		0.2	pCi/L							
Lab ID:	C23040847-022CDUF	3	Sample Duplica	ate			Run: G5000	W_230502B		05/17	/23 12:50
Radium 2	26		0.16	pCi/L					120	30	UR
Radium 2	26 precision (±)		0.14	pCi/L							
Radium 2	26 MDC RPD is outside of the acce	infance	0.20	pCi/L	or the DED is loss	than ar a	ound to the limi	t of 9, the DCD see	enils to 0 62		
Lab ID:	C23030711-009ADUP	100	Sample Duplica		176 176 19 10 10 10 10 10 10 10 10 10 10 10 10 10	D. MIT COL C		W 230502B	ment for being		/23 08:34
Radium 2	The second contraction of	-	8.9	pCi/L			Man. Good	M_ESUNIED	55	30	R
	26 precision (±)		2.8	pCi/L					ud	30	.,
	26 MDC		6.3	pCi/L							

Qualifiers:

RL - Analyte Reporting Limit

ND - Not detected at the Reporting Limit (RL)

R - Relative Percent Difference (RPD) exceeds advisory limit

U - Not detected at Minimum Detectable Concentration (MDC)

Page 11 of 14

Account #: 2800

Client: Montana-Dakota Utilities - Bismarck

LABORA	ATORIES 0		ngyiah.com				G	illetta, WY 866.686.7	1/5 =	Hetena, MT 871	.472.071
			Q	A/QC	Summary	Rep	oort				
				Prepared	by Casper, W	Y Brane	ch				
Client:	Minnesota Valley Test	ing L	aboratories		Work Order:	C2304	10892	Report	Date	: 05/19/23	
Analyte		oun	t Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	RA-05									Batch: RA	228-708
Lab ID:	LCS-228-RA226-10881	3	Laboratory Con	trol Samp	le		Run: TENN	ELEC-3 230502B		05/09	/23 15:25
Radium 2			5.3	pCi/L	-	75	70	130		7,000	
Radium 2	228 precision (±)		1.5	pCi/L				1.00			
Radium 2			1.5	pCi/L							
Lab ID:	MB-RA226-10881	3	Method Blank				Run: TENN	ELEC-3 230502B		05/09	/23 15:25
Radium 2	228		0.6	pCi/L						30.00	U
	228 precision (±)		0.9	DCI/L							
Radium 2	The state of the s		2	pCi/L							
Lab ID:	C23040902-001CDUP	3	Sample Duplica				Run: TENN	ELEC-3_230502B			23 15:25
Radium 2			0.34	pCi/L					80	30	UR
	228 precision (±)		0.92	pGi/L							
Radium 2	228 MDC te RPD is outside of the accent	lance	1.5	pCi/L	ver the RFR is less	Ihan or e	nital to the limi	rof 3. the RER result	s 0 15	5	
Method:	RA-05			U-2-4x1	10.25 - 22.71	73072	1-0/ 1/	27.86.51.351.61.55	to Time	Batch: RA	228-708
Lab ID:	LCS-228-RA226-10880	3	Laboratory Con	troi Samo	le		Run: TENN	ELEC-4 230502B		05/08	23 11:42
Radium 2			6.6	pCi/L		94	70	130		4.414.5	50 110
	228 precision (±)		1.4	pCi/L		7.0	4.5	12.0			
Radium 2	and the second s		1.4	pCi/L							
Lab ID:	MB-RA226-10880	3	Method Blank				Run: TENN	ELEC-4 230502B		05/08	23 11:42
Radium 2	228		0.8	pCi/L			10000	2001 (2010)			u
	228 precision (±)		0.6	pCi/L							
Radium 2	The second second		1	pCi/L							
Lab ID:	C23040847-022CDUP	3	Sample Duplica	ate			Run: TENN	ELEC-4 230502B		05/08	23 11:42
Radium 2	228		0.52	pCi/L			**************************************		100	30	UR
	228 precision (±)		0.65	pCi/L						24	
	28 MDC		1.0	pCi/L							
Paginin 5	te RPD is outside of the accept	ance	range for this anal		ver, the RER is less	than or e	qual to the limi	of 3, the RER result	is 0.40);	
	C23030711-009ADUP	3	Sample Duplica	ate			Run: TENN	ELEC-4 230502B		05/08	23 13:49
- Duplicat											
- Duplicat	The standard Committee of the		41	pCi/L					54	30	UR
- Duplicat Lab ID: Radium 2	The standard Committee of the		41 57	pCi/L pCi/L					54	30	UR

Qualifiers:

RL - Analyte Reporting Limit

ND - Not detected at the Reporting Limit (RL)

R - Relative Percent Difference (RPD) exceeds advisory limit

U - Not detected at Minimum Detectable Concentration (MDC)

Page 12 of 14

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.MVTL.com

Account #: 2800 Client: Montana-Dakota Utilities - Bismarck

Trust our People. Trust our D)ata.		Billings, MT 406.252.6325 * Casper, WY 307.235.0 Gillette, WY 307.686.7175 * Helena, MT 406.442.0
Vork Order Receipt Che	ecklist		
linnesota Valley Testing Lal	boratories		23040892
ogin completed by: Hannah R. Johnson		Dat	le Received: 4/28/2023
eviewed by: cjohnson		F	Received by: sjf
eviewed Date: 5/1/2023		C	arrier name: UPS
ripping container/cooler in good condition?	Yes 🔽	No 🔲	Not Present
ustody seals intact on all shipping container(s)/cooler(s)?	Yes 🗌	No 🗆	Not Present ☑
ustody seals intact on all sample bottles?	Yes	No 🗆	Not Present ✓
nain of custody present?	Yes 🔽	No 🗌	
nain of custody signed when relinquished and received?	Yes 🖓	No 🗌	
nain of custody agrees with sample labels?	Yes 🗸	No 🗌	
amples in proper container/bottle?	Yes 🗸	No 🗌	
ample containers intact?	Yes 🗹	No 🗆	
officient sample volume for indicated test?	Yes 🔽	No 🗆	
samples received within holding time? xclude analyses that are considered field parameters ich as pH, DO. Res Cl, Sulfite, Ferrous Iron, etc.)	Yes 🗹	No 🗌	
emp Blank received in all shipping container(s)/cooler(s)?	Yes 🔲	No 🗸	Not Applicable
ontainer/Temp Blank temperature:	9.7°C No loe		
ontainers requiring zero headspace have no headspace or obte that is <6mm (1/4").	Yes 🔲	No 🖂	No VOA vials submitted ☑
ater - pH acceptable upon receipt?	Yes 🗸	No 🗌	Not Applicable
tandard Reporting Procedures:			
ab measurement of analytes considered field H, Dissolved Oxygen and Residual Chlorine,			
olid/soil samples are reported on a wet weigh ata units are typically noted as –dry. For agri and ground prior to sample analysis.			
	a and a sulfaction of	date. The re	eference date for all other Radiochemical

Page 13 of 14

Account #:

2800

Client:

Montana-Dakota Utilities

ï

Bismarck

MINNESOTA VALLEY TESTING LABORATORIES, INC.

1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 www.MVTL.com

Member

Chain of Custody Record LABORATORIES, Inc. 2616 E Broadway Ave 1 of 1 . Page_ Bismarck, ND 58501 Phone: (701) 258-9720 WO #13567 Fax: (701) 258-9724 Toll Free: (800) 279-6885 Company Name and Address: Account #: Phone #: 701-258-9720 MVTL Contact: Fax #: 2616 E Broadway Claudette For faxed report check box Bismarck, ND 58501 Name of Sampler: E-mail: ccarroll@mvtl.com Billing Address (indicate if different from above): For e-mail report check box Quote Number Date Submitted: PO Box 249 26-Apr-23 New Ulm, MN 56073 Project Name/Number: Purchase Order #: BL6542 **Bottle Type** Sample Information Analysis 1000 ml HNO3 VOC Vials Umpreserved Glass Jar IML Lab Sample Date Time Number **MVTL Lab Number** Client Sample ID Sampled Type Sampled **Analysis Required** 13567001 MW103 GW 24-Apr-23 1452 4 Ra226 & Ra228 GW 4 13567002 MW110 0925 24-Apr-23 Ra226 & Ra228 GW 4 13567003 MW119 24-Apr-23 1055 Ra226 & Ra228 GW 4 13567004 MW111 25-Apr-23 0713 Ra226 & Ra228 4 13567005 MW117 GW 24-Apr-23 1347 Ra226 & Ra228 4 MW118 GW 13567006 25-Apr-23 0821 Ra226 & Ra228 13567007 MW120 GW 24-Apr-23 1230 4 Ra226 & Ra228 4 13567008 Dup 1 GW 24-Apr-23 1452 Ra226 & Ra228 13567009 Field Blank GW 25-Apr-23 0640 4 Ra226 & Ra228 All results must be reported as a numerical value Transferred by: Date: Sample Condition: Received by: Date: Temp: 4/28/23 9.7 T. Olson 26-Apr-23 1700

MVTL guarantees the accuracy of the analysis done on the sample submitted for testing. It is not possible for MVTL to guarantee that a test result obtained on a particular sample will be the same on any other sample unless all conditions affecting the sample are the same, including sampling by MVTL. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

Report Date: Page 25 of 25

Wednesday, May 24, 2023 11:21:03 AM

Page 14 of 14

Appendix B

Alternative Source Demonstrations – Scrubber Ponds

Alternative Source Demonstration (ASD) for Lithium, Fall 2022

Lewis & Clark Station

Prepared for Montana-Dakota Utilities Co.

March 2023

Alternative Source Demonstration (ASD) for Lithium, Fall 2022 Lewis & Clark Station

March 2023

Contents

1	Ir	ntroduction	1
	1.1	Purpose	2
-	1.2	Scope of Work	3
-	1.3	Regulatory Framework	2
-	1.4	Description of the Monitoring Well System	∠
	1.5	Groundwater Standards	∠
2	Α	SD Hypotheses	6
2	2.1	Hypothesis No. 1: Natural Variation	6
	2.1.1	Variation in Solids Concentration with Sediment Type within the Aquifer Matrix	6
	2.1.2	Variation in Lithium Mobility with Sediment Type	7
	2.1.3	Statistical Upper Limit of Natural Variability	9
	2.1.4	Conclusions	10
2	2.2	Hypothesis No. 2: Carbonaceous Zone	10
	2.2.1	Lithium Concentrations within Carbonaceous Material	10
	2.2.2	Carbonaceous Material Location Compared to Downgradient Wells	1
	2.2.3	Conclusion	12
3	C	onclusion	13
4	R	eferences	14

List of Tables

Table 1	Summary of Measured Lithium Concentrations Compared to Groundwater Protection			
	Standards3			
Table 2	Lithium Solids Concentration by Sample Material Type7			
Table 3	Summary Saturated Paste Extracts for Lithium8			
Table 4	Summary of SPEs for Lithium in Carbonaceous Materials11			
Table 5	Carbonaceous Zone Correlation to Downgradient Groundwater Concentrations			
	List of Figures			
Figure 1	Site Layout			
Figure 2	Well Material Types and Lithium Concentrations, Fall 2022			
Figure 3	Lithium Upper Limit of Natural Variability			
	List of Appondices			

Appendix A Site Boring Logs Appendix B Analytical Results

Certifications

I hereby certify that the written demonstration provided herein, supported by the data in the referenced documents, is accurate and consistent with our review of the groundwater and other data collected to date, as required under the CCR Rule (§257.95(g)(3)(ii)). Based on this review I have determined that a source other than the CCR unit regulated under the CCR Rule at the Site caused the statistically significant increases over the applicable groundwater protection standards (GWPS) for lithium in wells that are downgradient from that unit.

ONTAN	
PAUL SWENSON No. 12805PE	
CENSE ONAL ENGINE	
Doubt Sween	

Paul Swenson, P.E.

PE #: 12805PE

March 8, 2023

Date

1 Introduction

Montana-Dakota Utilities Co. (MDU) operated a coal-fired electrical generation plant at the Lewis & Clark Station (Site) near Sidney, Montana. Operation of the plant resulted in coal combustion residuals (CCR) as a by-product. Management of CCR at the Site was subject to regulation under 40 CFR Part 257, Disposal of Coal Combustion Residuals From Electric Utilities (the CCR Rule).

Since the 1970s, CCR has been managed at the Site at various CCR management facilities. In particular:

- In 1975, two unlined surface impoundments were constructed on the Site. Based on available
 historical data, it appears that construction of the ponds involved excavating materials down to
 the Ft. Union Formation (Barr, 2016; Barr, 2019b), meaning that the sides of the surface
 impoundments were likely in direct contact with the aquifer. These surface impoundments were
 closed before the CCR Rule was promulgated, and therefore are not regulated under the CCR
 Rule.
- In 1993, clay-lined scrubber ponds were constructed generally in the footprint of the unlined surface impoundments, described above, with base elevations that were higher than the base elevations of the former surface impoundments. Once these scrubber ponds became operational, MDU started placing solid materials from them on top of a temporary storage pad (TSP) at the Site. In particular, the TSP stored flue-gas desulfurization (FGD) solids (excavated from the scrubber ponds) where it drained prior to loading and hauling for off-site disposal. The locations of these former scrubber ponds and former TSP are shown on Figure 1. These ponds were in existence on the effective date of the CCR Rule. Throughout this report, they are referred to as the "former Scrubber Ponds."
- In 1998, the TSP was retrofitted with a geomembrane liner.
- In 2018, the former Scrubber Ponds were retrofitted with a composite liner with a small lateral expansion of each pond to the northeast, with base elevations that were higher than the original 1993 construction.
- In 2020, the lined TSP was closed using the closure-by-removal method after the Alternative Source Demonstration (ASD), Temporary Storage Pad, Lewis & Clark Station (Barr, 2020a) was completed. The current TSP is not regulated by the CCR Rule.
- In 2022, closure construction was completed on the lined Scrubber Ponds. Closure construction included removal of CCR from the ponds, removal of liner materials, filling the excavation with soil, and regrading the area to drain. The unregulated TSP was also removed in 2022.

The currently regulated CCR unit is the former Scrubber Ponds, a single, multi-unit CCR surface impoundment. The closed TSP is a former regulated CCR unit.

Statistically significant increases of appendix III parameters were detected under the detection monitoring program and the site transitioned to assessment monitoring on April 14, 2018. A determination was made on January 2, 2019, that selenium and lithium were detected in downgradient wells at statistically significant levels above groundwater protection standards (GWPS). An assessment of corrective measures was initiated on April 2, 2019. A downward trend in selenium concentrations was observed in monitoring results. Selenium has not been detected at statistically significant levels above GWPS since April 2020. MDU continued to pursue an ASD for these constituents in parallel with ongoing corrective action measures. A successful ASD was published in January 2021 addressing both lithium and selenium. Each monitoring event since has been evaluated under the same approach as was used for the 2020 ASD, but recent ASDs have not evaluated selenium as it is no longer measured at statistically significant levels above GWPS. This ASD has been prepared for the results obtained during the Fall 2022 monitoring event.

1.1 Purpose

Detection monitoring conducted as required by the CCR Rule documented statistically significant increases (SSIs) over background levels for appendix III parameters. In accordance with the CCR Rule, assessment monitoring was undertaken at the Site, which identified concentrations of lithium in downgradient wells that potentially result in SSIs over background levels for the fall 2022 monitoring event. According to the CCR Rule, Section § 257.94(e)(2):

The owner or operator may demonstrate that a source other than the CCR unit caused the statistically significant increase over background levels for a constituent or that the statistically significant increase resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality.

This report provides written documentation of an Alternative Source Demonstration (ASD) supporting continuation of assessment monitoring in accordance with § 257.95(q)(3)(ii) of the CCR Rule.

An ASD was prepared in January 2021 (Appendix C of the 2020 Annual Groundwater Monitoring and Corrective Action Report (Barr, 2021)), ending the selection of remedy phase of remediation activities for the Site. Data collected during the fall assessment monitoring event in August 2022 (Table 1) have been reviewed and an SSI for lithium has been identified. It has been determined that the ASD analysis conducted in 2021 continues to provide a rationale for a source other than the CCR unit causing the exceedance of groundwater protection standards (GWPS) in downgradient wells.

Exceedances of GWPS were identified at the following monitoring wells downgradient of the former Scrubber Ponds during the fall 2022 semi-annual assessment monitoring event completed between August 16 and August 17, 2022:

- MW111 lithium
- MW117 lithium
- MW118 lithium
- MW120 lithium

Table 1 Summary of Measured Lithium Concentrations Compared to Groundwater Protection Standards

Sampling Event	Monitoring Well	Lithium (mg/L)	Lithium GWPS
Assessment Monitoring – 2022 #2 (Fall)	MW111	0.225	0.0631*
	MW117	0.122	
	MW118	0.084	
	MW120	0.176	
	MW111	0.166	0.0631*
Assessment Monitoring 2022 #1 (Carina)	MW117	0.118	
Assessment Monitoring – 2022 #1 (Spring)	MW118	0.068	
	MW120	0.129	
	MW111	0.194	0.0631*
Assessment Monitoring – 2021 #2 (Fall)	MW117	0.115	
Assessment Monitoring – 2021 #2 (Fall)	MW118	0.082	
	MW120	0.135	
	MW111	0.158	0.0631*
Assessment Manitoring 2021 #1 (Spring)	MW117	0.110	
Assessment Monitoring – 2021 #1 (Spring)	MW118	0.068	
	MW120	0.120	
	MW111	0.227	0.0678
Assessment Monitoring – 2020 #2 (Fall)	MW117	0.135	
Assessment Monitoring – 2020 #2 (Fall)	MW118	0.095	
	MW120	0.135	
	MW111	0.190	0.0678
Assessment Monitoring – 2020 #1 (Spring)	MW117	0.130	
	MW118	0.085	
	MW120	0.145	

^{*} GWPS for lithium updated in Spring 2021 with collection of new upgradient monitoring data. Additional assessment monitoring lithium concentrations are included in the 2018 and 2019 Annual Groundwater Monitoring and Corrective Action Reports (Barr, 2019a, 2020b).

1.2 Scope of Work

As part of the ASD, site data were evaluated to determine whether the regulated CCR unit caused the SSIs over background levels for lithium in downgradient monitoring wells. As part of this evaluation, two hypotheses were developed and then tested with lines of evidence based on site data to determine if those hypotheses were valid. The evidence confirms that the SSIs were caused by a natural variation in groundwater quality rather than the former Scrubber Ponds. As a result, it was determined an alternative source exists for the SSIs and resulting exceedances of the GWPS for lithium under the CCR Rule (§ 257.95(g)(3)(ii)).

1.3 Regulatory Framework

As noted above, the former Scrubber Ponds are currently in assessment monitoring in anticipation of closure through removal of CCR. Baseline groundwater monitoring was completed in 2017, as documented in the 2017 Annual Groundwater Monitoring and Corrective Action Report, Scrubber Pond and Temporary Storage Area (Barr, 2018). A detection monitoring program began on October 17, 2017, and continued until April 14, 2018 (Barr, 2019a). SSIs over background levels were determined for certain constituents listed in appendix III to the CCR Rule (§ 257.95(a)) in 2018 (total dissolved solids (TDS), fluoride, boron, calcium, chloride, pH, and sulfate). In response to these SSIs, an assessment monitoring program was initiated on April 15, 2018. This program continued through 2022.

On January 2, 2019, it was determined that the initial assessment monitoring and resample events resulted in detections of lithium at statistically significant levels above applicable GWPS. An assessment of corrective measures (ACM) was initiated on April 2, 2019, and completed on August 29, 2019 (Barr, 2019b). An ASD ended the selection of remedy phase of remedial actions required by the CCR Rule on January 31, 2021 (Barr, 2021). The Site is currently in assessment monitoring.

1.4 Description of the Monitoring Well System

The groundwater monitoring system is a multi-unit groundwater monitoring system, as provided in § 257.91(d), meaning that both the former Scrubber Ponds and the former TSP are monitored by a single groundwater monitoring system. The monitoring well system around the CCR unit consists of three hydraulically upgradient wells (MW-103, MW-110, and MW-119) and four downgradient wells (MW-111, MW-117, MW-118, and MW-120) as shown on Figure 1.

The geological strata at the Site consists of fine- and coarse-grained unconsolidated alluvial sediments overlying bedrock (Ft. Union Formation). The upgradient wells are screened in primarily coarse-grained sediments. The downgradient monitoring wells are located hydraulically downgradient of the CCR unit along the waste boundary, are spaced approximately 500 feet (or less) apart, and are screened in primarily fine-grained sediments. The number, spacing, and hydraulic positions of the monitoring wells comply with requirements outlined in § 257.91(a-c) of the CCR Rule.

1.5 Groundwater Standards

Once assessment monitoring is triggered for a CCR unit, § 257.95(d)(2) requires that GWPS be established for appendix IV constituents detected in groundwater. GWPS are defined as the higher of the Maximum Contaminant Level (MCL) or default GWPS, and the background concentration level for the detected constituent based on statistical methods established in § 257.93(f-g). Based on § 257.95(h)(2) and the July 30, 2018, Phase 1 CCR Rule revision, a final GWPS was established for the appendix IV constituents detected in groundwater.

The Phase 1 revision to the CCR Rule included a default lithium groundwater protection standard of $40 \mu g/L$ (0.04 mg/L) on July 30, 2018. The laboratory analyzing Site groundwater samples lowered its lithium reporting limit from 0.1 mg/L to 0.04 mg/L starting in July 2018, and then subsequently to 0.02 mg/L. Previous lithium data from the Site, which were mostly below detection at higher limits, were

removed from the baseline groundwater dataset, and additional data were collected. As a result of these changes, the lithium GWPS has been updated twice as additional upgradient samples have been collected and analyzed.

2 ASD Hypotheses

The hypotheses and corresponding determinations supporting the ASD are summarized below.

2.1 Hypothesis No. 1: Natural Variation

More naturally occurring lithium is present in the fine-grained sediments than in coarse-grained sediments. As a result, groundwater in zones of fine-grained sediments will typically have higher lithium concentrations than groundwater in zones of coarse-grained sediments. The upgradient wells at the Site are screened in primarily coarse-grained sediments and downgradient wells at the Site are screened in primarily fine-grained sediments. Therefore, due to the natural variability between sediments in which upgradient and downgradient wells are screened at the Site, it is possible that the observed downgradient lithium concentrations are due to natural variation in lithium content in the sediments.

2.1.1 Variation in Solids Concentration with Sediment Type within the Aquifer Matrix

To test hypothesis No. 1, a total of eight Site sediment samples (see Table 2) from five different borings were sent to Pace Inter-Mountain Laboratories (Pace) in Sheridan, Wyoming. The sediment samples were crushed in a mill and analyzed for total lithium (Total Metals) using EPA's *Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846, 3rd Edition,* methods 3050 and 6010. Logs for the five borings are presented in Appendix A.

Both samples from boring SB-3 were judged to be relatively well graded. As such, the samples were sieved using a no. 230 sieve. The fraction retained on the sieve is sand and gravel (coarse-grained sediments) and the fraction passing the sieve is silt and clay (fine-grained sediments). Both fractions were crushed and analyzed for lithium. The remaining samples were determined to be more homogenous and, therefore, did not require sieving.

Analytical results for the sediment samples are summarized in Table 2. The lithium concentrations for fine-grained sediments (clay and silt) ranged from 11.5 milligrams per kilogram (mg/kg) to 22.7 mg/kg, with an average concentration of 16.1 mg/kg. In the coarse-grained sediments (sand and gravel), the concentrations ranged from 4.0 mg/kg to 6.9 mg/kg, with an average concentration of 5.4 mg/kg. The results indicate that the average lithium concentration in the fine-grained sediments is more than three times the average lithium solids concentration in the coarse-grained sediments. The laboratory report for the analysis of the sediment samples is included in Appendix B.

Table 2 Lithium Solids Concentration by Sample Material Type

Texture	Sample ID Sample Depth within Boring (ft)		Lithium Result (mg/kg)
Fine	SB-2	2 to 5	11.5
Fine	SB-3	3.5 to 10.5	13.6
Fine	SB-3	10.5 to 15	14.2
Fine	T-2	23.5 to 30	18.1
Fine	T-13	3.5 to 10	16.2
Fine	T-13	15 to 20	22.7
		Fine Average	16.1
		Fine Range	11.5 to 22.7
Coarse	SB-2	10 to 20	4.9
Coarse	SB-3	3.5 to 10.5	5.8
Coarse	SB-3	10.5 to 15	6.9
Coarse	T-1	19 to 23	4.0
		Coarse Average	5.4
		Coarse Range	4.0 to 6.9

2.1.2 Variation in Lithium Mobility with Sediment Type

The sediment analysis presented above confirmed that fine-grained sediments at the Site have more lithium within the solid matrix than coarse-grained sediments. Leach tests, which simulate what the lithium concentrations would be in groundwater, were done on sediment samples from areas at the Site that have not been affected by the CCR unit to estimate how much naturally occurring lithium could be mobilized from the solid matrix to groundwater.

Ten additional borings (T-14 through T-23) and associated temporary wells were installed across the Site, scattered upgradient and side gradient of the CCR unit to obtain samples for this evaluation. Borings T-14 through T-22 were located in areas that are not hydraulically downgradient from any of the current or former CCR units (Figure 2). It was subsequently determined that boring location T-23 may have been affected by historical (pre-CCR Rule) Site activities not associated with any CCR units so the analytical results for the sample from boring T-23 were not carried forward in the evaluation. Logs for these borings are presented in Appendix A.

Pace analyzed sediment samples from these borings by a saturated paste extract procedure (SPE Method; Pace SOP S-SATPASTE-1.1). Samples that had dried and hardened were crushed using a mortar and pestle; however, rock fragments larger than #10 mesh (2 mm) were removed from the samples for the SPE Method analyses.

Analytical results for samples classified as fine-grained or coarse-grained from borings T-14 through T-22 are summarized in Table 3. The laboratory report for the analyses is presented in Appendix B. The lithium concentrations leached from the fine-grained material in the liquid extract ranged from 0.02 to 0.14 mg/L,

with an average of 0.06 mg/L. The lithium concentrations leached from the coarse-grained material in the liquid extract ranged from 0.02 to 0.06 mg/L, with an average of 0.03 mg/L. These results indicate that in areas that could not have been influenced by the CCR units (existing and closed) the fine-grained sediments release more lithium to groundwater, and with greater variation, than coarse-grained sediments. The results also indicate that the average SPE leachate lithium concentration from fine-grained sediments was approximately twice the average leachate lithium concentration from the coarse-grained sediments.

Table 3 Summary Saturated Paste Extracts for Lithium

Sediment Type	Boring ID	Sample Depth within Boring (ft)	Boring (field-estimated composition in boring logs)	
Fine	T-14	5-7	>95% fines	0.03
Fine	T-14	7-10	>90% fines	0.04
Fine	T-14	10-13	>90% fines	0.03
Fine	T-15	14.25-17.5	100% fines	0.04
Fine	T-16	11-13	100% fines	0.02
Fine	T-17	10.75-15	100% fines	0.07
Fine	T-18	12.5-14.5	100% fines	0.14
Fine	T-20	5.5-8.25	100% fines	0.02
Fine	T-21	13.75-15	100% fines	0.08
Fine	T-22	3.5-10	100% fines	0.03
Fine	T-22	10-15	100% fines	0.10
Fine	T-22	15-20	100% fines	0.10
			Fine Average	0.06
			Fine Range	0.02 to 0.14

Sediment Type	Boring ID	Sample Depth within Boring (ft)	Sediment Type (field-estimated composition in boring logs)	Lithium Result (mg/L)
Coarse	T-15	5-10	Poorly graded sand with silt and gravel (20% gravel, 70% sand, 10% fines)	0.03
Coarse	T-15	10-14.25	0-14.25 Poorly graded sand with silt and gravel (20% gravel, 70% sand, 10% fines)	
Coarse	T-16	3-11	3-11 Poorly graded sand with silt and gravel (20% gravel, 70% sand, 10% fines)	
Coarse	T-17	5-10.75 Well graded sand with silt (5% gravel, 85% sand, 10% fines)		0.02
Coarse	T-18	5-10	5-10 Well graded sand with silt and gravel (15% gravel, 75% sand, 10% fines)	
Coarse	T-18	10-12.5	10-12.5 Well graded sand with silt and gravel	
Coarse	T-19	3.5-5	3.5-5 Poorly graded sand with silt and gravel (20% gravel, 70% sand, 10% fines)	
Coarse	T-19	5-10	Poorly graded sand with silt and gravel (20% gravel, 70% sand, 10% fines)	0.02
Coarse	T-19	10-14.5 Poorly graded sand with silt and gravel (20% gravel, 70% sand, 10% fines)		0.02
Coarse	T-21	5-13.75	Poorly graded sand with silt and gravel (15% gravel, 70% sand, 15% fines)	0.05
			Coarse Average	0.03
			Coarse Range	0.02 to 0.06

Temporary wells were installed in borings T-14 through T-22 to facilitate collection of groundwater samples. The groundwater samples were analyzed for lithium at Minnesota Valley Testing Laboratories. As can be seen on Figure 2, the lithium concentrations detected in the samples from temporary wells T-20 and T-22, which were completed in fine-grained sediments, were 1.6 to 2.3 times the lithium concentrations in the samples collected from temporary wells completed in coarse-grained sediments. These analytical results for the groundwater samples corroborate the results of the leach testing. Field sampling forms and the laboratory report for the analyses of the groundwater samples are presented in Appendix B.

2.1.3 Statistical Upper Limit of Natural Variability

As shown above, fine-grained sediments at the Site have generally higher lithium content than coarse-grained sediments at the Site. As a result, higher lithium concentrations can be leached from fine-grained sediments than from coarse-grained sediments at that Site. The lithium GWPS (0.0631 mg/L) was established by calculating the parametric upper tolerance limit for background lithium concentrations measured in groundwater samples from the upgradient wells in the CCR monitoring network, consistent with the CCR Rule. Well logs (Appendix A) show that upgradient wells are screened in primarily coarse-grained soils while downgradient wells are screened in primarily fine-grained soils. Therefore, the effect of

the geologic variability at the Site on naturally occurring lithium concentrations in groundwater is not captured in the existing GWPS determination.

To understand an upper limit of lithium concentration in groundwater that might result from natural variability, the fine-grained sediment leaching data presented in Table 3 was used to calculate an upper prediction limit of 0.16 mg/L (Figure 3), which is more than 2.5 times the established GWPS. This upper limit of natural variability more accurately represents potential downgradient background concentrations.

2.1.4 Conclusions

The analytical data confirm that more naturally occurring lithium is present in fine-grained sediments than in coarse-grained sediments at the Site and that more lithium is mobilized to the liquid phase from the fine-grained sediments than from the coarse-grained sediments. As a result of the natural variation in lithium content, groundwater in zones of fine-grained sediments will contain more lithium than groundwater in zones of coarse-grained sediments. The average lithium concentration in SPE leachate, intended to simulate groundwater conditions, from fine-grained sediments is approximately twice the concentration in leachate from coarse-grained sediments.

The upgradient wells in the CCR monitoring network are screened in predominantly coarse-grained sediments whereas the downgradient wells are screened in predominantly fine-grained sediments (Figure 2).

Finally, statistical evaluation of lithium concentrations obtained from the analyses of SPE leachate from fine-grained sediments resulted in a statistical upper limit of natural variability that is more than 2.5 times the GWPS. Based on these geologic relationships, elevated concentrations of lithium in downgradient wells are to be expected due to the upper limit of natural variability for the Site, and exceedances of the GWPS in these wells are the result in part due to natural variation in groundwater quality. Lithium concentrations in MW117 and MW118 are lower than the statistical upper limit of natural variability.

2.2 Hypothesis No. 2: Carbonaceous Zone

Naturally occurring carbonaceous zones within the aquifer matrix, which typically exhibit elevated lithium concentrations, are present in fine-grained sediments within or near the screened intervals of downgradient wells in the CCR monitoring network. As a result, it is possible that the GWPS based on upgradient wells is not representative of the background lithium concentrations in downgradient wells.

2.2.1 Lithium Concentrations within Carbonaceous Material

Carbonaceous materials are defined herein to include lignite or other types of coal, or other organic materials, that are inferred to contain visually significant amounts of carbon. To determine if the carbonaceous material could be contributing to the elevated downgradient groundwater concentrations, eight samples of carbonaceous material were extracted from available sediment cores (obtained from previous Site investigations) and subjected to the SPE leachate extraction analysis. Logs for the borings associated with these sediment cores are presented in Appendix A.

As shown in Table 4, SPE leachate analyses of carbonaceous samples for lithium identified concentrations ranging from 0.06 to 0.13 mg/L, with an average concentration of 0.09 mg/L. The average lithium concentration in the carbonaceous material SPE leachate, intended to simulate groundwater conditions, is 1.5 times the average concentration from fine-grained samples and three times the average concentration from coarse-grained samples, raising the potential upper range for lithium concentration due to natural variability when compared to fine-grained sediments without carbonaceous material. The laboratory report for the analyses of carbonaceous material samples is presented in Appendix B.

Table 4 Summary of SPEs for Lithium in Carbonaceous Materials

Boring ID	Sample Depth within Boring (ft)	Lithium Result (mg/L)
SB-2	20.5-21	0.11
T-2	22.5-23.5	0.07
T-3	30-32.5	0.13
T-5	10-15	0.09
T-6	19.5-20	0.08
T-17	10.75-15	0.10
T-18	12.5-14.5	0.09
T-22	10-15	0.06
	average	0.09
	range	0.06 to 0.13

2.2.2 Carbonaceous Material Location Compared to Downgradient Wells

Carbonaceous material was identified in the MW-111 boring log (Appendix A) at a depth of approximately 3 feet below the well screen. Common industry practice is to backfill any over-drilled depth below the well screen using filter pack sand. This backfill below the well screen would allow transfer of groundwater from the carbonaceous zone to the well screen during sampling, likely affecting water quality.

The boring logs for the remaining downgradient wells did not identify carbonaceous material, though the older Site wells provide little detail on the materials encountered during well construction. Since carbonaceous zones can be thin, these zones could be present in the downgradient wells even though they were not noted on the well logs. While downgradient CCR monitoring network wells MW-117, MW-118, and MW-120 do not document carbonaceous material at the well locations, additional borings surrounding these downgradient wells provided evidence of carbonaceous zones (Figure 2). Table 5 provides the maximum and most recent lithium concentrations measured in downgradient wells and the approximate distances from the downgradient wells to the nearest boring in which carbonaceous material was identified. Measured lithium concentrations tended to be higher in groundwater where a downgradient carbonaceous zone was identified closer to the well, with the highest lithium concentration correlating to well MW-111 where carbonaceous material was documented within the boring (Appendix B).

Table 5 Carbonaceous Zone Correlation to Downgradient Groundwater Concentrations

Downgradient CCR Well	Maximum Measured Lithium Concentration in Groundwater* (mg/L)	Fall 2022 Lithium Concentration in Groundwater (mg/L)	Distance to Closest Boring with Documented Carbonaceous Material (ft)
MW-111	0.227	0.225	within boring
MW-120	0.176	0.176	125
MW-117	0.155	0.122	160
MW-118	0.102	0.084	280

^{*}Maximum lithium concentration measured in assessment monitoring groundwater samples.

By inference from the information presented above, elevated concentrations of lithium in MW-111 are attributable to the presence of carbonaceous materials within the well boring. The site investigation boring logs document that carbonaceous material is present at the distances shown in Table 5 from each downgradient well. Based on the information in Table 5, there appears to be a relationship between groundwater lithium concentrations and distance to the nearest documented location of carbonaceous material, although carbonaceous material may be closer to the wells than documented by the borings.

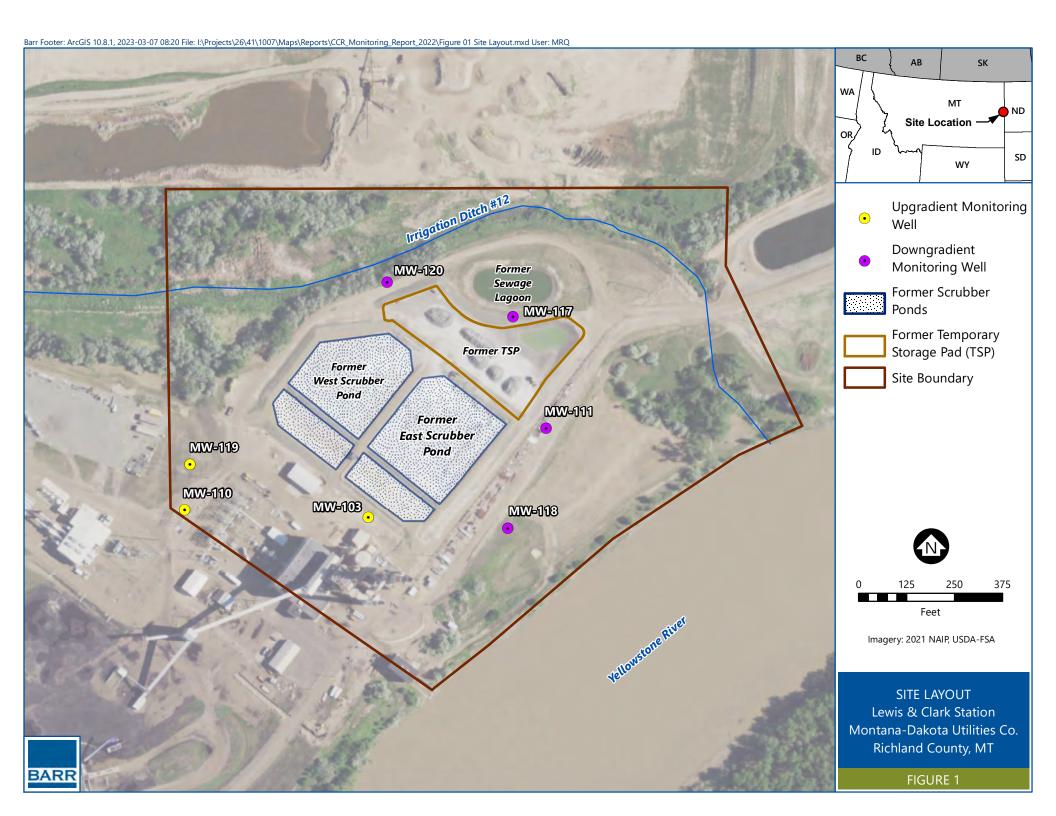
Since the average lithium concentration SPE leachate analyses is about 1.5 times the average for fine-grained materials, it would be anticipated that lithium in groundwater samples that are influenced by carbonaceous materials would be much higher. It is apparent that carbonaceous materials in the downgradient monitoring zone have a significant impact on lithium concentrations in these wells and the regulated CCR unit is not the cause of elevated concentrations.

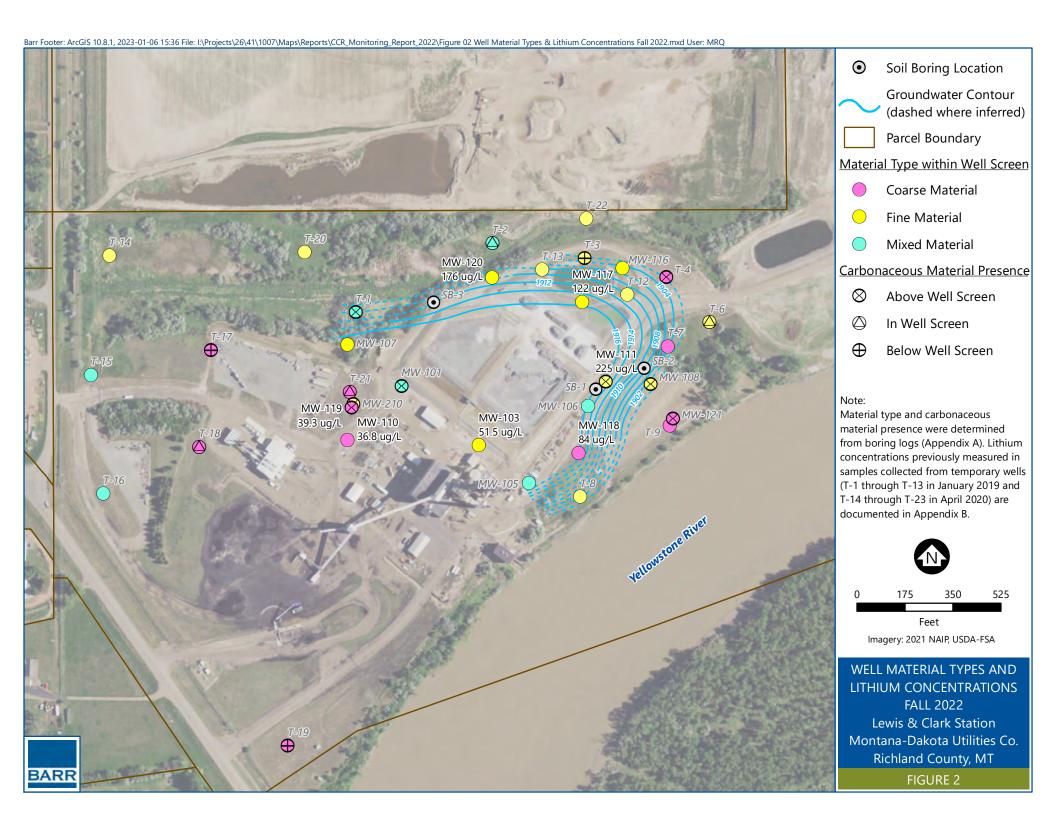
2.2.3 Conclusion

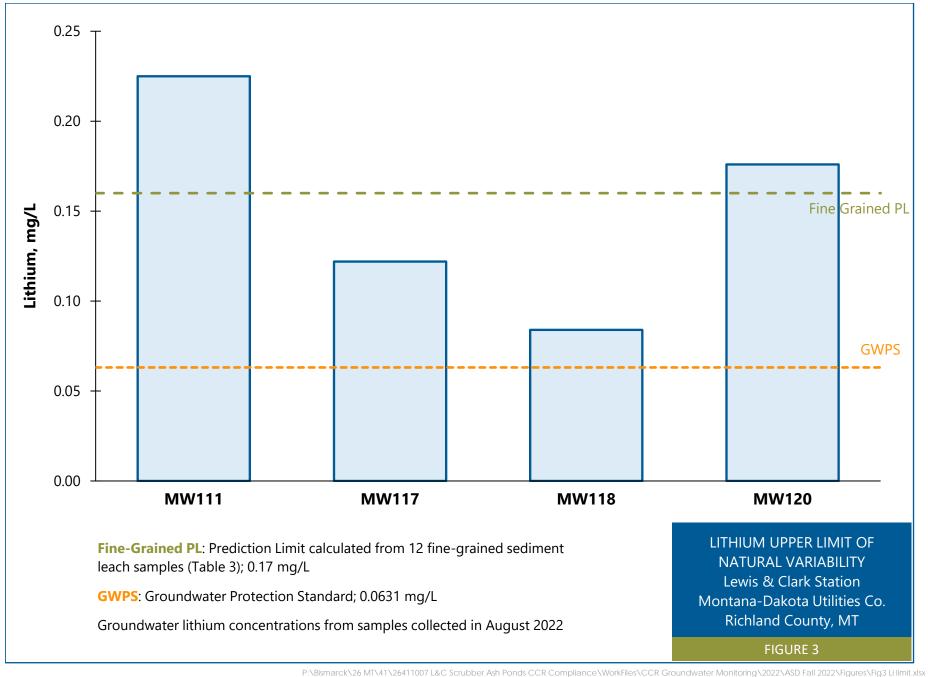
The average lithium concentration in the carbonaceous material SPE leachate is greater than the average concentrations in leachate from fine-grained or coarse-grained sediment samples. The locations where carbonaceous material was identified in boring logs also appear to correlate with the elevated lithium concentrations in CCR monitoring network wells. For instance, monitoring well MW-111 has the highest lithium concentration for the fall 2022 event (0.225 mg/L) and is the only downgradient well with carbonaceous material documented in the well's boring log. The detected lithium concentration appears to be within the range of natural variability when carbonaceous material is present. These data show that the presence of carbonaceous material in the aquifer matrix contributes to elevated lithium in downgradient groundwater.

3 Conclusion

The analysis summarized in this report supports a demonstration, consistent with requirements of § 257.95(g)(3)(ii) of the CCR Rule, that the presence of concentrations of lithium at statistically significant levels above the GWPS are attributable to sources other than the CCR unit. The following hypotheses were proven to support this determination:


- **Hypothesis No. 1**: Due to the natural variability between sediments in which upgradient and downgradient wells are screened, the observed downgradient concentrations are due in part to the natural variation in lithium content of the sediments.
- **Hypothesis No. 2**: The GWPS based on upgradient wells is not representative of the background lithium concentrations in downgradient wells due to naturally occurring carbonaceous zones within the aquifer matrix present in fine-grained sediments within or near the screened intervals of the downgradient wells.


Taken together, the lines of evidence presented above provide adequate documentation and support that an alternative source is responsible for the presence of lithium at statistically significant concentrations above the GWPS. Therefore, it is concluded that the combined effects of natural variability and presence of carbonaceous material in the area downgradient from the CCR unit establish an alternative source, and there does not appear to be a release from the former Scrubber Ponds.


4 References

- Barr Engineering Co., 2016. Evaluation of Existing Surface Impoundment Liner, West and East Scrubber Ponds. Prepared for Montana-Dakota Utilities, September 2016.
- Barr Engineering Co., 2018. 2017 Annual Groundwater Monitoring and Corrective Action Report, Scrubber Pond and Temporary Storage Area. Prepared for Montana Dakota Utilities, January 2018.
- Barr Engineering Co., 2019a. 2018 Annual Groundwater Monitoring and Corrective Action Report, Scrubber Pond and Temporary Storage Area, Lewis & Clark Station. Prepared for Montana Dakota Utilities, January 2019.
- Barr Engineering Co., 2019b. Assessment of Corrective Measures, Lewis & Clark Station. Prepared for Montana-Dakota Utilities, August 2019.
- Barr Engineering Co., 2020a. Alternative Source Demonstration, Temporary Storage Pad, Lewis & Clark Station. Prepared for Montana Dakota Utilities, November 2020.
- Barr Engineering Co., 2020b. 2019 Annual Groundwater Monitoring and Corrective Action Report, Scrubber Pond and Temporary Storage Area, Lewis & Clark Station. Prepared for Montana Dakota Utilities, January 2020.
- Barr Engineering Co., 2021. 2020 Annual Groundwater Monitoring and Corrective Action Report, Scrubber Pond and Temporary Storage Area, Lewis & Clark Station. Prepared for Montana Dakota Utilities, January 2021.

Figures

Appendices

Appendix A Site Boring Logs

LOG OF BORING

PROJECT: W86-007 SOIL BORINGS

Fly Ash Sludge Lagoons MDU Lewis & Clark Station Sidney, MT

BORING:

LOCATION: Middle of SW side of lagoons, see N.C.C. drawing

ST-103W

	4			DAT	E: 1	1/2	1/86	SCAL	E: 1"=4
Elev. 23.2	Depth	ASTM D2487	Description of Materials		BPF		Tests	or	Notes
22.7	.5	Symbol	(ASTM D2488) GRAVEL surfacing	_			qp		
		CL	SILTY CLAY, low to medium plas	_					
	1		ticity, dark brown to grayish						
			brown, moist, very stiff	+	21		4+		
19.7	31/2		(fine alluvium)	-	21		47		
		CL	SANDY CLAY, low plasticity,		1				
			brown, moist, rather stiff (fine alluvium)	+					
			(Time alluvium)	L	10		2		
16.7	61/2	CII ON	CANDY OF THE				1		
	1	GW-GM	SANDY GRAVEL, fine to medium grained, a little silt, wet to	-					
			waterbearing, loose to dense	_	17				
41		V E	(coarse alluvium)				-		1.1
				-					
				1	5				
						-			
				1	57				
08.2	15								
		ML	SANDY SILT, nonplastic, light		52		1 3/4		
06.2	17		gray, moist, very dense (siltstone)						
00.2	1/	СН	FAT CLAY, high plasticity, ligh	+					
		O.I.	gray, moist, hard (claystone)	t					
			(craybrone)	1					
								· 2	
02.7	201/2		,	_ 3	38		4+		
			Water level down 10.1' with	-	-	-			
			19' of hollow-stem auger in						
		-	the ground					10.2	
			Water level down 9.3' immed-						4
			iately after withdrawal of	2					4
		1.4	auger						
		and a second	2" PVC monitoring well in-		-	0			7.
			stalled to a depth of 19', see sketch				- 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
			-30 01102011		1				W 20
	-					1		4	
	V .						11 - 2 - 2		Section 1
		E 1							
		Com			1		Art West		

WELL LOG REPORT

File No.

State law requires that the Bureau's copy be filed by the water well driller within 60 days after completion of the well.

1. WELLOWNER MDU Lewis & Clark Sta 2. CURRENT MAILING ADDRESS 400 North 4th 13,5 marck, NO 58501	f) Duration of test: Pumping time hrs. g) Recovery time hrs. h) Recovery water level ft. at hrs. after pumping stopped. Wells intended to yield 100 gpm or more shall be tested for a period of 8 hours or more. The test shall follow the development of the well, and shall be conducted continuously at a constant discharge at least as great as the intended exprendiction. In additions the back the professional content of the series of the state of the series of the ser				
3. WELL LOCATION SE 1/4 NW 1/4 SW 1/4 Section 9 Township 22 NW Range 59 EW County Fick land Govn't Lot, or Lot, Block Subdivision Name	form. NOT a press movab	E: All wells s ure gauge ti e caps are a	on. In addition to the above information, water level data and recorded on the Department's "Aquifer Test Data" shall be equipped with an access port 1/2 inch minimum or nat will indicate the shut-in pressure of a flowing well. Receptable as access ports.		
Tract Number	If yes, I	now?	ED OR ABANDONED?Yes _KNo		
Other Specify Mouitoring	12. WELL I	h (ft.) To	#3, 110.		
5. TYPEOF WORK: Hollowstern Auger X New well Method: Dug Bored Deepened Driven Driven	From	0.3	Formation 5ilt, sandy w/gravel, dark browy		
Reconditioned Rotary Jetted	0.3	1	5. It, soundy warrange reduch		
6. DIMENSIONS: Diameter of Hole Dia	1	4	Silt, sandy w/gravel & Copples, medium brown		
Diain. fromft. toft.	4	14	Gravel, to Coarse, w/cobbles, abt 3070 Sand, Med, brown		
7. CONSTRUCTION DETAILS: Casing; Steel Diafromft. toft.	14	18	Silt, Light blue, Bedrock		
Threaded Welded Dia fromft. toft. Type Wall Thickness					
Casing; Plastic Dia. 2 from +1.8 ft. to 8 ft. Weight 508-21 Dia. from ft. to ft.					
PERFORATIONS: Yes □ No.★					
Type of perforator usedin. byin.					
perforations fromft. toft.					
perforations fromft. toftftft. toft.					
SCREENS: Yes No []					
Manufacturer's Name Timeo PVC					
Type Model No Dia					
DiaSlot sizefromft. toft.					
GRAVEL PACKED: Yes No K Size of gravel		American and high			
GROUTED: To what depth? 7 It. Material used in grouting 263# bestonite chips					
8. WELL HEAD COMPLETION: Pitless Adapter □ Yes ⋈No					
9. PUMP (if installed)					
Manufacturer's name Model No HP			ATTACH ADDITIONAL SHEETS IF NECESSARY		
	13. DATE C	OMPLETED	8/28/91		
10. WELL TEST DATA The information requested in this section is required for all wells. All depth measurements shall be from the top of the well casing. All wells under 100 gpm must be tested for a minimum of one hour and provide the following information: a) Air Pump Bailer ft. If flowing; closed-in pressure psi gpm. Flow controlled by: valve, reducers, other, (specify) c) Depth at which pump is set for test d) The pumping rate: gpm.	This we	ell was drille wledge.	CTOR'S CERTIFICATION d under my jurisdiction and this report is true to the best of Dec 9 Date		
d) The pumping rate:gpm. e) Pumping water levelft. athrs. after pumping began.		Man	dan, NU 5,8407		
Pomping ouguin	Signatu	· 1	M/ Semmin 246/004		
MONTANA DEPARTMENT OF NATURAL RESOUR	CES & C	ONSER	VATION DNRC		

MONTANA WELL LOG REPORT

This well log reports the activities of a licensed Montana well driller, serves as the official record of work done within the borehole and casing, and describes the amount of water encountered. This report is complied electronically from the contents of the Ground-Water Information Center (GWIC) database for this site. Acquiring water rights is the well owner's responsibility and is NOT accomplished by the filing of this report.

Other Options

Plot this site on a topographic map View scanned well log (7/28/2010 8:48:11 AM)

Site Name: MDU GWIC Id: 190701 **DNRC Water Right:**

Section 1: Well Owner

Owner Name

MDU

Mailing Address

City State Zip Code **SIDNEY** MT 59270

Section 2: Location

Range **Township** Section **Quarter Sections** SW1/4 NE1/4 SW1/4 22N 59E Geocode County

RICHLAND

Latitude Longitude Geomethod Datum 47.679047 104.157232 TRS-SEC NAD83 **Altitude** Method Datum Date

Addition **Block** Lot

Section 3: Proposed Use of Water

MONITORING (1)

Section 4: Type of Work

Drilling Method:

Section 5: Well Completion Date

Date well completed: Thursday, May 03, 2001

Section 6: Well Construction Details

Borehole dimensions

From	То	Diameter
0	18	8

Casino

Casini	9					
			Wall	Pressure		
From	То	Diameter	Thickness	Rating	Joint	Туре
0	8	2				PVC-SCHED40

Completion (Perf/Screen)

			# of	Size of	
From	То	Diameter	Openings	Openings	Description
8	18	2			.01 SLOT

Annular Space (Seal/Grout/Packer)

Allilui	Annulai Space (Seal/Grout/Facker)					
			Cont.			
From	То	Description	Fed?			
0	6	3/8 BENTONITE CHIPS				
6	18	10/20 SAND				

Section 7: Well Test Data

Total Depth: 18 Static Water Level: Water Temperature:

Unknown Test Method *

Yield _ gpm.

Pumping water level _ feet. Time of recovery _ hours. Recovery water level _ feet.

* During the well test the discharge rate shall be as uniform as possible. This rate may or may not be the sustainable yield of the well. Sustainable yield does not include the reservoir of the well casing.

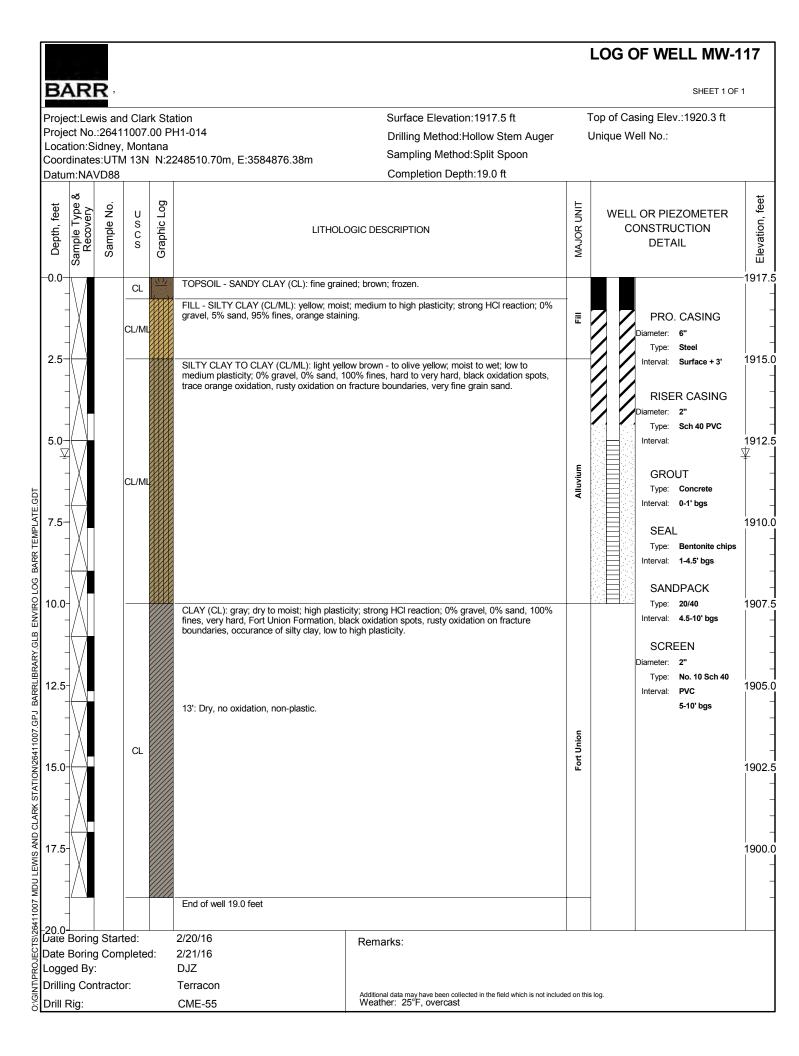
Section 8: Remarks

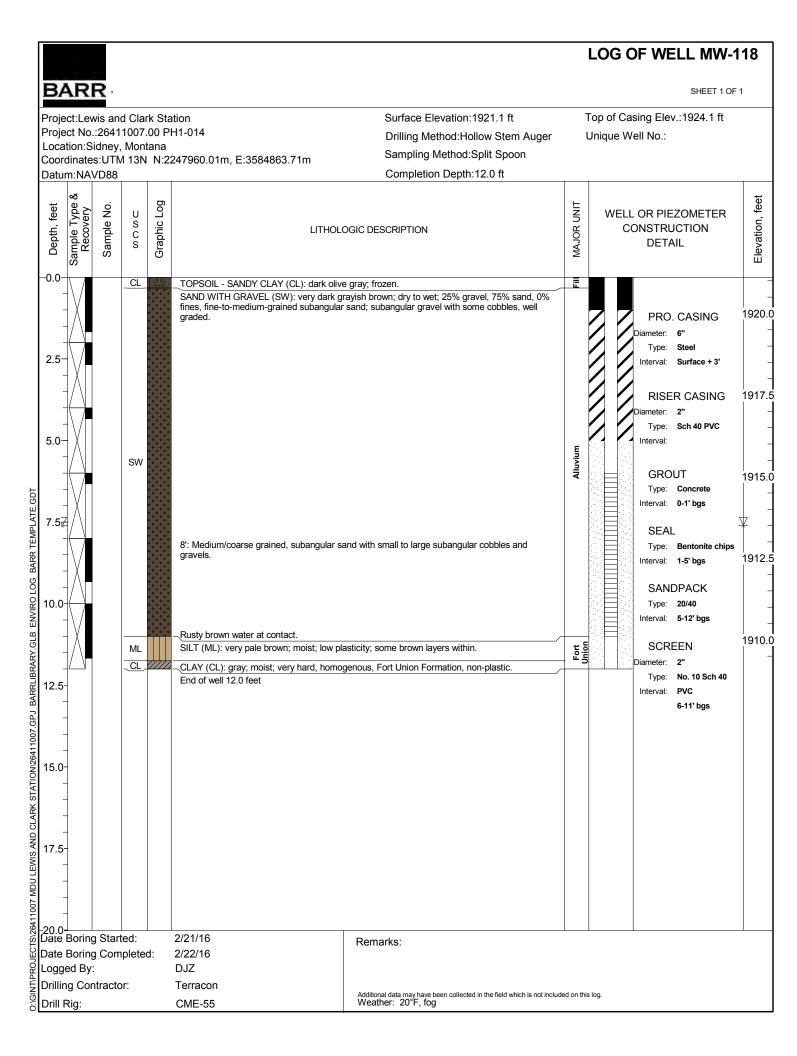
Section 9: Well Log Geologic Source

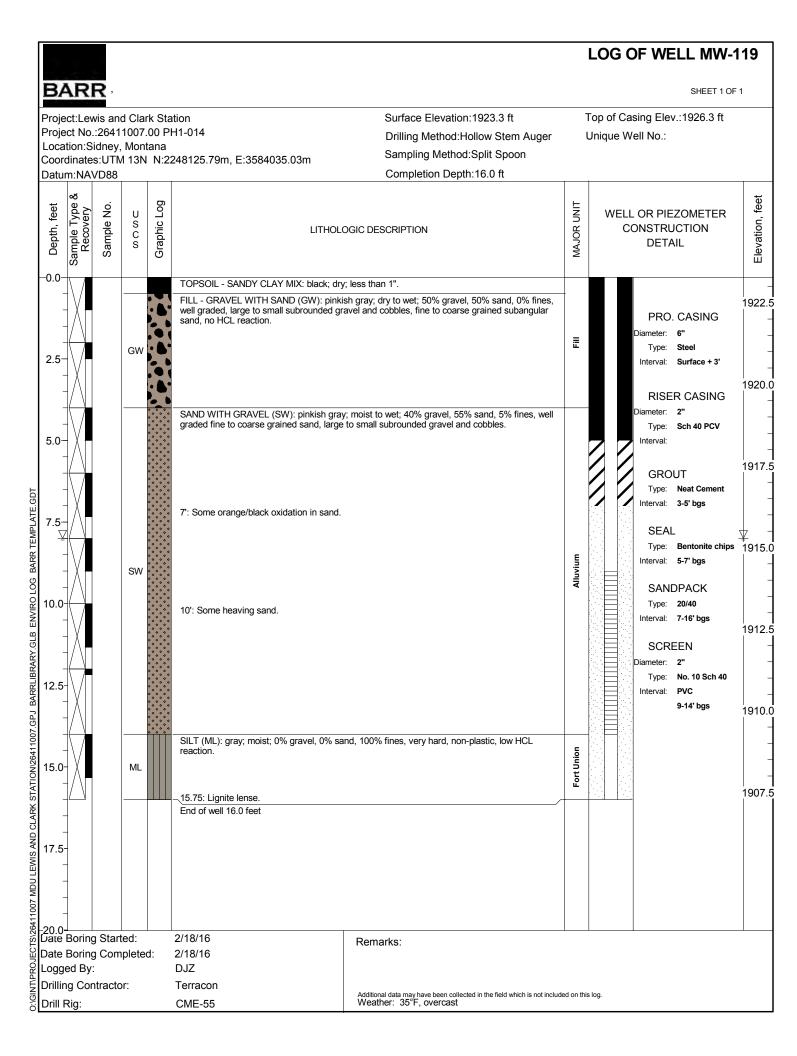
Unassigned

From	То	Description
0		BLACK SILTY CLAY
5	¥	TAN/ YELLOW SILT CLAY
21	22	COAL
22	25	SILTY CLAY SAND STRINGERS

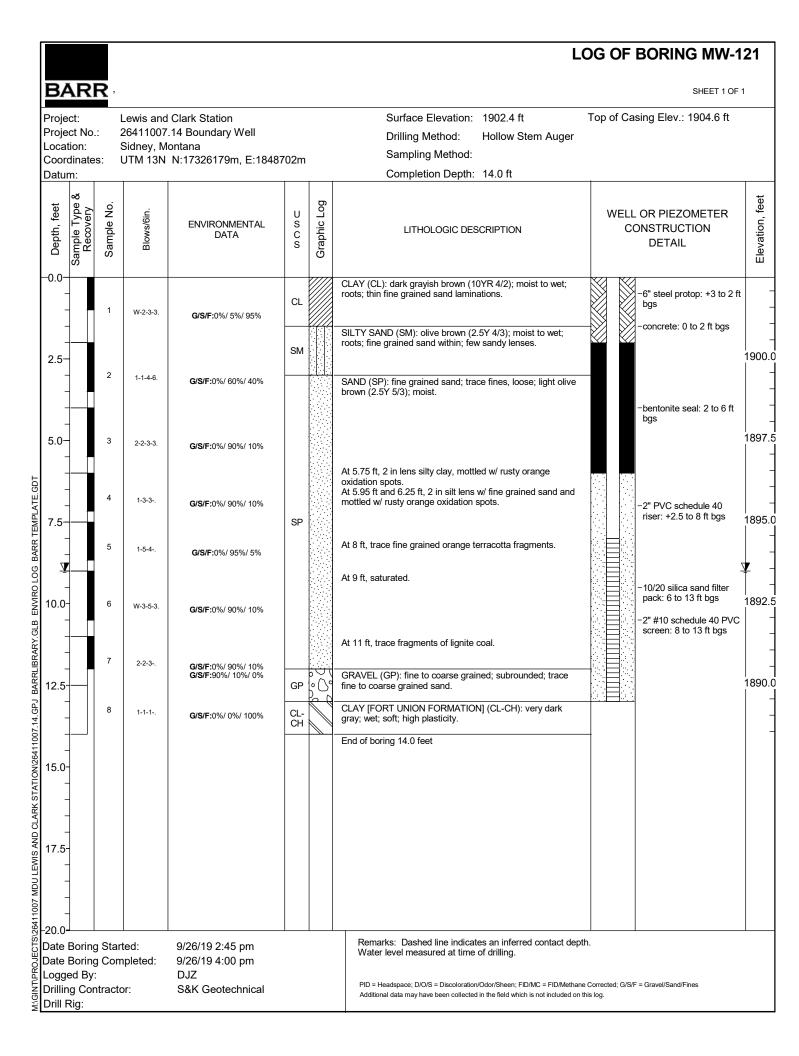
Driller Certification

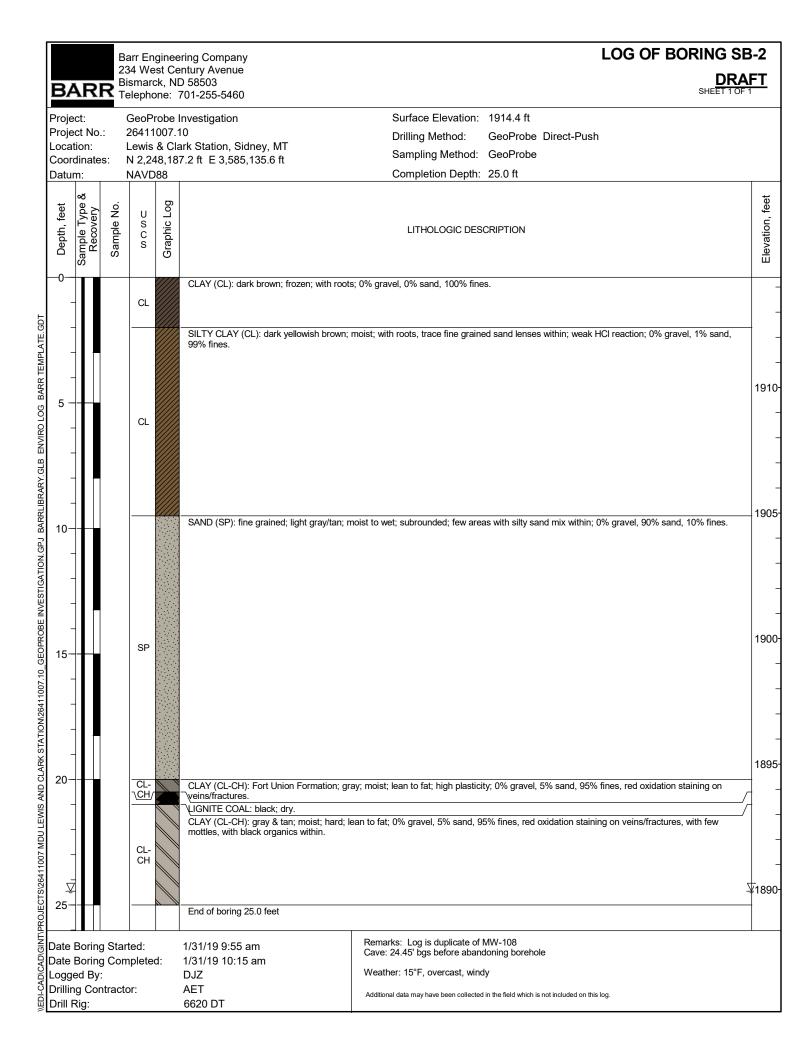

All work performed and reported in this well log is in compliance with the Montana well construction standards. This report is true to the best of my knowledge.

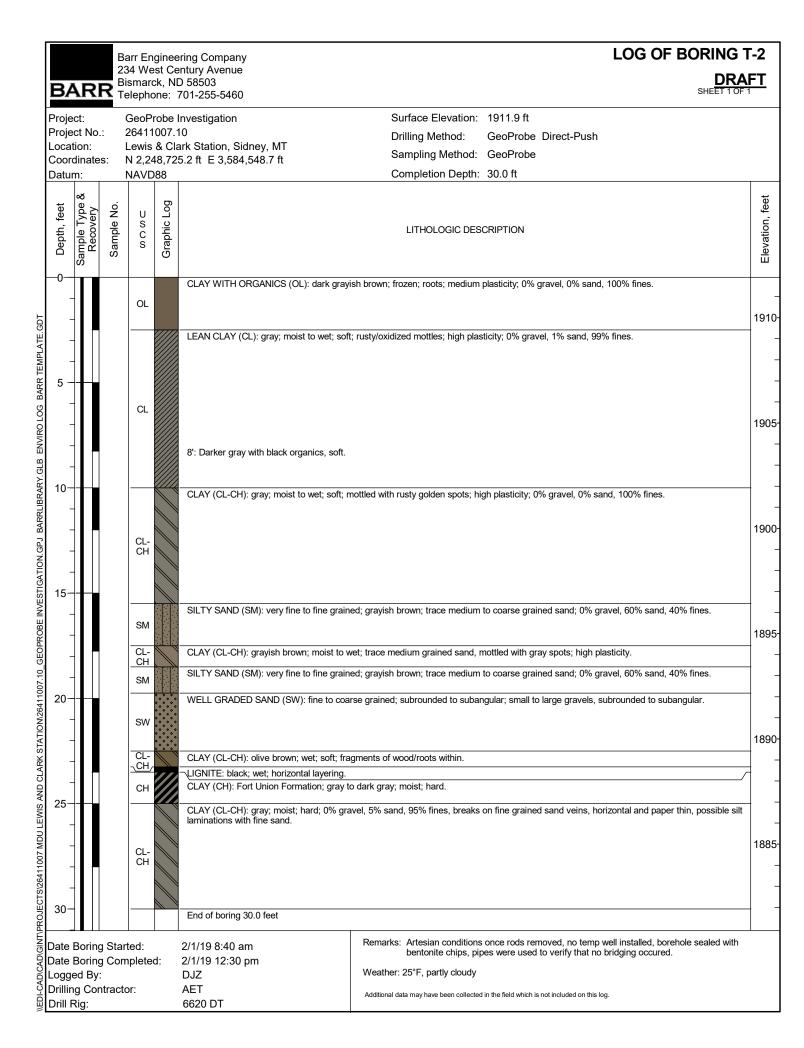

Name:

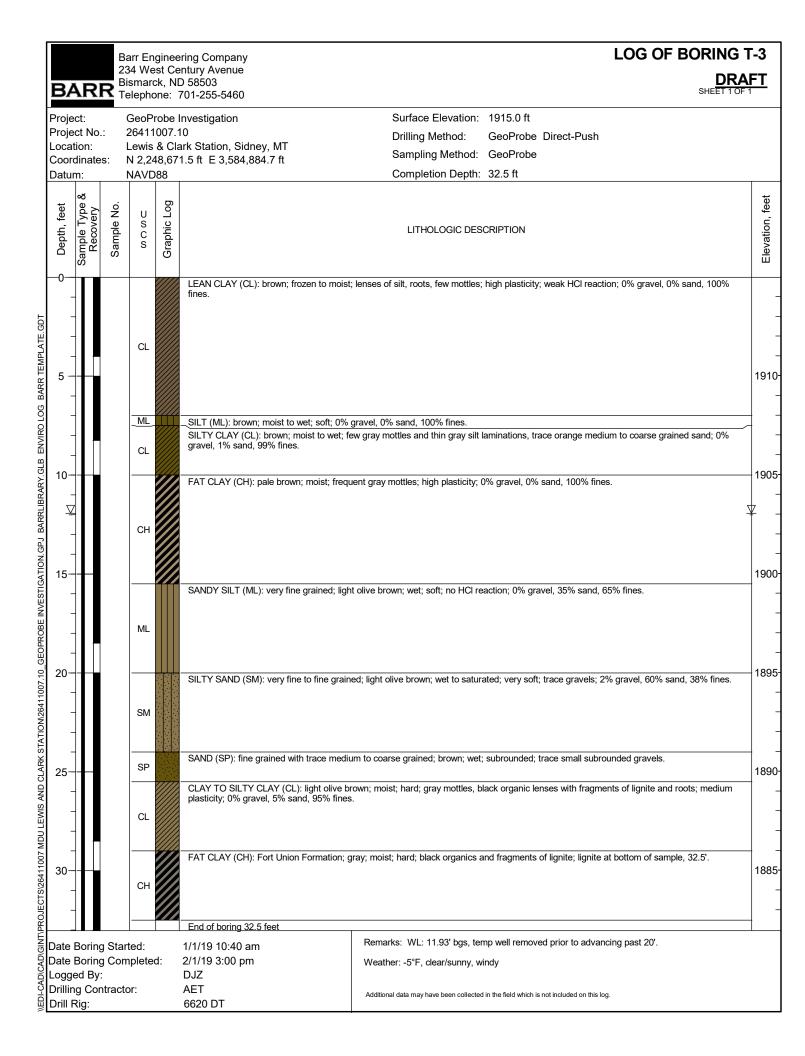

Company: HANSEN ENVIRONMENTAL DRILLING

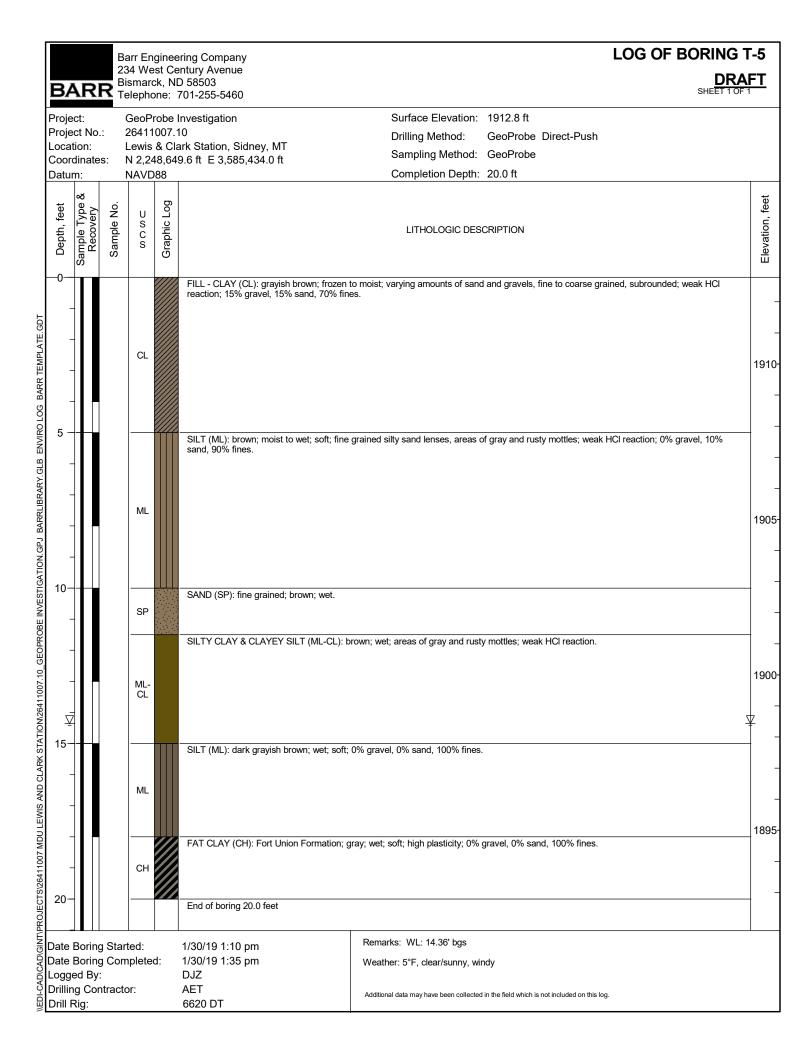
License No: WWC-230

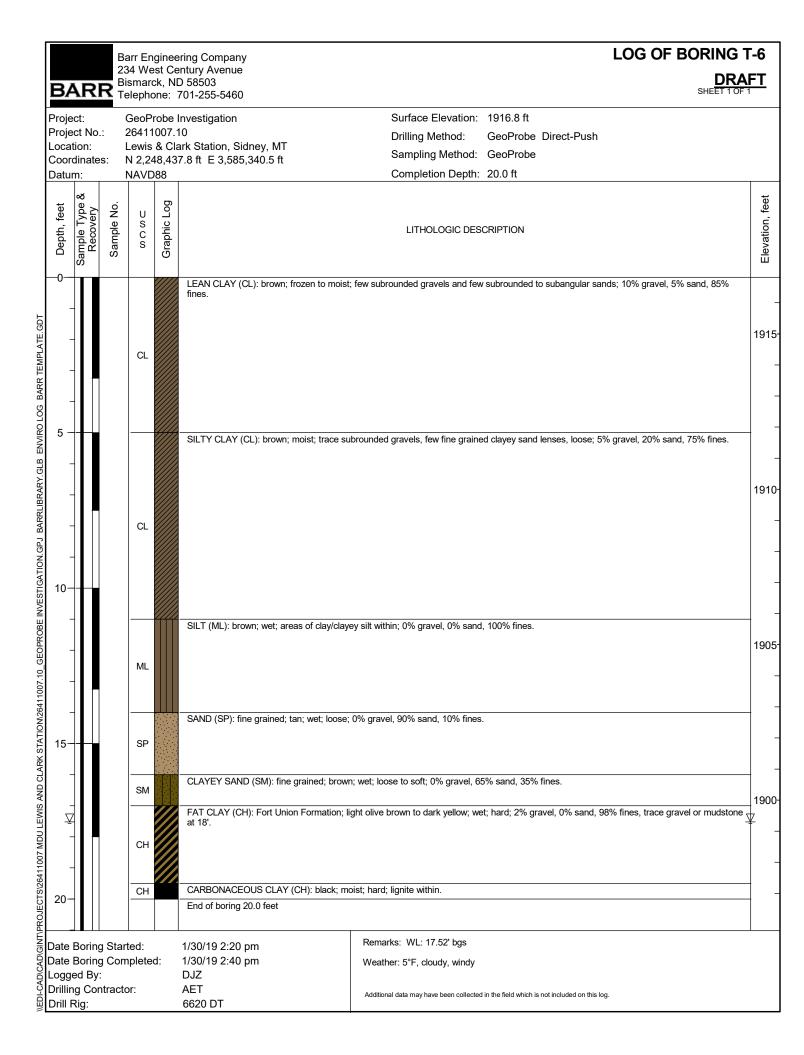

Date 5/3/2001 Completed:

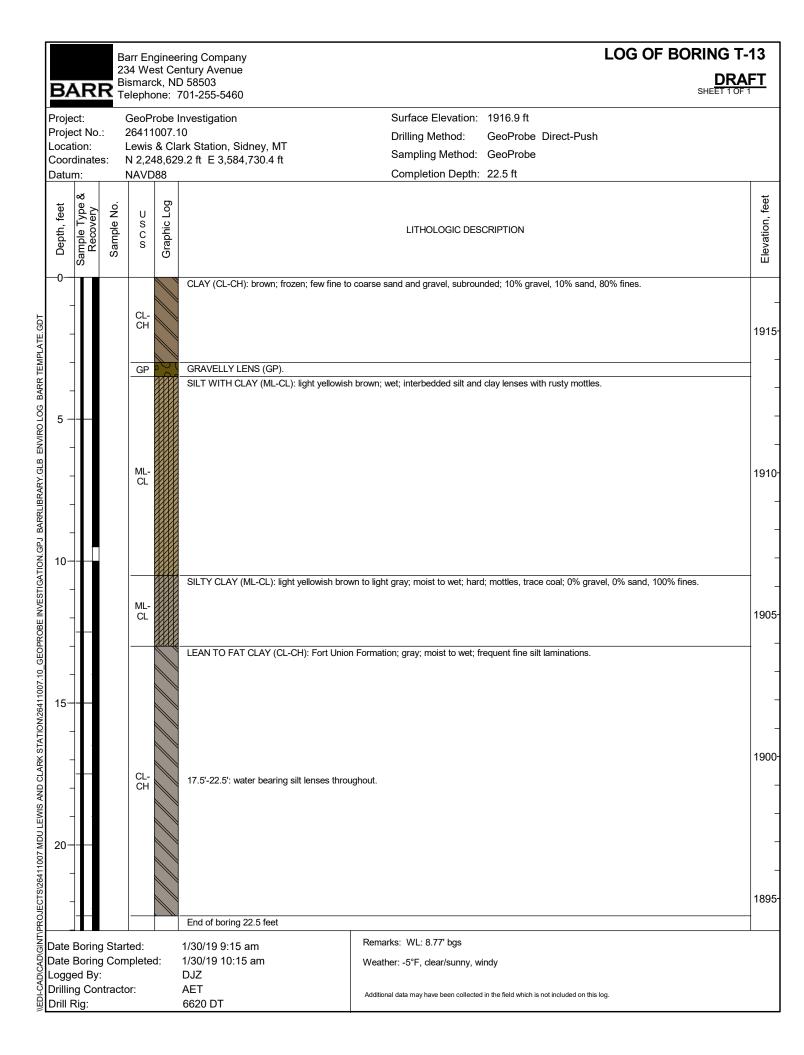


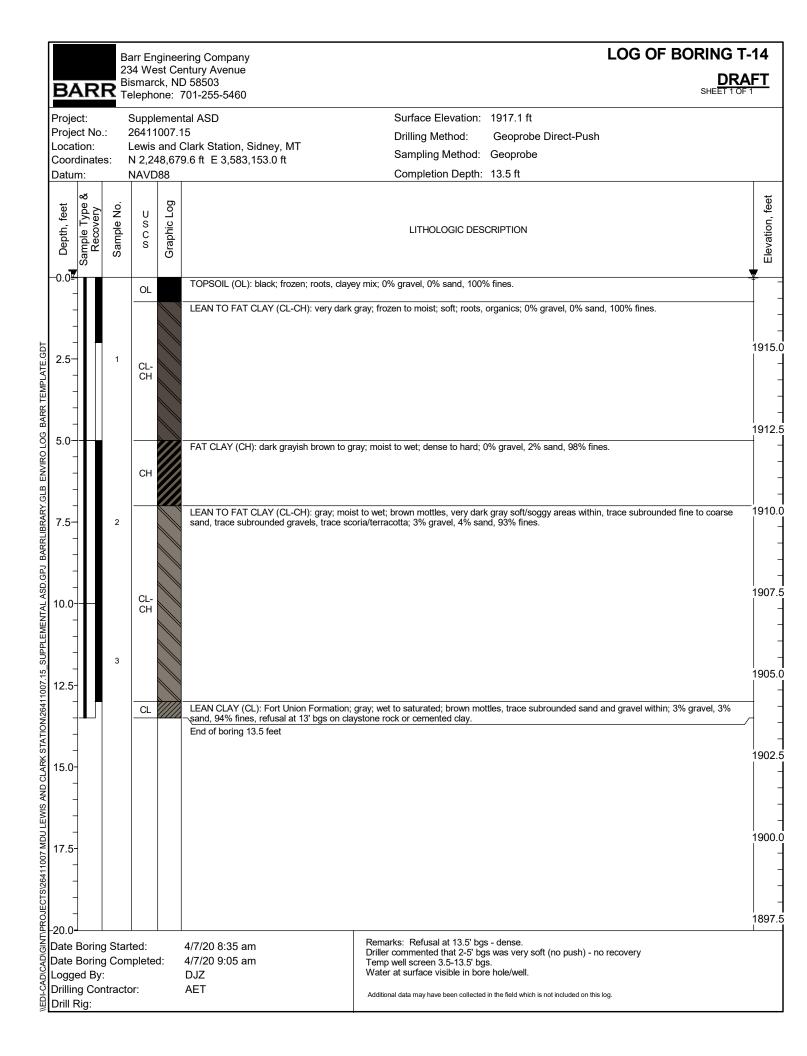

								LOG OF WELL	_ MW-120	
Project: Project No.: Location: Coordinates: Datum:		S:	Lewis and Clark Station 26411007.00 PH1-014 Sidney, Montana UTM 13N N:m, E:m NAVD88				Surface Elevation: 1919.0 ft Drilling Method: Hollow Stem Auger Sampling Method: Split Spoon Completion Depth: 16.0 ft	SHEET 1 OF 1 Top of Casing Elev.: 1922.0 ft		
~		Sample No.	Blows/6in.	ENVIRONMENTAL DATA	USCS	Graphic Log	LITHOLOGIC DESCRIPTION	WELL OR PIEZO CONSTRUCT DETAIL		
0.0			7-9-14-18.	G/S/F :0%/ 0%/ 100% G/S/F :15%/ 60%/ 25%	CL- CH SP- SC		CLAY FILL (CL-CH): yellowish brown (10YR 5/4); frozen; hard; roots. SAND W/ GRAVEL (SP-SC): brown (10YR 4/3); moist; very fine grained sand, subround gravels, large to small.	PRO. CA Diameter: 6" Type: Ste	191 el	
2.5			8-12-13- 10.	G/S/F :5%/ 70%/ 25% G/S/F :0%/ 5%/ 95%			CLAY (CL-CH): light yellowish brown (2.5Y /4); moist to wet; hard; crumbly, areas of CLAYSTONE within.	RISER C Diameter: 2" Type: Sch	ASING 191	
5.0-			5-6-7-11. 2-4-3-0.	G/S/F :15%/ 15%/ 80% G/S/F :5%/ 20%/ 75%			At 5': 4" FAT CLAY (CH), brown (10YR 4/3), hard Increasing sand and gravels within claystone. Mostly fine grained sand, smal gravels, subround. At 6-7.5': Mix of fat clay and claystone w/ sand/gravel within w/ little silt pockets.	GROUT Type: Cer Interval: 0-1.	1	
7.5			1-2-3-0.	G/S/F :10%/ 20%/ 70%	CL- CH		At 7.5': Transitions to SANDY CLAY (CL/CH), high plasticity with very fine to coarse grained sand within, subround to subangular. Trace gravels, small to large. Rusty red oxidation spots and fractures. Few black manganese oxidation spots. Few white precipitate veins/spots.	SEAL Type: Ber Interval: 1.5-	191	
10.0-			1-3-4-4.	G/S/F :5%/ 20%/ 75%			At 11': Color change to dark grayish brown (10YR 4/2), softer.	Type: 10/2 Interval: 9-16 SCREEN Diameter: 2"	6' bgs	
12.5			1-3-3-0.	G/S/F:10%/ 20%/ 70% G/S/F:10%/ 20%/ 70%			At 12': Sample, wet.	Type: No. Interval: 11-4	12 Sch 40 PVC 16' bgs	
15.0-			1-2-3-4.	G/S/F :0%/ 0%/ 100%	CL- ML		SILTY CLAY/CLAYEY SILT (CL-ML): light gray/gray; wet; soft; with trace black roots and rusty orange oxidations stains. End of well 16.0 feet			
17.5- -										
20.0—Date Bo	_			1/29/18 1/29/18			Remarks: After 15 min., water level was at 12.9 ft bgs. A	After 40 min., water level was	s at 12.6 ft bgs.	
Date Bo Logged Drilling Drill Riq	d By: Con		npleted: or:	DJZ SK Geotechnical			PID = Headspace; D/O/S = Discoloration/Odor/Sheen; FID/MC = FID/Methane Corrected; G/S/F = Gravel/Sand/Fines Additional data may have been collected in the field which is not included on this log.			

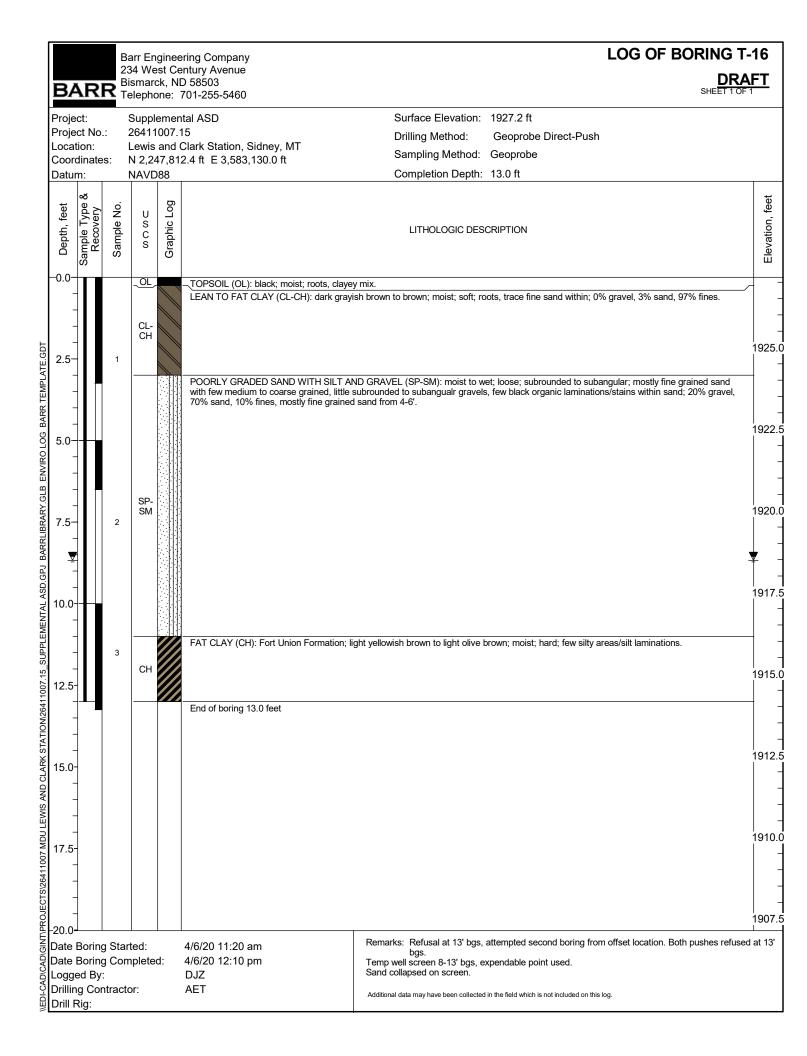


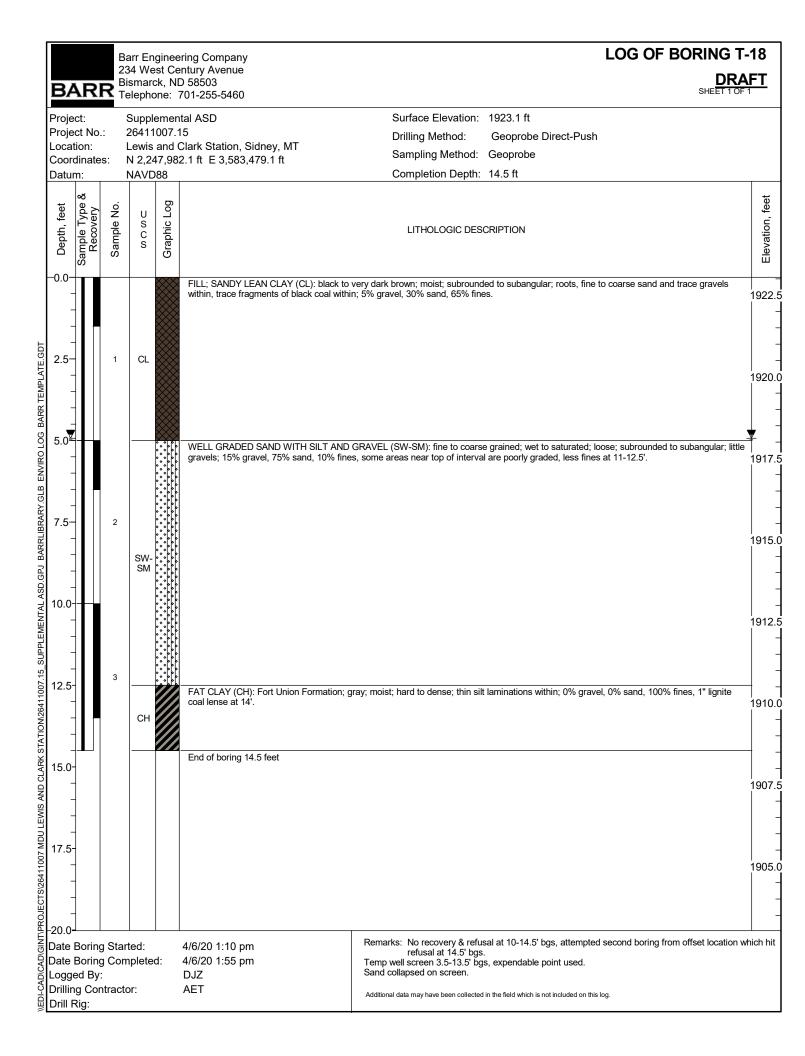


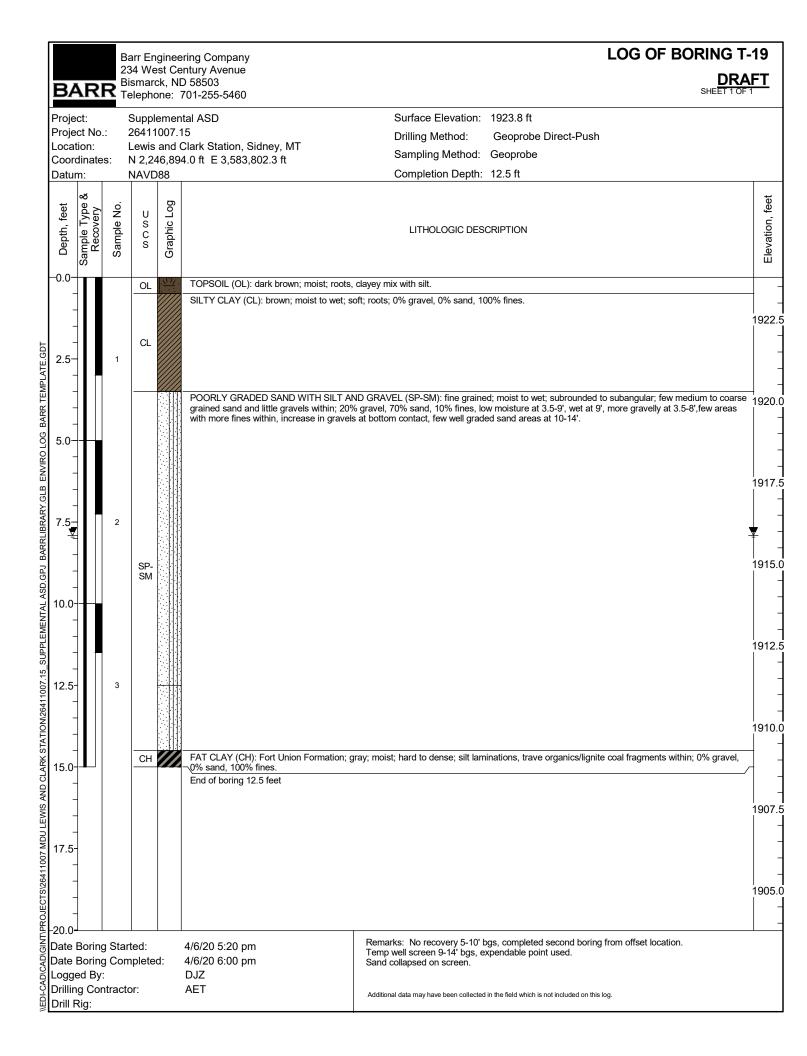

LOG OF BORING SB-3 Barr Engineering Company 234 West Century Avenue Bismarck, ND 58503 BARR Telephone: 701-255-5460 Project: Surface Elevation: 1925.2 ft GeoProbe Investigation Project No.: 26411007.10 Drilling Method: GeoProbe Direct-Push Location: Lewis & Clark Station, Sidney, MT Sampling Method: GeoProbe Coordinates: N 2,248,493.0 ft E 3,584,337.9 ft Datum: NAVD88 Completion Depth: 20.0 ft feet Sample Type 8 Recovery Graphic Log Depth, feet Sample No. U S C S Elevation, LITHOLOGIC DESCRIPTION FILL: push through road, no recovery. 1925[.] EDI-CADICADIGINTIPROJECTS/26411007 MDU LEWIS AND CLARK STATION/26411007.10 GEOPROBE INVESTIGATION. GPJ BARRLIBRARY. GLB ENVIRO LOG BARR TEMPLATE. GDT FILL - CLAY (CL): dark grayish brown; moist; with trace fine-medium grained sand mix within; high plasticity; 0% gravel, 5% sand, 95% fines CL CLAYEY SAND (SC): mostly fine grained with trace medium and coarse grained; subrounded; with few subrounded gravels; 10% gravel, 55% sand, 35% fines 1920 SC SP 9.5': SAND (SP): 3-inch lens of fine grained; tan; moist to wet. 10<u></u> ¥1915 SANDY CLAY (CL): dark gray; moist to wet; with fine to coarse sand and few gravels within, trace roots. CL SILTY SAND (SM): fine grained with few medium and coarse grained; grayish brown; saturated; with trace to few small subrounded gravels 15 within; 10% gravel, 60% sand, 30% fines 1910· SM SANDY SILT (ML): very fine to fine grained; light olive brown; wet to saturated; mottled. MI LEAN TO FAT CLAY (CL-CH): olive yellow; moist; with golden brown mottles, trace manganese oxidation stains; medium plasticity. CL-CH 20 End of boring 20.0 feet Remarks: WL: 10.20' bgs, not allowed to equilibrate Date Boring Started: 1/31/19 2:05 pm Date Boring Completed: 1/31/19 2:25 pm Weather: 25°F, clear/sunny, windy Logged By: DJZ **Drilling Contractor: AET** Additional data may have been collected in the field which is not included on this log Drill Rig: 6620 DT



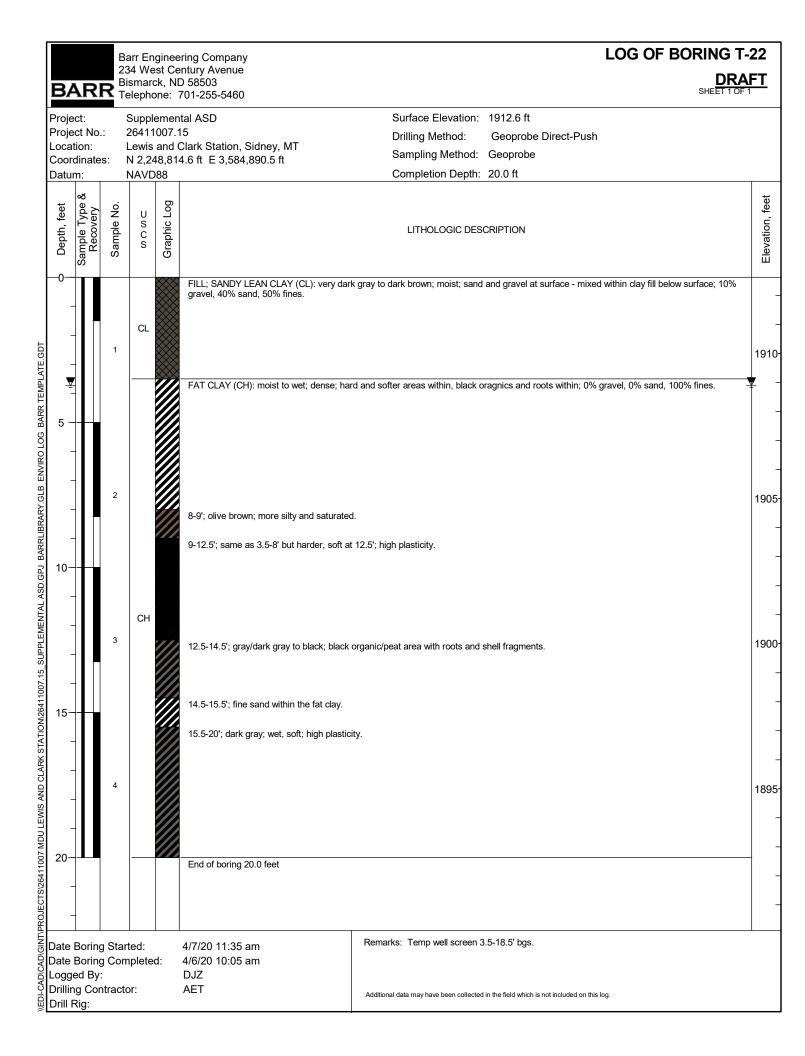


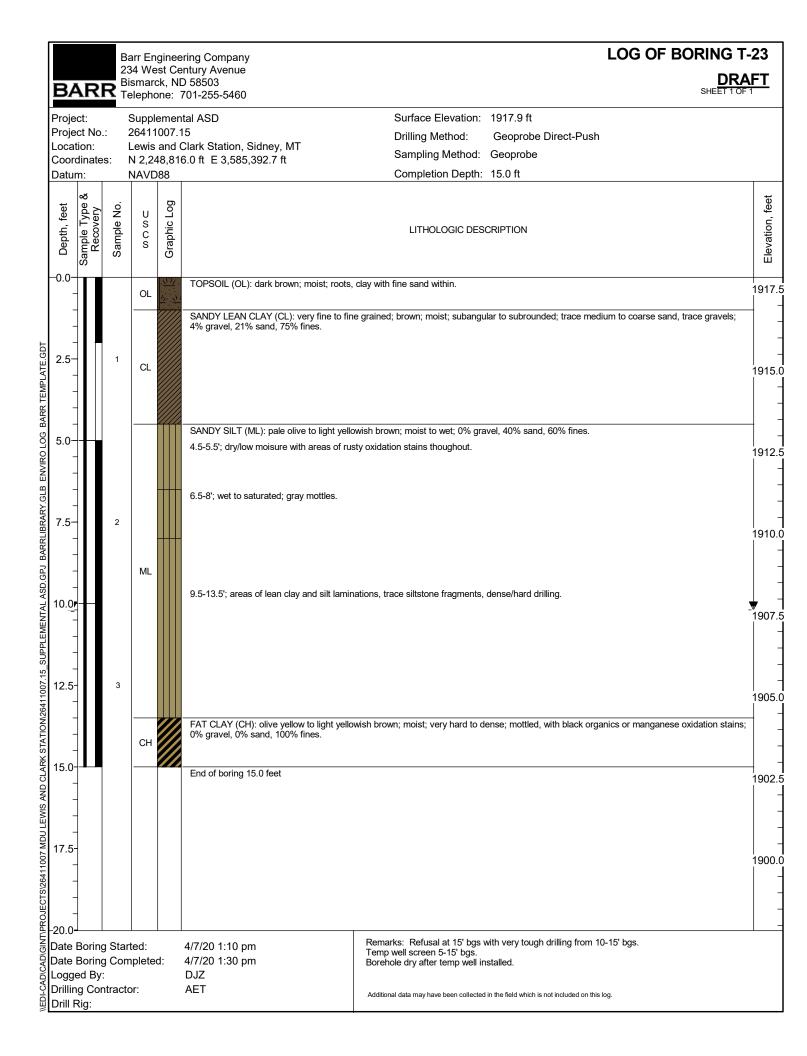






B/	\RI	23	34 We	st Ce	ering Company entury Avenue D 58503 701-255-5460	LOG OF BORING T-15 DRAFT SHEET 1 OF 1				
Proje Proje Locat Coord Datur	: s:	Suppl 26411 Lewis	emer 007. ⁻ and (18,24	ital ASD	Surface Elevation: 1923.6 ft Drilling Method: Geoprobe Direct-Push Sampling Method: Geoprobe Completion Depth: 17.5 ft					
Depth, feet	Sample Type & Recovery	Sample No.	USCS	Graphic Log		LITHOLOGIC DESCRIPTION	Elevation, feet			
-0.0			OL	\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.	TOPSOIL (OL): dark brown; moist; roots,	, trace fine clayey sand.				
- - - 2.5-		1	CL- CH		LEAN TO FAT CLAY (CL-CH): brown; m trace subrounded gravels; 1% gravel, 6%	oist; few fine to coarse sand, subrounded to subangular, few areas of rusty oxidiation spots/veins, 6 sand, 93% fines.	1922.			
2.5- - - -			SP-		POODLY CRAPED CAND WITH OUT A	ND CDAVEL (CD CM) unit as blue for most fine to medium and	1920.			
5.0¥ - - - 7.5−		2	SM		POORLY GRADED SAND WITH SILT A	ND GRAVEL (SP-SM): wet; cobble fragments, fine to medium sand. ND GRAVEL (SP-SM): wet to saturated; loose; subrounded to subangular; few well-graded areas ew coarse sand, little subrounded to subangular gravels; 20% gravel, 70% sand, 10% fines, fines	1917.			
			SP- SM				1915.			
- - - 12.5		3					1912.			
_							 1910.			
- - - 15.0-			СН		FAT CLAY (CH): Fort Union Formation; grecovery due to swelling.	gray; moist; hard; thin silt laminations; 0% gravel, 0% sand, 100% fines, 2.5' push with 4' of	-			
- - - 17.5		4			End of boring 17.5 feet		1907.			
- - -					Lid of Doffing 17.0 feet		1905.			
Date Date Logge Drillin	Boring	Con	nplete	d:	4/6/20 9:50 am 4/6/20 10:30 am DJZ AET	Remarks: Temp well screen 1.5-11.5' bgs. Sand collapsed on screen.	ı			
Drill F						Additional data may have been collected in the field which is not included on this log.				


					ering Company	LOG OF BORING T	-17
BA	R				entury Avenue D 58503 701-255-5460	DRA SHEET 1 OF	
Project Project Locati Coord Datun	ot: ot No. ion: linate	: 2 : 1 s: 1	Supple 26411 Lewis	emer 007. and (ntal ASD	Surface Elevation: 1922.5 ft Drilling Method: Geoprobe Direct-Push Sampling Method: Geoprobe Completion Depth: 15.0 ft	
Depth, feet	Sample Type & Recovery	Sample No.	Uscs	Graphic Log		LITHOLOGIC DESCRIPTION	Elevation, feet
-0.0 - - - 2.5- - -		1	SM		_TOPSOIL (OL): black; moist; roots, claye; POORLY GRADED SILTY SAND (SM): b coarse grained sand, trace gravels; 4% g	rown; moist to wet; subrounded to subangular; mostly fine grained sand with few medium to	1922
2.5- - 5.0- - 7.5- - 10.0- - 12.5- - 15.0- - 17.5- - - 20.0- Date E		2	SW- SM		WELL GRADED SAND WITH SILT (SW- at bottom of contact; 4% gravel, 86% san	SM): fine to coarse grained; wet; loose; subrounded to subangular; trace gravels with more gravels d, 10% fines.	1917. 1915. 1912.
12.5- - - - - 15.0-		5	СН		FAT CLAY (CH): Fort Union Formation; g 0% gravel, 0% sand, 100% fines.	ray; moist; silt laminations, few 1" lignite coal lenses/fragments and carbonaceous zones within;	1910 -1907
17.5- - -							1905
-20.0- Date E Date E Logge Drilling Drill R	Boring d By: g Cor	g Com	pleted	d:	4/6/20 2:50 pm 4/6/20 3:30 pm DJZ AET	Remarks: Temp well screen 5-10' bgs, expendable point used. Sand collapsed on screen. Additional data may have been collected in the field which is not included on this log.	



Barr Enginee	ering Company	LOG OF BORING T-20	0
Bismarck, NI	entury Avenue D 58503 701-255-5460	DRAFT SHEET 1 OF 1	Τ
		Surface Elevation: 1920.7 ft Drilling Method: Geoprobe Direct-Push Sampling Method: Geoprobe Completion Depth: 15.0 ft	
Depth, feet Sample Type & Recovery Sample No. \$\omega \circ \omega \circ \circ \omega \circ \omega \circ \$\omega \circ \omega \circ \omega \circ \$\omega \circ \omega \circ \omega \circ \omega \circ \$\omega \circ \omega \c		LITHOLOGIC DESCRIPTION	Elevation, feet
O.OOLOLOL	_TOPSOIL (OL): dark grayish brown; mois SANDY LEAN CLAY (CL): fine to coarse fines.	grained; brown; moist; subrounded to subangular; trace gravels within; 5% gravel, 20% sand, 75% 19	- 920.0 - - - 917.9
5.0 <u>#</u>	POORLY GRADED SAND AND CLAY (C few gravels; 10% gravel, 45% sand, 45%	L-SC): fine grained; brown; moist; subrounded to subangular; few medium to coarse grained sand,	- - -
7.5- 2	FAT CLAY (CH): light yellowish brown; m 0% sand, 100% fines.	oist; hard to dense; occasional brown and gray mottles, few black organic lenses/stains; 0% gravel, 19	-
2.5- 1 CL-SC SC T.5- 2 TOTAL SC CH 7.5- 2 ML 12.5- 4 15.0- 4 17.5- 4 Date Boring Started: Date Boring Completed: Logged By: Drilling Contractor: Drill Rig:	SANDY SILT (ML): light olive yellow; wet and silt ratio varies with depth.	to saturated; very fine grained sand within; 0% gravel, 40% sand, 60% fines, near liquid limit, sand	912. - - - - 910. - - - -
15.0-	End of boring 15.0 feet	19	- - 905.0 - -
17.5- - - - -		19	- 902.9 - -
Date Boring Started: Date Boring Completed: Logged By: Drilling Contractor: Drill Rig:	4/7/20 10:00 am 4/7/20 10:30 am DJZ AET	Remarks: Refusal at 15' bgs. Temp well screen 5-15' bgs. Additional data may have been collected in the field which is not included on this log.	

		Bar	r Engi	nee	ring Company	LOG OF BORING	T-21
BAI	RF	Bisr	marck	, NE	ntury Avenue 0 58503 701-255-5460	SHEET	RAFT 1 OF 1
Project: Project Location Coordin Datum:	No.: n: nates:	26 Le N	64110 ewis a	07.1 nd (5,18	tal ASD 5 Clark Station, Sidney, MT 2.0 ft E 3,584,028.4 ft	Surface Elevation: 1923.8 ft Drilling Method: Geoprobe Direct-Push Sampling Method: Geoprobe Completion Depth: 15.0 ft	
		Sample No.	Uscs	Graphic Log		LITHOLOGIC DESCRIPTION	Elevation, feet
2.5-		1	OL .		_TOPSOIL (OL): black; moist; roots, clayer POORLY GRADED SAND WITH SILT A coarse grained sand within, few to little g 5-10' observed in second geoprobe push	ND GRAVELS (SP-SM): fine grained; moist to wet; subrounded to subangular; few medium to ravels, some silty areas within; 15% gravel, 70% sand, 15% fines, wet at 5′, possibly well grader	1922
2.5- - - 5.0 - 7.5- - - 10.0			SP- SM				1917. 1917.
10.0 - - - - 12.5- - -		3					1912.
12.5- 15.0- 17.520.0- Date Bo Date Bo Logged Drill Rig		_	СН		FAT CLAY (CH): Fort Union Formation; 0% sand, 100% fines. End of boring 15.0 feet	gray; moist; hard to dense; silt laminations, trace lignite fragments/black organics within; 0% gra	1910.1 - - - 1907.3
-20.0 Date Bo	oring \$	Starte	d:		4/6/20 3:55 pm	Remarks: Temp well screen 4-14' bgs, expendable point used.	1905.
Date Bo Logged Drilling (Drill Rig	oring (By: Contr	Comp	leted:		4/6/20 4:45 pm DJZ AET	Second boring completed for additional sample recovery. Additional data may have been collected in the field which is not included on this log.	

Appendix B Analytical Results

Project:

1673 Terra Avenue Sheridan, WY 82801

ph: (307) 672-8945

Date: 1/30/2020

CLIENT: Barr Engineering

26411007

Lab Order: \$1912224

CASE NARRATIVE

Report ID: S1912224002

(Replaces S1912224001)

Samples SB-2, T-1, T-13 and T-2 were received on December 12, 2019.

All samples were received and analyzed within the EPA recommended holding times, except those noted below in this case narrative. Samples were analyzed using the methods outlined in the following references:

"Standard Methods For The Examination of Water and Wastewater", approved method versions Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846, 3rd Edition 40 CFR Parts 136 and 141

40 CFR Part 50, Appendices B, J, L, and O

Methods indicated in the Methods Update Rule published in the Federal Register Friday, May 18, 2012 ASTM approved and recognized standards

All Quality Control parameters met the acceptance criteria defined by EPA and Pace Analytical (Formerly Inter-Mountain Laboratories) except as indicated in this case narrative.

Qualifiers by sample

- S1912224-001 SPLP/Lithium Holding times for preparation or analysis exceeded
- S1912224-001 SPLP/Selenium Holding times for preparation or analysis exceeded
- S1912224-001 Total Metals-3050/6010/Lithium Holding times for preparation or analysis exceeded
- S1912224-001 Total Metals-3050/6010/Selenium Holding times for preparation or analysis exceeded
- S1912224-002 SPLP/Lithium Holding times for preparation or analysis exceeded
- S1912224-002 SPLP/Selenium Holding times for preparation or analysis exceeded
- S1912224-002 Total Metals-3050/6010/Lithium Holding times for preparation or analysis exceeded
- S1912224-002 Total Metals-3050/6010/Selenium Holding times for preparation or analysis exceeded
- S1912224-003 SPLP/Lithium Holding times for preparation or analysis exceeded
- S1912224-003 SPLP/Selenium Holding times for preparation or analysis exceeded
- S1912224-003 Total Metals-3050/6010/Lithium Holding times for preparation or analysis exceeded
- S1912224-003 Total Metals-3050/6010/Selenium Holding times for preparation or analysis exceeded
- S1912224-004 SPLP/Lithium Holding times for preparation or analysis exceeded
- S1912224-004 SPLP/Selenium Holding times for preparation or analysis exceeded
- S1912224-004 Total Metals-3050/6010/Lithium Holding times for preparation or analysis exceeded
- S1912224-004 Total Metals-3050/6010/Selenium Holding times for preparation or analysis exceeded
- S1912224-005 SPLP/Lithium Holding times for preparation or analysis exceeded
- S1912224-005 SPLP/Selenium Holding times for preparation or analysis exceeded
- S1912224-005 Total Metals-3050/6010/Lithium Holding times for preparation or analysis exceeded
- S1912224-005 Total Metals-3050/6010/Selenium Holding times for preparation or analysis exceeded
- S1912224-006 SPLP/Lithium Holding times for preparation or analysis exceeded
- S1912224-006 SPLP/Selenium Holding times for preparation or analysis exceeded
- S1912224-006 Total Metals-3050/6010/Lithium Holding times for preparation or analysis exceeded
- S1912224-006 Total Metals-3050/6010/Selenium Holding times for preparation or analysis exceeded

Reviewed by: Karen Asecon

Karen Secor, Soil Lab Supervisor

Page 1 of 1

26411007

2 - 5 Feet

S1912224-001

1673 Terra Avenue Sheridan, WY 82801

ph: (307) 672-8945

Sample Analysis Report

CLIENT: Barr Engineering

Client Sample ID: SB-2

Project:

Lab ID:

Depths:

Bismark, ND

Date Reported: 1/30/2020

Report ID: S1912224002

(Replaces S1912224001)

Work Order: S1912224

Collection Date: 1/31/2019 10:00:00 AM

Date Received: 12/12/2019

Sampler:

COC: 58192

Matrix: Soil

Result	RL	Qual	Units	Date Analyzed/Init	Method
11.5	0.2	Н	mg/Kg	01/27/2020 1835 DG	EPA 6010C
ND	1.3	Н	mg/Kg	01/27/2020 1835 DG	EPA 6010C
ND	0.01	Н	mg/L	01/09/2020 1249 DG	EPA 200.7
ND	0.2	Н	mg/L	01/09/2020 1249 DG	EPA 200.7
	11.5 ND ND	11.5 0.2 ND 1.3 ND 0.01	11.5 0.2 H ND 1.3 H ND 0.01 H	11.5 0.2 H mg/Kg ND 1.3 H mg/Kg ND 0.01 H mg/L	11.5

These results apply only to the samples tested.

Qualifiers:

Analyte detected in the associated Method Blank

Value above quantitation range

Holding times for preparation or analysis exceeded

Analyzed by another laboratory

ND Not Detected at the Reporting Limit

Spike Recovery outside accepted recovery limits S

Χ Matrix Effect **RL - Reporting Limit**

Calculated Value

Analyzed at IML Gillette laboratory

Analyte detected below quantitation limits

Value exceeds Monthly Ave or MCL or is less than LCL М

Outside the Range of Dilutions

Analysis reported under the reporting limit

Reviewed by: Karen A Secon

Karen Secor, Soil Lab Supervisor

Page 1 of 6

ph: (307) 672-8945

Sample Analysis Report

CLIENT: Barr Engineering

Bismark, ND

Date Reported: 1/30/2020

Report ID: S1912224002

(Replaces S1912224001)

Work Order: S1912224

Collection Date: 1/31/2019 10:05:00 AM

Date Received: 12/12/2019

Sampler:

Matrix: Soil

COC: 58192

Project: 26411007 **Lab ID:** S1912224-002

Client Sample ID: SB-2

Depths: 10 - 20 Feet

Analyses	Result	RL	Qual	Units	Date Analyzed/Init	Method
Total Metals-3050/6010						
Lithium	4.9	0.2	Н	mg/Kg	01/27/2020 1837 DG	EPA 6010C
Selenium	ND	1.3	Н	mg/Kg	01/27/2020 1837 DG	EPA 6010C
SPLP						
Lithium	ND	0.01	Н	mg/L	01/09/2020 1252 DG	EPA 200.7
Selenium	ND	0.2	Н	mg/L	01/09/2020 1252 DG	EPA 200.7

These results apply only to the samples tested.

Qualifiers:

B Analyte detected in the associated Method Blank

E Value above quantitation range

H Holding times for preparation or analysis exceeded

L Analyzed by another laboratory

ND Not Detected at the Reporting Limit

S Spike Recovery outside accepted recovery limits

X Matrix Effect

RL - Reporting Limit

C Calculated Value

G Analyzed at IML Gillette laboratory

J Analyte detected below quantitation limits

M Value exceeds Monthly Ave or MCL or is less than LCL

O Outside the Range of Dilutions

U Analysis reported under the reporting limit

Reviewed by: Karen A Secon

Karen Secor, Soil Lab Supervisor

Page 2 of 6

ph: (307) 672-8945

Sample Analysis Report

CLIENT: Barr Engineering

Bismark, ND

Date Reported: 1/30/2020

Report ID: S1912224002

(Replaces S1912224001)

Work Order: S1912224

Collection Date: 1/31/2019 3:20:00 PM

Date Received: 12/12/2019

Sampler:

Matrix: Soil

COC: 58192

Project: 26411007 **Lab ID:** S1912224-003

Client Sample ID: T-1

Depths: 19 - 23 Feet

Analyses	Result	RL	Qual	Units	Date Analyzed/Init	Method
Total Metals-3050/6010						
Lithium	4.0	0.2	Н	mg/Kg	01/27/2020 1839 DG	EPA 6010C
Selenium	ND	1.3	Н	mg/Kg	01/27/2020 1839 DG	EPA 6010C
SPLP						
Lithium	ND	0.01	Н	mg/L	01/09/2020 1254 DG	EPA 200.7
Selenium	ND	0.2	Н	mg/L	01/09/2020 1254 DG	EPA 200.7

These results apply only to the samples tested.

Qualifiers:

B Analyte detected in the associated Method Blank

E Value above quantitation range

H Holding times for preparation or analysis exceeded

L Analyzed by another laboratory

ND Not Detected at the Reporting Limit

S Spike Recovery outside accepted recovery limits

X Matrix Effect

RL - Reporting Limit

C Calculated Value

G Analyzed at IML Gillette laboratory

J Analyte detected below quantitation limits

M Value exceeds Monthly Ave or MCL or is less than LCL

O Outside the Range of Dilutions

U Analysis reported under the reporting limit

Reviewed by: Karen A Secon

Karen Secor, Soil Lab Supervisor

Page 3 of 6

ph: (307) 672-8945

Sample Analysis Report

CLIENT: Barr Engineering

Bismark, ND

Date Reported: 1/30/2020

Report ID: S1912224002

(Replaces S1912224001)

Work Order: S1912224

Collection Date: 2/1/2019 12:15:00 PM

Date Received: 12/12/2019

Sampler:

Matrix: Soil

COC: 58192

Project: 26411007 **Lab ID**: S1912224-004

Client Sample ID: T-2

Depths: 23.5 - 30 Feet

Analyses	Result	RL	Qual	Units	Date Analyzed/Init	Method
Total Metals-3050/6010						
Lithium	18.1	0.2	Н	mg/Kg	01/27/2020 1844 DG	EPA 6010C
Selenium	ND	1.3	Н	mg/Kg	01/27/2020 1844 DG	EPA 6010C
SPLP						
Lithium	0.02	0.01	Н	mg/L	01/09/2020 1256 DG	EPA 200.7
Selenium	ND	0.2	Н	mg/L	01/09/2020 1256 DG	EPA 200.7

These results apply only to the samples tested.

Qualifiers:

B Analyte detected in the associated Method Blank

E Value above quantitation range

H Holding times for preparation or analysis exceeded

L Analyzed by another laboratory

ND Not Detected at the Reporting Limit

S Spike Recovery outside accepted recovery limits

X Matrix Effect

RL - Reporting Limit

C Calculated Value

G Analyzed at IML Gillette laboratory

J Analyte detected below quantitation limits

M Value exceeds Monthly Ave or MCL or is less than LCL

O Outside the Range of Dilutions

U Analysis reported under the reporting limit

Reviewed by: Karen A Secon

Karen Secor, Soil Lab Supervisor

Page 4 of 6

ph: (307) 672-8945

Sample Analysis Report

CLIENT: Barr Engineering

Project:

Bismark, ND

Date Reported: 1/30/2020

Report ID: S1912224002

(Replaces S1912224001)

Work Order: S1912224

Collection Date: 1/30/2019 9:20:00 AM

Date Received: 12/12/2019

Sampler:

Matrix: Soil

COC: 58192

i roject.	20111007
Lab ID:	S1912224-005
Client Sample ID:	T-13

26411007

Depths: 3.5 - 10 Feet

Analyses	Result	RL	Qual	Units	Date Analyzed/Init	Method
Total Metals-3050/6010						
Lithium	16.2	0.2	Н	mg/Kg	01/27/2020 1856 DG	EPA 6010C
Selenium	ND	1.3	Н	mg/Kg	01/27/2020 1856 DG	EPA 6010C
SPLP						
Lithium	ND	0.01	Н	mg/L	01/09/2020 1305 DG	EPA 200.7
Selenium	ND	0.2	Н	mg/L	01/09/2020 1305 DG	EPA 200.7

These results apply only to the samples tested.

Qualifiers:

Analyte detected in the associated Method Blank

Value above quantitation range

Holding times for preparation or analysis exceeded

Analyzed by another laboratory

ND Not Detected at the Reporting Limit

Spike Recovery outside accepted recovery limits S

Χ Matrix Effect **RL - Reporting Limit**

Calculated Value

Analyzed at IML Gillette laboratory

Analyte detected below quantitation limits

Value exceeds Monthly Ave or MCL or is less than LCL M

Outside the Range of Dilutions

Analysis reported under the reporting limit

Reviewed by: Karen A Secon

Karen Secor, Soil Lab Supervisor

Page 5 of 6

ph: (307) 672-8945

Sample Analysis Report

CLIENT: Barr Engineering

Bismark, ND

Date Reported: 1/30/2020

Report ID: S1912224002

(Replaces S1912224001)

Work Order: S1912224

Collection Date: 1/30/2019 10:10:00 AM

Date Received: 12/12/2019

Sampler:

Matrix: Soil

COC: 58192

 Project:
 26411007

 Lab ID:
 \$1912224-006

 Client Sample ID:
 T.12

Client Sample ID: T-13

Depths: 15 - 20 Feet

Analyses	Result	RL	Qual	Units	Date Analyzed/Init	Method
Total Metals-3050/6010						
Lithium	22.7	0.2	Н	mg/Kg	01/27/2020 1902 DG	EPA 6010C
Selenium	ND	1.3	Н	mg/Kg	01/27/2020 1902 DG	EPA 6010C
SPLP						
Lithium	0.02	0.01	Н	mg/L	01/09/2020 1307 DG	EPA 200.7
Selenium	ND	0.2	Н	mg/L	01/09/2020 1307 DG	EPA 200.7

These results apply only to the samples tested.

Qualifiers:

B Analyte detected in the associated Method Blank

E Value above quantitation range

H Holding times for preparation or analysis exceeded

L Analyzed by another laboratory

ND Not Detected at the Reporting Limit

S Spike Recovery outside accepted recovery limits

X Matrix Effect

RL - Reporting Limit

C Calculated Value

G Analyzed at IML Gillette laboratory

J Analyte detected below quantitation limits

M Value exceeds Monthly Ave or MCL or is less than LCL

O Outside the Range of Dilutions

U Analysis reported under the reporting limit

Reviewed by: Karen A Secon

Karen Secor, Soil Lab Supervisor

Page 6 of 6

ANALYTICAL QC SUMMARY REPORT

ph: (307) 672-8945

CLIENT: Barr Engineering Date: 1/30/2020

Work Order: \$1912224 Report ID: \$1912224002

Project: 26411007 (Replaces S1912224001)

EPA 1312	Sample Type MBLK		Units:	mg/L	·		
SPLP BLK (01/09/20 13:09)	RunNo: 175360						
Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual
Lithium	ND	0.01					
Selenium	ND	0.2					
EPA 1312	Sample Type DUP		Units:	mg/L			
S1912224-004AD (01/09/20 12:58)	RunNo: 175360						
Analyte	Result	RL	Ref Samp	%RPD	%REC	% RPD Limits	Qual
Lithium	0.03	0.01	0.02	54.8		20	HR
Selenium	ND	0.2	ND			20	Н
Total (3050) Metals by ICP - 6010C	Sample Type MBLK		Units:	mg/Kg			
MB-17055 (01/27/20 17:49)	RunNo: 175797	Prep	Date: 01/24	/20 14:09	Bato	chID 17055	
Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual
Lithium	ND	0.2					
Selenium	ND	1.3					
Total (3050) Metals by ICP - 6010C	Sample Type LCS		Units:	mg/Kg			
LCS-17055 (01/27/20 17:56)	RunNo: 175797	Prep	Date: 01/24	/20 14:09	Bato	chID 17055	
Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual
Lithium	121	0.2	125		97.1	80 - 120	
Selenium	86.9	1.3	100		86.9	80 - 120	
Total (3050) Metals by ICP - 6010C	Sample Type MS		Units:	mg/Kg			
S1912224-004AS (01/27/20 18:51)	RunNo: 175797	Prep	Date: 01/24	/20 7:55	BatchID 17055		
Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual
Lithium	136	0.2	125	18.1	94.0	75 - 125	Н
Selenium	90.5	1.3	100	ND	90.5	75 - 125	Н
Total (3050) Metals by ICP - 6010C	Sample Type MSD		Units:	mg/Kg			
S1912224-004AMSD (01/27/20 18:53)	RunNo: 175797	Prep	Date: 01/24	/20 7:55	Bato	chID 17055	
Analyte	Result	RL	Conc	%RPD	%REC	% RPD Limits	Qual
Lithium	132	0.2	136	2.55	91.3	20	Н
Selenium	88.8	1.3	90.5	1.88	88.8	20	Н
Total (3050) Metals by ICP - 6010C	Sample Type DUP		Units:	mg/Kg			
S1912224-003AD (01/27/20 18:42)	RunNo: 175797	Prep	Date: 01/24	/20 7:55	BatchID 17055		
Analyte	Result	RL .	Ref Samp		%REC	% RPD Limits	Qual
Lithium	4.1	0.2	4.0	0.415		20	Н
Selenium	ND	1.3	ND			20	Н

Qualifiers: B Analyte detected in the associated Method Blank

G Analyzed at IML Gillette laboratory

J Analyte detected below quantitation limits

Not Detected at the Reporting Limit

R RPD outside accepted recovery limits

X Matrix Effect

E Value above quantitation range

H Holding times for preparation or analysis exceeded

L Analyzed by another laboratory

O Outside the Range of Dilutions

S Spike Recovery outside accepted recovery limits

Barr Engineering Co. Chair	of Cu		ole Origination State		П		Analysis	Requested		COC Number: 58192
☐ Ann Arbor ☐ Duluth ☐ Hibbin Bismarck ☐ Grand Rapids ☐ Jeffers		nneapolis				W	ater	Soil		COC Number: 58192 COC of
REPORT TO		INVOICE 1								Matrix Code: Preservative Code:
Company: Bar Engineering Co Address: Bismaroz ND		Bar Engin		z	ontainers					GW = Groundwater $A = NoneSW = Surface Water$ $B = HCIWW = Waste Water C = HNO_3DW = Drinking Water D = H_2SO_4$
Name: Scott Koron	Name:	cott Koron	1	>	Con			9		S = Soil/Solid E = NaOH SD = Sediment F = MeOH
email: Skorom @barr. com	email:	coron @ k	pair, com	SD	Of 0			Bag		$O = Other$ $G = NaHSO_4$
Copy to: datamgt@barr.com	P.O.			S/MS					10	$H = Na_2S_2O_3$ I = Ascorbic Acid
Project Name: Confidential Li/Se	Barr Projec	No: 264110	307,	MS	E			tallon	Solids	J = NH₄Cl K = Zn Acetate
	mple Depth	Collection	Collection	atrix 5	2 Z			2	% S	
Location Start	Stop Uni (m./: or ir	Date	Time IVI	ode solo	Total			A		Preservative Code Field Filtered Y/N
15B-2 (2-5) 2	5 8	01/31/2019	1000	SN	1	S PIZ	224-01	1		Analyze Lithium / Selenium
2 SB-2 (10-20') 10	20 A	01/31/2019	1005	SN	l		_002	-		Analyze Lithium/Selenium per attached letter
3-T-1 (15-23)	23 A	01/31/2019	1520 3	5 N	1		-003	1		
4. T-a (23,5-30) 23.5	30 A	02/01/2019	1215	SN	1		-004	1		Send Level 2 QC
5. T-13 (3.5-10') 3.5	10 A	01/30/2019	0920	SN	1		-035	1		Send Level 2 QC Report
6.T-13 (15-20) 15	20 ft	*		SV	1	V	-006	1		9
7.										
8.										
9.										Contact Scott Korom
10.					\forall					W/Questions 701-221-5420
BARR USE ONLY	211	in it d	On Issa	Date	Ш	Time				101-201-3920
Sampled by: 7	Relinquished		en on Ices	12-10	-19	170	1100	eived by:	ec	Date Time
Barr Proj. Manager: SFK	Relinquished	by:	On Ice?	Date		Time		eived by:		Date Time
Barr DQ Manager: TAP	Samples Sh	pped VIA: Co		Express		Sample	Air	Bill Number:		Requested Due Date:
Lab Name: Pace		□ Oth		. rvhiess		Jampie		172-059	5-	Standard Turn Around Time
Lab Location: Sheridan WY	Lab WO:		Temperature on Rec	ceipt (°C):	Cus		I Intact? □ Y		□ Duch

Date: 8/7/2020

CLIENT: Barr Engineering

CASE NARRATIVE

Project:

Sediment Saturated Paste Extracts

Report ID: S2007298001

Lab Order: \$2007298

Samples T-14 (10-13), T-14 (5-7), T-14 (7-10), T-15 (10-14.25), T-15 (5-10), T-16 (11-13), T-17 (10.75-15), T-17 (5-10.75), T-18 (10-12.5), T-18 (12.5-14.5), T-18 (5-10), T-19 (10-14.5), T-19 (3.5-5), T-19 (5-10), T-20 (12.5-15), T-20 (3.5-5.5), T-20 (8.25-12.5), T-21 (13.75-15), T-21 (5-13.75), T-22 (10-15), T-22 (15-20), T-22 (3.5-10), T-23 (10-13.5), T-23 (13.5-15) and T-23 (4.5-10) were received on July 21, 2020.

ph: (307) 672-8945

Samples T-15 (14.25-17.5), T-16 (3-11), T-20 (5.5-8.25) were originally received. April 14, 2020 and samples were requested to be analyzed with the current received samples.

Samples were analyzed using the methods outlined in the following references:

U.S.E.P.A. 600/2-78-054 "Field and Laboratory Methods Applicable to Overburden and Mining Soils", 1978 American Society of Agronomy, Number 9, Part 2, 1982

USDA Handbook 60 "Diagnosis and Improvement of Saline and Alkali Soils", 1969

Wyoming Department of Environmental Quality, Land Quality Division, Guideline No. 1, 1984

New Mexico Overburden and Soils Inventory and Handling Guideline, March 1987

State of Utah, Division of Oil, Gas, and Mining: Guidelines for Management of Topsoil and Overburden for Underground and Surface Coal Mining, April 1988

Montana Department of State Lands, Reclamation Division: Soil, Overburden, and Regraded Spoil Guidelines, December 1994

State of Nevada Modified Sobek Procedure

Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW846, 3rd Edition

All Quality Control parameters met the acceptance criteria defined by EPA and Pace Analytical (Formerly Inter-Mountain Laboratories) except as indicated in this case narrative.

Qualifiers by sample

SATPASTE QC - Saturated Paste Metals by ICP/Boron - Spike Recovery outside accepted recovery limits SATPASTE QC - Saturated Paste Metals by ICP/Selenium - Spike Recovery outside accepted recovery limits

Reviewed by: Karen A Secon

ph: (307) 672-8945

Sample Analysis Report

CLIENT: Barr Engineering

Project:

Bismark, ND

Date Reported: 8/7/2020

Report ID: S2007298001

Work Order: S2007298

Collection Date:

Sediment Saturated Paste Extracts

Lab ID: S2007298-001

Client Sample ID: T-14 (5-7)
Depths: 5 - 7 Feet

Date Received: 7/21/2020

Sampler:

Matrix: Sediment COC: 50061

Analyses	Result	RL Qu	al Units	Date Analyzed/Init	Method
Saturated Paste Metals				-	
Boron	0.2	0.1	ppm	08/04/2020 17:22 DG	EPA 200.7
Lithium	0.03	0.01	ppm	08/04/2020 17:22 DG	EPA 200.7
Selenium	ND	0.05	ppm	08/04/2020 17:22 DG	EPA 200.7

These results apply only to the samples tested.

Qualifiers:

B Analyte detected in the associated Method Blank

D Report limit raised due to dilution

G Analyzed at IML Gillette laboratory

J Analyte detected below quantitation limits

M Value exceeds Monthly Ave or MCL or is less than LCL

O Outside the Range of Dilutions

U Analyte below method detection limit

Karen A Secon

RL - Reporting Limit

C Calculated Value

E Value above quantitation range

H Holding times for preparation or analysis exceeded

L Analyzed by another laboratory

ND Not Detected at the Reporting Limit

S Spike Recovery outside accepted recovery limits

X Matrix Effect

Reviewed by:

Karen Secor, Soil Lab Supervisor

Page 1 of 28

ph: (307) 672-8945

Sample Analysis Report

CLIENT: Barr Engineering

Project:

Bismark, ND

Date Reported: 8/7/2020

Report ID: S2007298001

Work Order: S2007298

Collection Date:

Sediment Saturated Paste Extracts

Lab ID: S2007298-002

Client Sample ID: T-14 (7-10)
Depths: 7 - 10 Feet

Date Received: 7/21/2020

Sampler:

Matrix: Sediment COC: 50061

Analyses	Result	RL	Qual	Units	Date Analyzed/Init	Method
Saturated Paste Metals						
Boron	0.3	0.1		ppm	08/04/2020 17:24 DG	EPA 200.7
Lithium	0.04	0.01		ppm	08/04/2020 17:24 DG	EPA 200.7
Selenium	ND	0.05		ppm	08/04/2020 17:24 DG	EPA 200.7

These results apply only to the samples tested.

Qualifiers:

B Analyte detected in the associated Method Blank

D Report limit raised due to dilution

G Analyzed at IML Gillette laboratory

J Analyte detected below quantitation limits

M Value exceeds Monthly Ave or MCL or is less than LCL

O Outside the Range of Dilutions

U Analyte below method detection limit

Karen A Secon

RL - Reporting Limit

C Calculated Value

Value above quantitation range

H Holding times for preparation or analysis exceeded

L Analyzed by another laboratory

ND Not Detected at the Reporting Limit

S Spike Recovery outside accepted recovery limits

X Matrix Effect

Reviewed by:

Karen Secor, Soil Lab Supervisor

Page 2 of 28

ph: (307) 672-8945

Sample Analysis Report

CLIENT: Barr Engineering

Project:

Bismark, ND

Date Reported: 8/7/2020

Report ID: S2007298001

Work Order: S2007298

Collection Date:

Sediment Saturated Paste Extracts

Lab ID: S2007298-003

Client Sample ID: T-14 (10-13) **Depths:** 10 - 13 Feet

Date Received: 7/21/2020

Sampler:

Matrix: Sediment COC: 50061

Analyses	Result	RL Qu	al Units	Date Analyzed/Init	Method
Saturated Paste Metals				·	
Boron	0.3	0.1	ppm	08/04/2020 17:27 DG	EPA 200.7
Lithium	0.03	0.01	ppm	08/04/2020 17:27 DG	EPA 200.7
Selenium	ND	0.05	ppm	08/04/2020 17:27 DG	EPA 200.7

These results apply only to the samples tested.

Qualifiers:

B Analyte detected in the associated Method Blank

D Report limit raised due to dilution

G Analyzed at IML Gillette laboratory

J Analyte detected below quantitation limits

M Value exceeds Monthly Ave or MCL or is less than LCL

O Outside the Range of Dilutions

U Analyte below method detection limit

KarenAsecor

RL - Reporting Limit

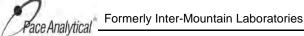
C Calculated Value

Value above quantitation range

H Holding times for preparation or analysis exceeded

L Analyzed by another laboratory

ND Not Detected at the Reporting Limit


S Spike Recovery outside accepted recovery limits

X Matrix Effect

Reviewed by:

Karen Secor, Soil Lab Supervisor

Page 3 of 28

ph: (307) 672-8945

Sample Analysis Report

CLIENT: Barr Engineering

Project:

Bismark, ND

Date Reported: 8/7/2020

Report ID: S2007298001

Work Order: S2007298

Collection Date:

Sediment Saturated Paste Extracts

Lab ID: S2007298-004

Client Sample ID: T-15 (5-10)
Depths: 5 - 10 Feet

Date Received: 7/21/2020

Sampler:

Matrix: Sediment COC: 50061

Analyses	Result	RL Q	ual Units	Date Analyzed/Init	Method
Saturated Paste Metals					Wethou
Boron	0.5	0.1	ppm	08/04/2020 17:29 DG	EPA 200.7
Lithium	0.03	0.01	ppm	08/04/2020 17:29 DG	EPA 200.7
Selenium	ND	0.05	ppm	08/04/2020 17:29 DG	EPA 200.7

These results apply only to the samples tested.

Qualifiers:

B Analyte detected in the associated Method Blank

D Report limit raised due to dilution

G Analyzed at IML Gillette laboratory

J Analyte detected below quantitation limits

M Value exceeds Monthly Ave or MCL or is less than LCL

O Outside the Range of Dilutions

U Analyte below method detection limit

Karen A Secon

RL - Reporting Limit

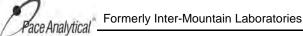
C Calculated Value

Value above quantitation range

H Holding times for preparation or analysis exceeded

L Analyzed by another laboratory

ND Not Detected at the Reporting Limit


S Spike Recovery outside accepted recovery limits

X Matrix Effect

Reviewed by:

Karen Secor, Soil Lab Supervisor

Page 4 of 28

S2007298-005

1673 Terra Avenue Sheridan, WY 82801

ph: (307) 672-8945

Sample Analysis Report

CLIENT: Barr Engineering

Project:

Lab ID:

Bismark, ND

Date Reported: 8/7/2020

Report ID: S2007298001

Work Order: S2007298

Collection Date:

Sediment Saturated Paste Extracts

extracts Date Received: 7/21/2020

Sampler:

Matrix: Sediment COC: 50061

Client Sample ID: T-15 (10-14.25) **Depths:** 10 - 14.25 Feet

Analyses	Result	RL	Qual	Units	Date Analyzed/Init	Method
Saturated Paste Metals						
Boron	0.6	0.1		ppm	08/04/2020 17:31 DG	EPA 200.7
Lithium	0.02	0.01		ppm	08/04/2020 17:31 DG	EPA 200.7
Selenium	ND	0.05		ppm	08/04/2020 17:31 DG	EPA 200.7

These results apply only to the samples tested.

Qualifiers:

B Analyte detected in the associated Method Blank

Report limit raised due to dilution

G Analyzed at IML Gillette laboratory

J Analyte detected below quantitation limits

M Value exceeds Monthly Ave or MCL or is less than LCL

O Outside the Range of Dilutions

Karen A Secon

U Analyte below method detection limit

RL - Reporting Limit

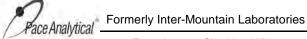
C Calculated Value

Value above quantitation range

H Holding times for preparation or analysis exceeded

L Analyzed by another laboratory

ND Not Detected at the Reporting Limit


S Spike Recovery outside accepted recovery limits

X Matrix Effect

Reviewed by:

Karen Secor, Soil Lab Supervisor

Page 5 of 28

ph: (307) 672-8945

Sample Analysis Report

CLIENT: Barr Engineering

Project:

Bismark, ND

Date Reported: 8/7/2020

Report ID: S2007298001

Work Order: S2007298

Collection Date:

Sediment Saturated Paste Extracts

Lab ID: S2007298-006

Client Sample ID: T-16 (11-13)
Depths: 11 - 13 Feet

Date Received: 7/21/2020

Sampler:

Matrix: Sediment COC: 50061

Analyses	Result	RL	Qual	Units	Date Analyzed/Init	Method
Saturated Paste Metals						
Boron	0.3	0.1		ppm	08/04/2020 17:33 DG	EPA 200.7
Lithium	0.02	0.01		ppm	08/04/2020 17:33 DG	EPA 200.7
Selenium	ND	0.05		ppm	08/04/2020 17:33 DG	EPA 200.7

These results apply only to the samples tested.

Qualifiers:

B Analyte detected in the associated Method Blank

Report limit raised due to dilution

G Analyzed at IML Gillette laboratory

J Analyte detected below quantitation limits

M Value exceeds Monthly Ave or MCL or is less than LCL

O Outside the Range of Dilutions

KarenAsecor

U Analyte below method detection limit

RL - Reporting Limit

C Calculated Value

E Value above quantitation range

H Holding times for preparation or analysis exceeded

L Analyzed by another laboratory

ND Not Detected at the Reporting Limit

S Spike Recovery outside accepted recovery limits

X Matrix Effect

Reviewed by:

Karen Secor, Soil Lab Supervisor

Page 6 of 28

ph: (307) 672-8945

Sample Analysis Report

CLIENT: Barr Engineering

Project:

Bismark, ND

Date Reported: 8/7/2020

Report ID: S2007298001

Work Order: S2007298

Collection Date:

Sediment Saturated Paste Extracts

Lab ID: S2007298-007

Client Sample ID: T-17 (5-10.75) **Depths:** 5 - 10.75 Feet

Date Received: 7/21/2020

Sampler:

Matrix: Sediment COC: 50061

Analyses	Result	RL Q	ual Units	Date Analyzed/Init	Method
Saturated Paste Metals					
Boron	0.4	0.1	ppm	08/04/2020 17:36 DG	EPA 200.7
Lithium	0.02	0.01	ppm	08/04/2020 17:36 DG	EPA 200.7
Selenium	ND	0.05	ppm	08/04/2020 17:36 DG	EPA 200.7

These results apply only to the samples tested.

Qualifiers:

B Analyte detected in the associated Method Blank

Report limit raised due to dilution

G Analyzed at IML Gillette laboratory

J Analyte detected below quantitation limits

M Value exceeds Monthly Ave or MCL or is less than LCL

O Outside the Range of Dilutions

U Analyte below method detection limit

Karen A Secon

RL - Reporting Limit

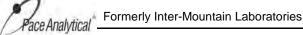
C Calculated Value

Value above quantitation range

H Holding times for preparation or analysis exceeded

L Analyzed by another laboratory

ND Not Detected at the Reporting Limit


S Spike Recovery outside accepted recovery limits

X Matrix Effect

Reviewed by:

Karen Secor, Soil Lab Supervisor

Page 7 of 28

ph: (307) 672-8945

Sample Analysis Report

CLIENT: Barr Engineering

Project:

Bismark, ND

Date Reported: 8/7/2020

Report ID: S2007298001

Work Order: S2007298

Collection Date:

Sediment Saturated Paste Extracts

Lab ID: S2007298-008

Client Sample ID: T-17 (10.75-15) **Depths:** 10.75 - 15 Feet

Date Received: 7/21/2020

Sampler:

Matrix: Sediment COC: 50061

Analyses	Result	RL C	Qual Units	Date Analyzed/Init	Method
Saturated Paste Metals					
Boron	0.3	0.1	ppm	08/06/2020 16:15 DG	EPA 200.7
Lithium	0.07	0.01	ppm	08/06/2020 16:15 DG	EPA 200.7
Selenium	ND	0.05	ppm	08/06/2020 16:15 DG	EPA 200.7

These results apply only to the samples tested.

Qualifiers:

B Analyte detected in the associated Method Blank

D Report limit raised due to dilution

G Analyzed at IML Gillette laboratory

J Analyte detected below quantitation limits

M Value exceeds Monthly Ave or MCL or is less than LCL

O Outside the Range of Dilutions

U Analyte below method detection limit

Karen A Secon

RL - Reporting Limit

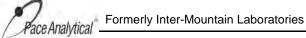
C Calculated Value

Value above quantitation range

H Holding times for preparation or analysis exceeded

L Analyzed by another laboratory

ND Not Detected at the Reporting Limit


S Spike Recovery outside accepted recovery limits

X Matrix Effect

Reviewed by:

Karen Secor, Soil Lab Supervisor

Page 8 of 28

ph: (307) 672-8945

Sample Analysis Report

CLIENT: Barr Engineering

Project:

Bismark, ND

Date Reported: 8/7/2020

Report ID: S2007298001

Work Order: S2007298

Collection Date:

Sediment Saturated Paste Extracts

S2007298-009

Lab ID: S2007298-0 **Client Sample ID:** T-18 (5-10)

Depths: 5 - 10 Feet

Date Received: 7/21/2020

Sampler:

Matrix: Sediment COC: 50061

Analyses	Result	RL Qual	Units	Date Analyzed/Init	Method
Saturated Paste Metals					
Boron	0.5	0.1	ppm	08/04/2020 17:45 DG	EPA 200.7
Lithium	0.03	0.01	ppm	08/04/2020 17:45 DG	EPA 200.7
Selenium	ND	0.05	ppm	08/04/2020 17:45 DG	EPA 200.7

These results apply only to the samples tested.

Qualifiers:

B Analyte detected in the associated Method Blank

D Report limit raised due to dilution

G Analyzed at IML Gillette laboratory

J Analyte detected below quantitation limits

M Value exceeds Monthly Ave or MCL or is less than LCL

O Outside the Range of Dilutions

KarenAsecor

U Analyte below method detection limit

RL - Reporting Limit

C Calculated Value

Value above quantitation range

H Holding times for preparation or analysis exceeded

L Analyzed by another laboratory

ND Not Detected at the Reporting Limit

S Spike Recovery outside accepted recovery limits

X Matrix Effect

Reviewed by:

Karen Secor, Soil Lab Supervisor

Page 9 of 28

ph: (307) 672-8945

Sample Analysis Report

CLIENT: Barr Engineering

Bismark, ND

Date Reported: 8/7/2020

Report ID: S2007298001

Work Order: S2007298

Collection Date:

Project: Sediment Saturated Paste Extracts

Lab ID: S2007298-010

Client Sample ID: T-18 (10-12.5) **Depths:** 10 - 12.5 Feet

Date Received: 7/21/2020

Sampler:

Matrix: Sediment COC: 50061

Analyses	Result	RL	Qual	Units	Date Analyzed/Init	Method
Saturated Paste Metals						
Boron	0.2	0.1		ppm	08/04/2020 17:47 DG	EPA 200.7
Lithium	0.02	0.01		ppm	08/04/2020 17:47 DG	EPA 200.7
Selenium	ND	0.05		ppm	08/04/2020 17:47 DG	EPA 200.7

These results apply only to the samples tested.

Qualifiers:

B Analyte detected in the associated Method Blank

D Report limit raised due to dilution

G Analyzed at IML Gillette laboratory

J Analyte detected below quantitation limits

M Value exceeds Monthly Ave or MCL or is less than LCL

O Outside the Range of Dilutions

U Analyte below method detection limit

Karen A Secon

RL - Reporting Limit

C Calculated Value

Value above quantitation range

H Holding times for preparation or analysis exceeded

L Analyzed by another laboratory

ND Not Detected at the Reporting Limit

S Spike Recovery outside accepted recovery limits

X Matrix Effect

Reviewed by:

Karen Secor, Soil Lab Supervisor

Page 10 of 28

ph: (307) 672-8945

Sample Analysis Report

CLIENT: Barr Engineering

Project:

Bismark, ND

Date Reported: 8/7/2020

Report ID: S2007298001

Work Order: S2007298

Collection Date:

Sediment Saturated Paste Extracts

Lab ID: S2007298-011

Client Sample ID: T-18 (12.5-14.5) **Depths:** 12.5 - 14.5 Feet

Date Received: 7/21/2020

Sampler:

Matrix: Sediment COC: 50062

Analyses	Result	RL	Qual	Units	Date Analyzed/Init	Method
Saturated Paste Metals						
Boron	1.2	0.1		ppm	08/04/2020 17:49 DG	EPA 200.7
Lithium	0.14	0.01		ppm	08/04/2020 17:49 DG	EPA 200.7
Selenium	ND	0.05		ppm	08/04/2020 17:49 DG	EPA 200.7

These results apply only to the samples tested.

Qualifiers:

B Analyte detected in the associated Method Blank

Report limit raised due to dilution

G Analyzed at IML Gillette laboratory

J Analyte detected below quantitation limits

M Value exceeds Monthly Ave or MCL or is less than LCL

O Outside the Range of Dilutions

U Analyte below method detection limit

RL - Reporting Limit

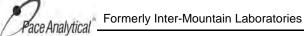
C Calculated Value

Value above quantitation range

H Holding times for preparation or analysis exceeded

L Analyzed by another laboratory

ND Not Detected at the Reporting Limit


S Spike Recovery outside accepted recovery limits

X Matrix Effect

Reviewed by:

Karen Secor, Soil Lab Supervisor

Page 11 of 28

S2007298-012

1673 Terra Avenue Sheridan, WY 82801

ph: (307) 672-8945

Sample Analysis Report

CLIENT: Barr Engineering

Project:

Lab ID:

Bismark, ND

Client Sample ID: T-19 (3.5-5)

Date Reported: 8/7/2020

Report ID: S2007298001

Work Order: S2007298

Collection Date:

Sediment Saturated Paste Extracts Date Received: 7/21/2020

Sampler:

Matrix: Sediment COC: 50062

Depths:	3.5 - 5 Feet				COC : 50062	
Analyses		Result	RL Q	ual Units	Date Analyzed/Init	Method
Saturated Paste	Metals					
Boron		0.6	0.1	ppm	08/04/2020 17:51 DG	EPA 200.7
Lithium		0.06	0.01	ppm	08/04/2020 17:51 DG	EPA 200.7
Selenium		ND	0.05	ppm	08/04/2020 17:51 DG	EPA 200.7

These results apply only to the samples tested.

Qualifiers:

Analyte detected in the associated Method Blank

Report limit raised due to dilution

G Analyzed at IML Gillette laboratory

Analyte detected below quantitation limits

Value exceeds Monthly Ave or MCL or is less than LCL

Outside the Range of Dilutions 0

KarenAsecor

Analyte below method detection limit

RL - Reporting Limit

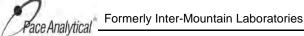
С Calculated Value

Value above quantitation range

Holding times for preparation or analysis exceeded

Analyzed by another laboratory L

ND Not Detected at the Reporting Limit


Spike Recovery outside accepted recovery limits S

Х Matrix Effect

Reviewed by:

Karen Secor, Soil Lab Supervisor

Page 12 of 28

ph: (307) 672-8945

Sample Analysis Report

CLIENT: Barr Engineering

Project:

Bismark, ND

Date Reported: 8/7/2020

Report ID: S2007298001

Work Order: S2007298

Collection Date:

Sediment Saturated Paste Extracts

Lab ID: S2007298-013

Client Sample ID: T-19 (5-10) **Depths:** 5 - 10 Feet

Date Received: 7/21/2020

Sampler:

Matrix: Sediment COC: 50062

Analyses	Result	RL Qua	I Units	Date Analyzed/Init	Method
Saturated Paste Metals				<u>-</u>	
Boron	0.2	0.1	ppm	08/04/2020 17:54 DG	EPA 200.7
Lithium	0.02	0.01	ppm	08/04/2020 17:54 DG	EPA 200.7
Selenium	ND	0.05	ppm	08/04/2020 17:54 DG	EPA 200.7

These results apply only to the samples tested.

Qualifiers:

B Analyte detected in the associated Method Blank

D Report limit raised due to dilution

G Analyzed at IML Gillette laboratory
J Analyte detected below quantitation limits

M Value exceeds Monthly Ave or MCL or is less than LCL

O Outside the Range of Dilutions

U Analyte below method detection limit

Karen A Secon

RL - Reporting Limit

C Calculated Value

Value above quantitation range

H Holding times for preparation or analysis exceeded

L Analyzed by another laboratory

ND Not Detected at the Reporting Limit

S Spike Recovery outside accepted recovery limits

X Matrix Effect

Reviewed by:

Karen Secor, Soil Lab Supervisor

Page 13 of 28

S2007298-014

1673 Terra Avenue Sheridan, WY 82801

ph: (307) 672-8945

Sample Analysis Report

CLIENT: Barr Engineering

Project:

Lab ID:

Bismark, ND

Client Sample ID: T-19 (10-14.5)

Date Reported: 8/7/2020

Report ID: S2007298001

Work Order: S2007298

Collection Date:

Sediment Saturated Paste Extracts

Date Received: 7/21/2020

Sampler:

Matrix: Sediment COC: 50062

Depths:	10 - 14.5 Feet	COC : 50062					
Analyses		Result	RL Qu	al Units	Date Analyzed/Init	Method	
Saturated Paste M	etals						
Boron		0.4	0.1	ppm	08/04/2020 17:56 DG	EPA 200.7	
Lithium		0.02	0.01	ppm	08/04/2020 17:56 DG	EPA 200.7	
Selenium		ND	0.05	ppm	08/04/2020 17:56 DG	EPA 200.7	

These results apply only to the samples tested.

Qualifiers:

Analyte detected in the associated Method Blank

Report limit raised due to dilution

G Analyzed at IML Gillette laboratory

Analyte detected below quantitation limits Value exceeds Monthly Ave or MCL or is less than LCL

Outside the Range of Dilutions 0

Analyte below method detection limit KarenAsecor

RL - Reporting Limit

С Calculated Value

Value above quantitation range

Holding times for preparation or analysis exceeded

Analyzed by another laboratory L

ND Not Detected at the Reporting Limit

Spike Recovery outside accepted recovery limits S

Matrix Effect Х

Reviewed by:

Karen Secor, Soil Lab Supervisor

Page 14 of 28

ph: (307) 672-8945

Sample Analysis Report

CLIENT: Barr Engineering

Project:

Lab ID:

Bismark, ND

Client Sample ID: T-20 (3.5-5.5)

Date Reported: 8/7/2020

Report ID: S2007298001

Work Order: S2007298

Collection Date:

Sediment Saturated Paste Extracts Date Received: 7/21/2020

S2007298-015 Sampler:

Matrix: Sediment COC: 50062

Depths:	3.5 - 5.5 Feet						
Analyses		Result	RL (Qual	Units	Date Analyzed/Init	Method
Saturated Paste M	letals						
Boron		0.6	0.1		ppm	08/04/2020 17:58 DG	EPA 200.7
Lithium		0.04	0.01		ppm	08/04/2020 17:58 DG	EPA 200.7
Selenium		ND	0.05		nnm	08/04/2020 17:58 DG	FPA 200 7

These results apply only to the samples tested.

Qualifiers:

Analyte detected in the associated Method Blank

Report limit raised due to dilution

G Analyzed at IML Gillette laboratory

Analyte detected below quantitation limits

Value exceeds Monthly Ave or MCL or is less than LCL

0 Outside the Range of Dilutions

Analyte below method detection limit Karen A Secon

RL - Reporting Limit

С Calculated Value

Value above quantitation range

Holding times for preparation or analysis exceeded Н

Analyzed by another laboratory L

ND Not Detected at the Reporting Limit

Spike Recovery outside accepted recovery limits S

Х Matrix Effect

Reviewed by:

Karen Secor, Soil Lab Supervisor

Page 15 of 28

ph: (307) 672-8945

Sample Analysis Report

CLIENT: Barr Engineering

Project:

Bismark, ND

Date Reported: 8/7/2020

Report ID: S2007298001

Work Order: S2007298

Collection Date:

Sediment Saturated Paste Extracts

Lab ID: S2007298-016

Client Sample ID: T-20 (8.25-12.5) **Depths:** 8.25 - 12.5 Feet

Date Received: 7/21/2020

Sampler:

Matrix: Sediment COC: 50062

Analyses	Result	RL C	Qual Units	Date Analyzed/Init	Method
Saturated Paste Metals					
Boron	0.2	0.1	ppm	08/04/2020 18:00 DG	EPA 200.7
Lithium	0.01	0.01	ppm	08/04/2020 18:00 DG	EPA 200.7
Selenium	ND	0.05	ppm	08/04/2020 18:00 DG	EPA 200.7

These results apply only to the samples tested.

Qualifiers:

B Analyte detected in the associated Method Blank

D Report limit raised due to dilution

G Analyzed at IML Gillette laboratory

J Analyte detected below quantitation limits

M Value exceeds Monthly Ave or MCL or is less than LCL

O Outside the Range of Dilutions

U Analyte below method detection limit

Karen A Secon

RL - Reporting Limit

C Calculated Value

Value above quantitation range

H Holding times for preparation or analysis exceeded

L Analyzed by another laboratory

ND Not Detected at the Reporting Limit

S Spike Recovery outside accepted recovery limits

X Matrix Effect

Reviewed by:

Karen Secor, Soil Lab Supervisor

Page 16 of 28

ph: (307) 672-8945

Sample Analysis Report

CLIENT: Barr Engineering

Bismark, ND

Date Reported: 8/7/2020

Report ID: S2007298001

Work Order: S2007298

Collection Date:

Project: Sediment Saturated Paste Extracts

Lab ID: S2007298-017

Client Sample ID: T-20 (12.5-15) **Depths:** 12.5 - 15 Feet

Date Received: 7/21/2020

Sampler:

Matrix: Sediment COC: 50062

Analyses	Result	RL Qual	Units	Date Analyzed/Init	Method
Saturated Paste Metals					
Boron	0.3	0.1	ppm	08/04/2020 18:03 DG	EPA 200.7
Lithium	0.02	0.01	ppm	08/04/2020 18:03 DG	EPA 200.7
Selenium	ND	0.05	ppm	08/04/2020 18:03 DG	EPA 200.7

These results apply only to the samples tested.

Qualifiers:

B Analyte detected in the associated Method Blank

D Report limit raised due to dilution

G Analyzed at IML Gillette laboratory

J Analyte detected below quantitation limits

M Value exceeds Monthly Ave or MCL or is less than LCL

O Outside the Range of Dilutions

U Analyte below method detection limit

Karen A Secon

RL - Reporting Limit

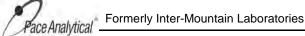
C Calculated Value

E Value above quantitation range

H Holding times for preparation or analysis exceeded

L Analyzed by another laboratory

ND Not Detected at the Reporting Limit


S Spike Recovery outside accepted recovery limits

X Matrix Effect

Reviewed by:

Karen Secor, Soil Lab Supervisor

Page 17 of 28

ph: (307) 672-8945

Sample Analysis Report

CLIENT: Barr Engineering

Project:

Bismark, ND

Date Reported: 8/7/2020

Report ID: S2007298001

Work Order: S2007298

Collection Date:

Sediment Saturated Paste Extracts

Lab ID: S2007298-018

Client Sample ID: T-21 (5-13.75) **Depths:** 5 - 13.75 Feet

Date Received: 7/21/2020

Sampler:

Matrix: Sediment COC: 50062

Analyses	Result	RL Qı	ıal Units	Date Analyzed/Init	Method
Saturated Paste Metals				·	
Boron	0.3	0.1	ppm	08/06/2020 16:20 DG	EPA 200.7
Lithium	0.05	0.01	ppm	08/06/2020 16:20 DG	EPA 200.7
Selenium	ND	0.05	ppm	08/06/2020 16:20 DG	EPA 200.7

These results apply only to the samples tested.

Qualifiers:

B Analyte detected in the associated Method Blank

D Report limit raised due to dilution

G Analyzed at IML Gillette laboratory

J Analyte detected below quantitation limits

M Value exceeds Monthly Ave or MCL or is less than LCL

O Outside the Range of Dilutions

U Analyte below method detection limit

Karen A Secon

RL - Reporting Limit

C Calculated Value

E Value above quantitation range

H Holding times for preparation or analysis exceeded

L Analyzed by another laboratory

ND Not Detected at the Reporting Limit

S Spike Recovery outside accepted recovery limits

X Matrix Effect

Reviewed by:

Karen Secor, Soil Lab Supervisor

Page 18 of 28

ph: (307) 672-8945

Sample Analysis Report

CLIENT: Barr Engineering

Project:

Lab ID:

Bismark, ND

Date Reported: 8/7/2020

Report ID: S2007298001

Work Order: S2007298

Collection Date:

Sediment Saturated Paste Extracts Date Received: 7/21/2020

S2007298-019 Sampler:

 Client Sample ID:
 T-21 (13.75-15)
 Matrix:
 Sediment

 Depths:
 13.75 - 15 Feet
 COC:
 50062

Analyses	Result	RL Qual	Units	Date Analyzed/Init	Method
Saturated Paste Metals					
Boron	0.4	0.1	ppm	08/04/2020 18:12 DG	EPA 200.7
Lithium	0.08	0.01	ppm	08/04/2020 18:12 DG	EPA 200.7
Selenium	ND	0.05	ppm	08/04/2020 18:12 DG	EPA 200.7

These results apply only to the samples tested.

Qualifiers:

B Analyte detected in the associated Method Blank

Report limit raised due to dilution

G Analyzed at IML Gillette laboratory

J Analyte detected below quantitation limits

M Value exceeds Monthly Ave or MCL or is less than LCL

O Outside the Range of Dilutions

U Analyte below method detection limit

KarenAsecor

RL - Reporting Limit

C Calculated Value

E Value above quantitation range

H Holding times for preparation or analysis exceeded

L Analyzed by another laboratory

ND Not Detected at the Reporting Limit

S Spike Recovery outside accepted recovery limits

X Matrix Effect

Reviewed by:

Karen Secor, Soil Lab Supervisor

Page 19 of 28

S2007298-020

1673 Terra Avenue Sheridan, WY 82801

ph: (307) 672-8945

Sample Analysis Report

CLIENT: Barr Engineering

Project:

Lab ID:

Bismark, ND

Date Reported: 8/7/2020

Report ID: S2007298001

Work Order: S2007298

Collection Date:

Sediment Saturated Paste Extracts Date Received: 7/21/2020

Sampler:

Matrix: Sediment

Client Sample ID: T-22 (3.5-10) Depths: 3.5 - 10 Feet COC: 50062

Analyses	Result	RL Qual	Units	Date Analyzed/Init	Method
Saturated Paste Metals					
Boron	0.3	0.1	ppm	08/04/2020 18:14 DG	EPA 200.7
Lithium	0.03	0.01	ppm	08/04/2020 18:14 DG	EPA 200.7
Selenium	0.14	0.05	ppm	08/04/2020 18:14 DG	EPA 200.7

These results apply only to the samples tested.

Qualifiers:

Analyte detected in the associated Method Blank

Report limit raised due to dilution

G Analyzed at IML Gillette laboratory

Analyte detected below quantitation limits

Value exceeds Monthly Ave or MCL or is less than LCL

Outside the Range of Dilutions 0

Analyte below method detection limit KarenAsecor

RL - Reporting Limit

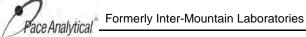
С Calculated Value

Value above quantitation range

Holding times for preparation or analysis exceeded

Analyzed by another laboratory L

ND Not Detected at the Reporting Limit


Spike Recovery outside accepted recovery limits S

Х Matrix Effect

Reviewed by:

Karen Secor, Soil Lab Supervisor

Page 20 of 28

ph: (307) 672-8945

Sample Analysis Report

CLIENT: Barr Engineering

Project:

Lab ID:

Bismark, ND

Date Reported: 8/7/2020

Report ID: S2007298001

Work Order: S2007298

Collection Date:

Sediment Saturated Paste Extracts

S2007298-021

Client Sample ID: T-22 (10-15) **Depths:** 10 - 15 Feet

Date Received: 7/21/2020

Sampler:

Matrix: Sediment COC: 50063

Analyses	Result	RL	Qual	Units	Date Analyzed/Init	Method
Saturated Paste Metals						
Boron	0.6	0.1		ppm	08/04/2020 18:16 DG	EPA 200.7
Lithium	0.10	0.01		ppm	08/04/2020 18:16 DG	EPA 200.7
Selenium	ND	0.05		ppm	08/04/2020 18:16 DG	EPA 200.7

These results apply only to the samples tested.

Qualifiers:

B Analyte detected in the associated Method Blank

D Report limit raised due to dilution

G Analyzed at IML Gillette laboratory

J Analyte detected below quantitation limits
 M Value exceeds Monthly Ave or MCL or is less than LCL

O Outside the Range of Dilutions

U Analyte below method detection limit

KarenAsecor

RL - Reporting Limit

C Calculated Value

E Value above quantitation range

H Holding times for preparation or analysis exceeded

L Analyzed by another laboratory

ND Not Detected at the Reporting Limit

S Spike Recovery outside accepted recovery limits

X Matrix Effect

Reviewed by:

Karen Secor, Soil Lab Supervisor

Page 21 of 28

ph: (307) 672-8945

Sample Analysis Report

CLIENT: Barr Engineering

Project:

Bismark, ND

Date Reported: 8/7/2020

Report ID: S2007298001

Work Order: S2007298

Collection Date:

Sediment Saturated Paste Extracts

Lab ID: S2007298-022

Client Sample ID: T-22 (15-20) **Depths:** 15 - 20 Feet

Date Received: 7/21/2020

Sampler:

Matrix: Sediment COC: 50063

Analyses	Result	RL (Qual Units	Date Analyzed/Init	Method
Saturated Paste Metals					
Boron	0.5	0.1	ppm	08/04/2020 18:18 DG	EPA 200.7
Lithium	0.10	0.01	ppm	08/04/2020 18:18 DG	EPA 200.7
Selenium	ND	0.05	ppm	08/04/2020 18:18 DG	EPA 200.7

These results apply only to the samples tested.

Qualifiers:

B Analyte detected in the associated Method Blank

Report limit raised due to dilution

G Analyzed at IML Gillette laboratory

J Analyte detected below quantitation limits

M Value exceeds Monthly Ave or MCL or is less than LCL

O Outside the Range of Dilutions

U Analyte below method detection limit

Karen A Secon

RL - Reporting Limit

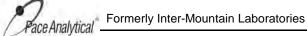
C Calculated Value

E Value above quantitation range

H Holding times for preparation or analysis exceeded

L Analyzed by another laboratory

ND Not Detected at the Reporting Limit


S Spike Recovery outside accepted recovery limits

X Matrix Effect

Reviewed by:

Karen Secor, Soil Lab Supervisor

Page 22 of 28

ph: (307) 672-8945

Sample Analysis Report

CLIENT: Barr Engineering

Project:

Lab ID:

Bismark, ND

Date Reported: 8/7/2020

Report ID: S2007298001

Work Order: S2007298

Collection Date:

Sediment Saturated Paste Extracts

S2007298-023

Client Sample ID: T-23 (4.5-10) **Depths:** 4.5 - 10 Feet

Date Received: 7/21/2020

Sampler:

Matrix: Sediment COC: 50063

Analyses	Result	RL Qı	ıal Units	Date Analyzed/Init	Method
Saturated Paste Metals					
Boron	0.4	0.1	ppm	08/04/2020 18:21 DG	EPA 200.7
Lithium	0.03	0.01	ppm	08/04/2020 18:21 DG	EPA 200.7
Selenium	ND	0.05	ppm	08/04/2020 18:21 DG	EPA 200.7

These results apply only to the samples tested.

Qualifiers:

B Analyte detected in the associated Method Blank

D Report limit raised due to dilution

G Analyzed at IML Gillette laboratory

J Analyte detected below quantitation limits

M Value exceeds Monthly Ave or MCL or is less than LCL

O Outside the Range of Dilutions

U Analyte below method detection limit

Karen A Secon

RL - Reporting Limit

C Calculated Value

E Value above quantitation range

H Holding times for preparation or analysis exceeded

L Analyzed by another laboratory

ND Not Detected at the Reporting Limit

S Spike Recovery outside accepted recovery limits

X Matrix Effect

Reviewed by:

Karen Secor, Soil Lab Supervisor

Page 23 of 28

ph: (307) 672-8945

Sample Analysis Report

CLIENT: Barr Engineering

Project:

Lab ID:

Lithium

Selenium

Bismark, ND

Date Reported: 8/7/2020

Report ID: S2007298001

Work Order: S2007298

Collection Date:

ppm

ppm

Sediment Saturated Paste Extracts Date Received: 7/21/2020

0.02

ND

S2007298-024 Sampler:

Client Sample ID: T-23 (10-13.5)

Depths: 10 - 13.5 Feet

Matrix: Sediment COC: 50063

08/04/2020 18:23 DG

08/04/2020 18:23 DG

EPA 200.7

EPA 200.7

Analyses Result RL Qual Units Date Analyzed/Init Method
Saturated Paste Metals
Boron 0.4 0.1 ppm 08/04/2020 18:23 DG EPA 200.7

0.01

0.05

These results apply only to the samples tested.

Qualifiers:

B Analyte detected in the associated Method Blank

D Report limit raised due to dilution

G Analyzed at IML Gillette laboratory

J Analyte detected below quantitation limits
 M Value exceeds Monthly Ave or MCL or is less than LCL

O Outside the Range of Dilutions

U Analyte below method detection limit

RL - Reporting Limit

C Calculated Value

E Value above quantitation range

H Holding times for preparation or analysis exceeded

L Analyzed by another laboratory

ND Not Detected at the Reporting Limit

S Spike Recovery outside accepted recovery limits

X Matrix Effect

Reviewed by:

Karen Secor, Soil Lab Supervisor

Page 24 of 28

ph: (307) 672-8945

Sample Analysis Report

CLIENT: Barr Engineering

Project:

Bismark, ND

Date Reported: 8/7/2020

Report ID: S2007298001

Work Order: S2007298

Collection Date:

Sediment Saturated Paste Extracts

Lab ID: S2007298-025

Client Sample ID: T-23 (13.5-15) **Depths:** 13.5 - 15 Feet

Date Received: 7/21/2020

Sampler:

Matrix: Sediment COC: 50063

Analyses	Result	RL	Qual	Units	Date Analyzed/Init	Method
Saturated Paste Metals						
Boron	0.3	0.1		ppm	08/04/2020 18:25 DG	EPA 200.7
Lithium	0.02	0.01		ppm	08/04/2020 18:25 DG	EPA 200.7
Selenium	ND	0.05		ppm	08/04/2020 18:25 DG	EPA 200.7

These results apply only to the samples tested.

Qualifiers:

B Analyte detected in the associated Method Blank

D Report limit raised due to dilution

G Analyzed at IML Gillette laboratory

J Analyte detected below quantitation limits

M Value exceeds Monthly Ave or MCL or is less than LCL

O Outside the Range of Dilutions

U Analyte below method detection limit

Karen A Secon

RL - Reporting Limit

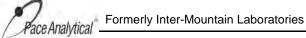
C Calculated Value

Value above quantitation range

H Holding times for preparation or analysis exceeded

L Analyzed by another laboratory

ND Not Detected at the Reporting Limit


S Spike Recovery outside accepted recovery limits

X Matrix Effect

Reviewed by:

Karen Secor, Soil Lab Supervisor

Page 25 of 28

ph: (307) 672-8945

Sample Analysis Report

CLIENT: Barr Engineering Date Reported: 8/7/2020 Bismark, ND

Report ID: S2007298001

Work Order: S2007298

Collection Date:

Sediment Saturated Paste Extracts Date Received: 7/21/2020

S2007298-026 Sampler:

Client Sample ID: T-15 (14.25-17.5) Matrix: Sediment Depths: 14.25 - 17.5 Feet COC: 50063

Analyses	Result	RL Qual	Units	Date Analyzed/Init	Method
Saturated Paste Metals					
Boron	0.1	0.1	ppm	08/06/2020 16:24 DG	EPA 200.7
Lithium	0.04	0.01	ppm	08/06/2020 16:24 DG	EPA 200.7
Selenium	ND	0.05	ppm	08/06/2020 16:24 DG	EPA 200.7

These results apply only to the samples tested.

Qualifiers:

Project:

Lab ID:

Analyte detected in the associated Method Blank

Report limit raised due to dilution

G Analyzed at IML Gillette laboratory

Analyte detected below quantitation limits

Value exceeds Monthly Ave or MCL or is less than LCL

Outside the Range of Dilutions 0

Analyte below method detection limit Karen A Secon

RL - Reporting Limit

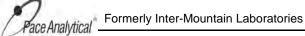
С Calculated Value

Value above quantitation range

Holding times for preparation or analysis exceeded

Analyzed by another laboratory L

ND Not Detected at the Reporting Limit


Spike Recovery outside accepted recovery limits S

Х Matrix Effect

Reviewed by:

Karen Secor, Soil Lab Supervisor

Page 26 of 28

ph: (307) 672-8945

Sample Analysis Report

CLIENT: Barr Engineering

Project:

Lab ID:

Bismark, ND

Date Reported: 8/7/2020

Report ID: S2007298001

Work Order: S2007298

Collection Date:

Sediment Saturated Paste Extracts

Sampler:

Date Received: 7/21/2020

Matrix: Sediment COC: 50063

S2007298-027

Client Sample ID: T-16 (3-11) Depths: 3 - 11 Feet

Analyses	Result	RL Qu	ıal Units	Date Analyzed/Init	Method
Saturated Paste Metals					
Boron	0.2	0.1	ppm	08/06/2020 16:31 DG	EPA 200.7
Lithium	0.03	0.01	ppm	08/06/2020 16:31 DG	EPA 200.7
Selenium	ND	0.05	ppm	08/06/2020 16:31 DG	EPA 200.7

These results apply only to the samples tested.

Qualifiers:

Analyte detected in the associated Method Blank

Report limit raised due to dilution

G Analyzed at IML Gillette laboratory

Analyte detected below quantitation limits

Value exceeds Monthly Ave or MCL or is less than LCL

Outside the Range of Dilutions 0

Analyte below method detection limit KarenAsecor

RL - Reporting Limit

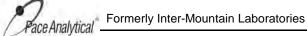
С Calculated Value

Value above quantitation range

Holding times for preparation or analysis exceeded

Analyzed by another laboratory L

ND Not Detected at the Reporting Limit


Spike Recovery outside accepted recovery limits S

Х Matrix Effect

Reviewed by:

Karen Secor, Soil Lab Supervisor

Page 27 of 28

ph: (307) 672-8945

Sample Analysis Report

CLIENT: Barr Engineering

Project:

Lab ID:

Bismark, ND

Date Reported: 8/7/2020

Report ID: S2007298001

Work Order: S2007298

Collection Date:

Date Received: 7/21/2020

Sampler:

Matrix: Sediment COC: 50063

Sediment Saturated Paste Extracts S2007298-028

Client Sample ID: T-20 (5.5-8.25) Depths: 5.5 - 8.25 Feet

Analyses Result RL Qual Units Date Analyzed/Init Method **Saturated Paste Metals** Boron 0.2 0.1 08/06/2020 16:34 DG EPA 200.7 ppm 0.02 0.01 08/06/2020 16:34 DG EPA 200.7 Lithium ppm Selenium 0.09 0.05 08/06/2020 16:34 DG EPA 200.7 ppm

These results apply only to the samples tested.

Qualifiers:

Analyte detected in the associated Method Blank

Report limit raised due to dilution

G Analyzed at IML Gillette laboratory

Analyte detected below quantitation limits

Value exceeds Monthly Ave or MCL or is less than LCL

0 Outside the Range of Dilutions

Analyte below method detection limit Karen A Secor

RL - Reporting Limit

С Calculated Value

Value above quantitation range

Holding times for preparation or analysis exceeded Н

Analyzed by another laboratory L

ND Not Detected at the Reporting Limit

Spike Recovery outside accepted recovery limits S

Χ Matrix Effect

Reviewed by:

Karen Secor, Soil Lab Supervisor

Page 28 of 28

ANALYTICAL QC SUMMARY REPORT

ph: (307) 672-8945

CLIENT: Barr Engineering Date: 8/7/2020

Work Order: \$2007298 Report ID: \$2007298001

Project: Sediment Saturated Paste Extracts

oject:	Sediment Saturated Paste Extracts							
Saturated Paste Metals by ICP SATPASTE BLK (08/06/20 16:43)		Sample Type MBLK		Units:	ppm			
	SATPASTE BLK (08/06/20 16:43)	RunNo: 181357						
	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual
	Boron	ND	0.1					
	Lithium	ND	0.01					
	Selenium	ND	0.05					
Satur	rated Paste Metals by ICP	Sample Type LCS		Units:	ppm			
	SATPASTE QC (08/04/20 18:28)	RunNo: 181260						
	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual
	Boron	0.2	0.1	0.31		74.7	80 - 120	S
	Lithium	0.07	0.01	0.07		103	80 - 120	
	Selenium	0.07	0.05	0.11		65.2	80 - 120	S
	QC-2 (08/06/20 16:40)	RunNo: 181357						
	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual
	Boron	0.2	0.1	0.31		76.5	80 - 120	S
	Lithium	0.07	0.01	0.07		98.2	80 - 120	
	Selenium	0.12	0.05	0.11		106	80 - 120	
Satur	rated Paste Metals by ICP	Sample Type DUP		Units:	ppm			
	S2007298-008AD (08/06/20 16:18)	RunNo: 181357						
	Analyte	Result	RL	Ref Samp	%RPD	%REC	% RPD Limits	Qual
	Boron	0.2	0.1	0.3	1.55		20	
	Lithium	0.07	0.01	0.07	1.20		20	
	Selenium	0.08	0.05	ND			20	R
	S2007298-018AD (08/06/20 16:22)	RunNo: 181357						
	Analyte	Result	RL	Ref Samp	%RPD	%REC	% RPD Limits	Qual
	Boron	0.3	0.1	0.3	3.28		20	
	Lithium	0.05	0.01	0.05	0.167		20	
	Selenium	ND	0.05	ND			20	
	S2007298-028AD (08/06/20 16:36)	RunNo: 181357						
	Analyte	Result	RL	Ref Samp	%RPD	%REC	% RPD Limits	Qual
	Boron	0.2	0.1	0.2	7.47		20	
	Lithium	0.02	0.01	0.02	0.0234		20	
	Selenium	ND	0.05	0.09			20	

Qualifiers: B Analyte detecte	d in the associated Method Blank
-------------------------------	----------------------------------

E Value above quantitation range

H Holding times for preparation or analysis exceeded

L Analyzed by another laboratory

O Outside the Range of Dilutions

S Spike Recovery outside accepted recovery limits

- D Report limit raised due to dilution
- G Analyzed at IML Gillette laboratory
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- X Matrix Effect

Cha	in of C	ustody fo	r Ai	r Ca	nis				tion State:	Analy	sis Requ	iested:			COC N	umber: Nº 5006	1	
BARR	☐ Ann Arbor Bismarck	☐ Duluth☐ Hibbing		☐ Jeffersor☐ Minneap				☐ MO ☐ ND ☐ SD	Other:	☐ TO-		Other	☐ TO-15	SIM	COC	of 3		
	REP	ORT TO					ICE TO				Deliverab		ents:			Matrix Code:		
Com	pany: BARR	ENGINEER	ING	Compai	ny:					San	nple Data	with QC				Ambient Air (Indoor/Outdoor)	
Addr	ess: 234 L	V. CENTUR	Y	Address	5:					☐ TIC Library Search ☐ Sample Chromatograms						Soil Vapor/Landfill Gas/SVE		
Nam	e: Scott	KOROM		Name: SAME							ividual Ca			Data	C-0	11517-	.	
emai	Skoron	e Bbarr. Cl	DA	email:						EDD:	ıIS □ EQı	uIS-LITE			250	MEN73=5)		
	to: datamgt@			P.O.							results in							
Proje	ct Name:			Barr Pr	oject	No:				Other	:							
	1			Canis	ter	Flow	Vac	uum	Collection	Collecti	on Time	Total	Matrix	PID		Tales and the second second		
	Locatio	n		Serial #	Size	Controller Serial #	Initial	Final	Date (mm/dd/yyyy)	Start (hh:mm)	Stop (hh:mm)	Time	Code	Reading (ppm/ppb)		Sample Comments		
1.	T-14(5-7)		52007298-001 4/2020							ŠŽ		SET	ATTACHE	0			
2. –	T-14 (7-101)		002				50					LETTER FUR					
3	T-14(10-130			003						50		,	DE	TAILS			
4.	T-15 (5-10')	,			a	34						51)					
5	T-156	10-14.25	5')			W	5				SD				CONTACT SCOTT			
6.	-160	11-131)				d	56						50		K	brow W/		
7.—	-1765	-10,75	(25	7						50		Du	ESTIONS		
8. 7	-17(10.	75-15	/)			a	8						00		70	11-335-312	5	
9.	4865	7-10')				a	05						SM					
10.	-18(10	-12.51		010									50					
Sampl		USE ONLY		Relinqui	shed	by: Spott	Ko	am	7	Pate //	Time	Rece	ived by:	Aleca		726 20 193	ne Stanta	
	Proj. Manager:	TERENY GA	WK	- 11	shed	by:	,			Date	Time	Rece	ived by:			Date Tim	e	
Barr [OQ Manager:		-		Ship	ped VIA:	Courie	er	Federal Exp	ress \square	Sampler	Air B	ill Numl	per:		Requested Due Date		
Lab N	lame:						Other:		,	Spress Sampler					☐ Standard Turn Around Time			
Lab L	ocation:			Lab WC):				Custody	Seal Inta	ct ? 🗆 \	/ □N	□None		☐ Rush(mm/dd/yyyy)			

Chai	n of Cu	ustody for	Ai	r Ca	nis	ters			tion State:	An	alysis Requ	uested:			COC N	um <u>b</u> er:	No	50062	٦		
BARR	Ann Arbor Bismarck	☐ Duluth☐ Hibbing] Jefferson	-] MI	☐ MO ☐ ND ☐ SD	Other:		C 🗆 C	Other	□ TO-15	SIM	coc .	2	of <u>3</u>				
·	REPO	ORT TO	=1				CE TO				Deliverab		ents:			Ma	trix Code:				
Compa	any: RAPR	>		Compa	ny:					X	ample Data	with QC					Air (Indoo				
Addres	s: 234	W. CENTU	RY	Address	s:						TC Library So Sample Chro		ms		SV = Soil Vapor/Landfill Gas/SVE Other:						
Name:	SA. Sco	T KDICOM	1	Name:	5	COTT 1	KOR	m			ndividual Ca			n Data	77)=3	EDIN	TEN/	1		
email:	SEDIOT	mebarr.	MO	email:						ED	D: EQuIS □EQ	uIS_LITE			-						
Copy	to: datamgt@b	oarr.com		P.O.								EDD									
Project	: Name:			Barr Pr	oject	No:				Oth	ner:										
						Canis	ter	Flow	Vac	uum	Collection	Colle	ction Time	Total	Matrix	PID					٦
	Location	1		Serial #	Size	Controller Serial #	Initial	Final	Date (mm/dd/yyy)	Star (hh:m	t Stop (hh:mm)	Time	Code	Reading (ppm/ppb)		Sample	e Commer	nts			
X.//	T-18 (12.5-14.	51)	520	07:	298-011			04/202	D			51		E	EA	MAC	DED			
2.12	T-19 (3.5-51				012			1				50		4	ETTE	3/5				
x.13	T-19(5-101)				013							50								
x.14	T-190	10-14.5	-1)			014							(1)								
8.15	T-201	13.5-5.5	-1			015							50								
8.16-	T-200	8.25-12	5			016							50		50	011	Kok	DA	- L		
x.17.	T-20(12.5'-15')			017							50		7	01-	-333	-312	5		
8.18	T-2113	5-13.75	5/)			018							SN		,						
8.19	F210	13.75-15	-1)			9							51						1		
18.20	T-22(3.5-10	1)	V		020							51								
	BARR L	JSE ONLY		Relinqui	shed	by: Sco	P	Ome	Pate 7/	Jime	Rece	ived by:	10-			Date	Time (030)				
Sample		(10.11)	,	Relinqui	shed		/	NVI	ean	Date	Time	Rece	ived by:	Dea			Date	Time			
		GACNIK																	1		
	Manager:			Samples	Ship		Courie		Federal Ex	Express Sampler Air Bill Number:				per:			equested [
Lab Na				1 - 1 - 14		L	Other:			dy Seal Intact ? 🗆 Y 🗆 N 🗆 None					☐ Standard Turn Around Time						
Lau Loc	auon.			Lab WC): 				Custody	Seal Ir	itact ? \square	ΥUN	□None	2		Liku	(mm/dd/y	☐ Rush(mm/dd/yyyy)			

Chain of Custody for A	ir Canis	ters			ion State:		sis Requ				COC N	umber: NO	50063
	☐ Jefferson City☐ Minneapolis	/] MI	☐ MO ☐ ND ☐ SD	□ WI Other:	☐ TO-	14 T		☐ TO-155	MIZ		3 of 3	
REPORT TO			CE TO				Deliverable all that ap		ents:			Matrix Code:	
Company: AACK	Company:					San	ple Data	with QC			AA =	Ambient Air (Indoo	or/Outdoor)
Address: 234 W., CENTUR	Address:	SDA.	AL				Library Se		nc		Other:	Soil Vapor/Landfill	Gas/SVE
Name: SUDIT KDROW	Name:	3101	u			☐ Indi	vidual Car			Data	50	= SEDIME	=N75
email: Skonom@barn.Com	email:					EDD:	ıIS □ EQı	IS-LITE			-		
Copy to: datamgt@barr.com	P.O.						results in						- 1
Project Name:	Barr Project	No:				Other	:						
	Canister	Flow	Vac	uum	Collection	Collection	on Time	Tatal	Matrice	PID			
Location	Serial Size	Controller Serial #	Initial	Final	Date (mm/dd/yyyy)	Start (hh:mm)	Stop (hh:mm)	Total Time	Matrix Code	Reading (ppm/ppb)		Sample Comme	nts
x21 T-27(15-151)	520072	918-021			04/2021				CV		8	= ATTA	WAT
222 1-22(15-201)		022			1				50			FIRS	7/4)
\$23 T-23 (4.5-10')		023							5				
x24 T-23(10-13,5)		624							51				
*25 F-23(13.5-15)) \	025							SD		8	OTT KD	PANN
6.											7	01-335	-3125
7.											1 0		
8.					1								
9.													
10.													
BARR USE ONLY	Relinquished	by:/	1		ام	Pate In	Time	Rece	ived by:			/Date	Time 1030
Sampled by:	Della 11 1	by:	OK D	M		17/22			kau	e Be	2	7/20/20	1030
Barr Proj. Manager: J. CACNIK	Relinquished	by:				Date	Time	Recei	ived by:			Date	Time
Barr DQ Manager:	Samples Ship	pped VIA:	Courie	r [Federal Exp	ress 🔲	Sampler	Air B	ill Numb	per:		Requested	Due Date:
Lab Name:			Other:								_ 4,	☐ Standard Turn	Around Time
Lab Location:	Lab WO:				Custody	Seal Intac	ct ? 🗆 Y	/ DN	□None			☐ Rush(mm/dd/	Due Date: Around Time

MINNESOTA VALLEY TESTING LABORATORIES, INC. 1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2 North German St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

Terri Olson

Barr Engineering Company

4300 MarketPointe Drive, Suite 200

Minneapolis MN 55435

Project Name: MDU Lewis & Clark

Sample Description: T-3

Page: 1 of 1

Report Date: 12 Feb 19 Lab Number: 19-W185 Work Order #:82-0201 Account #: 013200

Date Sampled: 31 Jan 19 14:50 Date Received: 4 Feb 19 16:56

Sampled By: Client

PO #: 26411007.10

Temp at Receipt: 2.5C

As Received Result		Method RL	Method Reference	Date Analyzed	Analyst
7.45	nits	NA	EPA 200.2 SM 4500 H+ B	5 Feb 19 31 Jan 19 14:50	svs
0.106 m	g/1	0.020	6010D 6020B	7 Feb 19 11:43 12 Feb 19 12:19	FFP BMB
	7.45 u	7.45 units 0.106 mg/l	7.45 units NA 0.106 mg/l 0.020	Result RL Reference EPA 200.2 7.45 units NA SM 4500 H+ B 0.106 mg/l 0.020 6010D	Result RL Reference Analyzed EPA 200.2 5 Feb 19 7.45 units NA SM 4500 H+ B 31 Jan 19 14:50 0.106 mg/l 0.020 6010D 7 Feb 19 11:43

Approved by:

Claudette K. Canteo

CC 12 86 19

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

The reporting limit was elevated for any analyte requiring a dilution as coded below:

= Due to sample matrix # = Due to complete the property # = Due to interpret the proper

= Due to concentration of other analytes + = Due to internal standard response

MINNESOTA VALLEY TESTING LABORATORIES, INC. 1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2 North German St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

Terri Olson

Barr Engineering Company

4300 MarketPointe Drive, Suite 200

Minneapolis MN 55435

Project Name: MDU Lewis & Clark

Sample Description: T-4

1 of 1 Page:

Report Date: 12 Feb 19 Lab Number: 19-W186 Work Order #:82-0201 Account #: 013200

Date Sampled: 31 Jan 19 14:05 Date Received: 4 Feb 19 16:56

Sampled By: Client

PO #: 26411007.10

Temp at Receipt: 2.5C

	As Receiv	red	Method RL	Method Reference	Date Analyzed	Analyst
Metal Digestion pH - Field	7.27	units	NA	EPA 200.2 SM 4500 H+ B	5 Feb 19 31 Jan 19 14:05	svs
Lithium - Total Selenium - Total	0.180 0.0192	mg/l mg/l	0.020	6010D 6020B	7 Feb 19 11:43 12 Feb 19 12:19	FFP BMB

Approved by:

Claudette K. Canto

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

= Due to concentration of other analytes + = Due to internal standard response

MINNESOTA VALLEY TESTING LABORATORIES, INC. 1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2 North German St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

Terri Olson

Barr Engineering Company

4300 MarketPointe Drive, Suite 200

Minneapolis MN 55435

Project Name: MDU Lewis & Clark

Sample Description: T-7

1 of 1 Page:

Report Date: 12 Feb 19 Lab Number: 19-W187 Work Order #:82-0201 Account #: 013200

Date Sampled: 31 Jan 19 11:00 Date Received: 4 Feb 19 16:56

Sampled By: Client

PO #: 26411007.10

Temp at Receipt: 2.5C

As Recei	ved	Method RL	Method Reference	Date Analyzed	Analyst	
7.31	units Degrees C	NA NA	EPA 200.2 SM 4500 H+ B SM 2550B			
0.148	mg/l mg/l	0.020 0.0050	6010D 6020B			
	7.31 1.84 0.148	7.31 units 1.84 Degrees C 0.148 mg/l	7.31 units NA 1.84 Degrees C NA 0.148 mg/l 0.020	Result RL Reference EPA 200.2 7.31 units NA SM 4500 H+ B 1.84 Degrees C NA SM 2550B 0.148 mg/1 0.020 6010D	Result RL Reference Analyzed EPA 200.2 5 Feb 19 7.31 units NA SM 4500 H+ B 31 Jan 19 11:00 1.84 Degrees C NA SM 2550B 31 Jan 19 11:00 0.148 mg/1 0.020 6010D 7 Feb 19 11:43	

Approved by:

Claudette K. Canteo

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL - Method Reporting Limit

The reporting limit was elevated for any analyte requiring a dilution as coded below:

= Due to sample matrix

= Due to condition as coded below:

= Due to sample quantity

= Due to in

= Due to concentration of other analytes + = Due to internal standard response

MINNESOTA VALLEY TESTING LABORATORIES, INC.

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890

2 North German St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890

2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

Terri Olson

Barr Engineering Company

4300 MarketPointe Drive, Suite 200

Minneapolis MN 55435

Project Name: MDU Lewis & Clark

Sample Description: T-8

1 of 1 Page:

Report Date: 12 Feb 19 Lab Number: 19-W188 Work Order #:82-0201 Account #: 013200

Date Sampled: 31 Jan 19 16:40 Date Received: 4 Feb 19 16:56

Sampled By: Client

PO #: 26411007.10

Temp at Receipt: 2.5C

	As Received Result		Method RL	Method Reference			
Metal Digestion		nits	NA	EPA 200.2 SM 4500 H+ B	5 Feb 19 31 Jan 19 16:40	svs	
Lithium - Total Selenium - Total	0.165 mg	g/1 g/1	0.020 0.0050	6010D 6020B	7 Feb 19 11:43 12 Feb 19 12:19	FFP BMB	

Approved by:

Claudette K. Canteo

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL - Method Reporting Limit

The reporting limit was elevated for any analyte requiring a dilution as coded below:

© = Due to sample matrix # = Due to con

i = Due to sample quantity + = Due to int

= Due to concentration of other analytes
+ = Due to internal standard response

MINNESOTA VALLEY TESTING LABORATORIES, INC. 1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2 North German St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

Terri Olson

Barr Engineering Company

4300 MarketPointe Drive, Suite 200

Minneapolis MN 55435

Project Name: MDU Lewis & Clark

Sample Description: T-9

1 of 1 Page:

Report Date: 12 Feb 19 Lab Number: 19-W189 Work Order #:82-0201 Account #: 013200

Date Sampled: 31 Jan 19 10:00 Date Received: 4 Feb 19 16:56

Sampled By: Client

PO #: 26411007.10

Temp at Receipt: 2.5C

	As Receiv Result		Method RL	Method Reference	Date Analyzed	Analyst
Metal Digestion pH - Field	6.72 6.98	units Degrees C	NA NA	EPA 200.2 SM 4500 H+ B SM 2550B	5 Feb 19 31 Jan 19 10:00 31 Jan 19 10:00	
Temperature - Field Lithium - Total Selenium - Total	0.170 < 0.005	mg/l mg/l	0.020 0.0050	6010D 6020B	7 Feb 19 11:43 12 Feb 19 12:19	FFP

Approved by:

Claudette K Canto

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

The reporting limit was elevated for any analyte requiring a dilution as coded below: \emptyset = Due to sample matrix \emptyset = Due to con \emptyset = Due to sample quantity \emptyset = Due to int

CERTIFICATION: ND # ND-00016

= Due to concentration of other analytes
+ = Due to internal standard response

MINNESOTA VALLEY TESTING LABORATORIES, INC. 1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2 North German St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

Terri Olson

Barr Engineering Company

4300 MarketPointe Drive, Suite 200

Minneapolis MN 55435

Project Name: MDU Lewis & Clark

Sample Description: T-11

1 of 1 Page:

Report Date: 12 Feb 19 Lab Number: 19-W190 Work Order #:82-0201 Account #: 013200

Date Sampled: 31 Jan 19 18:00 Date Received: 4 Feb 19 16:56

Sampled By: Client

PO #: 26411007.10

Temp at Receipt: 2.5C

	As Receiv Result	ved	Method RL	Method Reference	Date Analyzed	Analyst
Metal Digestion pH - Field	7.01	units	NA	EPA 200,2 SM 4500 H+ B	5 Feb 19 31 Jan 19 18:00	svs
Lithium - Total Selenium - Total	0.650 0.1026	mg/1 mg/1	0.020	6010D 6020B	7 Feb 19 11:43 12 Feb 19 12:19	FFP BMB

Approved by:

Claudette K. Cantep

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL - Method Reporting Limit

The reporting limit was elevated for any analyte requiring a dilution as coded below:

= Due to sample matrix # = Due to come to sample quantity # = Due to interpret to sample quantity # = Due to interpre

= Due to concentration of other analytes + = Due to internal standard response

MINNESOTA VALLEY TESTING LABORATORIES, INC. 1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2 North German St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

Terri Olson Barr Engineering Company 4300 MarketPointe Drive, Suite 200 Minneapolis MN 55435

Project Name: MDU Lewis & Clark

Sample Description: T-13

1 of 1 Page:

Report Date: 12 Feb 19 Lab Number: 19-W191 Work Order #:82-0201 Account #: 013200

Date Sampled: 31 Jan 19 15:50 Date Received: 4 Feb 19 16:56

Sampled By: Client

PO #: 26411007.10

Temp at Receipt: 2.5C

	As Received Result		Method RL	Method Reference	Date Analyzed	Analyst
Metal Digestion	7.80	units	NA	EPA 200.2 SM 4500 H+ B	5 Feb 19 31 Jan 19 15:50	svs
pH - Field Lithium - Total Selenium - Total	0.121 < 0.005	mg/l	0.020	6010D 6020B	7 Feb 19 11:43 12 Feb 19 12:19	FFP BMB

Approved by:

Claudette K. Canteo

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

The reporting limit was elevated for any analyte requiring a dilution as coded below:

= Due to sample matrix # = Due to con
! = Due to sample quantity + = Due to interport the control of the control

= Due to concentration of other analytes + = Due to internal standard response

MINNESOTA VALLEY TESTING LABORATORIES, INC. 1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2 North German St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

Terri Olson

Barr Engineering Company

4300 MarketPointe Drive, Suite 200

Minneapolis MN 55435

Project Name: MDU Lewis & Clark

Sample Description: T-1

1 of 1 Page:

Report Date: 12 Feb 19 Lab Number: 19-W192 Work Order #:82-0201 Account #: 013200

Date Sampled: 1 Feb 19 10:25 Date Received: 4 Feb 19 16:56

Sampled By: Client

PO #: 26411007.10

Temp at Receipt: 2.5C

	As Received Result	Method RL	Method Reference	Date Analyzed	Analyst
Metal Digestion	6.90 unit	s NA	EPA 200.2 SM 4500 H+ B	5 Feb 19 1 Feb 19 10:25	svs
pH - Field Lithium - Total Selenium - Total	0.048 mg/l < 0.005 mg/l	0.020 0.0050	6010D 6020B	7 Feb 19 11:43 12 Feb 19 12:19	FFP BMB

Approved by:

Claudette K. Canteo

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

The reporting limit was elevated for any analyte requiring a dilution as coded below:

= Due to sample matrix # = Due to con
! = Due to sample quantity # = Due to int

= Due to concentration of other analytes + = Due to internal standard response

MINNESOTA VALLEY TESTING LABORATORIES, INC. 1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2 North German St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

Terri Olson

Barr Engineering Company

4300 MarketPointe Drive, Suite 200

Minneapolis MN 55435

Project Name: MDU Lewis & Clark

Sample Description: T-2

1 of 1 Page:

Report Date: 12 Feb 19 Lab Number: 19-W193 Work Order #:82-0201 Account #: 013200

Date Sampled: 1 Feb 19 12:40 Date Received: 4 Feb 19 16:56

Sampled By: Client

PO #: 26411007.10

Temp at Receipt: 2.5C

	As Receive Result	ed	Method RL	Method Reference	Da t Ana	e lyze	d	Analyst
Metal Digestion	6.87	units	NA	EPA 200.2 SM 4500 H+ B	-	Feb	19 19 12:40	svs
pH - Field Lithium - Total Selenium - Total	0.043	mg/1 mg/1	0.020 0.0050	6010D 6020B	7	Feb	19 11:43 19 12:19	

Approved by:

Claudette K Canteo

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

The reporting limit was elevated for any analyte requiring a dilution as coded below:

= Due to sample matrix # = Due to con

! = Due to sample quantity + = Due to int

CERTIFICATION: ND # ND-00016

= Due to concentration of other analytes + = Due to internal standard response

MINNESOTA VALLEY TESTING LABORATORIES, INC. 1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2 North German St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

Terri Olson

Barr Engineering Company

4300 MarketPointe Drive, Suite 200

Minneapolis MN 55435

Project Name: MDU Lewis & Clark

Sample Description: T-5

1 of 1 Page:

Report Date: 12 Feb 19 Lab Number: 19-W194 Work Order #:82-0201 Account #: 013200

Date Sampled: 1 Feb 19 15:50 Date Received: 4 Feb 19 16:56

Sampled By: Client

PO #: 26411007.10

Temp at Receipt: 2.5C

	As Received Result	Method RL	Method Reference	Date Analyzed	Analyst
Metal Digestion pH - Field	6.89 units	NA	EPA 200.2 SM 4500 H+ B	5 Feb 19 1 Feb 19 15:50	svs
Lithium - Total Selenium - Total	0.145 mg/1 < 0.005 mg/1	0.020	6010D 6020B	7 Feb 19 11:43 12 Feb 19 12:19	FFP BMB

Approved by:

Claudette K Canteo

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

The reporting limit was elevated for any analyte requiring a dilution as coded below:

@ = Due to sample matrix # = Due to con
! = Due to sample quantity + = Due to int

= Due to concentration of other analytes
+ = Due to internal standard response

MINNESOTA VALLEY TESTING LABORATORIES, INC.

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890
2 North German St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890
2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724
1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

Terri Olson

Barr Engineering Company

4300 MarketPointe Drive, Suite 200

Minneapolis MN 55435

Project Name: MDU Lewis & Clark

Sample Description: T-6

1 of 1 Page:

Report Date: 12 Feb 19 Lab Number: 19-W195 Work Order #:82-0201 Account #: 013200

Date Sampled: 1 Feb 19 18:20 Date Received: 4 Feb 19 16:56

Sampled By: Client

PO #: 26411007.10

Temp at Receipt: 2.5C

	As Received Result	Method RL	Method Reference	Date Analyzed	Analyst
Metal Digestion Lithium - Total Selenium - Total	0.116 mg/l < 0.005 mg/l	0.020 0.0050	EPA 200.2 6010D 6020B	5 Feb 19 7 Feb 19 12:43 12 Feb 19 12:19	SVS FFP BMB

Approved by:

Claudette K. Canteo

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

The reporting limit was elevated for any analyte requiring a dilution as coded below:

= Due to sample matrix # = Due to con! = Due to sample quantity + = Due to int

= Due to concentration of other analytes
+ = Due to internal standard response

MINNESOTA VALLEY TESTING LABORATORIES, INC.

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890
2 North German St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890
2616 East Broadway Ave. ~ Bisharck No. 2000 1 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

Page:

1 of 1

4300 MarketPointe Drive, Suite 200

Report Date: 12 Feb 19 Lab Number: 19-W196 Work Order #:82-0201

Account #: 013200

Date Sampled: 1 Feb 19 18:00 Date Received: 4 Feb 19 16:56

Sampled By: Client

PO #: 26411007.10

Temp at Receipt: 2.5C

Minneapolis MN 55435

Project Name: MDU Lewis & Clark

Barr Engineering Company

Sample Description: T-12

Terri Olson

As Received Method Method Date Analyzed Analyst RL Reference Result EPA 200.2 SVS 5 Feb 19 Metal Digestion FFP 7 Feb 19 12:43 0.270 0.020 6010D Lithium - Total Selenium - Total mg/1mg/10.0050 6020B 12 Feb 19 12:19 BMB 0.0056

Approved by:

Claudette K. Canteo

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL - Method Reporting Limit

The reporting limit was elevated for any analyte requiring a dilution as coded below:

= Due to sample matrix # = Due to co
! = Due to sample quantity + = Due to in

= Due to concentration of other analytes + = Due to internal standard response

MINNESOTA VALLEY TESTING LABORATORIES, INC.

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890
2 North German St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890
2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724
1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

Terri Olson

Barr Engineering Company

4300 MarketPointe Drive, Suite 200

Minneapolis MN 55435

Project Name: MDU Lewis & Clark

Sample Description: Duplicate

1 of 1 Page:

Report Date: 12 Feb 19 Lab Number: 19-W197 Work Order #:82-0201 Account #: 013200

Date Sampled: 1 Feb 19

Date Received: 4 Feb 19 16:56

Sampled By: Client

PO #: 26411007.10

Temp at Receipt: 2.5C

	As Received Result	Method RL	Method Reference	Date Analyzed	Analyst
Metal Digestion Lithium - Total	0.048 mg/l	0.020	EPA 200.2 6010D	5 Feb 19 7 Feb 19 12:43	
Selenium - Total	< 0.005 mg/l	0.0050	6020B	12 Feb 19 12:19	вмв

Approved by:

Claudette K. Canto

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

The reporting limit was elevated for any analyte requiring a dilution as coded below:

@ = Due to sample matrix # = Due to complete the control of the contr

= Due to concentration of other analytes
+ = Due to internal standard response

MINNESOTA VALLEY TESTING LABORATORIES, INC. 1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2 North German St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

1 of 1 Page:

Report Date: 12 Feb 19 Lab Number: 19-W198 Work Order #:82-0201 Account #: 013200

Date Sampled: 1 Feb 19 15:20 Date Received: 4 Feb 19 16:56

Sampled By: Client

PO #: 26411007.10

Temp at Receipt: 2.5C

Terri Olson Barr Engineering Company 4300 MarketPointe Drive, Suite 200 Minneapolis MN 55435

Project Name: MDU Lewis & Clark

Sample Description: Field Blank

	As Received Result	Method RL	Method Reference	Date Analyzed	Analyst
Metal Digestion	20 / 20 P 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Teles 107.5	EPA 200.2	5 Feb 19	svs
Lithium - Total	< 0.02 mg/l	0.020	6010D	7 Feb 19 12:43	FFP
Selenium - Total	< 0.005 mg/l	0.0050	6020B	12 Feb 19 12:19	BMB

Approved by:

Claudette K Canteo

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL - Method Reporting Limit

The reporting limit was elevated for any analyte requiring a dilution as coded below:

= Due to sample matrix # = Due to con

! = Due to sample quantity + = Due to int

= Due to concentration of other analytes
+ = Due to internal standard response

MINNESOTA VALLEY TESTING LABORATORIES, INC.

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2 North German St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

Terri Olson

Barr Engineering Company

4300 MarketPointe Drive, Suite 200

Minneapolis MN 55435

Project Name: MDU Lewis & Clark

Sample Description: Equipment Blank

1 of 1 Page:

Report Date: 12 Feb 19 Lab Number: 19-W199 Work Order #:82-0201 Account #: 013200

Date Sampled: 1 Feb 19 15:30 Date Received: 4 Feb 19 16:56

Sampled By: Client

PO #: 26411007.10

Temp at Receipt: 2.5C

As Received Result		Method RL	Method Reference	Date Analyzed	Analyst
Metal Digestion			EPA 200.2	5 Feb 19	svs
Lithium - Total	< 0.02 mg/1	0.020	6010D	7 Feb 19 12:43	FFP
Selenium - Total	< 0.005 mg/l	0.0050	6020B	12 Feb 19 12:19	ВМВ

Approved by:

Claudette K Canteo

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

The reporting limit was elevated for any analyte requiring a dilution as coded below:

@ = Due to sample matrix # = Due to con

! = Due to sample quantity + = Due to int

= Due to concentration of other analytes + = Due to internal standard response

MVTL

MINNESOTA VALLEY TESTING LABORATORIES, INC.

1126 N. Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 E. Broadway Ave. ~ Bismarck, ND 58502 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Highway ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

MEMBER ACIL

Page: 1 of 1

Quality Control Report

Lab IDs: 19-W185 to 19-W199

Project: MDU Lewis & Clark

Work Order: 201982-0201

Analyte	LCS Spike Amt	LCS Rec %	LCS % Rec Limits	Matrix Spike Amt	Matrix Spike ID	Matrix Spike Orig Result	Matrix Spike Result	Rec	Matrix Spike % Rec Limits	Dup Orig	MSD/ Dup Result	MSD Rec %	MSD/ Dup RPD	MSD/ Dup RPD Limit (<)	Rec	Known % Rec Limits	Method Blank
Lithium - Total mg/l	0.400	99	80-120	0.400 0.400	19-W187 19-W197	0.148 0.048	0.567 0.453	105 101	75-125 75-125	0.567 0.453	0.552 0.466	101 104	2.7 2.8	20 20	-	-	< 0.02 < 0.02 < 0.02
Selenium - Total mg/l	0.1000	106	80-120	0.400 0.100	19-W187 19-W195	0.0959 < 0.005	0.5280 0.0968	108 97	75-125 75-125	0.5280 0.0968	0.5252 0.0939	107 94	0.5 3.0	20 20	-	-	< 0.005

Samples were received in good condition on 4 Feb 2019 at 1656.

Temperature upon receipt at the Bismarck laboratory was 2.5°C. Samples were received on ice and evidence of cooling had begun.

All samples were properly preserved unless noted here and/or flagged on the individual analytical laboratory report.

Approved methodology was followed for all sample analyses.

All acceptance criteria were met for calibration, method blanks, laboratory control samples, laboratory fortified matrix/duplicates unless noted here.

Approved by: C. Crus Cl.

* Kush Li and								8	2	-08	20	1								
Barr Engineering Co. (Chain	of	Cust	ody	Sample Orig	A SECTION AND ADDRESS OF THE PARTY OF THE PA		П			Analy	sis Requ	ested		COC Numb	ner"	526	76		
☐ Ann Arbor ☐ Duluth BARR ☐ Bismarck ☐ Hibbing		☐ Jeffer: ☐ Minne	son City eapolis] KS	ND O	WI ther:			W	/ater		Soil		coc 1					
REPORT TO				INVOI	CE TO			1		1 11					Matrix				ative Cod	le:
Company: Barr Engineering		Com	pany: \					1	LS					Ш	GW = Gro			A = B =	None HCI	
Address: 234 W. Century A	ve	Addr	ess:	1				z	aine						WW = Was				HNO ₃ H ₂ SO ₄	
Name: Terri Olson		Name	e:	San				>	ontainers						S = Soil,	/Solid	vater	E =	NaOH	
email: Tolson @ barr.com		emai			re.				Of C			Ш			SD = Sedi O = Oth				MeOH NaHSO₄	
Copy to: datamgt@barr.com		P.O.			/			MSD	0										Na ₂ S ₂ O ₃ Ascorbic	
Project Name: MDU Lewis and C	lark	Barr	Project	No: 2641	007.10)		MS/	mbe					Solids	1			J =	NH ₄ Cl	
		nple D		Collection		ection	100	Ε	N			1.14		% Sc					Zn Acetat Other	te
Location	Start	Stop	Unit (m./ft.	Date	Ti	ime	Matrix Code	Perform	Total					- 0	Preservative	e Code	e	-	2000	
		0.53	or in.)	(mm/dd/yy	yy) (hh	:mm)		Pe	2	V		- 1	_ []		Field Filtered					
1-7-3 W185	MA.		-1	01/31/2	019 13:	50	6W	N	1	1	M				for n	at	tac	heal	Table	1
2. J-4 W186	MA-		-1		13:0	25		N	1	ı					Conta	ct	te	rri i	Olson	1
3. T-7 187	WA-		-1		10:0	90	T/E	Y	1	1					With	qu	est;	ons.		
4. T-8 W189	WA-		+		15:1	40		W	1	1					· Pefe	n	1	MS/	MSD)
5. T-9 W189	WA-		4		09:0	90	ME	N	1	[onT	-7	fo	r Li	and	L.
6. T-11 W190	N/A -		1		17:0	20		M	1						Se 1	ont	1!			
7. T-13 W191	N/A-		1	1	14.	50	1	N	1						Lithi	um	+50	lener	mon	la
8.					*M	IDT									dithi on 4h	ise	Sa	mpl	BF-	9
9.					I															
10.							-											150	C 4.4	0
BARR USE ONLY		Relino	uished I	by: Mut	21/	95		Date		Time	= F	Received	by:	1			Da	2.5°	TAS	
Sampled by: MLJ L Barr Proj. Manager: JLS H			uished 1		VYV	On :	Ice?	U−1 Date	4	Time	_	eceived	00	VC				5299 ate	1656 Time	*
Barr DQ Manager: TAO Lab Name: MVTL		Samp	les Shipp		Courier		N deral Exp	ress	×	Sample:	r A	ir Bill M	lumber:			XS	tandard	Turn Ar	e Date:	ie
Lab Location: Bismarck ND	-	Lab V	VO:		Tempera	ature on	Receipt	(°C)		Cus	stody '	eal Inta	ct? 🗆 V	ΠN	□None	XR	ush	- 140	T	

* Rush Li and Se Samples! Barr Engineering Co. Chain of Custody Sample Origination State: Analysis Requested COC Number: 52677 ☐ KS □ MO □ WI Water Soil ☐ Ann Arbor ☐ Duluth ☐ Jefferson City □ MI □ ND Other: of l **Bismarck** ☐ Hibbing ☐ Minneapolis MT ☐ MN ☐ SD Matrix Code: Preservative Code: REPORT TO INVOICE TO GW = Groundwater A = None Company: Ban Engineering Company: Containers B = HCI SW = Surface Water WW = Waste Water Address: 234 W. Century Ave C = HNO Address: DW = Drinking Water D = H2504 S = Soil/Solid Name: Terri Olson E = NaOH Name: SD = Sediment F = MeOH email: Tolson @ Barr. com email: O = Other G = NaHSO₄ of $H = Na_2S_2O_3$ Copy to: datamgt@barr.com Number Number I = Ascorbic Acid Project Name: MDU Lewis and Clark Barr Project No: 26411007.10 J = NH₄Cl K = Zn Acetate Sample Depth Collection O = Other Collection Matrix Perfor Total Unit Location Date Time Preservative Code Start Stop (m./ft. Code (mm/dd/yyyy) (hh:mm) or in.) Field Filtered Y/N esee attached Table 1 NIA 02/01/2019 09:25 6W 12192 for requested analysis Contact Tem Olson 11:40 W193 with questions 10:15/14:50 14:15/17:20 · Low Sample Volume 15:10/17.00 Duplicate W197 WA 14:20 Equipment Blank 14.30 10. Relinquished by: Muta an BARR USE ONLY On Ice? Date Received by Date 2-4-19 Sampled by: MLT2 Relinquished by: On Ice? Date Time Received by: Barr Proj. Manager: TI < LI YN Barr DQ Manager: TAD Samples Shipped VIA: ☐ Federal Express Sampler Air Bill Number: Courier Courier Requested Due Date: Standard Turn Around Time Lab Name: MVTL Other: Rush_ Lab Location: Bismarck, ND Lab WO: Temperature on Receipt (°C): Custody Seal Intact? DY DN DNone (mm/dd/yyyy)

Distribution - White-Original: Accompanies Shipment to Laboratory; Yellow Copy: Include in Field Documents; Pink Copy: Send to Data Management Administrators.

MINNESOTA VALLEY TESTING LABORATORIES, INC.

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

Page: 1 of 1

Selenium Added 11Jun2020

Terri Olson Barr Engineering Company 4300 MarketPointe Drive, Suite 200

Minneapolis MN 55435

Report Date: 20 Apr 20 Lab Number: 20-W635 Work Order #:82-0830 Account #: 013200

Date Sampled: 6 Apr 20 12:02 Date Received: 9 Apr 20 15:05

Sampled By: Client

Project Name: 26411007.15 Sample Description: T-15 Sample Site: MDU L&C

Temp at Receipt: 0.4C

	As Received Result			Method Reference	Da And	te alyze	đ	Analyst
Metal Digestion		177 (**		EPA 200.2		Apr		HT
Lithium - Total	0.042	mg/l	0.020	6010D	15	Apr	20 11:09	MDE
Boron - Total	0.18	mg/l	0.10	6010D	16	Apr	20 11:42	MDE
Selenium - Total	< 0.005	mg/l	0,0050	6020B	17	Jun	20 9:48	MDE

Approved by:

JUL ZOZO Claudette K. Canteo

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

The reporting limit was elevated for any analyte requiring a dilution as coded below:

Due to sample matrix ## = Due to come is a Due to sample quantity ## Due to interpretable to the company of the code is the code is a Due to sample quantity ## Due to interpretable to the code is the code

= Due to concentration of other analytes
+ = Due to internal standard response

MINNESOTA VALLEY TESTING LABORATORIES, INC. 1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

Selenium Added 11Jun2020

Terri Olson Barr Engineering Company 4300 MarketPointe Drive, Suite 200 Minneapolis MN 55435

Project Name: 26411007.15 Sample Description: T-16 Sample Site: MDU L&C

1 of 1 Page:

Report Date: 20 Apr 20 Lab Number: 20-W636 Work Order #:82-0830 Account #: 013200

Date Sampled: 6 Apr 20 13:30 Date Received: 9 Apr 20 15:05

Sampled By: Client

Temp at Receipt: 0.4C

	As Receiv Result	red	Method RL	Method Reference	Date Analyzed	Analyst
Metal Digestion	1.734.7	171 474	0.00	EPA 200.2	9 Apr 20	HT
Lithium - Total	0.045	mg/l	0.020	6010D	15 Apr 20 11:0:	MDE
Boron - Total	0.15	mg/l	0.10	6010D	16 Apr 20 11:4:	MDE
Selenium - Total	< 0.005	mg/l	0.0050	6020B	17 Jun 20 9:4	MDE

Approved by:

Claudette K Canto 1 JUL 2020

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

The reporting limit was elevated for any analyte requiring a dilution as coded below:

0 = Due to sample matrix # = Due to con
! = Due to sample quantity + = Due to int

= Due to concentration of other analytes + = Due to internal standard response

MINNESOTA VALLEY TESTING LABORATORIES, INC. 1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

1 of 1 Page:

Selenium Added 11Jun2020

Terri Olson Barr Engineering Company 4300 MarketPointe Drive, Suite 200 Minneapolis MN 55435

Report Date: 20 Apr 20 Lab Number: 20-W637 Work Order #:82-0830 Account #: 013200

Date Sampled: 6 Apr 20 15:45 Date Received: 9 Apr 20 15:05

Sampled By: Client

Project Name: 26411007.15 Sample Description: T-18 Sample Site: MDU L&C

Temp at Receipt: 0.4C

	As Received Result	Method RL	Method Reference	Date Analyzed	Analyst
Metal Digestion			EPA 200.2	9 Apr 20	HT
Lithium - Total	0.044 mg	/1 0.020	6010D	15 Apr 20 11:09	MDE
Boron - Total		/1 0.10	6010D	16 Apr 20 11:42	MDE
Selenium - Total		0.0050	6020B	17 Jun 20 9:48	MDE

Approved by:

Claudette K. Cantep 1 JUL2030

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

The reporting limit was elevated for any analyte requiring a dilution as coded below:

= Due to sample matrix # = Due to con
! = Due to sample quantity + = Due to in

= Due to concentration of other analytes
+ = Due to internal standard response

MINNESOTA VALLEY TESTING LABORATORIES, INC.

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890

2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724

1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

Page:

1 of 1

Selenium Added 11Jun2020

Terri Olson Barr Engineering Company 4300 MarketPointe Drive, Suite 200 Minneapolis MN 55435

Report Date: 20 Apr 20 Lab Number: 20-W638 Work Order #:82-0830 Account #: 013200

Date Sampled: 6 Apr 20 16:45 Date Received: 9 Apr 20 15:05

Sampled By: Client

Project Name: 26411007.15 Sample Description: T-17 Sample Site: MDU L&C

Temp at Receipt: 0.4C

	As Received Result	Method RL	Method Reference	Date Analyzed	Analyst
Metal Digestion		77 6 6 7	EPA 200.2	9 Apr 20	HT
Lithium - Total	0.033 mg/l	0.020	6010D	15 Apr 20 12:09	MDE
Boron - Total	0.16 mg/l	0.10	6010D	16 Apr 20 11:42	MDE
Selenium - Total	< 0.005 mg/l	0.0050	6020B	17 Jun 20 9:48	MDE

Approved by:

Clauditte K. Canteo 1 JUL 2020

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

The reporting limit was elevated for any analyte requiring a dilution as coded below:

= Due to sample matrix # = Due to concentration of other analytes

! = Due to sample quantity + = Due to internal standard response

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

1 of 1 Page:

Selenium Added 11Jun2020

Terri Olson Barr Engineering Company 4300 MarketPointe Drive, Suite 200

Minneapolis MN 55435

Report Date: 20 Apr 20 Lab Number: 20-W639 Work Order #:82-0830 Account #: 013200

Date Sampled: 6 Apr 20 17:33 Date Received: 9 Apr 20 15:05

Sampled By: Client

Project Name: 26411007.15 Sample Description: T-21 Sample Site: MDU L&C

Temp at Receipt: 0.4C

	As Received Result	Method RL	Method Reference	Date Analyzed	Analyst
Metal Digestion	Tour had a Title of	6.100	EPA 200.2	9 Apr 20	HT
Lithium - Total	0.041 mg/1	0.020	6010D	15 Apr 20 12:09	MDE
Boron - Total	0.19 mg/l	0.10	6010D	16 Apr 20 11:42	MDE
Selenium - Total	< 0.005 mg/l	0.0050	6020B	17 Jun 20 9:48	MDE

Approved by:

Claudette K. Canteo 1 JUL 2020

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

The reporting limit was elevated for any analyte requiring a dilution as coded below:

Due to sample matrix ## Due to co

! = Due to sample quantity # = Due to in

= Due to concentration of other analytes
+ = Due to internal standard response

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

1 of 1 Page:

Selenium Added 11Jun2020

Terri Olson Barr Engineering Company 4300 MarketPointe Drive, Suite 200

Minneapolis MN 55435

Report Date: 20 Apr 20 Lab Number: 20-W640 Work Order #:82-0830 Account #: 013200

Date Sampled: 6 Apr 20 19:10 Date Received: 9 Apr 20 15:05

Sampled By: Client

Project Name: 26411007.15 Sample Description: T-19

Sample Site: MDU L&C

Temp at Receipt: 0.4C

	As Received Result	Method RL	Method Reference	Date Analyzed	Analyst
Metal Digestion		11117.111	EPA 200.2	9 Apr 20	HT
Lithium - Total	0.036 mg/l	0.020	6010D	15 Apr 20 12:09	MDE
Boron - Total	0.16 mg/l	0.10	6010D	16 Apr 20 12:42	MDE
Selenium - Total	< 0.005 mg/l	0.0050	6020B	17 Jun 20 9:48	MDE

Approved by:

Claudette K. Canteo 1 JUL 2020

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL - Method Reporting Limit

The reporting limit was elevated for any analyte requiring a dilution as coded below:

= Due to sample matrix # = Due to concentration of other analytes

! = Due to sample quantity + = Due to internal standard response

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

1 of 1 Page:

Selenium Added 11Jun2020

Terri Olson Barr Engineering Company 4300 MarketPointe Drive, Suite 200 Minneapolis MN 55435

Report Date: 20 Apr 20 Lab Number: 20-W641 Work Order #:82-0830 Account #: 013200

Date Sampled: 7 Apr 20 10:54 Date Received: 9 Apr 20 15:05

Sampled By: Client

Project Name: 26411007.15 Sample Description: T-14 Sample Site: MDU L&C

Temp at Receipt: 0.4C

Result	ea	Method RL	Method Reference	Date Analyz	ed	Analyst
			EPA 200.2	9 Apr	20	HT
0.038	mq/1	0.020	6010D	15 Apr	20 12:09	MDE
0.17		0.10	6010D	16 Apr	20 12:42	MDE
< 0.005	mg/l	0.0050	6020B	17 Jun	20 9:48	MDE
	0.038 0.17	0.038 mg/l 0.17 mg/l	0.038 mg/l 0.020 0.17 mg/l 0.10	Result RL Reference EPA 200.2 0.038 mg/l 0.020 6010D 0.17 mg/l 0.10 6010D	Result RL Reference Analyz EPA 200.2 9 Apr 0.038 mg/l 0.020 6010D 15 Apr 0.17 mg/l 0.10 6010D 16 Apr	Result RL Reference Analyzed EPA 200.2 9 Apr 20 0.038 mg/l 0.020 6010D 15 Apr 20 12:09 0.17 mg/l 0.10 6010D 16 Apr 20 12:42

Approved by:

Claudette K. Cantes

CC 1 JUL 2020

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

The reporting limit was elevated for any analyte requiring a dilution as coded below:

@ = Due to sample matrix # = Due to con
! = Due to sample quantity + = Due to int

= Due to concentration of other analytes + = Due to internal standard response

Selenium - Total

MINNESOTA VALLEY TESTING LABORATORIES, INC.

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

1 of 1 Page:

Selenium Added 11Jun2020

Project Name: 26411007.15 Sample Description: T-20

Terri Olson Barr Engineering Company 4300 MarketPointe Drive, Suite 200

< 0.005

mg/1

Minneapolis MN 55435

Report Date: 20 Apr 20 Lab Number: 20-W642 Work Order #:82-0830 Account #: 013200

Date Sampled: 7 Apr 20 12:45 Date Received: 9 Apr 20 15:05

17 Jun 20 9:48

MDE

Sampled By: Client

Temp at Receipt: 0.4C

Sample Site: MDU L&C As Received Method Method Date Analyst Reference Analyzed Result EPA 200.2 9 Apr 20 нт Metal Digestion MDE 0.070 0.020 6010D 15 Apr 20 12:09 Lithium - Total mg/1MDE Boron - Total 0.21 mg/10.10 6010D 16 Apr 20 12:42

0.0050

6020B

Approved by:

Claudette K. Canteo

10 1 JUL 2020

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

The reporting limit was elevated for any analyte requiring a dilution as coded below:

Due to sample matrix ### Due to com

Due to sample quantity ### Due to into

= Due to concentration of other analytes
+ = Due to internal standard response

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy, ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mytl.com

Selenium Added 11Jun2020

Terri Olson Barr Engineering Company 4300 MarketPointe Drive, Suite 200 Minneapolis MN 55435

Project Name: 26411007.15 Sample Description: T-22 Sample Site: MDU L&C

1 of 1 Page:

Report Date: 20 Apr 20 Lab Number: 20-W643 Work Order #:82-0830 Account #: 013200

Date Sampled: 8 Apr 20 8:25 Date Received: 9 Apr 20 15:05

Sampled By: Client

Temp at Receipt: 0.4C

	As Receiv Result	red	Method RL	Method Reference	Date Analyzed	Analyst
Metal Digestion		10.00		EPA 200.2	9 Apr 20	HT
Lithium - Total	0.077	mg/1	0.020	6010D	15 Apr 20 12:09	MDE
Boron - Total	0.38	mg/l	0.10	6010D	16 Apr 20 12:42	MDE
Selenium - Total	0.0077	mg/l	0.0050	6020B	17 Jun 20 9:48	MDE

Approved by:

Claudette K. Cantep 1 JUL 2020

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

The reporting limit was elevated for any analyte requiring a dilution as coded below: \emptyset = Due to sample matrix $\|\cdot\|$ = Due to construct the property of t

= Due to concentration of other analytes
+ = Due to internal standard response

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

1 of 1 Page:

Selenium Added 11Jun2020

Terri Olson Barr Engineering Company 4300 MarketPointe Drive, Suite 200

Minneapolis MN 55435

Report Date: 20 Apr 20 Lab Number: 20-W644 Work Order #:82-0830 Account #: 013200

Date Sampled: 8 Apr 20 9:00 Date Received: 9 Apr 20 15:05

Sampled By: Client

Project Name: 26411007.15 Sample Description: T-23 Sample Site: MDU L&C

Temp at Receipt: 0.4C

	As Receiv Result	red	Method RL	Method Reference	Date Analyzed	Analyst
Metal Digestion			7 7 7 7 7	EPA 200.2	14 Apr 20	HT
Lithium - Total	0.535	mg/l	0.020	6010D	15 Apr 20 12:09	MDE
Boron - Total	0.58	mg/1	0.10	6010D	16 Apr 20 12:42	MDE
Selenium - Total	0.0352	mg/l	0.0050	6020B	17 Jun 20 9:48	MDE

Approved by:

Claudette K. Canto

1 JUL 2020

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

The reporting limit was elevated for any analyte requiring a dilution as coded below:

= Due to sample matrix # = Due to co
! = Due to sample quantity + = Due to in

* Due to concentration of other analytes
+ = Due to internal standard response

MINNESOTA VALLEY TESTING LABORATORIES, INC.

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890
2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724
1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

Page:

1 of 1

Selenium Added 11Jun2020

Terri Olson Barr Engineering Company 4300 MarketPointe Drive, Suite 200 Minneapolis MN 55435

Report Date: 20 Apr 20 Lab Number: 20-W645 Work Order #:82-0830 Account #: 013200 Date Sampled:

Date Received: 9 Apr 20 15:05

Sampled By: Client

Project Name: 26411007.15 Sample Description: T-D Sample Site: MDU L&C

Temp at Receipt: 0.4C

	As Receive Result	d	Method RL	Method Reference	Date Analyzed	Analyst
Metal Digestion			- 1777	EPA 200.2	9 Apr 20	HT
Lithium - Total	0.044	mg/l	0.020	6010D	15 Apr 20 12:09	MDE
Boron - Total	0.16	mg/l	0.10	6010D	16 Apr 20 12:42	MDE
Selenium - Total	< 0.005	mg/l	0.0050	6020B	17 Jun 20 9:48	MDE

Approved by:

Claudette K Canteo 1 JUL 2020

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

= Due to concentration of other analytes + = Due to internal standard response

Selenium - Total

MINNESOTA VALLEY TESTING LABORATORIES, INC.

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

Selenium Added 11Jun2020

Project Name: 26411007.15 Sample Description: T-RB

Terri Olson Barr Engineering Company 4300 MarketPointe Drive, Suite 200 Minneapolis MN 55435

< 0.005

mg/1

Page: 1 of 1

Report Date: 20 Apr 20 Lab Number: 20-W646 Work Order #:82-0830 Account #: 013200

Date Sampled: Date Received: 9 Apr 20 15:05

17 Jun 20 9:48

MDE

Sampled By: Client

Temp at Receipt: 0.4C

Sample Site: MDU L&C As Received Method Method Date Reference Analyzed Analyst Result EPA 200.2 HT 9 Apr 20 Metal Digestion 15 Apr 20 12:09 0.020 6010D MDE Lithium - Total < 0.02 mg/1MDE Boron - Total < 0.1 mg/10.10 6010D 16 Apr 20 12:42

0.0050

6020B

CC

Approved by:

1 JUL 2020 Clauditte K. Canteo

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

= Due to concentration of other analytes
+ = Due to internal standard response

1126 N. Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 E. Broadway Ave. ~ Bismarck, ND 58502 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Highway ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

MEMBER ACIL

Page: 1 of 1

Quality Control Report - Amended

Lab IDs: 20-W635 to 20-W646

Project: 26411007.15

Work Order: 202082-0830

Analyte	LCS Spike Amt	LCS Rec %	LCS % Rec Limits	Matrix Spike Amt	Matrix Spike ID	Matrix Spike Orig Result	Matrix Spike Result	Matrix Spike Rec %	Matrix Spike % Rec Limits	MSD/ Dup Orig Result	MSD/ Dup Result	MSD Rec %	MSD/ Dup RPD	MSD/ Dup RPD Limit (<)	Known Rec (%)	Known % Rec Limits	Method Blank
Boron - Total mg/l	0.40 0.40 0.40 0.40 0.40	92 90 92 90 90	80-120 80-120 80-120 80-120 80-120	0.400 0.400 0.400 0.400 0.400	20-D1057 20-D1072 20-D1132 20-W638 20-W646	0.32 0.13 1.56 0.16 < 0.1	0.75 0.53 2.04 0.57 0.31	108 100 120 102 78	75-125 75-125 75-125 75-125 75-125	0.75 0.53 2.04 0.57 0.31	0.75 0.54 1.97 0.57 0.30	108 102 102 102 75	0.0 1.9 3.5 0.0 3.3	20 20 20 20 20 20	- - - - -	- - - - -	< 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1
Lithium - Total mg/l	0.400 0.400	102 99	80-120 80-120	0.400 0.400	20-W578 20-W638	< 0.02 0.033	0.411 0.464	103 108	75-125 75-125	0.411 0.464	0.402 0.465	100 108	2.2 0.2	20 20	- - - -	- - - -	< 0.02 < 0.02 < 0.02 < 0.02
Selenium - Total mg/l	0.1000	101	80-120	0.400 0.400	20W635q 20W645q	< 0.005 < 0.005	0.4034 0.4138	101 103	75-125 75-125	0.4034 0.4138	0.4102 0.4562	103 114	1.7 9.7	20 20	-	-	< 0.005

Samples were received in good condition on 9 Apr 2020 at 1505.

Temperature upon receipt at the Bismarck laboratory was 0.4°C.

All samples were properly preserved unless noted here and/or flagged on the individual analytical laboratory report.

All holding times were met.

Approved methodology was followed for all sample analyses.

All acceptance criteria were met for calibration, method blanks, laboratory control samples, laboratory fortified matrix/duplicates unless noted here.

Per email from Terri Olson with Barr dated 11 Jun 2020, selenium was added to the samples.

Approved by: C. Caurlo
1 Ju 2020

Claudette Carroll

From: Terri A. Olson <TOlson@barr.com>
Sent: Thursday, June 11, 2020 11:15 AM

To: Claudette Carroll

Subject: RE: 202082-0830 BARR.pdf

Hi Claudette,

Glad that Scott requested this. Please analyze selenium by EPA 6020B on all 10 samples.

Thanks Claudette.

Terri A. Olson Senior Data Quality Specialist Minneapolis, MN office: 952.842.3578 TOlson@barr.com

www.barr.com

resourceful, naturally,

This e-mail message (including attachments, forwards, and replies) is correspondence transmitted between Barr Engineering Co. and its clients and related parties in the course of business, and is intended solely for use by the addressees. This transmission contains information which may be confidential and proprietary. If you are not the addressee, note that any disclosure, copying, distribution, or use of the contents of this message (or any attachments, replies, or forwards) is prohibited. If you have received this transmission in error, please destroy it and notify us at 952-832-2600.

If you no longer wish to receive marketing e-mails from Barr, respond to <u>communications@barr.com</u> and we will be happy to honor your request.

From: Claudette Carroll <ccarroll@mvtl.com>

Sent: Thursday, June 11, 2020 9:46 AM To: Terri A. Olson <TOlson@barr.com> Subject: RE: 202082-0830 BARR.pdf

CAUTION: This email originated from outside your organization. Exercise caution when opening attachments or clicking links, especially from unknown senders.

Hi Terri,

Cost of selenium would be \$18 per sample. Per an earlier request by Scott Korum, we have held onto these samples and will be able to run them for selenium, if requested.

Claudette

Minnesota Valley Testing Laboratories, Inc.

Providing Analytical Excellence Since 1951

ccarroll@mvtl.com 701-258-9720

2616 E. Broadway Ave/Bismarck, ND 58501 #NDSmart, #NDStrong, #InThisTogether

From: Terri A. Olson < TOlson@barr.com>
Sent: Thursday, June 11, 2020 8:17 AM
To: Claudette Carroll < ccarroll@mvtl.com>

Subject: 202082-0830 BARR.pdf

Hi Claudette,

We are thinking about having selenium analyzed for the samples in the attached report. Do you have any sample left? Based on past work, I believe we would want the selenium by 6020 and the B and Li were by 6010 so reporting from the same run isn't an optino. If you have sample, what would be the associated cost for Se by 6020?

Thank-you,

Terri A. Olson Senior Data Quality Specialist Minneapolis, MN office: 952.842.3578 TOlson@barr.com www.barr.com

This e-mail message (including attachments, forwards, and replies) is correspondence transmitted between Barr Engineering Co. and its clients and related parties in the course of business, and is intended solely for use by the addressees. This transmission contains information which may be confidential and proprietary. If you are not the addressee, note that any disclosure, copying, distribution, or use of the contents of this message (or any attachments, replies, or forwards) is prohibited. If you have received this transmission in error, please destroy it and notify us at 952-832-2600.

If you no longer wish to receive marketing e-mails from Barr, respond to <u>communications@barr.com</u> and we will be happy to honor your request.

82-0830

Barr Engineering Co. Chai	n of Custoo	C Y	Origination State:			nalysis Requested	COC Number: 54259
☐ Ann Arbor ☐ Duluth BARR 爲Bismarck ☐ Hibbing	☐ Jefferson City☐ Minneapolis	☐ MI	□ MO □ WI □ ND Other: □ SD		Water	Soil	coc 1 of 2
REPORT TO		INVOICE TO		1	beron		Matrix Code: Preservative Code: GW = Groundwater A = None
Company: Barr Engineering	Company:			ers	P		SW = Surface Water B = HCl WW = Waste Water C = HNO ₃
Address: 234 W Century Ave	Address:	<u> </u>		v / (N) Containers	1,5		$DW = Drinking Water D = H_2SO_4$
Name: Terri Olson	Name:	Same	>	> 0 0	1, +4; vin +		S = Soil/Solid E = NaOH SD = Sediment F = MeOH
email: Tolson @ barr, com	email:			9 5	7		O = Other G = NaHSO ₄ H = Na ₂ S ₂ O ₃
Copy to: datamgt@barr.com	P.O.		\rightarrow	MS/MSD mber Of	1 4	<u></u>	I = Ascorbic Acid
Project Name: MDU L4C	Barr Project No:	: 2641101	07.15		(1-1)	Solids	J = NH₄Cl K = Zn Acetate
	ample Depth		Collection Matrix	Perform Total No	₹ <u>`</u>		
Location Star		Date (mm/dd/yyyy)	Time (hh:mm) Code	Perfor Total	<u>C</u>		Preservative Code
1	01 11.1.7				N		Field Filtered Y/N
1-15 WG35 -	+	14/06/2020	12:02 GW	111	1		· Coutact Terri
2T-16 waste -		1	13:30				Olson w/
3. T-18 WG37 -		1	5:45				Questions.
4. T-17 was -		İ	6:45				
5. T-21 W639 -		i	7:33				
6. 7-19 WOUD -		1 1	9:10				
7. T-14 Weil -	Ď.	4/07/2020	10:54		Common and the common		
8 T-20 WWD -			12:45				
9. T-22 WO43 -		14/08/2020	08:25				
10. T - 23 WOYY -			79:00				
BARR USE ONLY	Relinquished by:	Moter Res	On Ice? 1	Date 7-ん02	Time 15.05	Received by:	Date Time
Sampled by: MJJ	- Polinguiched by	:	On Ice?	1 - <u>カ</u> の <u>/</u> Date	Time	Received by.	Date Time
Barr Proj. Manager: Jerewy Gachick			Y N			·	
Barr DQ Manager: Terri Olson	Samples Shipped		-	ress	Sampler	Air Bill Number:	Requested Due Date: Standard Turn Around Time
Lab Name: MVTL	1-6 3/20	Other:		/0CL	· () G	for Soul Takasta DV DN	
Lab Location: Bizmarck	Lab WO:	Tem	nperature on Receipt	(°C): Z	J.Y Custod	iy Seal Intact? □ Y □ N	□ None (mm/dd/yyyy)

Distribution - White-Original: Accompanies Shipment to Laboratory; Yellow Copy: Include in Field Documents; Pink Copy: Send to Data Management Administrators.

Barr Engineering Co. Chain	o: Castoa,	ole Origination State:	An	alysis Requested	COC Number: 54258
	KS Jefferson City MI MI MN MN MN MN MN MN	□ ND Other:	Water	Soil	coc 2 of 2
REPORT TO	INVOICE T	го	(104a1)		Matrix Code: Preservative Code: GW = Groundwater A = None
company: Bar Engineering	Company:				SW = Surface Water B = HCl
Address: 234 W Central Are	Address:		Y / (V) Containers - born plasfic		WW = Waste Water
Name: Terr, Olson	Address: Name: email:	10	V / bont		S = Soil/Solid E = NaOH SD = Sediment F = MeOH
email: TOlson & Born.com	email:		 		O = Other G = NaHSO ₄
Copy to: datamgt@barr.com	P.O.		MSD /m /m /sfer		$H = Na_2S_2O_3$ I = Ascorbic Acid
Project Name: MDU LEC	Barr Project No: 364110	7.15	Perform MS/MS Total Number C その にはいい (ユーバ	Solids	J = NH₄Cl K = Zn Acetate
Sar	nple Depth Collection	Collection Matrix	ا ا ا	8 %	O = Other
Location Start	Stop /m /ff Date	Time Code	Perfo		Preservative Code
1	or in.) (mm/dd/yyyy)	(hh:mm)			Field Filtered Y/N
1 T-D was -		6w	M11		*Contact Terr;
2 T- RB WE44 -					Olson w/ questions.
3.					duest . c
4.					90037/0W3.
4.					
5.					
6.					
7.					25
8.					10 V 90 V
9.					
					015
10.					Form
BARR USE ONLY	Relinquished by Ma -/	Op. Ice?	Date Time	Received blvc	Date Time
Sampled by: MWD	Relinquished by Montes		1-2020 15:05	Received by	1/ PAPAD 1505
Barr Proj. Manager: Jeremy Cacuick	Relinquished by:	On Ice? D	Pate Time	Received by:	Date Time
Barr DQ Manager: Terr; Olson	Samples Shipped VIA: Co		ress Sampler	Air Bill Number:	Requested Due Date:
Lab Name: MVTL	□ Otł				Requested Due Date: Standard Turn Around Time Rush (mm/dd/yyyy)
Lab Location: Bismarck, ND	Lab WO:	Temperature on Receipt ((°C): O-U Custod	y Seal Intact? □Y □N	□ None □ Rush

Distribution - White-Original: Accompanies Shipment to Laboratory; Yellow Copy: Include in Field Documents; Pink Copy: Send to Data Management Administrators.

1673 Terra Avenue Sheridan, WY 82801

Date: 8/26/2020

CLIENT: Barr Engineering

26411007.15

Lab Order: S2008131

Project:

CASE NARRATIVE

Report ID: S2008131001

Samples COAL PILE COAL 2, SB-2 20.5-21, T-17 10.75-15, T-18 12.5-14.5, T-2 22.5-23.5, T-22 10-15, T-3 30-32.5, T-5 10-15 and T-6 19.5-20 were received on August 6, 2020.

ph: (307) 672-8945

Samples were analyzed using the methods outlined in the following references:

U.S.E.P.A. 600/2-78-054 "Field and Laboratory Methods Applicable to Overburden and Mining Soils", 1978

American Society of Agronomy, Number 9, Part 2, 1982

USDA Handbook 60 "Diagnosis and Improvement of Saline and Alkali Soils", 1969

Wyoming Department of Environmental Quality, Land Quality Division, Guideline No. 1, 1984

New Mexico Overburden and Soils Inventory and Handling Guideline, March 1987

State of Utah, Division of Oil, Gas, and Mining: Guidelines for Management of Topsoil and Overburden for Underground and Surface Coal Mining, April 1988

Montana Department of State Lands, Reclamation Division: Soil, Overburden, and Regraded Spoil Guidelines, December 1994

State of Nevada Modified Sobek Procedure

Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW846, 3rd Edition

All Quality Control parameters met the acceptance criteria defined by EPA and Pace Analytical (Formerly Inter-Mountain Laboratories) except as indicated in this case narrative.

Qualifiers by sample

SATPASTE QC - Saturated Paste Metals by ICP/Boron - Spike Recovery outside accepted recovery limits

Please note that during sample preparation for total metals analysis, a standard was used which did not contain lithium. This was not discovered until the samples were analyzed on August 25. Therefore, there is no spike QC data for lithium, but all QC for boron and selenium are present and acceptable.

Reviewed by: Karen Asecon

S2008131-001

20.5 - 21 Feet

Project:

Lab ID:

Depths:

1673 Terra Avenue Sheridan, WY 82801

Sample Analysis Report

ph: (307) 672-8945

CLIENT: Barr Engineering

Bismark, ND

Client Sample ID: SB-2 20.5-21

Date Reported: 8/26/2020

Report ID: S2008131001

Work Order: S2008131

Collection Date:

Date Received: 8/6/2020

Sampler:

Matrix: Solid

COC: 58270

Analyses	Result	RL	Qual	Units	Date Analyzed/Init	Method
Saturated Paste Metals						
Boron	9.4	0.1		ppm	08/20/2020 16:17 DG	EPA 200.7
Lithium	0.11	0.01		ppm	08/20/2020 16:17 DG	EPA 200.7
Selenium	ND	0.05		ppm	08/20/2020 16:17 DG	EPA 200.7
Total Metals-3050/6010						
Boron	59	5		mg/Kg	08/25/2020 15:46 DG	EPA 6010C
Lithium	1.8	0.2		mg/Kg	08/25/2020 15:46 DG	EPA 6010C
Selenium	ND	1.3		mg/Kg	08/25/2020 15:46 DG	EPA 6010C

These results apply only to the samples tested.

Qualifiers:

Analyte detected in the associated Method Blank

Report limit raised due to dilution

G Analyzed at IML Gillette laboratory

Analyte detected below quantitation limits

Value exceeds Monthly Ave or MCL or is less than LCL

Outside the Range of Dilutions 0

Analyte below method detection limit

KarenAsecor

RL - Reporting Limit

Calculated Value С

Value above quantitation range

Holding times for preparation or analysis exceeded

Analyzed by another laboratory L

ND Not Detected at the Reporting Limit

Spike Recovery outside accepted recovery limits S

Х Matrix Effect

Reviewed by:

Karen Secor, Soil Lab Supervisor

Page 1 of 9

S2008131-002

1673 Terra Avenue Sheridan, WY 82801

ph: (307) 672-8945

Sample Analysis Report

CLIENT: Barr Engineering

Project:

Lab ID:

Bismark, ND

Client Sample ID: T-2 22.5-23.5

Date Reported: 8/26/2020

Report ID: S2008131001

Work Order: S2008131

Collection Date:

Date Received: 8/6/2020

Sampler:

Matrix: Solid COC: 58270

Depths:	22.5 - 23.5 Feet					COC: 58270	
Analyses		Result	RL	Qual	Units	Date Analyzed/Init	Method
Saturated Paste I	Metals						•
Boron		3.2	0.1		ppm	08/20/2020 16:19 DG	EPA 200.7
Lithium		0.07	0.01		ppm	08/20/2020 16:19 DG	EPA 200.7
Selenium		0.13	0.05		ppm	08/20/2020 16:19 DG	EPA 200.7
Total Metals-3050	0/6010						
Boron		42	5		mg/Kg	08/25/2020 15:50 DG	EPA 6010C
Lithium		5.0	0.2		mg/Kg	08/25/2020 15:50 DG	EPA 6010C
Selenium		2.9	1.3		mg/Kg	08/25/2020 15:50 DG	EPA 6010C

These results apply only to the samples tested.

Qualifiers:

Analyte detected in the associated Method Blank

Report limit raised due to dilution

G Analyzed at IML Gillette laboratory

Analyte detected below quantitation limits

Value exceeds Monthly Ave or MCL or is less than LCL

Outside the Range of Dilutions 0

Analyte below method detection limit

KarenAsecor

RL - Reporting Limit

Calculated Value С

Value above quantitation range

Holding times for preparation or analysis exceeded

Analyzed by another laboratory L

ND Not Detected at the Reporting Limit

Spike Recovery outside accepted recovery limits S

Х Matrix Effect

Reviewed by:

Karen Secor, Soil Lab Supervisor

Page 2 of 9

S2008131-003

30 - 32.5 Feet

1673 Terra Avenue Sheridan, WY 82801

ph: (307) 672-8945

Sample Analysis Report

CLIENT: Barr Engineering

Project:

Lab ID:

Depths:

Bismark, ND

Client Sample ID: T-3 30-32.5

Date Reported: 8/26/2020

Report ID: S2008131001

Work Order: S2008131

Collection Date:

Date Received: 8/6/2020

Sampler:

Matrix: Solid

COC: 58270

-						
Analyses	Result	RL	Qual	Units	Date Analyzed/Init	Method
Saturated Paste Metals						
Boron	1.5	0.1		ppm	08/20/2020 16:21 DG	EPA 200.7
Lithium	0.13	0.01		ppm	08/20/2020 16:21 DG	EPA 200.7
Selenium	0.07	0.05		ppm	08/20/2020 16:21 DG	EPA 200.7
Total Metals-3050/6010						
Boron	33	5		mg/Kg	08/25/2020 15:59 DG	EPA 6010C
Lithium	13.4	0.2		mg/Kg	08/25/2020 15:59 DG	EPA 6010C
Selenium	3.1	1.3		mg/Kg	08/25/2020 15:59 DG	EPA 6010C

These results apply only to the samples tested.

Qualifiers:

Analyte detected in the associated Method Blank

Report limit raised due to dilution

G Analyzed at IML Gillette laboratory

Analyte detected below quantitation limits

Value exceeds Monthly Ave or MCL or is less than LCL

Outside the Range of Dilutions 0

Analyte below method detection limit

KarenAsecor

RL - Reporting Limit

Calculated Value С

Value above quantitation range

Holding times for preparation or analysis exceeded

Analyzed by another laboratory L

ND Not Detected at the Reporting Limit

Spike Recovery outside accepted recovery limits S

Х Matrix Effect

Reviewed by:

Karen Secor, Soil Lab Supervisor

Page 3 of 9

10 - 15 Feet

S2008131-004

1673 Terra Avenue Sheridan, WY 82801

ph: (307) 672-8945

Sample Analysis Report

CLIENT: Barr Engineering

Project:

Lab ID:

Depths:

Bismark, ND

Client Sample ID: T-5 10-15

Date Reported: 8/26/2020

Report ID: S2008131001

Work Order: S2008131

Collection Date:

Date Received: 8/6/2020

Sampler:

Matrix: Solid

COC: 58270

Analyses	Result	RL	Qual	Units	Date Analyzed/Init	Method
Saturated Paste Metals						
Boron	0.8	0.1		ppm	08/20/2020 16:24 DG	EPA 200.7
Lithium	0.09	0.01		ppm	08/20/2020 16:24 DG	EPA 200.7
Selenium	0.06	0.05		ppm	08/20/2020 16:24 DG	EPA 200.7
otal Metals-3050/6010						
Boron	33	5		mg/Kg	08/25/2020 16:02 DG	EPA 6010C
Lithium	15.9	0.2		mg/Kg	08/25/2020 16:02 DG	EPA 6010C
Selenium	ND	1.3		mg/Kg	08/25/2020 16:02 DG	EPA 6010C

These results apply only to the samples tested.

Qualifiers:

Analyte detected in the associated Method Blank

Report limit raised due to dilution

G Analyzed at IML Gillette laboratory

Analyte detected below quantitation limits

Value exceeds Monthly Ave or MCL or is less than LCL

Outside the Range of Dilutions 0

Analyte below method detection limit

KarenAsecor

RL - Reporting Limit

Calculated Value С

Value above quantitation range

Holding times for preparation or analysis exceeded

Analyzed by another laboratory L

ND Not Detected at the Reporting Limit

Spike Recovery outside accepted recovery limits S

Х Matrix Effect

Reviewed by:

Karen Secor, Soil Lab Supervisor

Page 4 of 9

S2008131-005

19.5 - 20 Feet

1673 Terra Avenue Sheridan, WY 82801

ph: (307) 672-8945

Sample Analysis Report

CLIENT: Barr Engineering

Project:

Lab ID:

Depths:

Bismark, ND

Client Sample ID: T-6 19.5-20

Date Reported: 8/26/2020

Report ID: S2008131001

Work Order: S2008131

Collection Date:

Date Received: 8/6/2020

Sampler:

Matrix: Solid

COC: 58270

1						
Analyses	Result	RL	Qual	Units	Date Analyzed/Init	Method
Saturated Paste Metals						
Boron	0.6	0.1		ppm	08/20/2020 16:26 DG	EPA 200.7
Lithium	0.08	0.01		ppm	08/20/2020 16:26 DG	EPA 200.7
Selenium	0.09	0.05		ppm	08/20/2020 16:26 DG	EPA 200.7
Total Metals-3050/6010						
Boron	25	5		mg/Kg	08/25/2020 16:04 DG	EPA 6010C
Lithium	18.8	0.2		mg/Kg	08/25/2020 16:04 DG	EPA 6010C
Selenium	ND	1.3		mg/Kg	08/25/2020 16:04 DG	EPA 6010C

These results apply only to the samples tested.

Qualifiers:

Analyte detected in the associated Method Blank

Report limit raised due to dilution

G Analyzed at IML Gillette laboratory

Analyte detected below quantitation limits

Value exceeds Monthly Ave or MCL or is less than LCL

Outside the Range of Dilutions 0

Analyte below method detection limit

KarenAsecor

RL - Reporting Limit

Calculated Value С

Value above quantitation range

Holding times for preparation or analysis exceeded

Analyzed by another laboratory L

ND Not Detected at the Reporting Limit

Spike Recovery outside accepted recovery limits S

Х Matrix Effect

Reviewed by:

Karen Secor, Soil Lab Supervisor

Page 5 of 9

S2008131-006

10.75 - 15 Feet

1673 Terra Avenue Sheridan, WY 82801

ph: (307) 672-8945

Sample Analysis Report

CLIENT: Barr Engineering

Project:

Lab ID:

Depths:

Bismark, ND

Client Sample ID: T-17 10.75-15

Date Reported: 8/26/2020

Report ID: S2008131001

Work Order: S2008131

Collection Date:

Date Received: 8/6/2020

Sampler:

Matrix: Solid

COC: 58270

Analyses	Result	RL	Qual	Units	Date Analyzed/Init	Method
Saturated Paste Metals						
Boron	2.2	0.1		ppm	08/20/2020 16:30 DG	EPA 200.7
Lithium	0.10	0.01		ppm	08/20/2020 16:30 DG	EPA 200.7
Selenium	0.06	0.05		ppm	08/20/2020 16:30 DG	EPA 200.7
Total Metals-3050/6010						
Boron	44	5		mg/Kg	08/25/2020 16:06 DG	EPA 6010C
Lithium	13.3	0.2		mg/Kg	08/25/2020 16:06 DG	EPA 6010C
Selenium	ND	1.3		mg/Kg	08/25/2020 16:06 DG	EPA 6010C

These results apply only to the samples tested.

Qualifiers:

Analyte detected in the associated Method Blank

Report limit raised due to dilution

G Analyzed at IML Gillette laboratory

Analyte detected below quantitation limits

Value exceeds Monthly Ave or MCL or is less than LCL

Outside the Range of Dilutions 0

Analyte below method detection limit KarenAsecor

RL - Reporting Limit

Calculated Value С

Value above quantitation range

Holding times for preparation or analysis exceeded

Analyzed by another laboratory L

ND Not Detected at the Reporting Limit

Spike Recovery outside accepted recovery limits S

Х Matrix Effect

Reviewed by:

Karen Secor, Soil Lab Supervisor

Page 6 of 9

S2008131-007

12.5 - 14.5 Feet

1673 Terra Avenue Sheridan, WY 82801

ph: (307) 672-8945

Sample Analysis Report

CLIENT: Barr Engineering

Project:

Lab ID:

Depths:

Bismark, ND

Client Sample ID: T-18 12.5-14.5

Date Reported: 8/26/2020

Report ID: S2008131001

Work Order: S2008131

Collection Date:

Date Received: 8/6/2020

Sampler:

Matrix: Solid

COC: 58270

Analyses	Result	RL	Qual	Units	Date Analyzed/Init	Method
Saturated Paste Metals						
Boron	3.3	0.1		ppm	08/20/2020 16:32 DG	EPA 200.7
Lithium	0.09	0.01		ppm	08/20/2020 16:32 DG	EPA 200.7
Selenium	0.07	0.05		ppm	08/20/2020 16:32 DG	EPA 200.7
otal Metals-3050/6010						
Boron	47	5		mg/Kg	08/25/2020 16:08 DG	EPA 6010C
Lithium	12.6	0.2		mg/Kg	08/25/2020 16:08 DG	EPA 6010C
Selenium	ND	1.3		mg/Kg	08/25/2020 16:08 DG	EPA 6010C

These results apply only to the samples tested.

Qualifiers:

Analyte detected in the associated Method Blank

Report limit raised due to dilution

G Analyzed at IML Gillette laboratory

Analyte detected below quantitation limits

Value exceeds Monthly Ave or MCL or is less than LCL

Outside the Range of Dilutions 0

Analyte below method detection limit

KarenAsecor

RL - Reporting Limit

Calculated Value С

Value above quantitation range

Holding times for preparation or analysis exceeded

Analyzed by another laboratory L

ND Not Detected at the Reporting Limit

Spike Recovery outside accepted recovery limits S

Х Matrix Effect

Reviewed by:

Karen Secor, Soil Lab Supervisor

Page 7 of 9

1673 Terra Avenue Sheridan, WY 82801

ph: (307) 672-8945

Sample Analysis Report

CLIENT: Barr Engineering

Project:

Bismark, ND

Date Reported: 8/26/2020

Report ID: S2008131001

Work Order: S2008131

Collection Date:

Date Received: 8/6/2020

Sampler:

Matrix: Solid COC: 58270

 Lab ID:
 \$2008131-008

 Client Sample ID:
 \$T-22 10-15

 Depths:
 10 - 15 Feet

Analyses	Result	RL	Qual	Units	Date Analyzed/Init	Method
Saturated Paste Metals						
Boron	0.9	0.1		ppm	08/20/2020 16:35 DG	EPA 200.7
Lithium	0.06	0.01		ppm	08/20/2020 16:35 DG	EPA 200.7
Selenium	ND	0.05		ppm	08/20/2020 16:35 DG	EPA 200.7
Total Metals-3050/6010						
Boron	34	5		mg/Kg	08/25/2020 16:10 DG	EPA 6010C
Lithium	12.4	0.2		mg/Kg	08/25/2020 16:10 DG	EPA 6010C
Selenium	ND	1.3		mg/Kg	08/25/2020 16:10 DG	EPA 6010C

These results apply only to the samples tested.

Qualifiers:

B Analyte detected in the associated Method Blank

D Report limit raised due to dilution

G Analyzed at IML Gillette laboratory

J Analyte detected below quantitation limits

M Value exceeds Monthly Ave or MCL or is less than LCL

O Outside the Range of Dilutions

U Analyte below method detection limit

Karen A Secon

RL - Reporting Limit

C Calculated Value

Value above quantitation range

H Holding times for preparation or analysis exceeded

L Analyzed by another laboratory

ND Not Detected at the Reporting Limit

S Spike Recovery outside accepted recovery limits

X Matrix Effect

Reviewed by:

Karen Secor, Soil Lab Supervisor

Page 8 of 9

S2008131-009

1673 Terra Avenue Sheridan, WY 82801

Sample Analysis Report

ph: (307) 672-8945

CLIENT: Barr Engineering

Project:

Lab ID:

Bismark, ND

Client Sample ID: COAL PILE COAL 2

Date Reported: 8/26/2020

Report ID: S2008131001

Work Order: S2008131

Collection Date:

Date Received: 8/6/2020

Sampler:

Matrix: Solid

COC: 58270

Depths: 0 - 0 Feet				COC : 58270	
Analyses	Result	RL Q	ual Units	Date Analyzed/Init	Method
Saturated Paste Metals					
Boron	2.6	0.1	ppm	08/20/2020 16:37 DG	EPA 200.7
Lithium	0.03	0.01	ppm	08/20/2020 16:37 DG	EPA 200.7
Selenium	ND	0.05	ppm	08/20/2020 16:37 DG	EPA 200.7
otal Metals-3050/6010					
Boron	63	5	mg/Kg	08/25/2020 16:15 DG	EPA 6010C
Lithium	1.3	0.2	mg/Kg	08/25/2020 16:15 DG	EPA 6010C
Selenium	ND	1.3	mg/Kg	08/25/2020 16:15 DG	EPA 6010C

These results apply only to the samples tested.

Qualifiers:

Analyte detected in the associated Method Blank

Report limit raised due to dilution

G Analyzed at IML Gillette laboratory

Analyte detected below quantitation limits

Value exceeds Monthly Ave or MCL or is less than LCL

Outside the Range of Dilutions 0

Analyte below method detection limit KarenAsecor

RL - Reporting Limit

С Calculated Value

Value above quantitation range

Holding times for preparation or analysis exceeded

Analyzed by another laboratory L

ND Not Detected at the Reporting Limit

Spike Recovery outside accepted recovery limits S

Х Matrix Effect

Reviewed by:

Karen Secor, Soil Lab Supervisor

Page 9 of 9

1673 Terra Avenue Sheridan, WY 82801

ANALYTICAL QC SUMMARY REPORT

ph: (307) 672-8945

CLIENT: Barr Engineering Date: 8/26/2020

Work Order: S2008131 Report ID: S2008131001

Project:

Oject.								
Satur	ated Paste Metals by ICP	Sample Type MBLK		Units:	ppm			
	SATPASTE BLK (08/20/20 16:46)	RunNo: 181804	ļ					
	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual
	Boron	ND	0.1					
	Lithium	ND	0.01					
	Selenium	ND	0.05					
Satur	ated Paste Metals by ICP	Sample Type LCS	Units: ppm					
	SATPASTE QC (08/20/20 16:44) RunNo: 181804							
	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual
	Boron	0.4	0.1	0.31		124	80 - 120	S
	Lithium	0.08	0.01	0.07		116	80 - 120	
	Selenium	0.10	0.05	0.11		86.7	80 - 120	
Satur	ated Paste Metals by ICP	Sample Type DUP		Units:	ppm			
	S2008131-005AD (08/20/20 16:28)	RunNo: 181804	ļ					
	Analyte	Result	RL	Ref Samp	%RPD	%REC	% RPD Limits	Qual
	Boron	0.6	0.1	0.6	7.17		20	
	Lithium	0.08	0.01	0.08	5.44		20	
	Selenium	0.07	0.05	0.09	24.9		20	R

Qualifiers: Analyte detected in the associated Method Blank

Value above quantitation range

Holding times for preparation or analysis exceeded

Analyzed by another laboratory

0 Outside the Range of Dilutions

Spike Recovery outside accepted recovery limits

Report limit raised due to dilution

Analyzed at IML Gillette laboratory

Analyte detected below quantitation limits

Not Detected at the Reporting Limit

RPD outside accepted recovery limits

Χ Matrix Effect

1673 Terra Avenue Sheridan, WY 82801

ANALYTICAL QC SUMMARY REPORT

ph: (307) 672-8945

CLIENT: Barr Engineering Date: 8/26/2020

Work Order: \$2008131 Report ID: \$2008131001

Project:

,											
Total	(3050) Metals by ICP - 6010C	Sample Type MBLK		Units:	mg/Kg						
	MB-17637 (08/25/20 14:57)	RunNo: 181916	Prep	Date: 08/20	0/20 17:23	Bato	chID 17637				
	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual			
	Boron	ND	5								
	Lithium	ND	0.2								
	Selenium	ND	1.3								
Total	(3050) Metals by ICP - 6010C	Sample Type LCS		Units:	mg/Kg						
	LCS-17637 (08/25/20 14:59)	RunNo: 181916	Prep	Date: 08/20	0/20 17:23	Bato	chID 17637				
	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual			
	Boron	47	5	50		93.9	80 - 120				
	Selenium	48.8	1.3	50		97.6	80 - 120				
Total	(3050) Metals by ICP - 6010C	Sample Type MS		Units:	mg/Kg						
	S2008131-009AS (08/25/20 16:17)	RunNo: 181916	Prep	Date: 08/20	0/20 7:45	Bato					
	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual			
	Boron	108	5	50	63	91.2	75 - 125				
	Selenium	41.2	1.3	50	ND	82.4	75 - 125				
Total	(3050) Metals by ICP - 6010C	Sample Type MSD	Units: mg/Kg								
	S2008131-009AMSD (08/25/20 16:26)	RunNo: 181916	Prep	PrepDate: 08/20/20 7:45 Ba			chID 17637				
	Analyte	Result	RL	Conc	%RPD	%REC	% RPD Limits	Qual			
	Boron	105	5	108	2.88	85.0	20				
	Selenium	40.0	1.3	41.2	2.96	80.0	20				
Total	(3050) Metals by ICP - 6010C	Sample Type DUP		Units:	mg/Kg						
	S2008131-001AD (08/25/20 15:48)	RunNo: 181916	Prep	Date: 08/20	0/20 7:45	Bato	chID 17637				
	Analyte	Result	RL	Ref Samp	%RPD	%REC	% RPD Limits	Qual			
	Boron	61	5	59	3.10		20				
	Lithium	1.7	0.2	1.8	6.08		20				
	Selenium	1.5	1.3	ND			20	R			
	S2008131-008AD (08/25/20 16:13)	RunNo: 181916	Prep	Date: 08/20	0/20 7:45	Bato	chID 17637				
	Analyte	Result	RL	Ref Samp	%RPD	%REC	% RPD Limits	Qual			
	Boron	36	5	34	4.95		20				
	Lithium	12.9	0.2	12.4	3.79		20				
	Selenium	ND	1.3	ND			20				

Qualifiers: B Analyte detected in the associated Method Blank

- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- L Analyzed by another laboratory
- O Outside the Range of Dilutions
- S Spike Recovery outside accepted recovery limits
- D Report limit raised due to dilution
- G Analyzed at IML Gillette laboratory
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- X Matrix Effect

Barr Engineering Co. Chai	n of C		ple Origination Stat	te:			Analysis R	equested		COC Number: F0070
☐ Ann Arbor ☐ Duluth ☐ Hibbi	ng 🗆	Minneapolis MI				Wate	er	Soil		COC Number: 58270 COC of
Barr Bismarck Grand Rapids Jeffer	son City 🛚			MT				3		
REPORT TO		INVOICE	ТО					43		Matrix Code: Preservative Code: GW = Groundwater
Company: BARR ENGINEERING	Company	y:			ers			200		SW = Surface Water B = HCl
Address: 234 W. CENTURY	Address:				N			N		$DW = Drinking Water D = H_2SO_4$
Name: Scott Korom	Name:	SAME			Y 0					S = Soil/Solid E = NaOH SD = Sediment F = MeOH
email: Skopom@barr.com	email:				SD of 0					O = Other $G = NaHSO_4$
Copy to: datamgt@barr.com	P.O.				ΣL			83		$H = Na_2S_2O_3$ I = Ascorbic Acid
Project Name:	Barr Pro	ject No: 264110	07.15		MS/ mbe				Solids	J = NH ₄ Cl
	mple Dept	h Collection	Collection	Antoire	E N			SE I	% S	K = Zn Acetate O = Other
Location		Jnit Date	Time IV	/latrix	Perform Total N					Preservative Code
1		or in.) (mm/ad/yyyy)	(nn:mm)		Pe C					Field Filtered Y/N
SB-2 20.5-21'		IN BARR RECORDS	IN BAPE RECURDS S	D		520	0813	31-001		
2-T-2 22.5-23.5'								002		SEE ATTACHED
3. T-3 30-32.5'								003		CETTER FOR
T-5 10-151								are		DETAILS
5. T-6 19.5-20'								05		24/
6. T-17 10.75-15'								مالان		CONTACT SCOTT
T-18 125'-14.5'								ω7		KORDM W/ QUESTIONS
8. T-22 10-151		1						2008		701-335-3125
COAL PIE COAL 2		1	1	1		W		009		
10.			0						П	
BARR USE ONLY	Relinquish	ned by: \(\int_{\alpha_{\alpha}}\alpha_{\alpha}\alpha\)	2 On Ice?	D	ate	Time	Receiv	/ed by:	10	Date Time
Sampled by: DTZ		MINIM	youth A (V)	-	-20	1		Fe	de	
Barr Proj. Manager: JJG3	Relinquish	ned by: Fedex	On Ice?	Da	ate	Time	1	red by:	20	Plate Time 1030
Barr DQ Manager: TAO	Samples	Shipped VIA: Co		al Expre	ess [Sampler		Number:	Je	Requested Due Date:
Lab Name: PACE		□ Ot	her:				771	172168	51	Standard Turn Around Time
Lab Location: Sheridan WY	Lab WO:		Temperature on Red	ceipt (°C):	Custo		Intact? □ Y □		Duch

Alternative Source Demonstration (ASD) for Lithium, Spring 2023

Lewis & Clark Station

Prepared for Montana-Dakota Utilities Co.

November 2023

Alternative Source Demonstration (ASD) for Lithium, Spring 2023 Lewis & Clark Station

November 2023

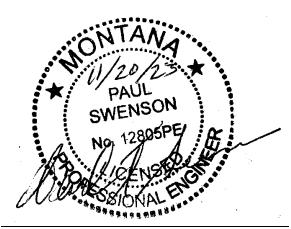
Contents

1	Ir	ntroduction	1
1	l.1	Purpose	2
1	1.2	Scope of Work	3
1	1.3	Regulatory Framework	2
1	1.4	Description of the Monitoring Well System	2
1	1.5	Groundwater Standards	∠
2	А	SD Hypotheses	6
2	2.1	Hypothesis No. 1: Natural Variation	6
	2.1.1		
	2.1.2	Variation in Lithium Mobility with Sediment Type	7
	2.1.3	Statistical Upper Limit of Natural Variability	9
	2.1.4	Conclusions	10
2	2.2	Hypothesis No. 2: Carbonaceous Zone	10
	2.2.1	Lithium Concentrations within Carbonaceous Material	10
	2.2.2	Carbonaceous Material Location Compared to Downgradient Wells	11
	2.2.3	Conclusion	12
3	C	onclusion	13
4	R	eferences	14

List of Tables

Table 1	Summary of Measured Lithium Concentrations Compared to Groundwater Protection Standards
Table 2 Table 3	Lithium Solids Concentration by Sample Material Type
Table 4	Summary of SPEs for Lithium in Carbonaceous Materials11
Table 5	Carbonaceous Zone Correlation to Downgradient Groundwater Concentrations
	List of Figures
Figure 1 Figure 2 Figure 3	Site Layout Well Material Types and Lithium Concentrations, Spring 2023 Lithium Upper Limit of Natural Variability
	List of Appendices

Appendix A


Appendix B

Site Boring Logs

Analytical Results

Certification

I hereby certify that the written demonstration provided herein, supported by the data in the referenced documents, is accurate and consistent with our review of the groundwater and other data collected to date, as required under the CCR Rule (§257.95(g)(3)(ii)). Based on this review I have determined that a source other than the CCR unit regulated under the CCR Rule at the Site caused the statistically significant increases over the applicable groundwater protection standards (GWPS) for lithium in wells that are downgradient from that unit.

Paul Swenson, P.E. PE #: 12805PE

November 20, 2023

Date

1 Introduction

Montana-Dakota Utilities Co. (MDU) operated a coal-fired electrical generation plant at the Lewis & Clark Station (Site) near Sidney, Montana. Operation of the plant resulted in coal combustion residuals (CCR) as a by-product. Management of CCR at the Site is subject to regulation under 40 CFR Part 257, Disposal of Coal Combustion Residuals From Electric Utilities (the CCR Rule).

Since the 1970s, CCR has been managed at the Site at various CCR management facilities. In particular:

- In 1975, two unlined surface impoundments were constructed on the Site. Based on available
 historical data, it appears that construction of the ponds involved excavating materials down to
 the Ft. Union Formation (Barr, 2016; Barr, 2019b), meaning that the sides of the surface
 impoundments were likely in direct contact with the aquifer. These surface impoundments were
 closed before the CCR Rule was promulgated, and therefore are not regulated under the CCR
 Rule.
- In 1993, clay-lined scrubber ponds were constructed generally in the footprint of the unlined surface impoundments, described above, with base elevations that were higher than the base elevations of the former surface impoundments. Once these scrubber ponds became operational, MDU started placing solid materials from them on top of a temporary storage pad (TSP) at the Site. In particular, the TSP stored flue-gas desulfurization (FGD) solids (excavated from the scrubber ponds) where it drained prior to loading and hauling for off-site disposal. The locations of these former scrubber ponds and former TSP are shown on Figure 1. These ponds were in existence on the effective date of the CCR Rule. Throughout this report, they are referred to as the "former Scrubber Ponds."
- In 1998, the TSP was retrofitted with a geomembrane liner.
- In 2018, the former Scrubber Ponds were retrofitted with a composite liner with a small lateral expansion of each pond to the northeast, with base elevations that were higher than the original 1993 construction.
- In 2020, the lined TSP was closed using the closure-by-removal method after the Alternative Source Demonstration (ASD), Temporary Storage Pad, Lewis & Clark Station (Barr, 2020a) was completed. The current TSP is not regulated by the CCR Rule.
- In 2022, closure construction was completed on the lined Scrubber Ponds. Closure construction included removal of CCR from the ponds, removal of liner materials, filling the excavation with soil, and regrading the area to drain. The unregulated TSP was also removed in 2022.

The currently regulated CCR unit is the former Scrubber Ponds, a single, multi-unit CCR surface impoundment. The closed TSP is a former regulated CCR unit.

Statistically significant increases of appendix III parameters were detected under the detection monitoring program and the site transitioned to assessment monitoring on April 14, 2018. A determination was made on January 2, 2019, that selenium and lithium were detected in downgradient wells at statistically significant levels above groundwater protection standards (GWPS). An assessment of corrective measures was initiated on April 2, 2019. A downward trend in selenium concentrations was observed in monitoring results. Selenium levels have been below statistically significant levels above GWPS since April 2020. MDU continued to pursue an ASD for these constituents in parallel with ongoing corrective action measures. A successful ASD was published in January 2021 addressing both lithium and selenium. Each monitoring event since has been evaluated under the same approach as was used for the 2020 ASD, but recent ASDs have not evaluated selenium as it is no longer measured at statistically significant levels above GWPS. This ASD has been prepared for the results obtained during the Spring 2023 monitoring event.

1.1 Purpose

Assessment monitoring at the Site identified lithium concentrations in downgradient wells at statistically significant levels (SSLs) over site groundwater protection standards (GWPS) for the Spring 2023 monitoring event. According to the CCR Rule, Section § 257.95(g)(3)(ii), the Owner may:

Demonstrate that a source other than the CCR unit caused the contamination, or that the statistically significant increase resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. Any such demonstration must be supported by a report that includes the factual or evidentiary basis for any conclusions and must be certified to be accurate by a qualified professional engineer.

This report provides written documentation of an Alternative Source Demonstration (ASD) supporting continuation of assessment monitoring in accordance with § 257.95(g)(3)(ii) of the CCR Rule.

An ASD was prepared in January 2021 (Appendix C of the 2020 Annual Groundwater Monitoring and Corrective Action Report (Barr, 2021)), ending the selection of remedy phase of remediation activities for the Site. Data collected during the assessment monitoring event in April 2023 (Table 1) have been reviewed and an SSL for lithium has been identified. It has been determined that the ASD analysis conducted in 2021 continues to provide a rationale for a source other than the CCR unit causing the exceedance of GWPS in downgradient wells.

Exceedances of GWPS were identified for the parameters and at the following monitoring wells downgradient of the former Scrubber Ponds during the spring 2023 semi-annual assessment monitoring event completed between April 24 and April 25, 2023:

- MW111 lithium
- MW117 lithium
- MW118 lithium
- MW120 lithium

Table 1 Summary of Measured Lithium Concentrations Compared to Groundwater Protection Standards

Sampling Event	Monitoring Well	Lithium (mg/L)	Lithium GWPS			
	MW111	0.158				
A A	MW117 0.107					
Assessment Monitoring – 2023 #1 (Spring)	MW118	0.065	0.0631*			
	MW120	0.109	1			
	MW111	0.225				
Assessment Monitoring 2022 #2 (Fall)	MW117	0.122	0.0621*			
Assessment Monitoring – 2022 #2 (Fall)	MW118	0.084	0.0631*			
	MW120	0.176				
	MW111	0.166				
Assessment Monitoring 2022 #1 (Spring)	MW117	0.118	0.0621*			
Assessment Monitoring – 2022 #1 (Spring)	MW118	0.068	0.0631*			
	MW120	0.129				
	MW111	0.194				
Assessment Monitoring 2021 #2 (Fall)	MW117	0.115	0.0631*			
Assessment Monitoring – 2021 #2 (Fall)	MW118	0.082	0.0631"			
	MW120	0.135				
	MW111	0.158				
Assessment Monitoring 2021 #1 (Spring)	MW117	0.110	0.0631*			
Assessment Monitoring – 2021 #1 (Spring)	MW118	0.068	0.0631"			
	MW120	0.120				
	MW111	0.227				
Assessment Menitoring 2020 #2 (Fell)	MW117	0.135	0.0678			
Assessment Monitoring – 2020 #2 (Fall)	MW118	0.095	0.0078			
	MW120	0.135				
	MW111	0.190				
Assessment Monitoring 2020 #1 (Spring)	MW117	0.130	0.0678			
Assessment Monitoring – 2020 #1 (Spring)	MW118	0.085	0.0076			
	MW120	0.145	1			

^{*} GWPS for lithium updated in Spring 2021 with collection of new upgradient monitoring data. Additional assessment monitoring lithium concentrations are included in the 2018 and 2019 Annual Groundwater Monitoring and Corrective Action Reports (Barr, 2019a, 2020b).

1.2 Scope of Work

As part of the ASD, site data were evaluated to determine whether the regulated CCR unit caused the SSIs over background levels for lithium in downgradient monitoring wells. As part of this evaluation, two hypotheses were developed and then tested with lines of evidence based on site data to determine if those hypotheses were valid. The evidence confirms that the SSLs were caused by a natural variation in groundwater quality rather than the former Scrubber Ponds. As a result, it was determined an alternative source exists for the exceedances of the GWPS at SSLs for lithium under the CCR Rule (§ 257.95(g)(3)(ii)).

1.3 Regulatory Framework

As noted above, the former Scrubber Ponds are currently in assessment monitoring in anticipation of closure through removal of CCR. Baseline groundwater monitoring was completed in 2017, as documented in the 2017 Annual Groundwater Monitoring and Corrective Action Report, Scrubber Pond and Temporary Storage Area (Barr, 2018). A detection monitoring program began on October 17, 2017, and continued until April 14, 2018 (Barr, 2019a). SSIs over background levels were determined for certain constituents listed in appendix III to the CCR Rule (§ 257.95(a)) in 2018 (total dissolved solids (TDS), fluoride, boron, calcium, chloride, pH, and sulfate). In response to these SSIs, an assessment monitoring program was initiated on April 15, 2018. This program continued until 2023.

On January 2, 2019, it was determined that the initial assessment monitoring and resample events resulted in detections of lithium and selenium at statistically significant levels above applicable GWPS. An assessment of corrective measures (ACM) was initiated on April 2, 2019, and completed on August 29, 2019 (Barr, 2019b). An ASD ended the selection of remedy phase of remedial actions required by the CCR Rule on January 31, 2021 (Barr, 2021). The Site is currently in assessment monitoring.

1.4 Description of the Monitoring Well System

The groundwater monitoring system is a multi-unit groundwater monitoring system, as provided in § 257.91(d), meaning that both the former Scrubber Ponds and the former TSP (closed) are monitored by a single groundwater monitoring system. The monitoring well system around the CCR unit consists of three hydraulically upgradient wells (MW-103, MW-110, and MW-119) and four downgradient wells (MW-111, MW-117, MW-118, and MW-120) as shown on Figure 1.

The geological strata at the Site consists of fine- and coarse-grained unconsolidated alluvial sediments overlying bedrock (Ft. Union Formation). The upgradient wells are screened in primarily coarse-grained sediments. The downgradient monitoring wells are located hydraulically downgradient of the CCR unit along the waste boundary, are spaced approximately 500 feet (or less) apart and are screened in primarily fine-grained sediments. The number, spacing, and hydraulic positions of the monitoring wells comply with requirements outlined in § 257.91(a-c) of the CCR Rule.

1.5 Groundwater Standards

Once assessment monitoring is triggered for a CCR unit, § 257.95(d)(2) requires that GWPS be established for appendix IV constituents detected in groundwater. GWPS are defined as the higher of the Maximum Contaminant Level (MCL) or default GWPS, and the background concentration level for the detected constituent based on statistical methods established in § 257.93(f-g). Based on § 257.95(h)(2) and the July 30, 2018, Phase 1 CCR Rule revision, a final GWPS was established for the appendix IV constituents detected in groundwater.

The Phase 1 revision to the CCR Rule included a default lithium groundwater protection standard of $40 \,\mu g/L$ (0.04 mg/L). The laboratory analyzing Site groundwater samples lowered its lithium reporting limit from 0.1 mg/L to 0.04 mg/L starting in July 2018, and then subsequently to 0.02 mg/L. Previous lithium data from the Site, which were mostly below detection at higher reporting limits, were removed from the

baseline groundwater dataset, and additional data were collected. As a result of these changes, the lithium GWPS has been updated twice as additional upgradient samples have been collected and analyzed.

2 ASD Hypotheses

The hypotheses and corresponding determinations supporting the ASD are summarized below.

2.1 Hypothesis No. 1: Natural Variation

More naturally occurring lithium is present in the fine-grained sediments than in coarse-grained sediments. As a result, groundwater in zones of fine-grained sediments will typically have higher lithium concentrations than groundwater in zones of coarse-grained sediments. The upgradient wells at the Site are screened in primarily coarse-grained sediments and downgradient wells at the Site are screened in primarily fine-grained sediments. Therefore, due to the natural variability between sediments in which upgradient and downgradient wells are screened at the Site, it is possible that the observed downgradient lithium concentrations are due to natural variation in lithium content in the sediments.

2.1.1 Variation in Solids Concentration with Sediment Type within the Aquifer Matrix

To test hypothesis No. 1, a total of eight site sediment samples (see Table 2) from five different borings were sent to Pace Inter-Mountain Laboratories (Pace) in Sheridan, Wyoming. The sediment samples were crushed in a mill and analyzed for total lithium (Total Metals) using EPA's *Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846, 3rd Edition,* methods 3050 and 6010. Logs for the five borings are presented in Appendix A.

Both samples from boring SB-3 were judged to be relatively well graded. As such, the samples were sieved using a no. 230 sieve. The fraction retained on the sieve is sand and gravel (coarse-grained sediments) and the fraction passing the sieve is silt and clay (fine-grained sediments). Both fractions were crushed and analyzed for lithium. The remaining samples were determined to be more homogenous and, therefore, did not require sieving.

Analytical results for the sediment samples are summarized in Table 2. The lithium concentrations for fine-grained sediments (clay and silt) ranged from 11.5 milligrams per kilogram (mg/kg) to 22.7 mg/kg, with an average concentration of 16.1 mg/kg. In the coarse-grained sediments (sand and gravel), the concentrations ranged from 4.0 mg/kg to 6.9 mg/kg, with an average concentration of 5.4 mg/kg. The results indicate that the average lithium concentration in the fine-grained sediments is more than three times the average lithium solids concentration in the coarse-grained sediments. The laboratory report for the analysis of the sediment samples is included in Appendix B.

Table 2 Lithium Solids Concentration by Sample Material Type

Texture	Sample ID Sample Depth within Boring (ft)		Lithium Result (mg/kg)
Fine	SB-2	2 to 5	11.5
Fine	SB-3	3.5 to 10.5	13.6
Fine	SB-3	10.5 to 15	14.2
Fine	T-2	23.5 to 30	18.1
Fine	T-13	3.5 to 10	16.2
Fine	T-13	15 to 20	22.7
		Fine Average	16.1
		Fine Range	11.5 to 22.7
Coarse	SB-2	10 to 20	4.9
Coarse	SB-3	3.5 to 10.5	5.8
Coarse	SB-3	10.5 to 15	6.9
Coarse	T-1	19 to 23	4.0
		Coarse Average	5.4
		Coarse Range	4.0 to 6.9

2.1.2 Variation in Lithium Mobility with Sediment Type

The sediment analysis presented above confirmed that fine-grained sediments at the Site have more lithium within the solid matrix than coarse-grained sediments. Leach tests, which simulate what the lithium concentrations would be in groundwater, were done on sediment samples from areas at the Site that have not been affected by the CCR unit to estimate how much naturally occurring lithium could be mobilized from the solid matrix to groundwater.

Ten additional borings (T-14 through T-23) and associated temporary wells were installed across the Site, scattered upgradient and side gradient of the CCR unit to obtain samples for this evaluation. Borings T-14 through T-22 were located in areas that are not hydraulically downgradient from any of the current or former CCR units (Figure 2). It was subsequently determined that boring location T-23 may have been affected by historical (pre-CCR Rule) Site activities not associated with any CCR units so the analytical results for the sample from boring T-23 were not carried forward in the evaluation. Logs for these borings are presented in Appendix A.

Pace analyzed sediment samples from these borings by a saturated paste extract procedure (SPE Method; Pace SOP S-SATPASTE-1.1). Samples that had dried and hardened were crushed using a mortar and pestle; however, rock fragments larger than #10 mesh (2 mm) were removed from the samples for the SPE Method analyses.

Analytical results for samples classified as fine-grained or coarse-grained from borings T-14 through T-22 are summarized in Table 3. The laboratory report for the analyses is presented in Appendix B. The lithium concentrations leached from the fine-grained material in the liquid extract ranged from 0.02 to 0.14 mg/L,

with an average of 0.06 mg/L. The lithium concentrations leached from the coarse-grained material in the liquid extract ranged from 0.02 to 0.06 mg/L, with an average of 0.03 mg/L. These results indicate that in areas that could not have been influenced by the CCR units (existing and closed) the fine-grained sediments release more lithium to groundwater, and with greater variation, than coarse-grained sediments. The results also indicate that the average SPE leachate lithium concentration from fine-grained sediments was approximately twice the average leachate lithium concentration from the coarse-grained sediments.

Table 3 Summary Saturated Paste Extracts for Lithium

Sediment Type	Boring ID	Sample Depth within Boring (ft)	Sediment Type (field-estimated composition in boring logs)	Lithium Result (mg/L)
Fine	T-14	5-7	>95% fines	0.03
Fine	T-14	7-10	>90% fines	0.04
Fine	T-14	10-13	>90% fines	0.03
Fine	T-15	14.25-17.5	100% fines	0.04
Fine	T-16	11-13	100% fines	0.02
Fine	T-17	10.75-15	100% fines	0.07
Fine	T-18	12.5-14.5	100% fines	0.14
Fine	T-20	5.5-8.25	100% fines	0.02
Fine	T-21	13.75-15	100% fines	0.08
Fine	T-22	3.5-10	100% fines	0.03
Fine	T-22	10-15	100% fines	0.10
Fine	T-22	15-20	100% fines	0.10
			Fine Average	0.06
			Fine Range	0.02 to 0.14

Sediment Type	Boring ID	Sample Depth within Boring (ft)	Boring (field-estimated composition in boring logs)	
Coarse	T-15	5-10	Poorly graded sand with silt and gravel (20% gravel, 70% sand, 10% fines)	0.03
Coarse	T-15	10-14.25	Poorly graded sand with silt and gravel (20% gravel, 70% sand, 10% fines)	
Coarse	T-16	3-11	3-11 Poorly graded sand with silt and gravel (20% gravel, 70% sand, 10% fines)	
Coarse	T-17	5-10.75 Well graded sand with silt (5% gravel, 85% sand, 10% fines)		0.02
Coarse	T-18	5-10	5-10 Well graded sand with silt and gravel (15% gravel, 75% sand, 10% fines)	
Coarse	T-18	10-12.5	10-12.5 Well graded sand with silt and gravel	
Coarse	T-19	3.5-5	3.5-5 Poorly graded sand with silt and gravel (20% gravel, 70% sand, 10% fines)	
Coarse	T-19	5-10	Poorly graded sand with silt and gravel (20% gravel, 70% sand, 10% fines)	0.02
Coarse	T-19	10-14.5 Poorly graded sand with silt and gravel (20% gravel, 70% sand, 10% fines)		0.02
Coarse	T-21	5-13.75	Poorly graded sand with silt and gravel (15% gravel, 70% sand, 15% fines)	0.05
			Coarse Average	0.03
			Coarse Range	0.02 to 0.06

Temporary wells were installed in borings T-14 through T-22 to facilitate collection of groundwater samples. The groundwater samples were analyzed for lithium at Minnesota Valley Testing Laboratories. As can be seen on Figure 2, the lithium concentrations detected in the samples from temporary wells T-20 and T-22, which were completed in fine-grained sediments, were 1.6 to 2.3 times the lithium concentrations in the samples collected from temporary wells completed in coarse-grained sediments. These analytical results for the groundwater samples corroborate the results of the leach testing. Field sampling forms and the laboratory report for the analyses of the groundwater samples are presented in Appendix B.

2.1.3 Statistical Upper Limit of Natural Variability

As shown above, fine-grained sediments at the Site have generally higher lithium content than coarse-grained sediments at the Site. As a result, higher lithium concentrations can be leached from fine-grained sediments than from coarse-grained sediments at that Site. The lithium GWPS (0.0631 mg/L) was established by calculating the parametric upper tolerance limit for background lithium concentrations measured in groundwater samples from the upgradient wells in the CCR monitoring network, consistent with the CCR Rule. Well logs (Appendix A) show that upgradient wells are screened in primarily coarse-grained soils while downgradient wells are screened in primarily fine-grained soils. Therefore, the effect of

the geologic variability at the Site on naturally occurring lithium concentrations in groundwater is not captured in the existing GWPS determination.

To understand an upper limit of lithium concentration in groundwater that might result from natural variability, the fine-grained sediment leaching data presented in Table 3 was used to calculate an upper prediction limit of 0.16 mg/L (Figure 3), which is more than 2.5 times the established GWPS. This upper limit of natural variability more accurately represents potential downgradient background concentrations.

2.1.4 Conclusions

The analytical data confirm that more naturally occurring lithium is present in fine-grained sediments than in coarse-grained sediments at the Site and that more lithium is mobilized to the liquid phase from the fine-grained sediments than from the coarse-grained sediments. As a result of the natural variation in lithium content, groundwater in zones of fine-grained sediments will contain more lithium than groundwater in zones of coarse-grained sediments. The average lithium concentration in SPE leachate, intended to simulate groundwater conditions, from fine-grained sediments is approximately twice the concentration in leachate from coarse-grained sediments.

The upgradient wells in the CCR monitoring network are screened in predominantly coarse-grained sediments whereas the downgradient wells are screened in predominantly fine-grained sediments (Figure 2).

Finally, statistical evaluation of lithium concentrations obtained from the analyses of SPE leachate from fine-grained sediments resulted in a statistical upper limit of natural variability that is more than 2.5 times the GWPS. Based on these geologic relationships, elevated concentrations of lithium in downgradient wells are to be expected due to the upper limit of natural variability for the Site, and exceedances of the GWPS in these wells are the result in part due to natural variation in groundwater quality. Lithium concentrations in all four downgradient wells are lower than the statistical upper limit of natural variability for lithium.

2.2 Hypothesis No. 2: Carbonaceous Zone

Naturally occurring carbonaceous zones within the aquifer matrix, which typically exhibit elevated lithium concentrations, are present in fine-grained sediments within or near the screened intervals of downgradient wells in the CCR monitoring network. As a result, it is possible that the GWPS based on upgradient wells is not representative of the background lithium concentrations in downgradient wells.

2.2.1 Lithium Concentrations within Carbonaceous Material

Carbonaceous materials are defined herein to include lignite or other types of coal, or other organic materials, that are inferred to contain visually significant amounts of carbon. To determine if the carbonaceous material could be contributing to the elevated downgradient groundwater concentrations, eight samples of carbonaceous material were extracted from available sediment cores (obtained from previous Site investigations) and subjected to the SPE leachate extraction analysis. Logs for the borings associated with these sediment cores are presented in Appendix A.

As shown in Table 4, SPE leachate analyses of carbonaceous samples for lithium identified concentrations ranging from 0.06 to 0.13 mg/L, with an average concentration of 0.09 mg/L. The average lithium concentration in the carbonaceous material SPE leachate, intended to simulate groundwater conditions, is 1.5 times the average concentration from fine-grained samples and three times the average concentration from coarse-grained samples, raising the potential upper range for lithium concentration due to natural variability when compared to fine-grained sediments without carbonaceous material. The laboratory report for the analyses of carbonaceous material samples is presented in Appendix B.

Table 4 Summary of SPEs for Lithium in Carbonaceous Materials

Boring ID	Sample Depth within Boring (ft)	Lithium Result (mg/L)
SB-2	20.5-21	0.11
T-2	22.5-23.5	0.07
T-3	30-32.5	0.13
T-5	10-15	0.09
T-6	19.5-20	0.08
T-17	10.75-15	0.10
T-18	12.5-14.5	0.09
T-22	10-15	0.06
	average	0.09
	range	0.06 to 0.13

2.2.2 Carbonaceous Material Location Compared to Downgradient Wells

Carbonaceous material was identified in the MW-111 boring log (Appendix A) at a depth of approximately 3 feet below the well screen. Common industry practice is to backfill any over-drilled depth below the well screen using filter pack sand. This backfill below the well screen would allow transfer of groundwater from the carbonaceous zone to the well screen during sampling, likely affecting water quality.

The boring logs for the remaining downgradient wells did not identify carbonaceous material, though the older Site wells provide little detail on the materials encountered during well construction. Since carbonaceous zones can be thin, these zones could be present in the downgradient wells even though they were not noted on the well logs. While downgradient CCR monitoring network wells MW-117, MW-118, and MW-120 do not document carbonaceous material at the well locations, additional borings surrounding these downgradient wells provided evidence of carbonaceous zones (Figure 2). Table 5 provides the maximum and most recent lithium concentrations measured in downgradient wells and the approximate distances from the downgradient wells to the nearest boring in which carbonaceous material was identified. Measured lithium concentrations tended to be higher in groundwater where a downgradient carbonaceous zone was identified closer to the well, with the highest lithium concentration correlating to well MW-111 where carbonaceous material was documented within the boring (Appendix B).

Table 5 Carbonaceous Zone Correlation to Downgradient Groundwater Concentrations

Downgradient CCR Well	Maximum Measured Lithium Concentration in Groundwater* (mg/L)	Spring 2023 Lithium Concentration in Groundwater (mg/L)	Distance to Closest Boring with Documented Carbonaceous Material (ft)
MW-111	0.227	0.158	within boring
MW-120	0.176	0.109	125
MW-117	0.155	0.107	160
MW-118	0.102	0.065	280

^{*}Maximum lithium concentration measured in assessment monitoring groundwater samples.

By inference from the information presented above, the presence of carbonaceous materials within the well boring contributes to elevated concentrations of lithium in MW-111. The site investigation boring logs document that carbonaceous material is present at the distances shown in Table 5 from each downgradient well. Based on the information in Table 5, there appears to be a relationship between groundwater lithium concentrations and distance to the nearest documented location of carbonaceous material, although carbonaceous material may be closer to the wells than documented by the borings.

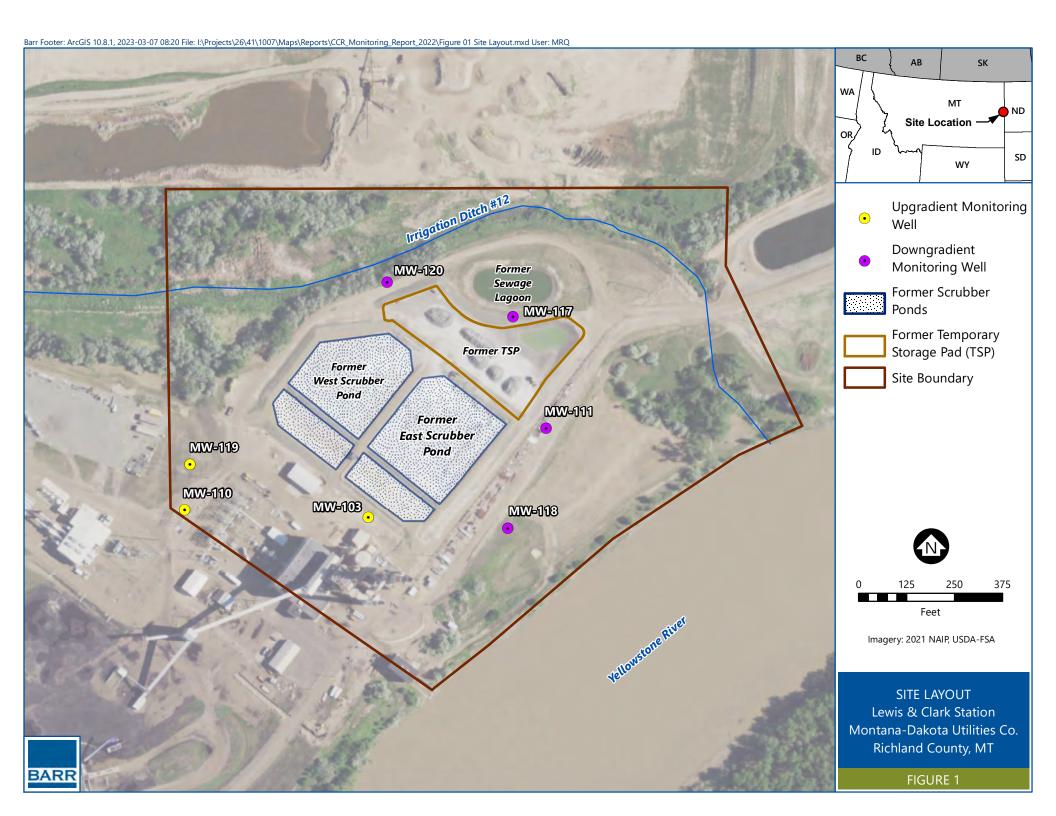
Since the average lithium concentration SPE leachate analyses is about 1.5 times the average for fine-grained materials, it would be anticipated that lithium in groundwater samples that are influenced by carbonaceous materials would be much higher. It is apparent that carbonaceous materials in the downgradient monitoring zone have a significant impact on lithium concentrations in these wells and the regulated CCR unit is not the cause of elevated concentrations.

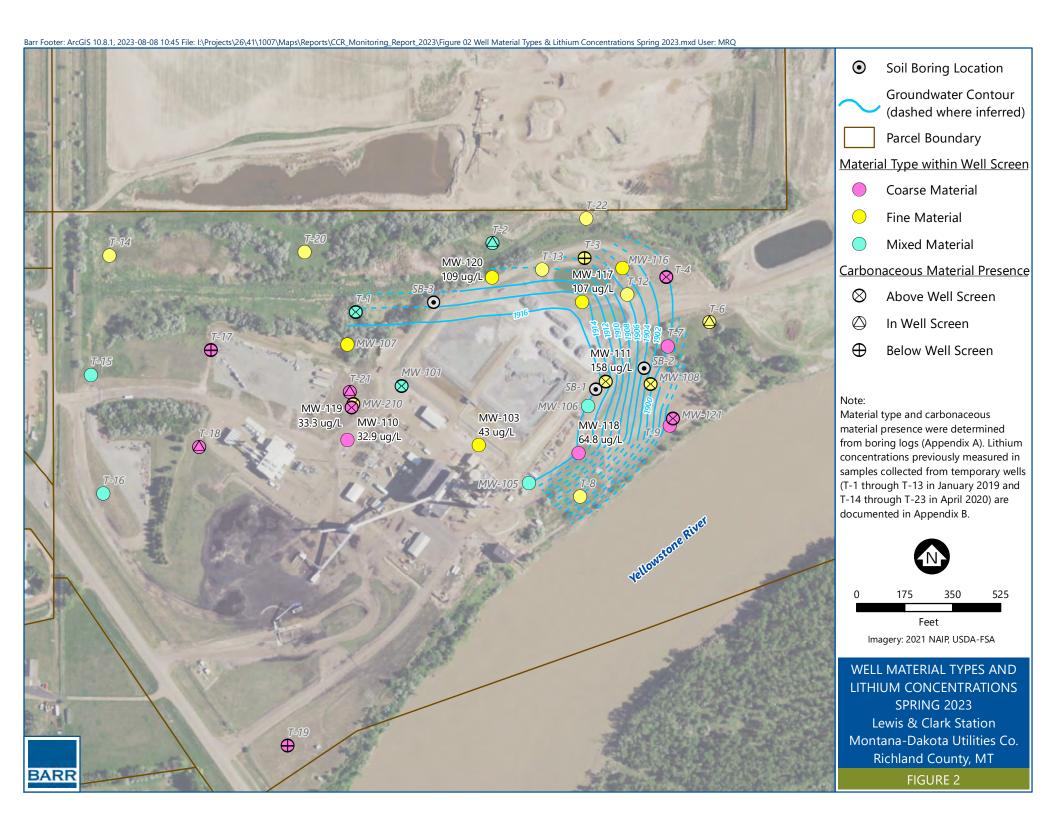
2.2.3 Conclusion

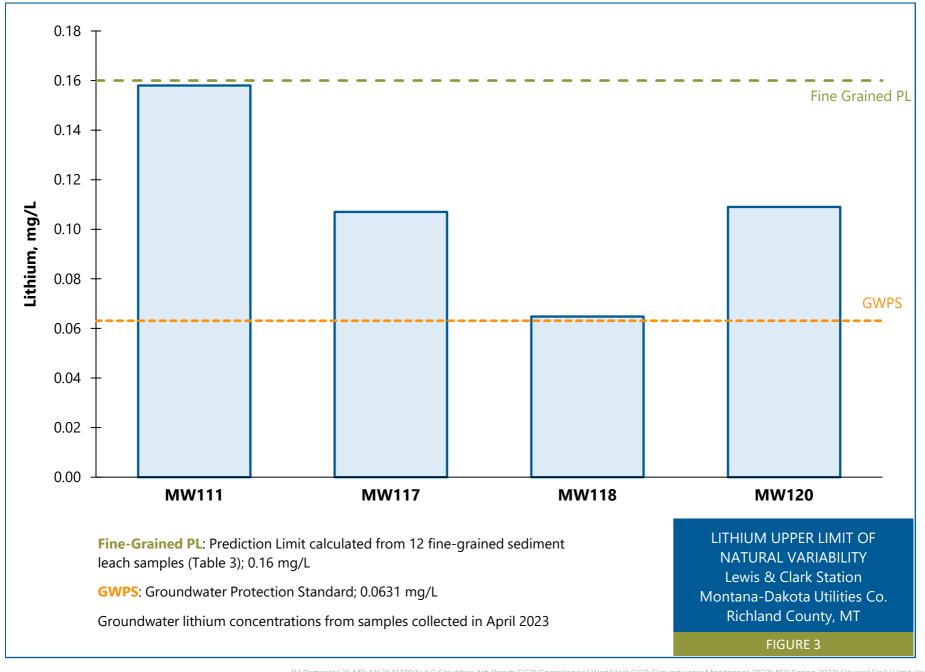
The average lithium concentration in the carbonaceous material SPE leachate is greater than the average concentrations in leachate from fine-grained or coarse-grained sediment samples. The locations where carbonaceous material was identified in boring logs also appear to correlate with the elevated lithium concentrations in CCR monitoring network wells. For instance, monitoring well MW-111 has the highest lithium concentration for the spring 2023 event (0.158 mg/L) and is the only downgradient well with carbonaceous material documented in the well's boring log. The detected lithium concentration appears to be within the range of natural variability when carbonaceous material is present. These data show that the presence of carbonaceous material in the aquifer matrix contributes to elevated lithium in downgradient groundwater.

3 Conclusion

The analysis summarized in this report supports a demonstration, consistent with requirements of § 257.95(g)(3)(ii) of the CCR Rule, that the presence of concentrations of lithium at statistically significant levels above the GWPS are attributable to sources other than the CCR unit. The following hypotheses were proven to support this determination:


- **Hypothesis No. 1**: Due to the natural variability between sediments in which upgradient and downgradient wells are screened, the observed downgradient concentrations are due in part to the natural variation in lithium content of the sediments.
- **Hypothesis No. 2**: The GWPS based on upgradient wells is not representative of the background lithium concentrations in downgradient wells due to naturally occurring carbonaceous zones within the aquifer matrix present in fine-grained sediments within or near the screened intervals of the downgradient wells.


Taken together, the lines of evidence presented above provide adequate documentation and support that an alternative source is responsible for the presence of lithium at statistically significant concentrations above the GWPS. Therefore, it is concluded that the combined effects of natural variability and presence of carbonaceous material in the area downgradient from the CCR unit establish an alternative source, and there does not appear to be a release from the former Scrubber Ponds.


4 References

- Barr Engineering Co., 2016. Evaluation of Existing Surface Impoundment Liner, West and East Scrubber Ponds. Prepared for Montana-Dakota Utilities, September 2016.
- Barr Engineering Co., 2018. 2017 Annual Groundwater Monitoring and Corrective Action Report, Scrubber Pond and Temporary Storage Area. Prepared for Montana Dakota Utilities, January 2018.
- Barr Engineering Co., 2019a. 2018 Annual Groundwater Monitoring and Corrective Action Report, Scrubber Pond and Temporary Storage Area, Lewis & Clark Station. Prepared for Montana Dakota Utilities, January 2019.
- Barr Engineering Co., 2019b. Assessment of Corrective Measures, Lewis & Clark Station. Prepared for Montana-Dakota Utilities, August 2019.
- Barr Engineering Co., 2020a. Alternative Source Demonstration, Temporary Storage Pad, Lewis & Clark Station. Prepared for Montana Dakota Utilities, November 2020.
- Barr Engineering Co., 2020b. 2019 Annual Groundwater Monitoring and Corrective Action Report, Scrubber Pond and Temporary Storage Area, Lewis & Clark Station. Prepared for Montana Dakota Utilities, January 2020.
- Barr Engineering Co., 2021. 2020 Annual Groundwater Monitoring and Corrective Action Report, Scrubber Pond and Temporary Storage Area, Lewis & Clark Station. Prepared for Montana Dakota Utilities, January 2021.

Figures

Appendices

Appendix A Site Boring Logs

LOG OF BORING

PROJECT: W86-007 SOIL BORINGS

Fly Ash Sludge Lagoons MDU Lewis & Clark Station Sidney, MT

BORING:

LOCATION: Middle of SW side of lagoons, see N.C.C. drawing

ST-103W

	4			DAT	E: 1	1/2	1/86	SCAL	E: 1"=4
Elev. 23.2	Depth	ASTM D2487	Description of Materials		BPF		Tests	or	Notes
22.7	.5	Symbol	(ASTM D2488) GRAVEL surfacing	_			qp		
		CL	SILTY CLAY, low to medium plas	_					
	1		ticity, dark brown to grayish						
			brown, moist, very stiff	+	21		4+		
19.7	31/2		(fine alluvium)	-	21		47		
		CL	SANDY CLAY, low plasticity,		1				
			brown, moist, rather stiff (fine alluvium)	+					
			(Time alluvium)	L	10		2		
16.7	61/2	CU ON	CANDY OF THE				1		
	1	GW-GM	SANDY GRAVEL, fine to medium grained, a little silt, wet to	-					
			waterbearing, loose to dense	_	17				
41		V E	(coarse alluvium)				-		1.1
				-					
				1	5				
						-			
				1	57				
08.2	15								
		ML	SANDY SILT, nonplastic, light		52		1 3/4		
06.2	17		gray, moist, very dense (siltstone)						
00.2	1/	СН	FAT CLAY, high plasticity, ligh	+					
		O.I.	gray, moist, hard (claystone)	t					
			(craybrone)	1					
								V 42	
02.7	201/2		,	_ 3	38		4+		
			Water level down 10.1' with	-	-	-			
			19' of hollow-stem auger in						
		-	the ground					10.2	
			Water level down 9.3' immed-						4
			iately after withdrawal of	2					4
		1.4	auger						
		and a second	2" PVC monitoring well in-		-	0			7.
			stalled to a depth of 19', see sketch				- 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
			-30 01102011		1				W 20
	-					1		4	
	V .						11 - 2 - 2		Section 1
		E 1							
		Com			1		Art West		

WELL LOG REPORT

File No.

State law requires that the Bureau's copy be filed by the water well driller within 60 days after completion of the well.

1. WELLOWNER MDU Lewis & Clark Sta 2. CURRENT MAILING ADDRESS 400 North 4th 13,5 marck, NO 58501	f) Duration of test: Pumping time hrs. g) Recovery time hrs. h) Recovery water level ft. at hrs. after pumping stopped. Wells intended to yield 100 gpm or more shall be tested for a period of 8 hours or more. The test shall follow the development of the well, and shall be conducted continuously at a constant discharge at least as great as the intended appropriation. In addition, the back water affects the least as great as the intended appropriation.				
3. WELL LOCATION SE 1/4 NW 1/4 SW 1/4 Section 9 Township 22 NW Range 59 EW County Fick land Govn't Lot, or Lot, Block Subdivision Name	form. NOT a press movab	E: All wells s ure gauge ti e caps are a	on. In addition to the above information, water level data and recorded on the Department's "Aquifer Test Data" shall be equipped with an access port 1/2 inch minimum or nat will indicate the shut-in pressure of a flowing well. Receptable as access ports.		
Tract Number	If yes, I	now?	ED OR ABANDONED?Yes _K No		
Other Specify Mouitoring	12. WELL I	h (ft.) To	#3, 110.		
5. TYPEOF WORK: Hollowstern Auger X New well Method: Dug Bored Deepened Driven Driven	From	0.3	Formation 5ilt, sandy w/gravel, dark browy		
Reconditioned Rotary Jetted	0.3	1	5. It, soundy warrange reduch		
6. DIMENSIONS: Diameter of Hole Dia	1	4	Silt, sandy w/gravel & Copples, medium brown		
Diain. fromft. toft.	4	14	Gravel, to Coarse, w/cobbles, abt 3070 Sand, Med, brown		
7. CONSTRUCTION DETAILS: Casing; Steel Diafromft. toft.	14	18	Silt, Light blue, Bedrock		
Threaded Welded Dia fromft. toft. Type Wall Thickness					
Casing; Plastic Dia. 2 from +1.8 ft. to 8 ft. Weight 508-21 Dia. from ft. to ft.					
PERFORATIONS: Yes □ No.★					
Type of perforator usedin. byin.					
perforations fromft. toft.					
perforations fromft. toftftft. toft.					
SCREENS: Yes No []					
Manufacturer's Name Timeo PVC					
Type Model No Dia					
DiaSlot sizefromft. toft.					
GRAVEL PACKED: Yes No K Size of gravel		American and high			
GROUTED: To what depth? 7 It. Material used in grouting 263# bestonite chips					
8. WELL HEAD COMPLETION: Pitless Adapter □ Yes ⋈No					
9. PUMP (if installed)					
Manufacturer's name Model No HP			ATTACH ADDITIONAL SHEETS IF NECESSARY		
	13. DATE C	OMPLETED	8/28/91		
10. WELL TEST DATA The information requested in this section is required for all wells. All depth measurements shall be from the top of the well casing. All wells under 100 gpm must be tested for a minimum of one hour and provide the following information: a) Air Pump Bailer ft. If flowing; closed-in pressure psi gpm. Flow controlled by: valve, reducers, other, (specify) c) Depth at which pump is set for test d) The pumping rate: gpm.	This we	ell was drille wledge.	CTOR'S CERTIFICATION d under my jurisdiction and this report is true to the best of Dec 9 Date		
d) The pumping rate:gpm. e) Pumping water levelft. athrs. after pumping began.	F1	Man	dan, NY 5,8407		
Pomping organi	Signatu	· 1	M/ Semmin 246/004		
MONTANA DEPARTMENT OF NATURAL RESOUR	CES & C	ONSER	VATION DNRC		

MONTANA WELL LOG REPORT

This well log reports the activities of a licensed Montana well driller, serves as the official record of work done within the borehole and casing, and describes the amount of water encountered. This report is complied electronically from the contents of the Ground-Water Information Center (GWIC) database for this site. Acquiring water rights is the well owner's responsibility and is NOT accomplished by the filing of this report.

Other Options

Plot this site on a topographic map View scanned well log (7/28/2010 8:48:11 AM)

Site Name: MDU GWIC Id: 190701 **DNRC Water Right:**

Section 1: Well Owner

Owner Name

MDU

Mailing Address

City State Zip Code **SIDNEY** MT 59270

Section 2: Location

Range **Township** Section **Quarter Sections** SW1/4 NE1/4 SW1/4 22N 59E Geocode County

RICHLAND

Latitude Longitude Geomethod Datum 47.679047 104.157232 TRS-SEC NAD83 **Altitude** Method Datum Date

Addition **Block** Lot

Section 3: Proposed Use of Water

MONITORING (1)

Section 4: Type of Work

Drilling Method:

Section 5: Well Completion Date

Date well completed: Thursday, May 03, 2001

Section 6: Well Construction Details

Borehole dimensions

From	То	Diameter
0	18	8

Casino

Casini	9					
			Wall	Pressure		
From	То	Diameter	Thickness	Rating	Joint	Туре
0	8	2				PVC-SCHED40

Completion (Perf/Screen)

			# of	Size of	
From	То	Diameter	Openings	Openings	Description
8	18	2			.01 SLOT

Annular Space (Seal/Grout/Packer)

Allilui	Annulai Space (Seal/Grout/Facker)					
			Cont.			
From	То	Description	Fed?			
0	6	3/8 BENTONITE CHIPS				
6	18	10/20 SAND				

Section 7: Well Test Data

Total Depth: 18 Static Water Level: Water Temperature:

Unknown Test Method *

Yield _ gpm.

Pumping water level _ feet. Time of recovery _ hours. Recovery water level _ feet.

* During the well test the discharge rate shall be as uniform as possible. This rate may or may not be the sustainable yield of the well. Sustainable yield does not include the reservoir of the well casing.

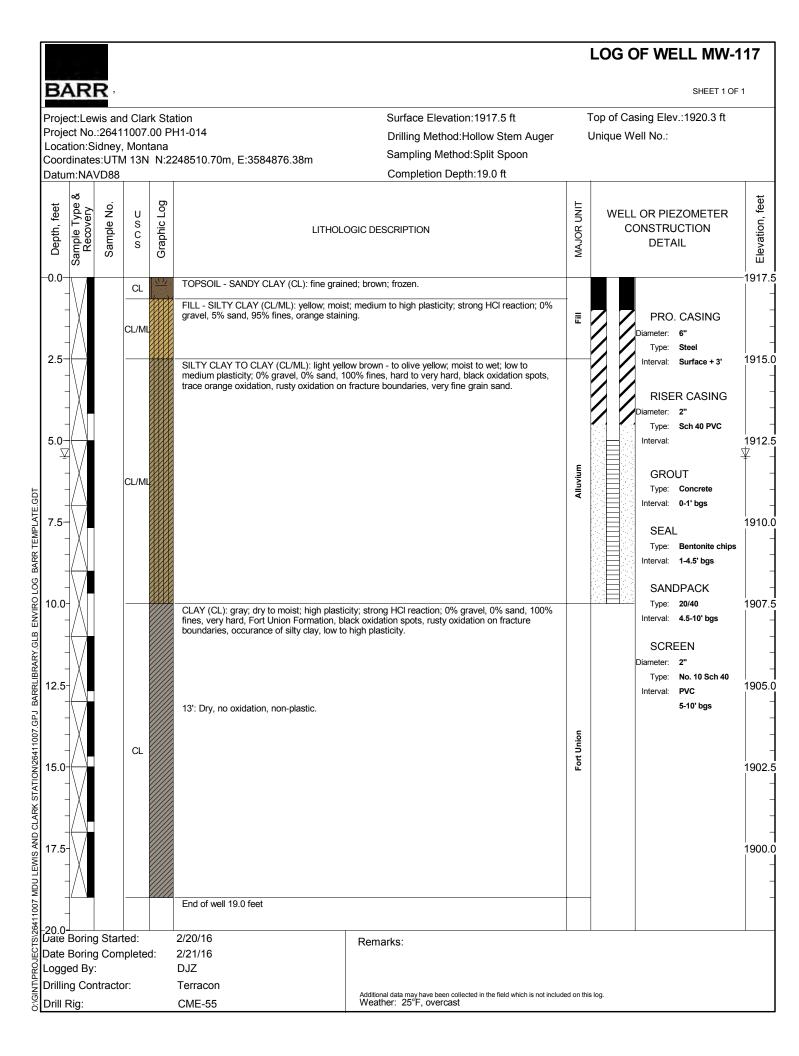
Section 8: Remarks

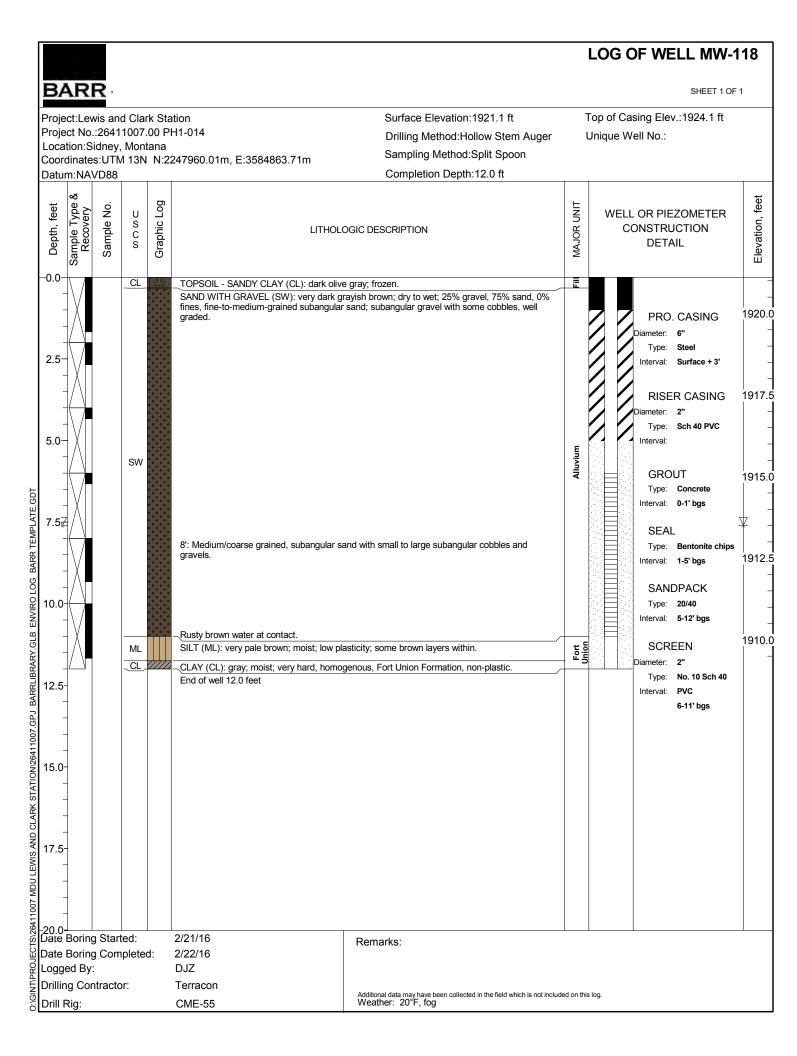
Section 9: Well Log Geologic Source

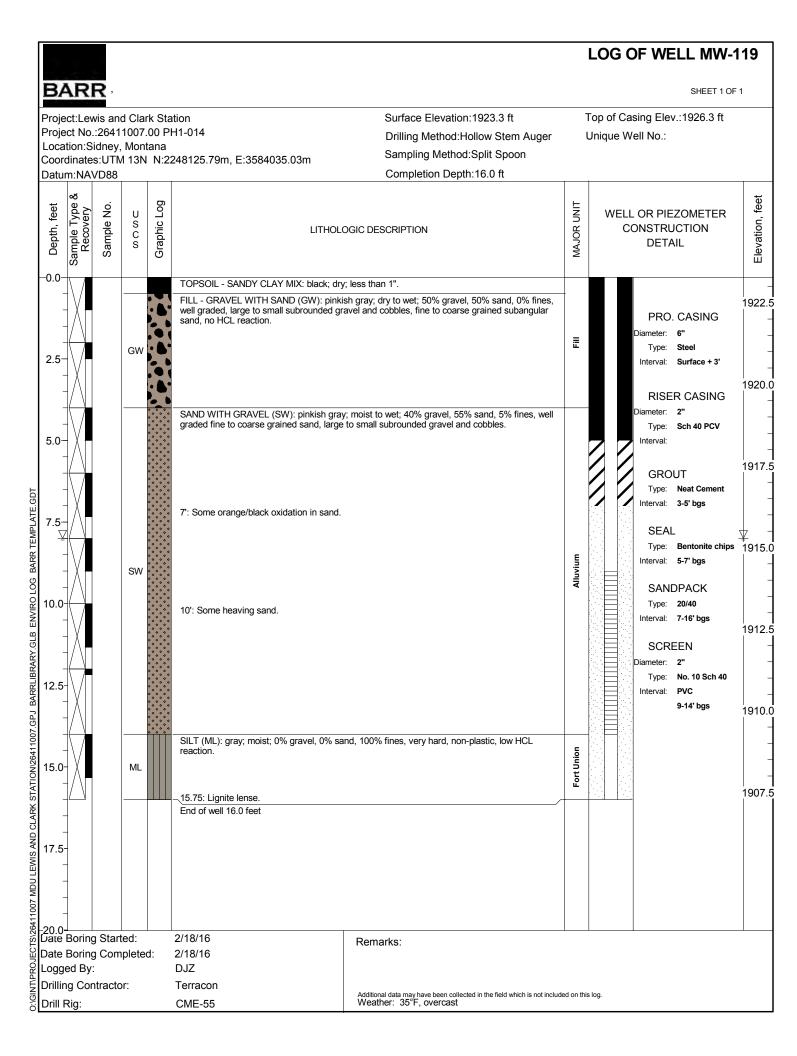
Unassigned

From	То	Description
0		BLACK SILTY CLAY
5	¥	TAN/ YELLOW SILT CLAY
21	22	COAL
22	25	SILTY CLAY SAND STRINGERS

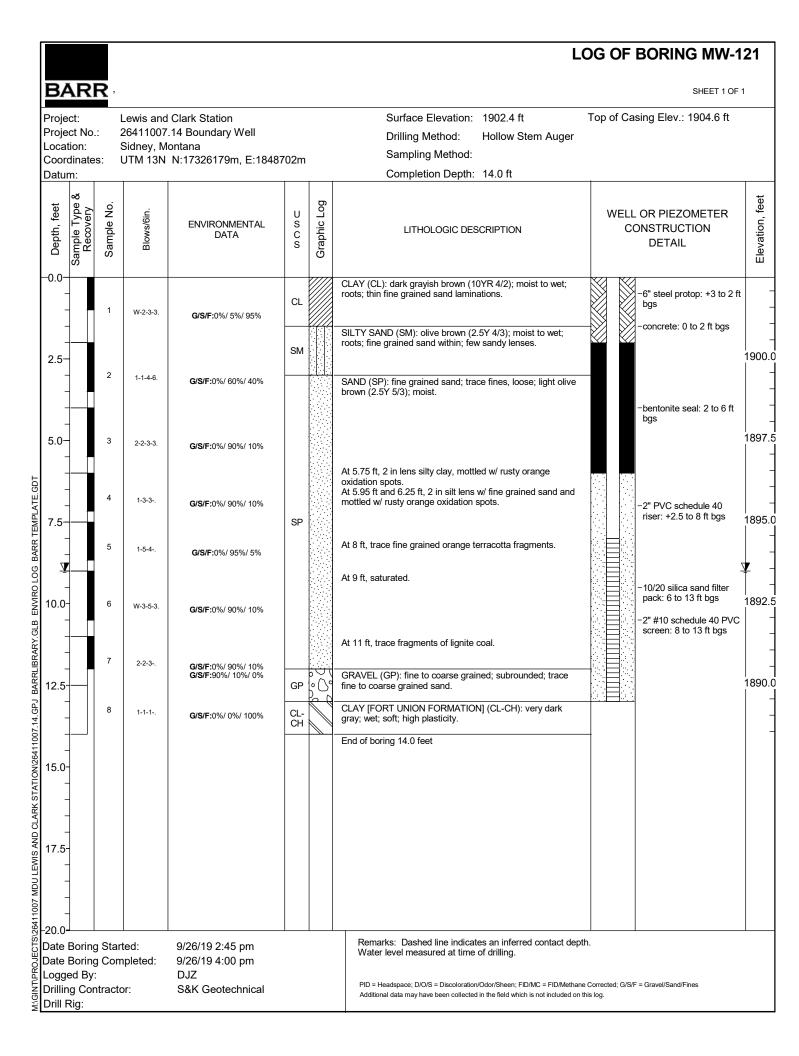
Driller Certification

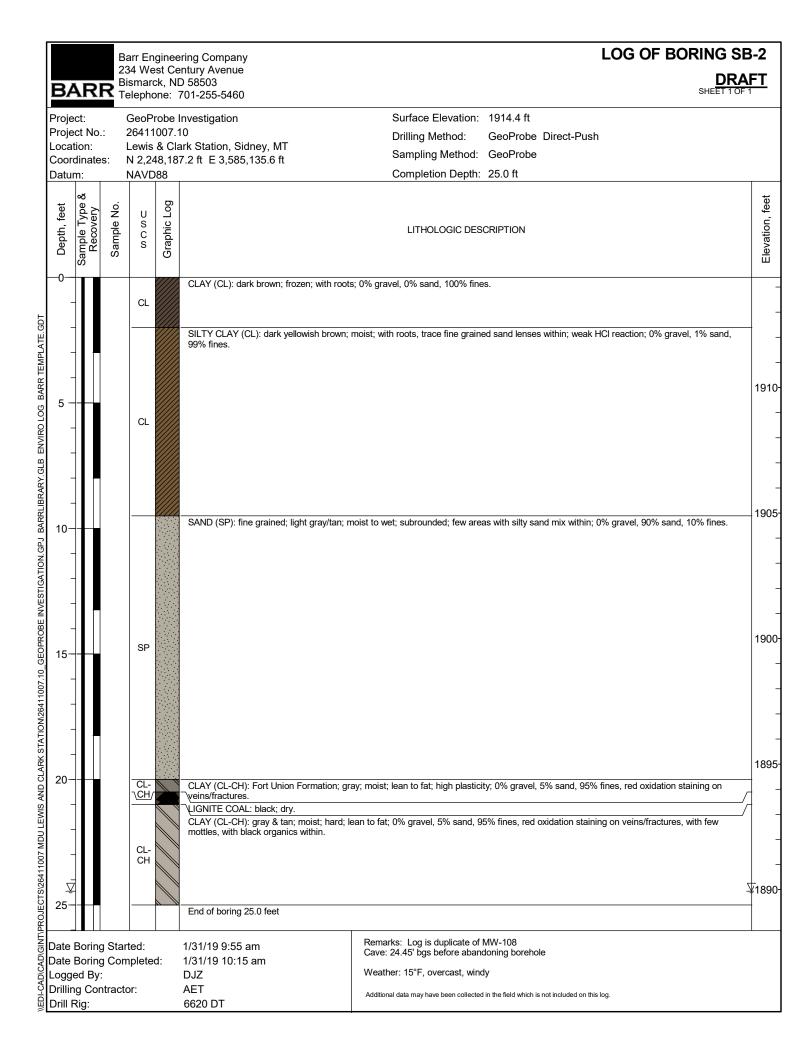

All work performed and reported in this well log is in compliance with the Montana well construction standards. This report is true to the best of my knowledge.

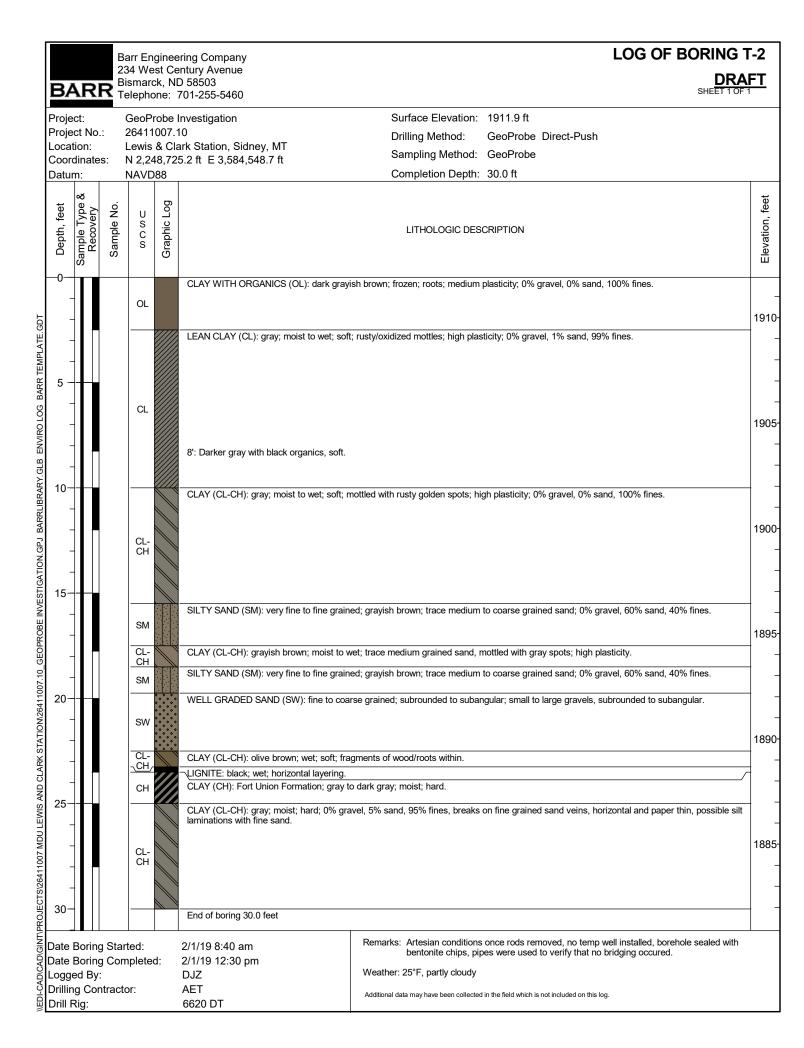

Name:

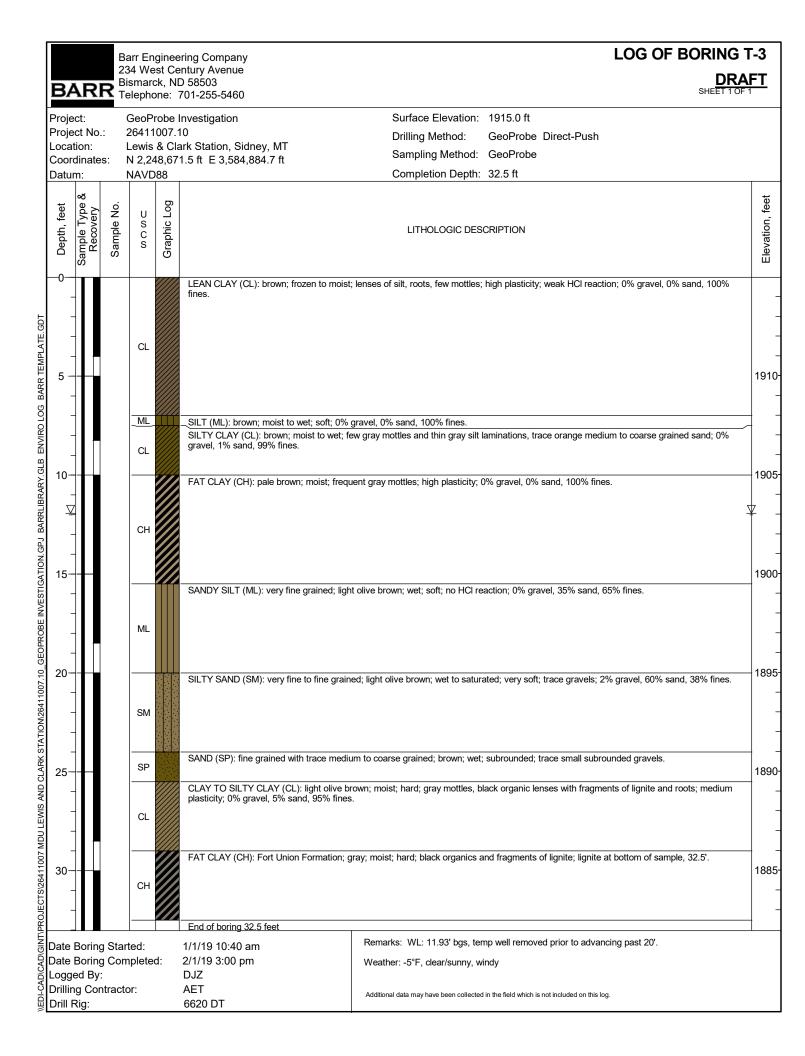

Company: HANSEN ENVIRONMENTAL DRILLING

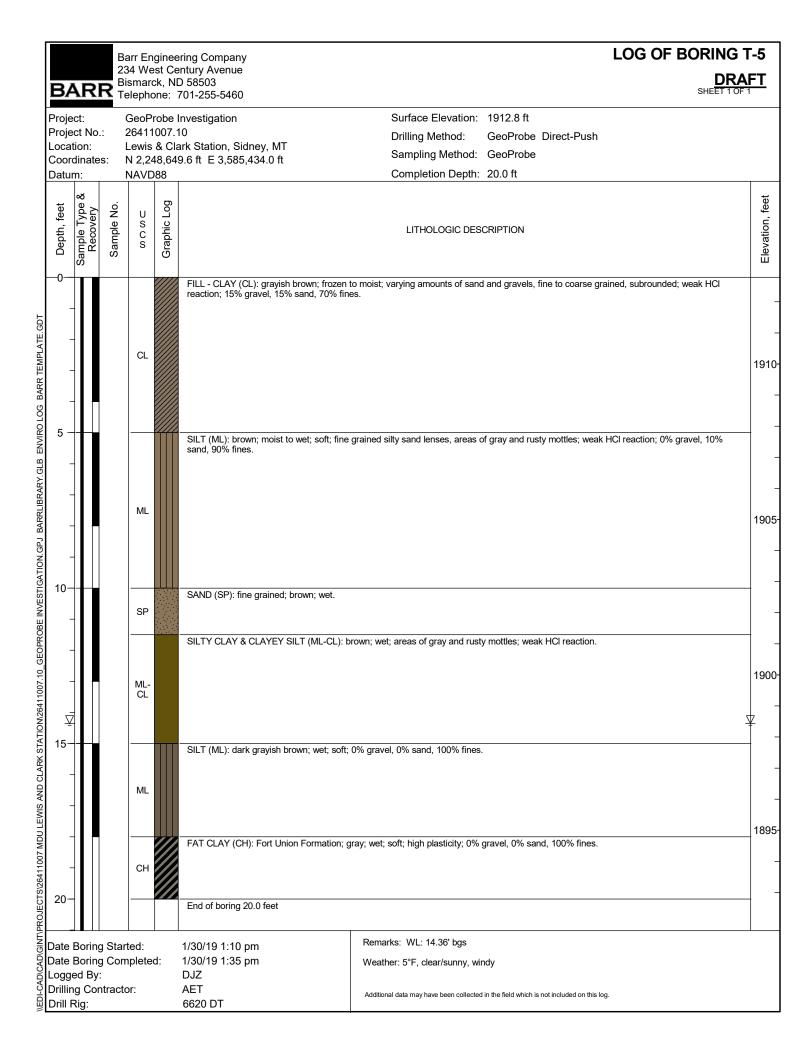
License No: WWC-230

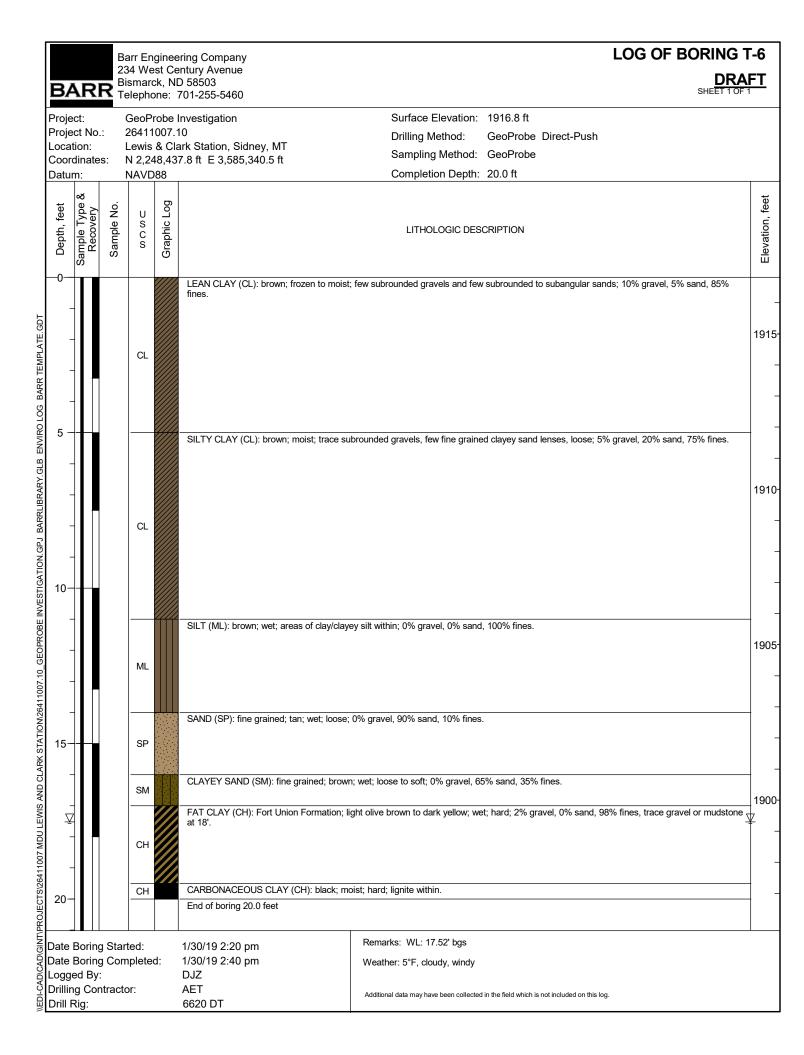

Date 5/3/2001 Completed:

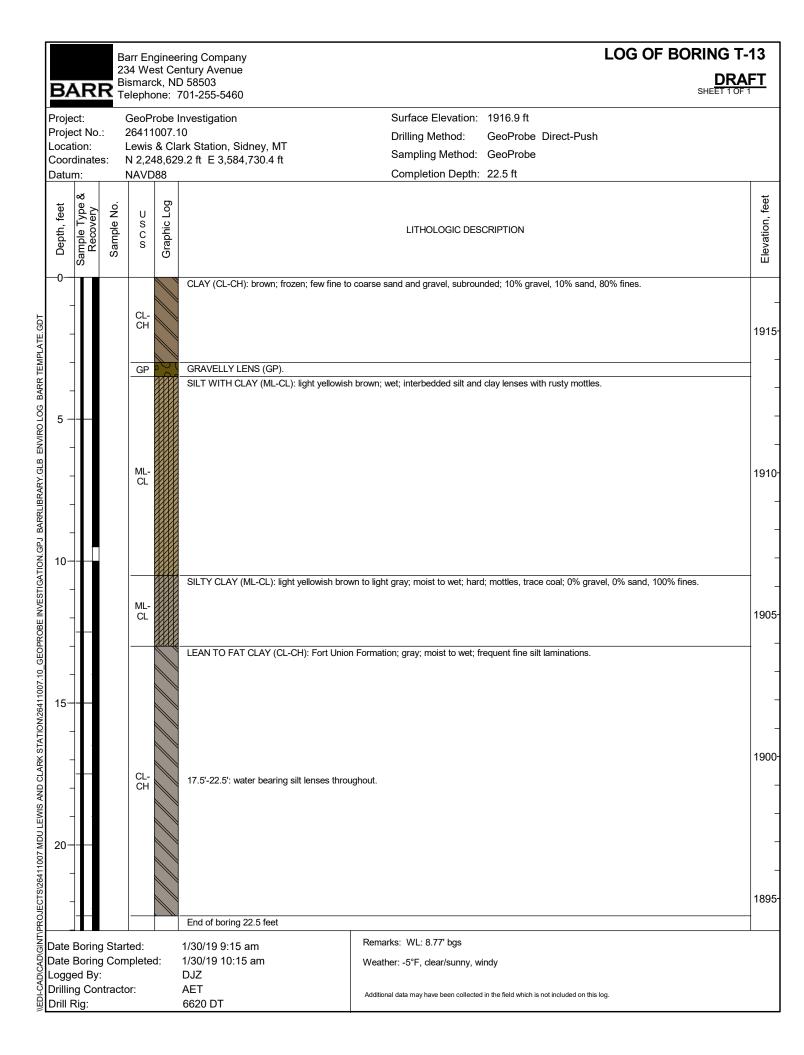


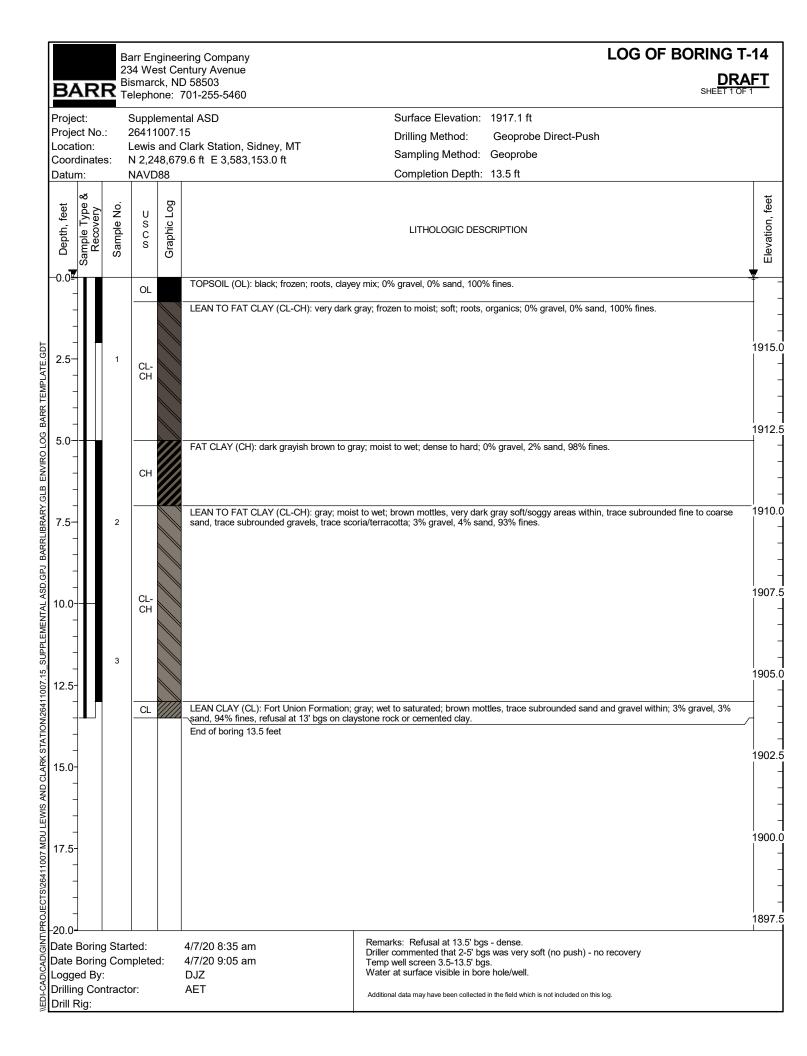

								LOG OF WELL	_ MW-120	
Project: Project No.: Location: Coordinates: Datum:		S:					Surface Elevation: 1919.0 ft Drilling Method: Hollow Stem Auger Sampling Method: Split Spoon Completion Depth: 16.0 ft	SHEET 1 OF 1 Top of Casing Elev.: 1922.0 ft		
~		Sample No.	Blows/6in.	ENVIRONMENTAL DATA	USCS	Graphic Log	LITHOLOGIC DESCRIPTION	WELL OR PIEZO CONSTRUCT DETAIL		
0.0			7-9-14-18.	G/S/F :0%/ 0%/ 100% G/S/F :15%/ 60%/ 25%	CL- CH SP- SC		CLAY FILL (CL-CH): yellowish brown (10YR 5/4); frozen; hard; roots. SAND W/ GRAVEL (SP-SC): brown (10YR 4/3); moist; very fine grained sand, subround gravels, large to small.	PRO. CA Diameter: 6" Type: Ste	191 el	
2.5			8-12-13- 10.	G/S/F :5%/ 70%/ 25% G/S/F :0%/ 5%/ 95%			CLAY (CL-CH): light yellowish brown (2.5Y /4); moist to wet; hard; crumbly, areas of CLAYSTONE within.	RISER C Diameter: 2" Type: Sch	ASING 191	
5.0-			5-6-7-11. 2-4-3-0.	G/S/F :15%/ 15%/ 80% G/S/F :5%/ 20%/ 75%			At 5': 4" FAT CLAY (CH), brown (10YR 4/3), hard Increasing sand and gravels within claystone. Mostly fine grained sand, smal gravels, subround. At 6-7.5': Mix of fat clay and claystone w/ sand/gravel within w/ little silt pockets.	GROUT Type: Cer Interval: 0-1.	1	
7.5			1-2-3-0.	G/S/F :10%/ 20%/ 70%	CL- CH		At 7.5': Transitions to SANDY CLAY (CL/CH), high plasticity with very fine to coarse grained sand within, subround to subangular. Trace gravels, small to large. Rusty red oxidation spots and fractures. Few black manganese oxidation spots. Few white precipitate veins/spots.	SEAL Type: Ber Interval: 1.5-	191	
10.0-			1-3-4-4.	G/S/F:5%/ 20%/ 75%			At 11': Color change to dark grayish brown (10YR 4/2), softer.	Type: 10/2 Interval: 9-16 SCREEN Diameter: 2"	6' bgs	
12.5			1-3-3-0.	G/S/F:10%/ 20%/ 70% G/S/F:10%/ 20%/ 70%			At 12': Sample, wet.	Type: No.	12 Sch 40 PVC 16' bgs	
15.0-			1-2-3-4.	G/S/F :0%/ 0%/ 100%	CL- ML		SILTY CLAY/CLAYEY SILT (CL-ML): light gray/gray; wet; soft; with trace black roots and rusty orange oxidations stains. End of well 16.0 feet			
17.5- -										
20.0—Date Bo	_			1/29/18 1/29/18			Remarks: After 15 min., water level was at 12.9 ft bgs. A	After 40 min., water level was	s at 12.6 ft bgs.	
Date Bo Logged Drilling Drill Riq	d By: Con		npleted: or:	DJZ SK Geotechnical			PID = Headspace; D/O/S = Discoloration/Odor/Sheen; FID/MC = FID/Methan Additional data may have been collected in the field which is not included on		es	

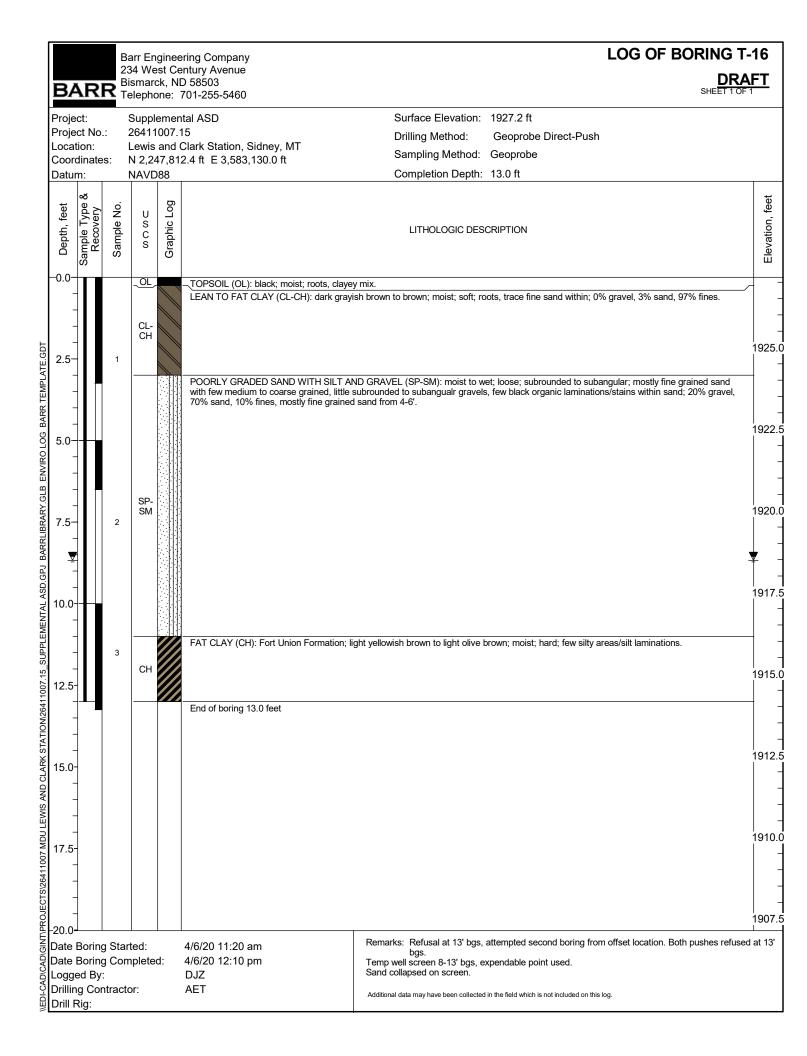


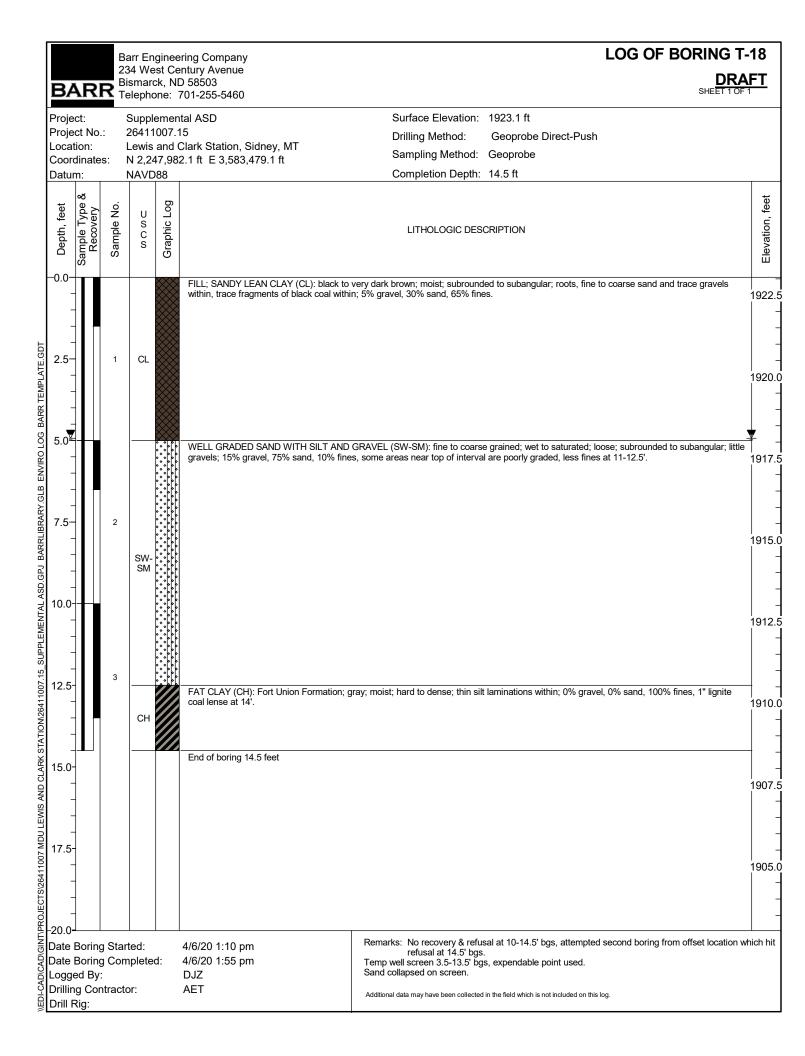


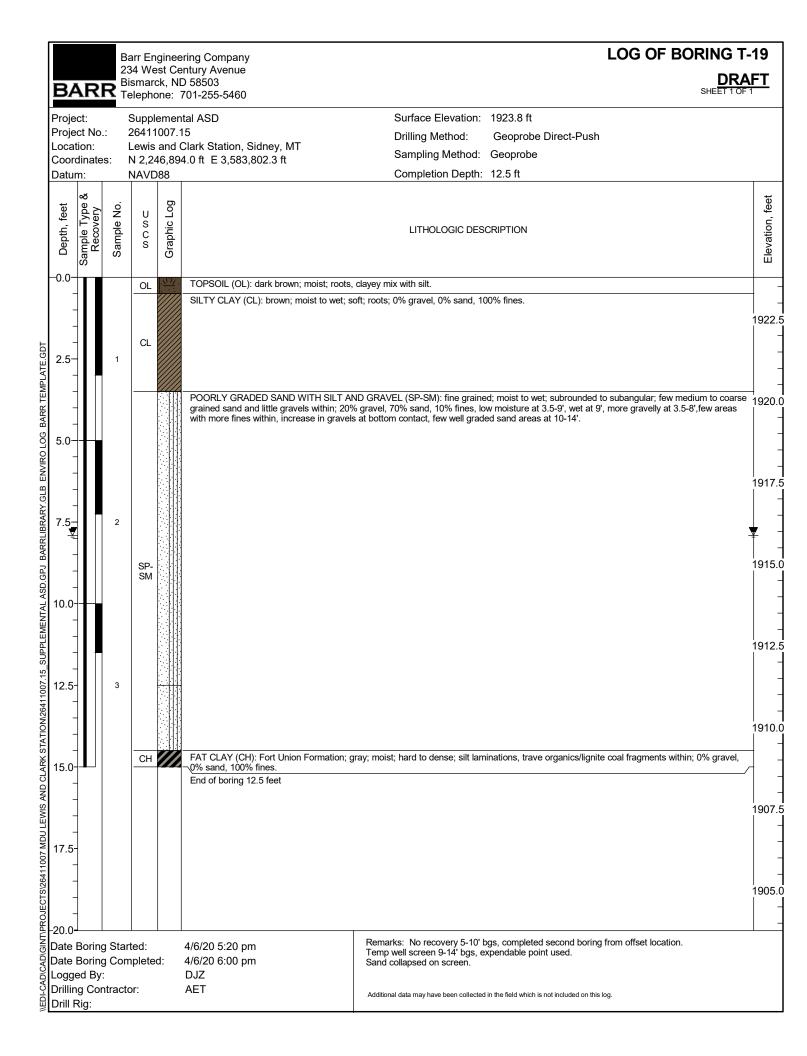

LOG OF BORING SB-3 Barr Engineering Company 234 West Century Avenue Bismarck, ND 58503 BARR Telephone: 701-255-5460 Project: Surface Elevation: 1925.2 ft GeoProbe Investigation Project No.: 26411007.10 Drilling Method: GeoProbe Direct-Push Location: Lewis & Clark Station, Sidney, MT Sampling Method: GeoProbe Coordinates: N 2,248,493.0 ft E 3,584,337.9 ft Datum: NAVD88 Completion Depth: 20.0 ft feet Sample Type 8 Recovery Graphic Log Depth, feet Sample No. U S C S Elevation, LITHOLOGIC DESCRIPTION FILL: push through road, no recovery. 1925[.] EDI-CADICADIGINTIPROJECTS/26411007 MDU LEWIS AND CLARK STATION/26411007.10 GEOPROBE INVESTIGATION. GPJ BARRLIBRARY. GLB ENVIRO LOG BARR TEMPLATE. GDT FILL - CLAY (CL): dark grayish brown; moist; with trace fine-medium grained sand mix within; high plasticity; 0% gravel, 5% sand, 95% fines CL CLAYEY SAND (SC): mostly fine grained with trace medium and coarse grained; subrounded; with few subrounded gravels; 10% gravel, 55% sand, 35% fines 1920 SC SP 9.5': SAND (SP): 3-inch lens of fine grained; tan; moist to wet. 10<u></u> ¥1915 SANDY CLAY (CL): dark gray; moist to wet; with fine to coarse sand and few gravels within, trace roots. CL SILTY SAND (SM): fine grained with few medium and coarse grained; grayish brown; saturated; with trace to few small subrounded gravels 15 within; 10% gravel, 60% sand, 30% fines 1910· SM SANDY SILT (ML): very fine to fine grained; light olive brown; wet to saturated; mottled. MI LEAN TO FAT CLAY (CL-CH): olive yellow; moist; with golden brown mottles, trace manganese oxidation stains; medium plasticity. CL-CH 20 End of boring 20.0 feet Remarks: WL: 10.20' bgs, not allowed to equilibrate Date Boring Started: 1/31/19 2:05 pm Date Boring Completed: 1/31/19 2:25 pm Weather: 25°F, clear/sunny, windy Logged By: DJZ **Drilling Contractor: AET** Additional data may have been collected in the field which is not included on this log Drill Rig: 6620 DT



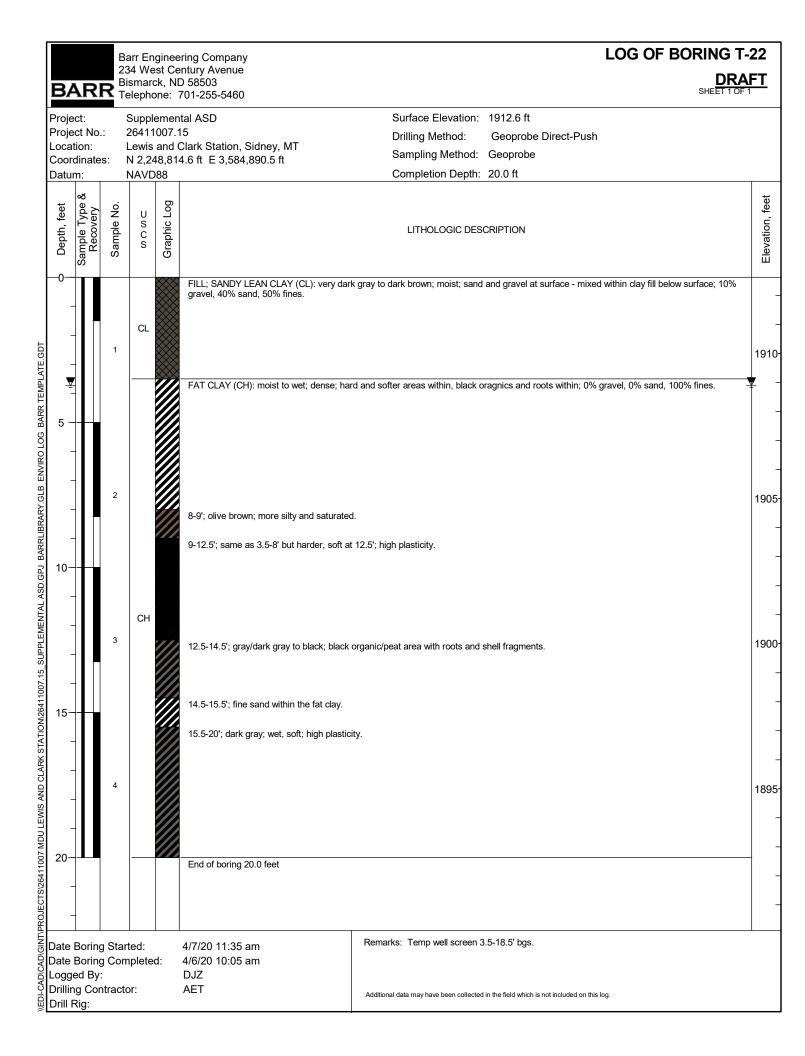


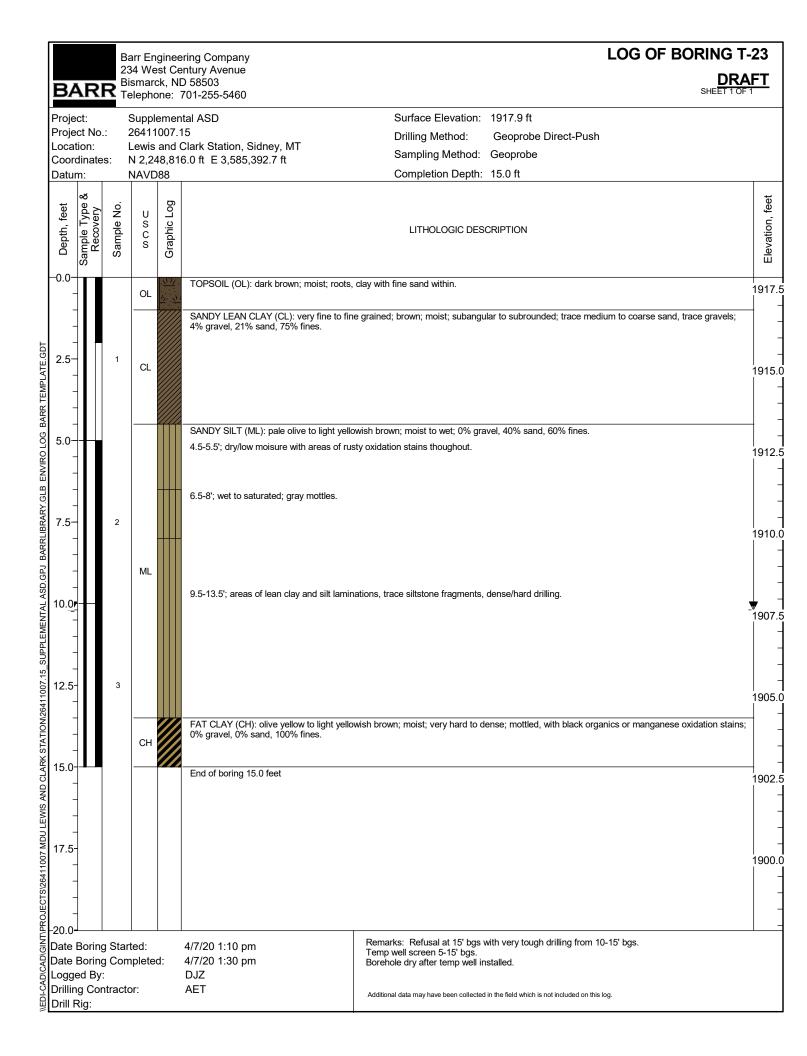






Barr Engineering Company 234 West Century Avenue Bismarck, ND 58503 Telephone: 701-255-5460					entury Avenue	LOG OF BORING T-15 DRAFT SHEET 1 OF 1			
Project: Supplemel Project No.: 26411007. Location: Lewis and				emer 007. ⁻ and (18,24	ital ASD	Surface Elevation: 1923.6 ft Drilling Method: Geoprobe Direct-Push Sampling Method: Geoprobe Completion Depth: 17.5 ft			
Depth, feet	Sample Type & Recovery	Sample No.	USCS	Graphic Log		LITHOLOGIC DESCRIPTION	Elevation, feet		
-0.0			OL	\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.	TOPSOIL (OL): dark brown; moist; roots, trace fine clayey sand.				
- - - 2.5-		1	CL- CH		LEAN TO FAT CLAY (CL-CH): brown; m trace subrounded gravels; 1% gravel, 6%	oist; few fine to coarse sand, subrounded to subangular, few areas of rusty oxidiation spots/veins, 6 sand, 93% fines.	1922.		
2.5- - - -			SP-		POODLY CRAPED CAND WITH OUT A	ND CDAVEL (CD CM) unit as blue for most fine to medium and	1920.		
5.0¥ - - - 7.5−		2	SM		POORLY GRADED SAND WITH SILT A	ND GRAVEL (SP-SM): wet; cobble fragments, fine to medium sand. ND GRAVEL (SP-SM): wet to saturated; loose; subrounded to subangular; few well-graded areas ew coarse sand, little subrounded to subangular gravels; 20% gravel, 70% sand, 10% fines, fines	1917.		
			SP- SM				1915.		
- - - 12.5		3					1912.		
_							 1910.		
- - - 15.0-			СН		FAT CLAY (CH): Fort Union Formation; grecovery due to swelling.	gray; moist; hard; thin silt laminations; 0% gravel, 0% sand, 100% fines, 2.5' push with 4' of	-		
- - - 17.5		4			End of boring 17.5 feet		1907.		
- - -					Lid of Doffing 17.0 feet		1905.		
Date Date Logge Drillin	Boring	Con	nplete	d:	4/6/20 9:50 am 4/6/20 10:30 am DJZ AET	Remarks: Temp well screen 1.5-11.5' bgs. Sand collapsed on screen.	I		
Drill F						Additional data may have been collected in the field which is not included on this log.			


					ering Company	LOG OF BORING T	-17			
234 West Century Avenue Bismarck, ND 58503 Telephone: 701-255-5460						DRAFT SHEET 1 OF 1				
Project: Suppleme Project No.: 26411007. Location: Lewis and				emer 007. and (ntal ASD	Surface Elevation: 1922.5 ft Drilling Method: Geoprobe Direct-Push Sampling Method: Geoprobe Completion Depth: 15.0 ft				
Depth, feet	Sample Type & Recovery	Sample No.	U % C %	Graphic Log		LITHOLOGIC DESCRIPTION	Elevation, feet			
2.5-		1	OL		_TOPSOIL (OL): black; moist; roots, claye; POORLY GRADED SILTY SAND (SM): b coarse grained sand, trace gravels; 4% g	rown; moist to wet; subrounded to subangular; mostly fine grained sand with few medium to	1922			
2.5- - 5.0- - 7.5- - 10.0 - 12.5- - 15.0- - 17.5- - - - - -		2	SW- SM		WELL GRADED SAND WITH SILT (SW- at bottom of contact; 4% gravel, 86% san	SM): fine to coarse grained; wet; loose; subrounded to subangular; trace gravels with more gravels d, 10% fines.	1917 1915 1912			
12.5-		5	CH		FAT CLAY (CH): Fort Union Formation; g 0% gravel, 0% sand, 100% fines.	ray; moist; silt laminations, few 1" lignite coal lenses/fragments and carbonaceous zones within;	1910 -1907			
- - 17.5- - - -							1905			
-20.0 ^{_1} Date E Date E Logge Drilling Drill R	Boring d By: g Cor	g Com :	pleted	d:	4/6/20 2:50 pm 4/6/20 3:30 pm DJZ AET	Remarks: Temp well screen 5-10' bgs, expendable point used. Sand collapsed on screen. Additional data may have been collected in the field which is not included on this log.				



Barr Enginee	ering Company	LOG OF BORING T-20	0
Bismarck, NI	entury Avenue D 58503 701-255-5460	DRAFT SHEET 1 OF 1	Τ
		Surface Elevation: 1920.7 ft Drilling Method: Geoprobe Direct-Push Sampling Method: Geoprobe Completion Depth: 15.0 ft	
Depth, feet Sample Type & Recovery Sample No. \$\omega \circ \omega \circ \circ \omega \circ \omega \circ \$\omega \circ \omega \circ \omega \circ \$\omega \circ \omega \ci		LITHOLOGIC DESCRIPTION	Elevation, feet
O.OOLOLOL	_TOPSOIL (OL): dark grayish brown; mois SANDY LEAN CLAY (CL): fine to coarse fines.	grained; brown; moist; subrounded to subangular; trace gravels within; 5% gravel, 20% sand, 75% 19	- 920.0 - - - 917.9
5.0 <u>#</u>	POORLY GRADED SAND AND CLAY (C few gravels; 10% gravel, 45% sand, 45%	L-SC): fine grained; brown; moist; subrounded to subangular; few medium to coarse grained sand,	- - -
7.5- 2	FAT CLAY (CH): light yellowish brown; m 0% sand, 100% fines.	oist; hard to dense; occasional brown and gray mottles, few black organic lenses/stains; 0% gravel, 19	-
2.5- 1 CL-SC SC T.5- 2 TOTAL SC CH 7.5- 2 ML 12.5- 4 15.0- 4 17.5- 4 Date Boring Started: Date Boring Completed: Logged By: Drilling Contractor: Drill Rig:	SANDY SILT (ML): light olive yellow; wet and silt ratio varies with depth.	to saturated; very fine grained sand within; 0% gravel, 40% sand, 60% fines, near liquid limit, sand	912. - - - 910. - - - -
15.0-	End of boring 15.0 feet	19	- - 905.0 - -
17.5- - - - -		19	- 902.9 - -
Date Boring Started: Date Boring Completed: Logged By: Drilling Contractor: Drill Rig:	4/7/20 10:00 am 4/7/20 10:30 am DJZ AET	Remarks: Refusal at 15' bgs. Temp well screen 5-15' bgs. Additional data may have been collected in the field which is not included on this log.	

		Bar	r Engi	nee	ring Company	LOG OF BORING	T-21
BAI	RF	Bisr	marck	, NE	ntury Avenue 0 58503 701-255-5460	SHEET	RAFT 1 OF 1
Project: Project Location Coordin Datum:	No.: n: nates:	26 Le N	64110 ewis a	07.1 nd (5,18	tal ASD 5 Clark Station, Sidney, MT 2.0 ft E 3,584,028.4 ft	Surface Elevation: 1923.8 ft Drilling Method: Geoprobe Direct-Push Sampling Method: Geoprobe Completion Depth: 15.0 ft	
		Sample No.	Uscs	Graphic Log		LITHOLOGIC DESCRIPTION	Elevation, feet
2.5-		1	OL .		_TOPSOIL (OL): black; moist; roots, clayer POORLY GRADED SAND WITH SILT A coarse grained sand within, few to little g 5-10' observed in second geoprobe push	ND GRAVELS (SP-SM): fine grained; moist to wet; subrounded to subangular; few medium to ravels, some silty areas within; 15% gravel, 70% sand, 15% fines, wet at 5′, possibly well grader	1922
2.5- - - 5.0 - 7.5- - - 10.0			SP- SM				1917. 1917. - - - 1915.
10.0 - - - - 12.5- -		3					1912.
12.5- 15.0- 17.520.0- Date Bo Date Bo Logged Drill Rig		_	СН		FAT CLAY (CH): Fort Union Formation; 0% sand, 100% fines. End of boring 15.0 feet	gray; moist; hard to dense; silt laminations, trace lignite fragments/black organics within; 0% gra	1910.1 - - - 1907.3
-20.0 Date Bo	oring \$	Starte	d:		4/6/20 3:55 pm	Remarks: Temp well screen 4-14' bgs, expendable point used.	1905.
Date Bo Logged Drilling (Drill Rig	oring (By: Contr	Comp	leted:		4/6/20 4:45 pm DJZ AET	Second boring completed for additional sample recovery. Additional data may have been collected in the field which is not included on this log.	

Appendix B Analytical Results

Project:

1673 Terra Avenue Sheridan, WY 82801

ph: (307) 672-8945

Date: 1/30/2020

CLIENT: Barr Engineering

26411007

Lab Order: \$1912224

CASE NARRATIVE

Report ID: S1912224002

(Replaces S1912224001)

Samples SB-2, T-1, T-13 and T-2 were received on December 12, 2019.

All samples were received and analyzed within the EPA recommended holding times, except those noted below in this case narrative. Samples were analyzed using the methods outlined in the following references:

"Standard Methods For The Examination of Water and Wastewater", approved method versions Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846, 3rd Edition 40 CFR Parts 136 and 141

40 CFR Part 50, Appendices B, J, L, and O

Methods indicated in the Methods Update Rule published in the Federal Register Friday, May 18, 2012 ASTM approved and recognized standards

All Quality Control parameters met the acceptance criteria defined by EPA and Pace Analytical (Formerly Inter-Mountain Laboratories) except as indicated in this case narrative.

Qualifiers by sample

- S1912224-001 SPLP/Lithium Holding times for preparation or analysis exceeded
- S1912224-001 SPLP/Selenium Holding times for preparation or analysis exceeded
- S1912224-001 Total Metals-3050/6010/Lithium Holding times for preparation or analysis exceeded
- S1912224-001 Total Metals-3050/6010/Selenium Holding times for preparation or analysis exceeded
- S1912224-002 SPLP/Lithium Holding times for preparation or analysis exceeded
- S1912224-002 SPLP/Selenium Holding times for preparation or analysis exceeded
- S1912224-002 Total Metals-3050/6010/Lithium Holding times for preparation or analysis exceeded
- S1912224-002 Total Metals-3050/6010/Selenium Holding times for preparation or analysis exceeded
- S1912224-003 SPLP/Lithium Holding times for preparation or analysis exceeded
- S1912224-003 SPLP/Selenium Holding times for preparation or analysis exceeded
- S1912224-003 Total Metals-3050/6010/Lithium Holding times for preparation or analysis exceeded
- S1912224-003 Total Metals-3050/6010/Selenium Holding times for preparation or analysis exceeded
- S1912224-004 SPLP/Lithium Holding times for preparation or analysis exceeded
- S1912224-004 SPLP/Selenium Holding times for preparation or analysis exceeded
- S1912224-004 Total Metals-3050/6010/Lithium Holding times for preparation or analysis exceeded
- S1912224-004 Total Metals-3050/6010/Selenium Holding times for preparation or analysis exceeded
- S1912224-005 SPLP/Lithium Holding times for preparation or analysis exceeded
- S1912224-005 SPLP/Selenium Holding times for preparation or analysis exceeded
- S1912224-005 Total Metals-3050/6010/Lithium Holding times for preparation or analysis exceeded
- S1912224-005 Total Metals-3050/6010/Selenium Holding times for preparation or analysis exceeded
- S1912224-006 SPLP/Lithium Holding times for preparation or analysis exceeded
- S1912224-006 SPLP/Selenium Holding times for preparation or analysis exceeded
- S1912224-006 Total Metals-3050/6010/Lithium Holding times for preparation or analysis exceeded
- S1912224-006 Total Metals-3050/6010/Selenium Holding times for preparation or analysis exceeded

Reviewed by: Karen Asecon

Karen Secor, Soil Lab Supervisor

Page 1 of 1

26411007

2 - 5 Feet

S1912224-001

1673 Terra Avenue Sheridan, WY 82801

ph: (307) 672-8945

Sample Analysis Report

CLIENT: Barr Engineering

Client Sample ID: SB-2

Project:

Lab ID:

Depths:

Bismark, ND

Date Reported: 1/30/2020

Report ID: S1912224002

(Replaces S1912224001)

Work Order: S1912224

Collection Date: 1/31/2019 10:00:00 AM

Date Received: 12/12/2019

Sampler:

COC: 58192

Matrix: Soil

Result	RL	Qual	Units	Date Analyzed/Init	Method
11.5	0.2	Н	mg/Kg	01/27/2020 1835 DG	EPA 6010C
ND	1.3	Н	mg/Kg	01/27/2020 1835 DG	EPA 6010C
ND	0.01	Н	mg/L	01/09/2020 1249 DG	EPA 200.7
ND	0.2	Н	mg/L	01/09/2020 1249 DG	EPA 200.7
	11.5 ND ND	11.5 0.2 ND 1.3 ND 0.01	11.5 0.2 H ND 1.3 H ND 0.01 H	11.5 0.2 H mg/Kg ND 1.3 H mg/Kg ND 0.01 H mg/L	11.5

These results apply only to the samples tested.

Qualifiers:

Analyte detected in the associated Method Blank

Value above quantitation range

Holding times for preparation or analysis exceeded

Analyzed by another laboratory

ND Not Detected at the Reporting Limit

Spike Recovery outside accepted recovery limits S

Χ Matrix Effect **RL - Reporting Limit**

Calculated Value

Analyzed at IML Gillette laboratory

Analyte detected below quantitation limits

Value exceeds Monthly Ave or MCL or is less than LCL М

Outside the Range of Dilutions

Analysis reported under the reporting limit

Reviewed by: Karen A Secon

Karen Secor, Soil Lab Supervisor

Page 1 of 6

ph: (307) 672-8945

Sample Analysis Report

CLIENT: Barr Engineering

Bismark, ND

Date Reported: 1/30/2020

Report ID: S1912224002

(Replaces S1912224001)

Work Order: S1912224

Collection Date: 1/31/2019 10:05:00 AM

Date Received: 12/12/2019

Sampler:

Matrix: Soil

COC: 58192

Project: 26411007 **Lab ID:** S1912224-002

Client Sample ID: SB-2

Depths: 10 - 20 Feet

Analyses	Result	RL	Qual	Units	Date Analyzed/Init	Method
Total Metals-3050/6010						
Lithium	4.9	0.2	Н	mg/Kg	01/27/2020 1837 DG	EPA 6010C
Selenium	ND	1.3	Н	mg/Kg	01/27/2020 1837 DG	EPA 6010C
SPLP						
Lithium	ND	0.01	Н	mg/L	01/09/2020 1252 DG	EPA 200.7
Selenium	ND	0.2	Н	mg/L	01/09/2020 1252 DG	EPA 200.7

These results apply only to the samples tested.

Qualifiers:

B Analyte detected in the associated Method Blank

E Value above quantitation range

H Holding times for preparation or analysis exceeded

L Analyzed by another laboratory

ND Not Detected at the Reporting Limit

S Spike Recovery outside accepted recovery limits

X Matrix Effect

RL - Reporting Limit

C Calculated Value

G Analyzed at IML Gillette laboratory

J Analyte detected below quantitation limits

M Value exceeds Monthly Ave or MCL or is less than LCL

O Outside the Range of Dilutions

U Analysis reported under the reporting limit

Reviewed by: Karen A Secon

Karen Secor, Soil Lab Supervisor

Page 2 of 6

ph: (307) 672-8945

Sample Analysis Report

CLIENT: Barr Engineering

Bismark, ND

Date Reported: 1/30/2020

Report ID: S1912224002

(Replaces S1912224001)

Work Order: S1912224

Collection Date: 1/31/2019 3:20:00 PM

Date Received: 12/12/2019

Sampler:

Matrix: Soil

COC: 58192

Project: 26411007 **Lab ID:** S1912224-003

Client Sample ID: T-1

Depths: 19 - 23 Feet

Analyses	Result	RL	Qual	Units	Date Analyzed/Init	Method
Total Metals-3050/6010						
Lithium	4.0	0.2	Н	mg/Kg	01/27/2020 1839 DG	EPA 6010C
Selenium	ND	1.3	Н	mg/Kg	01/27/2020 1839 DG	EPA 6010C
SPLP						
Lithium	ND	0.01	Н	mg/L	01/09/2020 1254 DG	EPA 200.7
Selenium	ND	0.2	Н	mg/L	01/09/2020 1254 DG	EPA 200.7

These results apply only to the samples tested.

Qualifiers:

B Analyte detected in the associated Method Blank

E Value above quantitation range

H Holding times for preparation or analysis exceeded

L Analyzed by another laboratory

ND Not Detected at the Reporting Limit

S Spike Recovery outside accepted recovery limits

X Matrix Effect

RL - Reporting Limit

C Calculated Value

G Analyzed at IML Gillette laboratory

J Analyte detected below quantitation limits

M Value exceeds Monthly Ave or MCL or is less than LCL

O Outside the Range of Dilutions

U Analysis reported under the reporting limit

Reviewed by: Karen A Secon

Karen Secor, Soil Lab Supervisor

Page 3 of 6

ph: (307) 672-8945

Sample Analysis Report

CLIENT: Barr Engineering

Bismark, ND

Date Reported: 1/30/2020

Report ID: S1912224002

(Replaces S1912224001)

Work Order: S1912224

Collection Date: 2/1/2019 12:15:00 PM

Date Received: 12/12/2019

Sampler:

Matrix: Soil

COC: 58192

Project: 26411007 **Lab ID**: S1912224-004

Client Sample ID: T-2

Depths: 23.5 - 30 Feet

Analyses	Result	RL	Qual	Units	Date Analyzed/Init	Method
Total Metals-3050/6010						
Lithium	18.1	0.2	Н	mg/Kg	01/27/2020 1844 DG	EPA 6010C
Selenium	ND	1.3	Н	mg/Kg	01/27/2020 1844 DG	EPA 6010C
SPLP						
Lithium	0.02	0.01	Н	mg/L	01/09/2020 1256 DG	EPA 200.7
Selenium	ND	0.2	Н	mg/L	01/09/2020 1256 DG	EPA 200.7

These results apply only to the samples tested.

Qualifiers:

B Analyte detected in the associated Method Blank

E Value above quantitation range

H Holding times for preparation or analysis exceeded

L Analyzed by another laboratory

ND Not Detected at the Reporting Limit

S Spike Recovery outside accepted recovery limits

X Matrix Effect

RL - Reporting Limit

C Calculated Value

G Analyzed at IML Gillette laboratory

J Analyte detected below quantitation limits

M Value exceeds Monthly Ave or MCL or is less than LCL

O Outside the Range of Dilutions

U Analysis reported under the reporting limit

Reviewed by: Karen A Secon

Karen Secor, Soil Lab Supervisor

Page 4 of 6

ph: (307) 672-8945

Sample Analysis Report

CLIENT: Barr Engineering

Project:

Bismark, ND

Date Reported: 1/30/2020

Report ID: S1912224002

(Replaces S1912224001)

Work Order: S1912224

Collection Date: 1/30/2019 9:20:00 AM

Date Received: 12/12/2019

Sampler:

Matrix: Soil

COC: 58192

i roject.	20111007
Lab ID:	S1912224-005
Client Sample ID:	T-13

26411007

Depths: 3.5 - 10 Feet

Analyses	Result	RL	Qual	Units	Date Analyzed/Init	Method
Total Metals-3050/6010						
Lithium	16.2	0.2	Н	mg/Kg	01/27/2020 1856 DG	EPA 6010C
Selenium	ND	1.3	Н	mg/Kg	01/27/2020 1856 DG	EPA 6010C
SPLP						
Lithium	ND	0.01	Н	mg/L	01/09/2020 1305 DG	EPA 200.7
Selenium	ND	0.2	Н	mg/L	01/09/2020 1305 DG	EPA 200.7

These results apply only to the samples tested.

Qualifiers:

Analyte detected in the associated Method Blank

Value above quantitation range

Holding times for preparation or analysis exceeded

Analyzed by another laboratory

ND Not Detected at the Reporting Limit

Spike Recovery outside accepted recovery limits S

Χ Matrix Effect **RL - Reporting Limit**

Calculated Value

Analyzed at IML Gillette laboratory

Analyte detected below quantitation limits

Value exceeds Monthly Ave or MCL or is less than LCL M

Outside the Range of Dilutions

Analysis reported under the reporting limit

Reviewed by: Karen A Secon

Karen Secor, Soil Lab Supervisor

Page 5 of 6

ph: (307) 672-8945

Sample Analysis Report

CLIENT: Barr Engineering

Bismark, ND

Date Reported: 1/30/2020

Report ID: S1912224002

(Replaces S1912224001)

Work Order: S1912224

Collection Date: 1/30/2019 10:10:00 AM

Date Received: 12/12/2019

Sampler:

Matrix: Soil

COC: 58192

 Project:
 26411007

 Lab ID:
 \$1912224-006

 Client Sample ID:
 T.12

Client Sample ID: T-13

Depths: 15 - 20 Feet

Analyses	Result	RL	Qual	Units	Date Analyzed/Init	Method
Total Metals-3050/6010						
Lithium	22.7	0.2	Н	mg/Kg	01/27/2020 1902 DG	EPA 6010C
Selenium	ND	1.3	Н	mg/Kg	01/27/2020 1902 DG	EPA 6010C
SPLP						
Lithium	0.02	0.01	Н	mg/L	01/09/2020 1307 DG	EPA 200.7
Selenium	ND	0.2	Н	mg/L	01/09/2020 1307 DG	EPA 200.7

These results apply only to the samples tested.

Qualifiers:

B Analyte detected in the associated Method Blank

E Value above quantitation range

H Holding times for preparation or analysis exceeded

L Analyzed by another laboratory

ND Not Detected at the Reporting Limit

S Spike Recovery outside accepted recovery limits

X Matrix Effect

RL - Reporting Limit

C Calculated Value

G Analyzed at IML Gillette laboratory

J Analyte detected below quantitation limits

M Value exceeds Monthly Ave or MCL or is less than LCL

O Outside the Range of Dilutions

U Analysis reported under the reporting limit

Reviewed by: Karen A Secon

Karen Secor, Soil Lab Supervisor

Page 6 of 6

ANALYTICAL QC SUMMARY REPORT

ph: (307) 672-8945

CLIENT: Barr Engineering Date: 1/30/2020

Work Order: \$1912224 Report ID: \$1912224002

Project: 26411007 (Replaces S1912224001)

EPA 1312	Sample Type MBLK		Units:	mg/L	·		
SPLP BLK (01/09/20 13:09)	RunNo: 175360						
Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual
Lithium	ND	0.01					
Selenium	ND	0.2					
EPA 1312	Sample Type DUP		Units:	mg/L			
S1912224-004AD (01/09/20 12:58)	RunNo: 175360						
Analyte	Result	RL	Ref Samp	%RPD	%REC	% RPD Limits	Qual
Lithium	0.03	0.01	0.02	54.8		20	HR
Selenium	ND	0.2	ND			20	Н
Total (3050) Metals by ICP - 6010C	Sample Type MBLK		Units:	mg/Kg			
MB-17055 (01/27/20 17:49)	RunNo: 175797	Prep	Date: 01/24	/20 14:09	Bato	chID 17055	
Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual
Lithium	ND	0.2					
Selenium	ND	1.3					
Total (3050) Metals by ICP - 6010C	Sample Type LCS		Units:	mg/Kg			
LCS-17055 (01/27/20 17:56)	RunNo: 175797	Prep	Date: 01/24	/20 14:09	Bato	chID 17055	
Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual
Lithium	121	0.2	125		97.1	80 - 120	
Selenium	86.9	1.3	100		86.9	80 - 120	
Total (3050) Metals by ICP - 6010C	Sample Type MS		Units:	mg/Kg			
S1912224-004AS (01/27/20 18:51)	RunNo: 175797	Prep	Date: 01/24	/20 7:55	Bato	hID 17055	
Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual
Lithium	136	0.2	125	18.1	94.0	75 - 125	Н
Selenium	90.5	1.3	100	ND	90.5	75 - 125	Н
Total (3050) Metals by ICP - 6010C	Sample Type MSD		Units:	mg/Kg			
S1912224-004AMSD (01/27/20 18:53)	RunNo: 175797	Prep	Date: 01/24	/20 7:55	Bato	chID 17055	
Analyte	Result	RL	Conc	%RPD	%REC	% RPD Limits	Qual
Lithium	132	0.2	136	2.55	91.3	20	Н
Selenium	88.8	1.3	90.5	1.88	88.8	20	Н
Total (3050) Metals by ICP - 6010C	Sample Type DUP		Units:	mg/Kg			
S1912224-003AD (01/27/20 18:42)	RunNo: 175797	Prep	Date: 01/24	/20 7:55	Bato	hID 17055	
Analyte	Result	RL .	Ref Samp		%REC	% RPD Limits	Qual
Lithium	4.1	0.2	4.0	0.415		20	Н
Selenium	ND	1.3	ND			20	Н

Qualifiers: B Analyte detected in the associated Method Blank

G Analyzed at IML Gillette laboratory

J Analyte detected below quantitation limits

Not Detected at the Reporting Limit

R RPD outside accepted recovery limits

X Matrix Effect

E Value above quantitation range

H Holding times for preparation or analysis exceeded

L Analyzed by another laboratory

O Outside the Range of Dilutions

S Spike Recovery outside accepted recovery limits

Distribution - White-Original: Accompanies Shipment to Laboratory; Yellow Copy: Include in Field Documents; Pink Copy: Send to Data Management Administrators.

Date: 8/7/2020

CLIENT: Barr Engineering

CASE NARRATIVE

Project:

Sediment Saturated Paste Extracts

Report ID: S2007298001

Lab Order: \$2007298

Samples T-14 (10-13), T-14 (5-7), T-14 (7-10), T-15 (10-14.25), T-15 (5-10), T-16 (11-13), T-17 (10.75-15), T-17 (5-10.75), T-18 (10-12.5), T-18 (12.5-14.5), T-18 (5-10), T-19 (10-14.5), T-19 (3.5-5), T-19 (5-10), T-20 (12.5-15), T-20 (3.5-5.5), T-20 (8.25-12.5), T-21 (13.75-15), T-21 (5-13.75), T-22 (10-15), T-22 (15-20), T-22 (3.5-10), T-23 (10-13.5), T-23 (13.5-15) and T-23 (4.5-10) were received on July 21, 2020.

ph: (307) 672-8945

Samples T-15 (14.25-17.5), T-16 (3-11), T-20 (5.5-8.25) were originally received. April 14, 2020 and samples were requested to be analyzed with the current received samples.

Samples were analyzed using the methods outlined in the following references:

U.S.E.P.A. 600/2-78-054 "Field and Laboratory Methods Applicable to Overburden and Mining Soils", 1978 American Society of Agronomy, Number 9, Part 2, 1982

USDA Handbook 60 "Diagnosis and Improvement of Saline and Alkali Soils", 1969

Wyoming Department of Environmental Quality, Land Quality Division, Guideline No. 1, 1984

New Mexico Overburden and Soils Inventory and Handling Guideline, March 1987

State of Utah, Division of Oil, Gas, and Mining: Guidelines for Management of Topsoil and Overburden for Underground and Surface Coal Mining, April 1988

Montana Department of State Lands, Reclamation Division: Soil, Overburden, and Regraded Spoil Guidelines, December 1994

State of Nevada Modified Sobek Procedure

Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW846, 3rd Edition

All Quality Control parameters met the acceptance criteria defined by EPA and Pace Analytical (Formerly Inter-Mountain Laboratories) except as indicated in this case narrative.

Qualifiers by sample

SATPASTE QC - Saturated Paste Metals by ICP/Boron - Spike Recovery outside accepted recovery limits SATPASTE QC - Saturated Paste Metals by ICP/Selenium - Spike Recovery outside accepted recovery limits

Reviewed by: Karen A Secon

ph: (307) 672-8945

Sample Analysis Report

CLIENT: Barr Engineering

Project:

Bismark, ND

Date Reported: 8/7/2020

Report ID: S2007298001

Work Order: S2007298

Collection Date:

Sediment Saturated Paste Extracts

Lab ID: S2007298-001

Client Sample ID: T-14 (5-7)
Depths: 5 - 7 Feet

Date Received: 7/21/2020

Sampler:

Matrix: Sediment COC: 50061

·					
Analyses	Result	RL Qu	ıal Units	Date Analyzed/Init	Method
Saturated Paste Metals					
Boron	0.2	0.1	ppm	08/04/2020 17:22 DG	EPA 200.7
Lithium	0.03	0.01	ppm	08/04/2020 17:22 DG	EPA 200.7
Selenium	ND	0.05	ppm	08/04/2020 17:22 DG	EPA 200.7

These results apply only to the samples tested.

Qualifiers:

B Analyte detected in the associated Method Blank

D Report limit raised due to dilution

G Analyzed at IML Gillette laboratory

J Analyte detected below quantitation limits

M Value exceeds Monthly Ave or MCL or is less than LCL

O Outside the Range of Dilutions

U Analyte below method detection limit

Karen A Secon

RL - Reporting Limit

C Calculated Value

Value above quantitation range

H Holding times for preparation or analysis exceeded

L Analyzed by another laboratory

ND Not Detected at the Reporting Limit

S Spike Recovery outside accepted recovery limits

X Matrix Effect

Reviewed by:

Karen Secor, Soil Lab Supervisor

Page 1 of 28

ph: (307) 672-8945

Sample Analysis Report

CLIENT: Barr Engineering

Project:

Bismark, ND

Date Reported: 8/7/2020

Report ID: S2007298001

Work Order: S2007298

Collection Date:

Sediment Saturated Paste Extracts

Lab ID: S2007298-002

Client Sample ID: T-14 (7-10)
Depths: 7 - 10 Feet

Date Received: 7/21/2020

Sampler:

Matrix: Sediment COC: 50061

Analyses	Result	RL	Qual	Units	Date Analyzed/Init	Method
Saturated Paste Metals						
Boron	0.3	0.1		ppm	08/04/2020 17:24 DG	EPA 200.7
Lithium	0.04	0.01		ppm	08/04/2020 17:24 DG	EPA 200.7
Selenium	ND	0.05		ppm	08/04/2020 17:24 DG	EPA 200.7

These results apply only to the samples tested.

Qualifiers:

B Analyte detected in the associated Method Blank

D Report limit raised due to dilution

G Analyzed at IML Gillette laboratory

J Analyte detected below quantitation limits

M Value exceeds Monthly Ave or MCL or is less than LCL

O Outside the Range of Dilutions

U Analyte below method detection limit

Karen A Secon

RL - Reporting Limit

C Calculated Value

Value above quantitation range

H Holding times for preparation or analysis exceeded

L Analyzed by another laboratory

ND Not Detected at the Reporting Limit

S Spike Recovery outside accepted recovery limits

X Matrix Effect

Reviewed by:

Karen Secor, Soil Lab Supervisor

Page 2 of 28

ph: (307) 672-8945

Sample Analysis Report

CLIENT: Barr Engineering

Project:

Bismark, ND

Date Reported: 8/7/2020

Report ID: S2007298001

Work Order: S2007298

Collection Date:

Sediment Saturated Paste Extracts

Lab ID: S2007298-003

Client Sample ID: T-14 (10-13) **Depths:** 10 - 13 Feet

Date Received: 7/21/2020

Sampler:

Matrix: Sediment COC: 50061

Analyses	Result	RL Qu	al Units	Date Analyzed/Init	Method
Saturated Paste Metals				·	
Boron	0.3	0.1	ppm	08/04/2020 17:27 DG	EPA 200.7
Lithium	0.03	0.01	ppm	08/04/2020 17:27 DG	EPA 200.7
Selenium	ND	0.05	ppm	08/04/2020 17:27 DG	EPA 200.7

These results apply only to the samples tested.

Qualifiers:

B Analyte detected in the associated Method Blank

D Report limit raised due to dilution

G Analyzed at IML Gillette laboratory

J Analyte detected below quantitation limits

M Value exceeds Monthly Ave or MCL or is less than LCL

O Outside the Range of Dilutions

U Analyte below method detection limit

KarenAsecor

RL - Reporting Limit

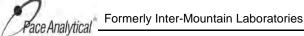
C Calculated Value

Value above quantitation range

H Holding times for preparation or analysis exceeded

L Analyzed by another laboratory

ND Not Detected at the Reporting Limit


S Spike Recovery outside accepted recovery limits

X Matrix Effect

Reviewed by:

Karen Secor, Soil Lab Supervisor

Page 3 of 28

ph: (307) 672-8945

Sample Analysis Report

CLIENT: Barr Engineering

Project:

Bismark, ND

Date Reported: 8/7/2020

Report ID: S2007298001

Work Order: S2007298

Collection Date:

Sediment Saturated Paste Extracts

Lab ID: S2007298-004

Client Sample ID: T-15 (5-10) **Depths:** 5 - 10 Feet

Date Received: 7/21/2020

Sampler:

Matrix: Sediment COC: 50061

Analyses	Result	RL Q	ual Units	Date Analyzed/Init	Method
Saturated Paste Metals					Wethou
Boron	0.5	0.1	ppm	08/04/2020 17:29 DG	EPA 200.7
Lithium	0.03	0.01	ppm	08/04/2020 17:29 DG	EPA 200.7
Selenium	ND	0.05	ppm	08/04/2020 17:29 DG	EPA 200.7

These results apply only to the samples tested.

Qualifiers:

B Analyte detected in the associated Method Blank

D Report limit raised due to dilution

G Analyzed at IML Gillette laboratory

J Analyte detected below quantitation limits

M Value exceeds Monthly Ave or MCL or is less than LCL

O Outside the Range of Dilutions

U Analyte below method detection limit

Karen A Secon

RL - Reporting Limit

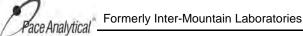
C Calculated Value

Value above quantitation range

H Holding times for preparation or analysis exceeded

L Analyzed by another laboratory

ND Not Detected at the Reporting Limit


S Spike Recovery outside accepted recovery limits

X Matrix Effect

Reviewed by:

Karen Secor, Soil Lab Supervisor

Page 4 of 28

S2007298-005

1673 Terra Avenue Sheridan, WY 82801

ph: (307) 672-8945

Sample Analysis Report

CLIENT: Barr Engineering

Project:

Lab ID:

Bismark, ND

Date Reported: 8/7/2020

Report ID: S2007298001

Work Order: S2007298

Collection Date:

Sediment Saturated Paste Extracts

extracts Date Received: 7/21/2020

Sampler:

Matrix: Sediment COC: 50061

Client Sample ID: T-15 (10-14.25) **Depths:** 10 - 14.25 Feet

Analyses	Result	RL	Qual	Units	Date Analyzed/Init	Method
Saturated Paste Metals						
Boron	0.6	0.1		ppm	08/04/2020 17:31 DG	EPA 200.7
Lithium	0.02	0.01		ppm	08/04/2020 17:31 DG	EPA 200.7
Selenium	ND	0.05		ppm	08/04/2020 17:31 DG	EPA 200.7

These results apply only to the samples tested.

Qualifiers:

B Analyte detected in the associated Method Blank

Report limit raised due to dilution

G Analyzed at IML Gillette laboratory

J Analyte detected below quantitation limits

M Value exceeds Monthly Ave or MCL or is less than LCL

O Outside the Range of Dilutions

Karen A Secon

U Analyte below method detection limit

RL - Reporting Limit

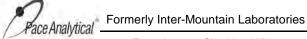
C Calculated Value

Value above quantitation range

H Holding times for preparation or analysis exceeded

L Analyzed by another laboratory

ND Not Detected at the Reporting Limit


S Spike Recovery outside accepted recovery limits

X Matrix Effect

Reviewed by:

Karen Secor, Soil Lab Supervisor

Page 5 of 28

ph: (307) 672-8945

Sample Analysis Report

CLIENT: Barr Engineering

Project:

Bismark, ND

Date Reported: 8/7/2020

Report ID: S2007298001

Work Order: S2007298

Collection Date:

Sediment Saturated Paste Extracts

Lab ID: S2007298-006

Client Sample ID: T-16 (11-13)
Depths: 11 - 13 Feet

Date Received: 7/21/2020

Sampler:

Matrix: Sediment COC: 50061

Analyses	Result	RL	Qual	Units	Date Analyzed/Init	Method
Saturated Paste Metals						
Boron	0.3	0.1		ppm	08/04/2020 17:33 DG	EPA 200.7
Lithium	0.02	0.01		ppm	08/04/2020 17:33 DG	EPA 200.7
Selenium	ND	0.05		ppm	08/04/2020 17:33 DG	EPA 200.7

These results apply only to the samples tested.

Qualifiers:

B Analyte detected in the associated Method Blank

Report limit raised due to dilution

G Analyzed at IML Gillette laboratory

J Analyte detected below quantitation limits

M Value exceeds Monthly Ave or MCL or is less than LCL

O Outside the Range of Dilutions

KarenAsecor

U Analyte below method detection limit

RL - Reporting Limit

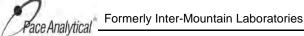
C Calculated Value

E Value above quantitation range

H Holding times for preparation or analysis exceeded

L Analyzed by another laboratory

ND Not Detected at the Reporting Limit


S Spike Recovery outside accepted recovery limits

X Matrix Effect

Reviewed by:

Karen Secor, Soil Lab Supervisor

Page 6 of 28

ph: (307) 672-8945

Sample Analysis Report

CLIENT: Barr Engineering

Project:

Lab ID:

Bismark, ND

Date Reported: 8/7/2020

Report ID: S2007298001

Work Order: S2007298

Collection Date:

Sediment Saturated Paste Extracts

S2007298-007

Client Sample ID: T-17 (5-10.75) **Depths:** 5 - 10.75 Feet

Date Received: 7/21/2020

Sampler:

Matrix: Sediment COC: 50061

Analyses	Result	RL Q	ual Units	Date Analyzed/Init	Method
Saturated Paste Metals					
Boron	0.4	0.1	ppm	08/04/2020 17:36 DG	EPA 200.7
Lithium	0.02	0.01	ppm	08/04/2020 17:36 DG	EPA 200.7
Selenium	ND	0.05	ppm	08/04/2020 17:36 DG	EPA 200.7

These results apply only to the samples tested.

Qualifiers:

B Analyte detected in the associated Method Blank

D Report limit raised due to dilution

G Analyzed at IML Gillette laboratory

J Analyte detected below quantitation limits

M Value exceeds Monthly Ave or MCL or is less than LCL

O Outside the Range of Dilutions

U Analyte below method detection limit

Karen A Secon

RL - Reporting Limit

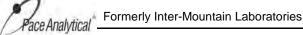
C Calculated Value

Value above quantitation range

H Holding times for preparation or analysis exceeded

L Analyzed by another laboratory

ND Not Detected at the Reporting Limit


S Spike Recovery outside accepted recovery limits

X Matrix Effect

Reviewed by:

Karen Secor, Soil Lab Supervisor

Page 7 of 28

ph: (307) 672-8945

Sample Analysis Report

CLIENT: Barr Engineering

Project:

Bismark, ND

Date Reported: 8/7/2020

Report ID: S2007298001

Work Order: S2007298

Collection Date:

Sediment Saturated Paste Extracts

Lab ID: S2007298-008

Client Sample ID: T-17 (10.75-15) **Depths:** 10.75 - 15 Feet

Date Received: 7/21/2020

Sampler:

Matrix: Sediment COC: 50061

Analyses	Result	RL C	Qual Units	Date Analyzed/Init	Method
Saturated Paste Metals					
Boron	0.3	0.1	ppm	08/06/2020 16:15 DG	EPA 200.7
Lithium	0.07	0.01	ppm	08/06/2020 16:15 DG	EPA 200.7
Selenium	ND	0.05	ppm	08/06/2020 16:15 DG	EPA 200.7

These results apply only to the samples tested.

Qualifiers:

B Analyte detected in the associated Method Blank

D Report limit raised due to dilution

G Analyzed at IML Gillette laboratory

J Analyte detected below quantitation limits

M Value exceeds Monthly Ave or MCL or is less than LCL

O Outside the Range of Dilutions

U Analyte below method detection limit

Karen A Secon

RL - Reporting Limit

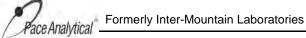
C Calculated Value

Value above quantitation range

H Holding times for preparation or analysis exceeded

L Analyzed by another laboratory

ND Not Detected at the Reporting Limit


S Spike Recovery outside accepted recovery limits

X Matrix Effect

Reviewed by:

Karen Secor, Soil Lab Supervisor

Page 8 of 28

ph: (307) 672-8945

Sample Analysis Report

CLIENT: Barr Engineering

Project:

Bismark, ND

Date Reported: 8/7/2020

Report ID: S2007298001

Work Order: S2007298

Collection Date:

Sediment Saturated Paste Extracts

S2007298-009

Lab ID: S2007298-0 **Client Sample ID:** T-18 (5-10)

Depths: 5 - 10 Feet

Date Received: 7/21/2020

Sampler:

Matrix: Sediment COC: 50061

Analyses	Result	RL Qual	Units	Date Analyzed/Init	Method
Saturated Paste Metals					
Boron	0.5	0.1	ppm	08/04/2020 17:45 DG	EPA 200.7
Lithium	0.03	0.01	ppm	08/04/2020 17:45 DG	EPA 200.7
Selenium	ND	0.05	ppm	08/04/2020 17:45 DG	EPA 200.7

These results apply only to the samples tested.

Qualifiers:

B Analyte detected in the associated Method Blank

D Report limit raised due to dilution

G Analyzed at IML Gillette laboratory

J Analyte detected below quantitation limits

M Value exceeds Monthly Ave or MCL or is less than LCL

O Outside the Range of Dilutions

KarenAsecor

U Analyte below method detection limit

RL - Reporting Limit

C Calculated Value

Value above quantitation range

H Holding times for preparation or analysis exceeded

L Analyzed by another laboratory

ND Not Detected at the Reporting Limit

S Spike Recovery outside accepted recovery limits

X Matrix Effect

Reviewed by:

Karen Secor, Soil Lab Supervisor

Page 9 of 28

ph: (307) 672-8945

Sample Analysis Report

CLIENT: Barr Engineering

Bismark, ND

Date Reported: 8/7/2020

Report ID: S2007298001

Work Order: S2007298

Collection Date:

Project: Sediment Saturated Paste Extracts

Lab ID: S2007298-010

Client Sample ID: T-18 (10-12.5) **Depths:** 10 - 12.5 Feet

Date Received: 7/21/2020

Sampler:

Matrix: Sediment COC: 50061

Analyses	Result	RL	Qual	Units	Date Analyzed/Init	Method
Saturated Paste Metals						
Boron	0.2	0.1		ppm	08/04/2020 17:47 DG	EPA 200.7
Lithium	0.02	0.01		ppm	08/04/2020 17:47 DG	EPA 200.7
Selenium	ND	0.05		ppm	08/04/2020 17:47 DG	EPA 200.7

These results apply only to the samples tested.

Qualifiers:

B Analyte detected in the associated Method Blank

D Report limit raised due to dilution

G Analyzed at IML Gillette laboratory

J Analyte detected below quantitation limits

M Value exceeds Monthly Ave or MCL or is less than LCL

O Outside the Range of Dilutions

U Analyte below method detection limit

Karen A Secon

RL - Reporting Limit

C Calculated Value

Value above quantitation range

H Holding times for preparation or analysis exceeded

L Analyzed by another laboratory

ND Not Detected at the Reporting Limit

S Spike Recovery outside accepted recovery limits

X Matrix Effect

Reviewed by:

Karen Secor, Soil Lab Supervisor

Page 10 of 28

ph: (307) 672-8945

Sample Analysis Report

CLIENT: Barr Engineering

Project:

Bismark, ND

Date Reported: 8/7/2020

Report ID: S2007298001

Work Order: S2007298

Collection Date:

Sediment Saturated Paste Extracts

Lab ID: S2007298-011

Client Sample ID: T-18 (12.5-14.5) **Depths:** 12.5 - 14.5 Feet

Date Received: 7/21/2020

Sampler:

Matrix: Sediment COC: 50062

Analyses	Result	RL	Qual	Units	Date Analyzed/Init	Method
Saturated Paste Metals						
Boron	1.2	0.1		ppm	08/04/2020 17:49 DG	EPA 200.7
Lithium	0.14	0.01		ppm	08/04/2020 17:49 DG	EPA 200.7
Selenium	ND	0.05		ppm	08/04/2020 17:49 DG	EPA 200.7

These results apply only to the samples tested.

Qualifiers:

B Analyte detected in the associated Method Blank

Report limit raised due to dilution

G Analyzed at IML Gillette laboratory

J Analyte detected below quantitation limits

M Value exceeds Monthly Ave or MCL or is less than LCL

O Outside the Range of Dilutions

U Analyte below method detection limit

RL - Reporting Limit

C Calculated Value

Value above quantitation range

H Holding times for preparation or analysis exceeded

L Analyzed by another laboratory

ND Not Detected at the Reporting Limit

S Spike Recovery outside accepted recovery limits

X Matrix Effect

Reviewed by:

Karen Secor, Soil Lab Supervisor

Page 11 of 28

.

ph: (307) 672-8945

Sample Analysis Report

CLIENT: Barr Engineering

Project:

Bismark, ND

Date Reported: 8/7/2020

Report ID: S2007298001

Work Order: S2007298

Collection Date:

Sediment Saturated Paste Extracts

Lab ID: S2007298-012

Client Sample ID: T-19 (3.5-5) **Depths:** 3.5 - 5 Feet

Date Received: 7/21/2020

Sampler:

Matrix: Sediment COC: 50062

Analyses	Result	RL Qu	al Units	Date Analyzed/Init	Method
Saturated Paste Metals				·	
Boron	0.6	0.1	ppm	08/04/2020 17:51 DG	EPA 200.7
Lithium	0.06	0.01	ppm	08/04/2020 17:51 DG	EPA 200.7
Selenium	ND	0.05	ppm	08/04/2020 17:51 DG	EPA 200.7

These results apply only to the samples tested.

Qualifiers:

B Analyte detected in the associated Method Blank

Report limit raised due to dilution

G Analyzed at IML Gillette laboratory

J Analyte detected below quantitation limits

M Value exceeds Monthly Ave or MCL or is less than LCL

O Outside the Range of Dilutions

U Analyte below method detection limit

Karen A Secon

RL - Reporting Limit

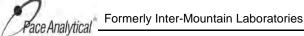
C Calculated Value

E Value above quantitation range

H Holding times for preparation or analysis exceeded

L Analyzed by another laboratory

ND Not Detected at the Reporting Limit


S Spike Recovery outside accepted recovery limits

X Matrix Effect

Reviewed by:

Karen Secor, Soil Lab Supervisor

Page 12 of 28

ph: (307) 672-8945

Sample Analysis Report

CLIENT: Barr Engineering

Project:

Bismark, ND

Date Reported: 8/7/2020

Report ID: S2007298001

Work Order: S2007298

Collection Date:

Sediment Saturated Paste Extracts

Lab ID: S2007298-013

Client Sample ID: T-19 (5-10) **Depths:** 5 - 10 Feet

Date Received: 7/21/2020

Sampler:

Matrix: Sediment COC: 50062

Analyses	Result	RL Qua	al Units	Date Analyzed/Init	Method
Saturated Paste Metals					
Boron	0.2	0.1	ppm	08/04/2020 17:54 DG	EPA 200.7
Lithium	0.02	0.01	ppm	08/04/2020 17:54 DG	EPA 200.7
Selenium	ND	0.05	ppm	08/04/2020 17:54 DG	EPA 200.7

These results apply only to the samples tested.

Qualifiers:

B Analyte detected in the associated Method Blank

D Report limit raised due to dilution

G Analyzed at IML Gillette laboratory
J Analyte detected below quantitation limits

M Value exceeds Monthly Ave or MCL or is less than LCL

O Outside the Range of Dilutions

U Analyte below method detection limit

Karen A Secon

RL - Reporting Limit

C Calculated Value

Value above quantitation range

H Holding times for preparation or analysis exceeded

L Analyzed by another laboratory

ND Not Detected at the Reporting Limit

S Spike Recovery outside accepted recovery limits

X Matrix Effect

Reviewed by:

Karen Secor, Soil Lab Supervisor

Page 13 of 28

S2007298-014

1673 Terra Avenue Sheridan, WY 82801

ph: (307) 672-8945

Sample Analysis Report

CLIENT: Barr Engineering

Project:

Lab ID:

Bismark, ND

Client Sample ID: T-19 (10-14.5)

Date Reported: 8/7/2020

Report ID: S2007298001

Work Order: S2007298

Collection Date:

Sediment Saturated Paste Extracts

Date Received: 7/21/2020

Sampler:

Matrix: Sediment COC: 50062

Depths:	10 - 14.5 Feet				COC : 50062	
Analyses		Result	RL Qı	ual Units	Date Analyzed/Init	Method
Saturated Paste M	etals					
Boron		0.4	0.1	ppm	08/04/2020 17:56 DG	EPA 200.7
Lithium		0.02	0.01	ppm	08/04/2020 17:56 DG	EPA 200.7
Selenium		ND	0.05	ppm	08/04/2020 17:56 DG	EPA 200.7

These results apply only to the samples tested.

Qualifiers:

Analyte detected in the associated Method Blank

Report limit raised due to dilution

G Analyzed at IML Gillette laboratory

Analyte detected below quantitation limits Value exceeds Monthly Ave or MCL or is less than LCL

Outside the Range of Dilutions 0

Analyte below method detection limit KarenAsecor

RL - Reporting Limit

С Calculated Value

Value above quantitation range

Holding times for preparation or analysis exceeded

Analyzed by another laboratory L

ND Not Detected at the Reporting Limit

Spike Recovery outside accepted recovery limits S

Matrix Effect Х

Reviewed by:

Karen Secor, Soil Lab Supervisor

Page 14 of 28

ph: (307) 672-8945

Sample Analysis Report

CLIENT: Barr Engineering

Project:

Lab ID:

Bismark, ND

Client Sample ID: T-20 (3.5-5.5)

Date Reported: 8/7/2020

Report ID: S2007298001

Work Order: S2007298

Collection Date:

Sediment Saturated Paste Extracts Date Received: 7/21/2020

S2007298-015 Sampler:

Matrix: Sediment COC: 50062

Depths:	3.5 - 5.5 Feet						
Analyses		Result	RL (Qual	Units	Date Analyzed/Init	Method
Saturated Paste M	letals						
Boron		0.6	0.1		ppm	08/04/2020 17:58 DG	EPA 200.7
Lithium		0.04	0.01		ppm	08/04/2020 17:58 DG	EPA 200.7
Selenium		ND	0.05		nnm	08/04/2020 17:58 DG	FPA 200 7

These results apply only to the samples tested.

Qualifiers:

Analyte detected in the associated Method Blank

Report limit raised due to dilution

G Analyzed at IML Gillette laboratory

Analyte detected below quantitation limits

Value exceeds Monthly Ave or MCL or is less than LCL

0 Outside the Range of Dilutions

Analyte below method detection limit Karen A Secon

RL - Reporting Limit

С Calculated Value

Value above quantitation range

Holding times for preparation or analysis exceeded Н

Analyzed by another laboratory L

ND Not Detected at the Reporting Limit

Spike Recovery outside accepted recovery limits S

Х Matrix Effect

Reviewed by:

Karen Secor, Soil Lab Supervisor

Page 15 of 28

ph: (307) 672-8945

Sample Analysis Report

CLIENT: Barr Engineering

Project:

Bismark, ND

Date Reported: 8/7/2020

Report ID: S2007298001

Work Order: S2007298

Collection Date:

Sediment Saturated Paste Extracts

Lab ID: S2007298-016

Client Sample ID: T-20 (8.25-12.5) **Depths:** 8.25 - 12.5 Feet

Date Received: 7/21/2020

Sampler:

Matrix: Sediment COC: 50062

Analyses	Result	RL C	Qual Units	Date Analyzed/Init	Method
Saturated Paste Metals					
Boron	0.2	0.1	ppm	08/04/2020 18:00 DG	EPA 200.7
Lithium	0.01	0.01	ppm	08/04/2020 18:00 DG	EPA 200.7
Selenium	ND	0.05	ppm	08/04/2020 18:00 DG	EPA 200.7

These results apply only to the samples tested.

Qualifiers:

B Analyte detected in the associated Method Blank

D Report limit raised due to dilution

G Analyzed at IML Gillette laboratory

J Analyte detected below quantitation limits

M Value exceeds Monthly Ave or MCL or is less than LCL

O Outside the Range of Dilutions

U Analyte below method detection limit

Karen A Secon

RL - Reporting Limit

C Calculated Value

Value above quantitation range

H Holding times for preparation or analysis exceeded

L Analyzed by another laboratory

ND Not Detected at the Reporting Limit

S Spike Recovery outside accepted recovery limits

X Matrix Effect

Reviewed by:

Karen Secor, Soil Lab Supervisor

Page 16 of 28

ph: (307) 672-8945

Sample Analysis Report

CLIENT: Barr Engineering

Bismark, ND

Date Reported: 8/7/2020

Report ID: S2007298001

Work Order: S2007298

Collection Date:

Project: Sediment Saturated Paste Extracts

Lab ID: S2007298-017

Client Sample ID: T-20 (12.5-15) **Depths:** 12.5 - 15 Feet

Date Received: 7/21/2020

Sampler:

Matrix: Sediment COC: 50062

Analyses	Result	RL Qual	Units	Date Analyzed/Init	Method	
Saturated Paste Metals						
Boron	0.3	0.1	ppm	08/04/2020 18:03 DG	EPA 200.7	
Lithium	0.02	0.01	ppm	08/04/2020 18:03 DG	EPA 200.7	
Selenium	ND	0.05	ppm	08/04/2020 18:03 DG	EPA 200.7	

These results apply only to the samples tested.

Qualifiers:

B Analyte detected in the associated Method Blank

D Report limit raised due to dilution

G Analyzed at IML Gillette laboratory

J Analyte detected below quantitation limits

M Value exceeds Monthly Ave or MCL or is less than LCL

O Outside the Range of Dilutions

U Analyte below method detection limit

Karen A Secon

RL - Reporting Limit

C Calculated Value

E Value above quantitation range

H Holding times for preparation or analysis exceeded

L Analyzed by another laboratory

ND Not Detected at the Reporting Limit

S Spike Recovery outside accepted recovery limits

X Matrix Effect

Reviewed by:

Karen Secor, Soil Lab Supervisor

Page 17 of 28

ph: (307) 672-8945

Sample Analysis Report

CLIENT: Barr Engineering

Project:

Bismark, ND

Date Reported: 8/7/2020

Report ID: S2007298001

Work Order: S2007298

Collection Date:

Sediment Saturated Paste Extracts

Lab ID: S2007298-018

Client Sample ID: T-21 (5-13.75) **Depths:** 5 - 13.75 Feet

Date Received: 7/21/2020

Sampler:

Matrix: Sediment COC: 50062

Analyses	Result	RL (Qual	Units	Date Analyzed/Init	Method
Saturated Paste Metals						
Boron	0.3	0.1		ppm	08/06/2020 16:20 DG	EPA 200.7
Lithium	0.05	0.01		ppm	08/06/2020 16:20 DG	EPA 200.7
Selenium	ND	0.05		ppm	08/06/2020 16:20 DG	EPA 200.7

These results apply only to the samples tested.

Qualifiers:

B Analyte detected in the associated Method Blank

D Report limit raised due to dilution

G Analyzed at IML Gillette laboratory

J Analyte detected below quantitation limits

M Value exceeds Monthly Ave or MCL or is less than LCL

O Outside the Range of Dilutions

U Analyte below method detection limit

Karen A Secon

RL - Reporting Limit

C Calculated Value

Value above quantitation range

H Holding times for preparation or analysis exceeded

L Analyzed by another laboratory

ND Not Detected at the Reporting Limit

S Spike Recovery outside accepted recovery limits

X Matrix Effect

Reviewed by:

Karen Secor, Soil Lab Supervisor

Page 18 of 28

ph: (307) 672-8945

Sample Analysis Report

CLIENT: Barr Engineering

Project:

Lab ID:

Bismark, ND

Date Reported: 8/7/2020

Report ID: S2007298001

Work Order: S2007298

Collection Date:

Sediment Saturated Paste Extracts Date Received: 7/21/2020

\$2007298-019 **Sampler**:

 Client Sample ID:
 T-21 (13.75-15)
 Matrix:
 Sediment

 Depths:
 13.75 - 15 Feet
 COC:
 50062

Analyses	Result	RL Qual	Units	Date Analyzed/Init	Method
Saturated Paste Metals					
Boron	0.4	0.1	ppm	08/04/2020 18:12 DG	EPA 200.7
Lithium	0.08	0.01	ppm	08/04/2020 18:12 DG	EPA 200.7
Selenium	ND	0.05	ppm	08/04/2020 18:12 DG	EPA 200.7

These results apply only to the samples tested.

Qualifiers:

B Analyte detected in the associated Method Blank

Report limit raised due to dilution

G Analyzed at IML Gillette laboratory

J Analyte detected below quantitation limits

M Value exceeds Monthly Ave or MCL or is less than LCL

O Outside the Range of Dilutions

U Analyte below method detection limit

Karen A Secon

RL - Reporting Limit

C Calculated Value

E Value above quantitation range

H Holding times for preparation or analysis exceeded

L Analyzed by another laboratory

ND Not Detected at the Reporting Limit

S Spike Recovery outside accepted recovery limits

X Matrix Effect

Reviewed by:

Karen Secor, Soil Lab Supervisor

Page 19 of 28

S2007298-020

1673 Terra Avenue Sheridan, WY 82801

ph: (307) 672-8945

Sample Analysis Report

CLIENT: Barr Engineering

Project:

Lab ID:

Bismark, ND

Date Reported: 8/7/2020

Report ID: S2007298001

Work Order: S2007298

Collection Date:

Sediment Saturated Paste Extracts Date Received: 7/21/2020

Sampler:

Matrix: Sediment

Client Sample ID: T-22 (3.5-10) Depths: 3.5 - 10 Feet COC: 50062

Analyses	Result	RL Qual	Units	Date Analyzed/Init	Method
Saturated Paste Metals					
Boron	0.3	0.1	ppm	08/04/2020 18:14 DG	EPA 200.7
Lithium	0.03	0.01	ppm	08/04/2020 18:14 DG	EPA 200.7
Selenium	0.14	0.05	ppm	08/04/2020 18:14 DG	EPA 200.7

These results apply only to the samples tested.

Qualifiers:

Analyte detected in the associated Method Blank

Report limit raised due to dilution

G Analyzed at IML Gillette laboratory

Analyte detected below quantitation limits

Value exceeds Monthly Ave or MCL or is less than LCL

Outside the Range of Dilutions 0

Analyte below method detection limit KarenAsecor

RL - Reporting Limit

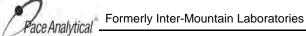
С Calculated Value

Value above quantitation range

Holding times for preparation or analysis exceeded

Analyzed by another laboratory L

ND Not Detected at the Reporting Limit


Spike Recovery outside accepted recovery limits S

Х Matrix Effect

Reviewed by:

Karen Secor, Soil Lab Supervisor

Page 20 of 28

ph: (307) 672-8945

Sample Analysis Report

CLIENT: Barr Engineering

Project:

Lab ID:

Bismark, ND

Date Reported: 8/7/2020

Report ID: S2007298001

Work Order: S2007298

Collection Date:

Sediment Saturated Paste Extracts

S2007298-021

Client Sample ID: T-22 (10-15) **Depths:** 10 - 15 Feet

Date Received: 7/21/2020

Sampler:

Matrix: Sediment COC: 50063

Analyses	Result	RL	Qual	Units	Date Analyzed/Init	Method
Saturated Paste Metals						
Boron	0.6	0.1		ppm	08/04/2020 18:16 DG	EPA 200.7
Lithium	0.10	0.01		ppm	08/04/2020 18:16 DG	EPA 200.7
Selenium	ND	0.05		ppm	08/04/2020 18:16 DG	EPA 200.7

These results apply only to the samples tested.

Qualifiers:

B Analyte detected in the associated Method Blank

D Report limit raised due to dilution

G Analyzed at IML Gillette laboratory

J Analyte detected below quantitation limits

M Value exceeds Monthly Ave or MCL or is less than LCL

O Outside the Range of Dilutions

U Analyte below method detection limit

KarenAsecor

RL - Reporting Limit

C Calculated Value

Value above quantitation range

H Holding times for preparation or analysis exceeded

L Analyzed by another laboratory

ND Not Detected at the Reporting Limit

S Spike Recovery outside accepted recovery limits

X Matrix Effect

Reviewed by:

Karen Secor, Soil Lab Supervisor

Page 21 of 28

ph: (307) 672-8945

Sample Analysis Report

CLIENT: Barr Engineering

Project:

Bismark, ND

Date Reported: 8/7/2020

Report ID: S2007298001

Work Order: S2007298

Collection Date:

Sediment Saturated Paste Extracts

Lab ID: S2007298-022

Client Sample ID: T-22 (15-20) **Depths:** 15 - 20 Feet

Date Received: 7/21/2020

Sampler:

Matrix: Sediment COC: 50063

Analyses	Result	RL (Qual Units	Date Analyzed/Init	Method
Saturated Paste Metals					
Boron	0.5	0.1	ppm	08/04/2020 18:18 DG	EPA 200.7
Lithium	0.10	0.01	ppm	08/04/2020 18:18 DG	EPA 200.7
Selenium	ND	0.05	ppm	08/04/2020 18:18 DG	EPA 200.7

These results apply only to the samples tested.

Qualifiers:

B Analyte detected in the associated Method Blank

Report limit raised due to dilution

G Analyzed at IML Gillette laboratory

J Analyte detected below quantitation limits

M Value exceeds Monthly Ave or MCL or is less than LCL

O Outside the Range of Dilutions

U Analyte below method detection limit

Karen A Secon

RL - Reporting Limit

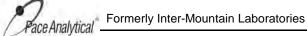
C Calculated Value

E Value above quantitation range

H Holding times for preparation or analysis exceeded

L Analyzed by another laboratory

ND Not Detected at the Reporting Limit


S Spike Recovery outside accepted recovery limits

X Matrix Effect

Reviewed by:

Karen Secor, Soil Lab Supervisor

Page 22 of 28

ph: (307) 672-8945

Sample Analysis Report

CLIENT: Barr Engineering

Project:

Lab ID:

Bismark, ND

Date Reported: 8/7/2020

Report ID: S2007298001

Work Order: S2007298

Collection Date:

Sediment Saturated Paste Extracts

S2007298-023

Client Sample ID: T-23 (4.5-10) **Depths:** 4.5 - 10 Feet

Date Received: 7/21/2020

Sampler:

Matrix: Sediment COC: 50063

Analyses	Result	RL Qı	ıal Units	Date Analyzed/Init	Method
Saturated Paste Metals					
Boron	0.4	0.1	ppm	08/04/2020 18:21 DG	EPA 200.7
Lithium	0.03	0.01	ppm	08/04/2020 18:21 DG	EPA 200.7
Selenium	ND	0.05	ppm	08/04/2020 18:21 DG	EPA 200.7

These results apply only to the samples tested.

Qualifiers:

B Analyte detected in the associated Method Blank

D Report limit raised due to dilution

G Analyzed at IML Gillette laboratory

J Analyte detected below quantitation limits

M Value exceeds Monthly Ave or MCL or is less than LCL

O Outside the Range of Dilutions

U Analyte below method detection limit

Karen A Secon

RL - Reporting Limit

C Calculated Value

E Value above quantitation range

H Holding times for preparation or analysis exceeded

L Analyzed by another laboratory

ND Not Detected at the Reporting Limit

S Spike Recovery outside accepted recovery limits

X Matrix Effect

Reviewed by:

Karen Secor, Soil Lab Supervisor

Page 23 of 28

ph: (307) 672-8945

Sample Analysis Report

CLIENT: Barr Engineering

Project:

Lab ID:

Lithium

Selenium

Bismark, ND

Date Reported: 8/7/2020

Report ID: S2007298001

Work Order: S2007298

Collection Date:

ppm

ppm

Sediment Saturated Paste Extracts Date Received: 7/21/2020

0.02

ND

S2007298-024 Sampler:

Client Sample ID: T-23 (10-13.5)

Depths: 10 - 13.5 Feet

Matrix: Sediment COC: 50063

08/04/2020 18:23 DG

08/04/2020 18:23 DG

EPA 200.7

EPA 200.7

Analyses Result RL Qual Units Date Analyzed/Init Method
Saturated Paste Metals
Boron 0.4 0.1 ppm 08/04/2020 18:23 DG EPA 200.7

0.01

0.05

These results apply only to the samples tested.

Qualifiers:

B Analyte detected in the associated Method Blank

D Report limit raised due to dilution

G Analyzed at IML Gillette laboratory

J Analyte detected below quantitation limits
 M Value exceeds Monthly Ave or MCL or is less than LCL

O Outside the Range of Dilutions

U Analyte below method detection limit

RL - Reporting Limit

C Calculated Value

E Value above quantitation range

H Holding times for preparation or analysis exceeded

L Analyzed by another laboratory

ND Not Detected at the Reporting Limit

S Spike Recovery outside accepted recovery limits

X Matrix Effect

Reviewed by:

Karen Secor, Soil Lab Supervisor

Page 24 of 28

ph: (307) 672-8945

Sample Analysis Report

CLIENT: Barr Engineering

Project:

Bismark, ND

Date Reported: 8/7/2020

Report ID: S2007298001

Work Order: S2007298

Collection Date:

Sediment Saturated Paste Extracts

Lab ID: S2007298-025

Client Sample ID: T-23 (13.5-15) **Depths:** 13.5 - 15 Feet

Date Received: 7/21/2020

Sampler:

Matrix: Sediment COC: 50063

Analyses	Result	RL	Qual	Units	Date Analyzed/Init	Method
Saturated Paste Metals						
Boron	0.3	0.1		ppm	08/04/2020 18:25 DG	EPA 200.7
Lithium	0.02	0.01		ppm	08/04/2020 18:25 DG	EPA 200.7
Selenium	ND	0.05		ppm	08/04/2020 18:25 DG	EPA 200.7

These results apply only to the samples tested.

Qualifiers:

B Analyte detected in the associated Method Blank

D Report limit raised due to dilution

G Analyzed at IML Gillette laboratory

J Analyte detected below quantitation limits

M Value exceeds Monthly Ave or MCL or is less than LCL

O Outside the Range of Dilutions

U Analyte below method detection limit

Karen A Secon

RL - Reporting Limit

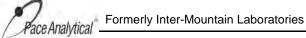
C Calculated Value

Value above quantitation range

H Holding times for preparation or analysis exceeded

L Analyzed by another laboratory

ND Not Detected at the Reporting Limit


S Spike Recovery outside accepted recovery limits

X Matrix Effect

Reviewed by:

Karen Secor, Soil Lab Supervisor

Page 25 of 28

ph: (307) 672-8945

Sample Analysis Report

CLIENT: Barr Engineering Date Reported: 8/7/2020 Bismark, ND

Report ID: S2007298001

Work Order: S2007298

Collection Date:

Sediment Saturated Paste Extracts Date Received: 7/21/2020

S2007298-026 Sampler:

Client Sample ID: T-15 (14.25-17.5) Matrix: Sediment Depths: 14.25 - 17.5 Feet COC: 50063

Analyses	Result	RL Qual	Units	Date Analyzed/Init	Method
Saturated Paste Metals					
Boron	0.1	0.1	ppm	08/06/2020 16:24 DG	EPA 200.7
Lithium	0.04	0.01	ppm	08/06/2020 16:24 DG	EPA 200.7
Selenium	ND	0.05	ppm	08/06/2020 16:24 DG	EPA 200.7

These results apply only to the samples tested.

Qualifiers:

Project:

Lab ID:

Analyte detected in the associated Method Blank

Report limit raised due to dilution

G Analyzed at IML Gillette laboratory

Analyte detected below quantitation limits

Value exceeds Monthly Ave or MCL or is less than LCL

Outside the Range of Dilutions 0

Analyte below method detection limit Karen A Secon

RL - Reporting Limit

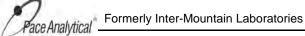
С Calculated Value

Value above quantitation range

Holding times for preparation or analysis exceeded

Analyzed by another laboratory L

ND Not Detected at the Reporting Limit


Spike Recovery outside accepted recovery limits S

Х Matrix Effect

Reviewed by:

Karen Secor, Soil Lab Supervisor

Page 26 of 28

ph: (307) 672-8945

Sample Analysis Report

CLIENT: Barr Engineering

Project:

Lab ID:

Bismark, ND

Date Reported: 8/7/2020

Report ID: S2007298001

Work Order: S2007298

Collection Date:

Sediment Saturated Paste Extracts

Sampler:

Date Received: 7/21/2020

Matrix: Sediment COC: 50063

S2007298-027

Client Sample ID: T-16 (3-11) Depths: 3 - 11 Feet

Analyses	Result	RL Qu	ıal Units	Date Analyzed/Init	Method
Saturated Paste Metals					
Boron	0.2	0.1	ppm	08/06/2020 16:31 DG	EPA 200.7
Lithium	0.03	0.01	ppm	08/06/2020 16:31 DG	EPA 200.7
Selenium	ND	0.05	ppm	08/06/2020 16:31 DG	EPA 200.7

These results apply only to the samples tested.

Qualifiers:

Analyte detected in the associated Method Blank

Report limit raised due to dilution

G Analyzed at IML Gillette laboratory

Analyte detected below quantitation limits

Value exceeds Monthly Ave or MCL or is less than LCL

Outside the Range of Dilutions 0

Analyte below method detection limit KarenAsecor

RL - Reporting Limit

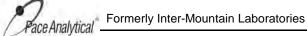
С Calculated Value

Value above quantitation range

Holding times for preparation or analysis exceeded

Analyzed by another laboratory L

ND Not Detected at the Reporting Limit


Spike Recovery outside accepted recovery limits S

Х Matrix Effect

Reviewed by:

Karen Secor, Soil Lab Supervisor

Page 27 of 28

ph: (307) 672-8945

Sample Analysis Report

CLIENT: Barr Engineering

Project:

Lab ID:

Bismark, ND

Date Reported: 8/7/2020

Report ID: S2007298001

Work Order: S2007298

Collection Date:

Date Received: 7/21/2020

Sampler:

Matrix: Sediment COC: 50063

Sediment Saturated Paste Extracts S2007298-028

Client Sample ID: T-20 (5.5-8.25) Depths: 5.5 - 8.25 Feet

Analyses Result RL Qual Units Date Analyzed/Init Method **Saturated Paste Metals** Boron 0.2 0.1 08/06/2020 16:34 DG EPA 200.7 ppm 0.02 0.01 08/06/2020 16:34 DG EPA 200.7 Lithium ppm Selenium 0.09 0.05 08/06/2020 16:34 DG EPA 200.7 ppm

These results apply only to the samples tested.

Qualifiers:

Analyte detected in the associated Method Blank

Report limit raised due to dilution

G Analyzed at IML Gillette laboratory

Analyte detected below quantitation limits

Value exceeds Monthly Ave or MCL or is less than LCL

0 Outside the Range of Dilutions

Analyte below method detection limit Karen A Secor

RL - Reporting Limit

С Calculated Value

Value above quantitation range

Holding times for preparation or analysis exceeded Н

Analyzed by another laboratory L

ND Not Detected at the Reporting Limit

Spike Recovery outside accepted recovery limits S

Χ Matrix Effect

Reviewed by:

Karen Secor, Soil Lab Supervisor

Page 28 of 28

ANALYTICAL QC SUMMARY REPORT

ph: (307) 672-8945

CLIENT: Barr Engineering Date: 8/7/2020

Work Order: \$2007298 Report ID: \$2007298001

Project: Sediment Saturated Paste Extracts

oject:	Sediment Saturated Paste Extracts							
Satur	rated Paste Metals by ICP	Sample Type MBLK		Units:	ppm			
	SATPASTE BLK (08/06/20 16:43)	RunNo: 181357						
	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual
	Boron	ND	0.1					
	Lithium	ND	0.01					
	Selenium	ND	0.05					
Satur	rated Paste Metals by ICP	Sample Type LCS		Units:	ppm			
	SATPASTE QC (08/04/20 18:28)	RunNo: 181260						
	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual
	Boron	0.2	0.1	0.31		74.7	80 - 120	S
	Lithium	0.07	0.01	0.07		103	80 - 120	
	Selenium	0.07	0.05	0.11		65.2	80 - 120	S
	QC-2 (08/06/20 16:40)	RunNo: 181357						
	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual
	Boron	0.2	0.1	0.31		76.5	80 - 120	S
	Lithium	0.07	0.01	0.07		98.2	80 - 120	
	Selenium	0.12	0.05	0.11		106	80 - 120	
Satur	rated Paste Metals by ICP	Sample Type DUP		Units:	ppm			
	S2007298-008AD (08/06/20 16:18)	RunNo: 181357						
	Analyte	Result	RL	Ref Samp	%RPD	%REC	% RPD Limits	Qual
	Boron	0.2	0.1	0.3	1.55		20	
	Lithium	0.07	0.01	0.07	1.20		20	
	Selenium	0.08	0.05	ND			20	R
	S2007298-018AD (08/06/20 16:22)	RunNo: 181357						
	Analyte	Result	RL	Ref Samp	%RPD	%REC	% RPD Limits	Qual
	Boron	0.3	0.1	0.3	3.28		20	
	Lithium	0.05	0.01	0.05	0.167		20	
	Selenium	ND	0.05	ND			20	
	S2007298-028AD (08/06/20 16:36)	RunNo: 181357						
	Analyte	Result	RL	Ref Samp	%RPD	%REC	% RPD Limits	Qual
	Boron	0.2	0.1	0.2	7.47		20	
	Lithium	0.02	0.01	0.02	0.0234		20	
	Selenium	ND	0.05	0.09			20	

Qualifiers: B Analyte detecte	d in the associated Method Blank
-------------------------------	----------------------------------

E Value above quantitation range

H Holding times for preparation or analysis exceeded

L Analyzed by another laboratory

O Outside the Range of Dilutions

S Spike Recovery outside accepted recovery limits

- D Report limit raised due to dilution
- G Analyzed at IML Gillette laboratory
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- X Matrix Effect

Chain of Custody	for Air		Canisters		Sample (Originat	Sample Origination State:	Analysis		Requested:			COC Number:	No SOUR	
ARR Bismarck Hibbin	6	☐ Jefferson City ☐ Minneapolis	n City polis			S P S	o □	□ TO-14	-14	☐ TO-15 [☐ TO-15SIM	MI	- 1	(M)	
REPORT TO				INVOICE	ICE TO			Lab (check	Lab Deliverable Contents: (check all that apply)	ole Cont	ents:		Matrix Code:	Code:	
Company: BARR ENGIN	ESRING	. Company:	ıny:					Sar	Sample Data with QC	with QC			AA = Ambient Air	Ambient Air (Indoor/Outdoor)	
Address: 234 W. CENT.	TURY	Address:	S:)				□ San	 □ IIC Library Search □ Sample Chromatograms 	earch matogran	ns		Other:	SOIL VAPOL/LATIOTIII GAS/SVE	
Name: STOTT KORD	2	Name:	S	gat				D Ind	☐ Individual Canister Certification Data	nister Cel	tification	Data	1 0 11 12 2	13.	
email: Skorom @bal	AM. COR	email:						EDD:	EDD:	IIS-ITE			XIIIIVEN.	(2000)	
Copy to: datamgt@barr.com		P.O.						3 2	TIC results in EDD	EDD					
Project Name:		Barr Pr	Barr Project No:	lo:				Other:	Ľ						
		Canister	ter	Flow	Vacu	Vacuum	Collection	Collecti	Collection Time	Total	Matrix	PID			
Location		Serial #	Size	Controller Serial #	Initial	Final	Date (mm/dd/yyyy)	Start (hh:mm)	Stop (hh:mm)			Reading (ppm/ppb)	Sample C	Sample Comments	
7-14 15-7	\bigcirc	Szo	5	298-0	ō		4/2021				R		SE A	MCHE	
2-7-14 (7-10				Ō	CR CR						8		(ETTE)	1 FUX	
7-14/10-1	30			35	83						R		DETAIL	10	
1-15/5-10				3	70						6)	
7-15(10-14	:253			3	S						A		CONTRG	T Scott	
5-16 (11-13	3)			J)	20						S		Kopon	M	31/31/30
7-17(5-10.	751)			3	1						R		QUESTIO	23	Bre Bev
717(0,75-	(5)			Э	8						R		701-3	15-3723	1
748(5-10				Ö	5						5				
7-1800-12	21)	7		10	0		-				25				1,7,1,7,1,7
BARR USE ONLY sampled by:		Relinqu	Relinquished by:	Tide	1	dem	17	Pite	Time	Received	Z Z Z	A foc	\$)	Haste 1030	
Sarr Proj. Manager: TEREN	Y GRAVK	Relinqu	Relinquished by:	.;				Date	Time	Recei	Received by:			Date Time	, died 2 (
Sarr DQ Manager:		Samples	s Shipped	VIA:	Courier Other:		Federal Exp	Express	Sampler	Air B	Air Bill Number:	er:	Requ	Requested Due Date:	T
ab Location:		Lab WO:	Ö				Custody	Seal Intact	ict ?	N N	None		□ Rush	Rush	
×					1					1				(mm/da/yyyy)	٦

Distribution - White-Original: Accompanies Shipment to Laboratory; Yellow Copy: Include in Field Documents; Pink Copy: Send to Data Management Administrators.

Chain of Custody for	Air Cani	e	Origination State:	Analysis Requested:	ested:		No Shimber No SANGE	
ARR Dismarck	☐ Jefferson City ☐ Minneapolis	y.	□ MO □ WI □ SD ■ SD	□ To-14 □ To-15 □ 3C □ Other)-15 TO-15SIM	M	of .	
REPORT TO		INVOICE TO		 Lab Deliverable Contents: (check all that apply) 	e Contents:		Matrix Code:	
Company: KARK	Company:			Asample Data with QC	ith QC			
Address: 234 W. CENTIN	Address:			☐ TIC Library Search ☐ Sample Chromatograms	ırch atograms		ler:	1
Name: St. Corr Koncom	Name:	SCOTT KORD	200 A	☐ Individual Can	☐ Individual Canister Certification Data	Data	ンローンもつがはか	7
email: Storon aborn Co	own email:			EDD:	S-I ITE			
Copy to: datamgt@barr.com	P.O.			TIC results in EDD	DD			
Project Name:	Barr Project No:	t No:		Other:		Ť		
	Canister		Vacuum Collection	Collection Time	Total Matrix	PID		
Location	Serial Size	controller Serial # Initial	Final (mm/dd/yyyy)	Start Stop (hh:mm) (hh:mm)	Code	Reading (ppm/ppb)	Sample Comments	
7-18 (12.5-14.5	50 S200	110-8621	0202/20		N		SEAMON	
1127-19 (3.5-51)		012			R	1, -	LETTER	
(12-19(5-101)		0(3			R			
1-19(10-14.5		410			8			
7-20(3.5-5.5		OIS			V			
16 F 2018, 25-12.	7.5	970			5		Cost Kopm	ST/9T/90
7-2002.5-150)	110			5		701-335-31	BLG Rev.
2115-13.75		810			5			orm 2015
119 F 21 (13.75-15		600			5			A sretsine.
W.207-22(3.5-10)	→ (·	préo			S			O 101 Vk
BARR USE ONLY	Relinquished	d by: Scort	(Goon :	Age 1/2 Jime	Received by:	200	Date Time	
Sarr Proj. Manager: T. GACNIK	Relinquished	d by:		Date Time	Received by:		Date Time	
Sarr DQ Manager:	Samples Shipped	VIA:	☐ Federal	Express Sampler	Air Bill Number:	i.e	Requested Due Date:	T
ab location:	-OW del	Other:		Cos Intact 2	N		☐ Standard Turn Around Time	
	Lan	:	residency		- 1		(////ww)	8:H

Distribution - White-Original: Accompanies Shipment to Laboratory, Yellow Copy: Include in Field Documents; Pink Copy: Send to Data Management Administrators.

hain of Custody	for Air		Canisters		Sample	Origina	tior	Analysis		Requested:			COC Number:	No 50063	C.
ARR Designance Duluth		☐ Jefferson City ☐ Minneapolis	n City polis		W W W	S S S	Other:	□ TO-14	14 0	☐ TO-15 [☐ TO-15SIM	MI		3	
REPORT TO				INVOICE	ICE TO			Lab C	Lab Deliverable Contents: (check all that apply)	le Cont	ents:		Matrix	Matrix Code:	
Company:		Company:	ny:					San	Sample Data with QC	with QC			AA = Ambient Air (Indoor/Outdoor)	Ambient Air (Indoor/Outdoor	
Address: $254~M.$ C	STINK!	Address:	ió	10	1			_ LIC	 □ TIC Library Search □ Sample Chromatograms 	arch natograr	ns		Other:	Landiii Gas/SVE	1
Name: Stort KARDI	2	Name:		110	1			Indi	☐ Individual Canister Certification Data	nister Cel	tification	Data	N-1	WALK!	0
email: Skonomad	AND COM	email:						EDD:	EDD:	IS-ITE					
Copy to: datamgt@barr.com		P.O.						1 0	TIC results in EDD	EDD					
Project Name:		Barr Pr	Barr Project No:	:0				Other:		-		1			
		Canister		Flow	Vac	Vacuum	Collection	Collection	on Time	Total	Matrix	PID			
Location		Serial #	Size	Controller Serial #	Initial	Final	Date (mm/dd/yyyy)	Start (hh:mm)	Stop (hh:mm)	Time	Code	Reading (ppm/ppb)	Sample (Sample Comments	
" ZI T-22(10-1	(25)	520072	129	8-021			04/202	0			V		SE A	MACIE	_
125/15	-201)	-		270			_				8		they/	25	
1237-23(4,5	-101			023							(>			7	
24 7-23(10-	13,5			निद्ध							5				
125 F 23(13.5	-15)	\rightarrow		520							13		San	KORDI	<
5.													1011	255-31	5
7,														3)
3.							_								
9.															
.01															
BARR USE ONLY		Relinquished by	shed by	1	1	1	-5	Pate 1	Time	Rece	Received by:			Date	۵
sampled by:		: :	7	110	2	5	2	14/4			\$	e ASO	71/	01	2
	IK	Relinquished by:	shed by	,				Date	Time	Rece	Received by:			Date Time	Ф
sarr DQ Manager:		Samples Shipped VIA:	Shippe		Courier		☐ Federal Express		Sampler	Air B	Air Bill Number:	er:	Requ	Requested Due Date:	
ab location:		- OW do	٠		Other:		1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	,				Stand	☐ Standard Turn Around Time☐ Rush	me
ab cocation.		Lab vvc					Custoay	Custody Seal Intact	ct ? \	Z	None]	(mm/dd/yyyy)	

Distribution - White-Original: Accompanies Shipment to Laboratory, Yellow Copy: Include in Field Documents; Pink Copy: Send to Data Management Administrators.

MINNESOTA VALLEY TESTING LABORATORIES, INC. 1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2 North German St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

Terri Olson

Barr Engineering Company

4300 MarketPointe Drive, Suite 200

Minneapolis MN 55435

Project Name: MDU Lewis & Clark

Sample Description: T-3

Page: 1 of 1

Report Date: 12 Feb 19 Lab Number: 19-W185 Work Order #:82-0201 Account #: 013200

Date Sampled: 31 Jan 19 14:50 Date Received: 4 Feb 19 16:56

Sampled By: Client

PO #: 26411007.10

Temp at Receipt: 2.5C

As Received Result		Method RL	Method Reference	Date Analyzed	Analyst
7.45	nits	NA	EPA 200.2 SM 4500 H+ B	5 Feb 19 31 Jan 19 14:50	svs
0.106 m	g/1	0.020	6010D 6020B	7 Feb 19 11:43 12 Feb 19 12:19	FFP BMB
	7.45 u	7.45 units 0.106 mg/l	7.45 units NA 0.106 mg/l 0.020	Result RL Reference EPA 200.2 7.45 units NA SM 4500 H+ B 0.106 mg/l 0.020 6010D	Result RL Reference Analyzed EPA 200.2 5 Feb 19 7.45 units NA SM 4500 H+ B 31 Jan 19 14:50 0.106 mg/l 0.020 6010D 7 Feb 19 11:43

Approved by:

Claudette K. Canteo

CC 12 86 19

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

The reporting limit was elevated for any analyte requiring a dilution as coded below:

= Due to sample matrix # = Due to complete the configuration of the

= Due to concentration of other analytes
+ = Due to internal standard response

MINNESOTA VALLEY TESTING LABORATORIES, INC. 1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2 North German St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

Terri Olson

Barr Engineering Company

4300 MarketPointe Drive, Suite 200

Minneapolis MN 55435

Project Name: MDU Lewis & Clark

Sample Description: T-4

1 of 1 Page:

Report Date: 12 Feb 19 Lab Number: 19-W186 Work Order #:82-0201 Account #: 013200

Date Sampled: 31 Jan 19 14:05 Date Received: 4 Feb 19 16:56

Sampled By: Client

PO #: 26411007.10

Temp at Receipt: 2.5C

	As Receiv	red	Method RL	Method Reference	Date Analyzed	Analyst
Metal Digestion pH - Field	7.27	units	NA	EPA 200.2 SM 4500 H+ B	5 Feb 19 31 Jan 19 14:05	svs
Lithium - Total Selenium - Total	0.180 0.0192	mg/l mg/l	0.020	6010D 6020B	7 Feb 19 11:43 12 Feb 19 12:19	FFP BMB

Approved by:

Claudette K. Canto

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

= Due to concentration of other analytes + = Due to internal standard response

MINNESOTA VALLEY TESTING LABORATORIES, INC. 1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2 North German St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

Terri Olson

Barr Engineering Company

4300 MarketPointe Drive, Suite 200

Minneapolis MN 55435

Project Name: MDU Lewis & Clark

Sample Description: T-7

1 of 1 Page:

Report Date: 12 Feb 19 Lab Number: 19-W187 Work Order #:82-0201 Account #: 013200

Date Sampled: 31 Jan 19 11:00 Date Received: 4 Feb 19 16:56

Sampled By: Client

PO #: 26411007.10

Temp at Receipt: 2.5C

As Recei	ved	Method RL	Method Reference	Date Analyzed	Analyst
7.31	units Degrees C	NA NA	EPA 200.2 SM 4500 H+ B SM 2550B		
0.148	mg/l mg/l	0.020 0.0050	6010D 6020B		
	7.31 1.84 0.148	7.31 units 1.84 Degrees C 0.148 mg/l	7.31 units NA 1.84 Degrees C NA 0.148 mg/l 0.020	Result RL Reference EPA 200.2 7.31 units NA SM 4500 H+ B 1.84 Degrees C NA SM 2550B 0.148 mg/1 0.020 6010D	Result RL Reference Analyzed EPA 200.2 5 Feb 19 7.31 units NA SM 4500 H+ B 31 Jan 19 11:00 1.84 Degrees C NA SM 2550B 31 Jan 19 11:00 0.148 mg/1 0.020 6010D 7 Feb 19 11:43

Approved by:

Claudette K. Canteo

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL - Method Reporting Limit

The reporting limit was elevated for any analyte requiring a dilution as coded below:

= Due to sample matrix

= Due to condition as coded below:

= Due to sample quantity

= Due to in

= Due to concentration of other analytes + = Due to internal standard response

MINNESOTA VALLEY TESTING LABORATORIES, INC.

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890

2 North German St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890

2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

Terri Olson

Barr Engineering Company

4300 MarketPointe Drive, Suite 200

Minneapolis MN 55435

Project Name: MDU Lewis & Clark

Sample Description: T-8

1 of 1 Page:

Report Date: 12 Feb 19 Lab Number: 19-W188 Work Order #:82-0201 Account #: 013200

Date Sampled: 31 Jan 19 16:40 Date Received: 4 Feb 19 16:56

Sampled By: Client

PO #: 26411007.10

Temp at Receipt: 2.5C

	As Received Result		Method RL	Method Reference	Date Analyzed	Analyst
Metal Digestion		nits	NA	EPA 200.2 SM 4500 H+ B	5 Feb 19 31 Jan 19 16:40	svs
Lithium - Total Selenium - Total	0.165 mg	g/1 g/1	0.020 0.0050	6010D 6020B	7 Feb 19 11:43 12 Feb 19 12:19	FFP BMB

Approved by:

Claudette K. Canteo

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL - Method Reporting Limit

The reporting limit was elevated for any analyte requiring a dilution as coded below:

© = Due to sample matrix # = Due to con

i = Due to sample quantity + = Due to int

= Due to concentration of other analytes
+ = Due to internal standard response

MINNESOTA VALLEY TESTING LABORATORIES, INC. 1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2 North German St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

Terri Olson

Barr Engineering Company

4300 MarketPointe Drive, Suite 200

Minneapolis MN 55435

Project Name: MDU Lewis & Clark

Sample Description: T-9

1 of 1 Page:

Report Date: 12 Feb 19 Lab Number: 19-W189 Work Order #:82-0201 Account #: 013200

Date Sampled: 31 Jan 19 10:00 Date Received: 4 Feb 19 16:56

Sampled By: Client

PO #: 26411007.10

Temp at Receipt: 2.5C

	As Receiv Result		Method RL	Method Reference	Date Analyzed	Analyst
Metal Digestion pH - Field	6.72 6.98	units Degrees C	NA NA	EPA 200.2 SM 4500 H+ B SM 2550B	5 Feb 19 31 Jan 19 10:00 31 Jan 19 10:00	
Temperature - Field Lithium - Total Selenium - Total	0.170 < 0.005	mg/l mg/l	0.020 0.0050	6010D 6020B	7 Feb 19 11:43 12 Feb 19 12:19	FFP

Approved by:

Claudette K Canto

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

The reporting limit was elevated for any analyte requiring a dilution as coded below: \emptyset = Due to sample matrix \emptyset = Due to con \emptyset = Due to sample quantity \emptyset = Due to int

CERTIFICATION: ND # ND-00016

= Due to concentration of other analytes
+ = Due to internal standard response

MINNESOTA VALLEY TESTING LABORATORIES, INC. 1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2 North German St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

Terri Olson

Barr Engineering Company

4300 MarketPointe Drive, Suite 200

Minneapolis MN 55435

Project Name: MDU Lewis & Clark

Sample Description: T-11

1 of 1 Page:

Report Date: 12 Feb 19 Lab Number: 19-W190 Work Order #:82-0201 Account #: 013200

Date Sampled: 31 Jan 19 18:00 Date Received: 4 Feb 19 16:56

Sampled By: Client

PO #: 26411007.10

Temp at Receipt: 2.5C

	As Receiv Result	ved	Method RL	Method Reference	Date Analyzed	Analyst
Metal Digestion pH - Field	7.01	units	NA	EPA 200,2 SM 4500 H+ B	5 Feb 19 31 Jan 19 18:00	svs
Lithium - Total Selenium - Total	0.650 0.1026	mg/1 mg/1	0.020	6010D 6020B	7 Feb 19 11:43 12 Feb 19 12:19	FFP BMB

Approved by:

Claudette K. Cantep

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL - Method Reporting Limit

The reporting limit was elevated for any analyte requiring a dilution as coded below:

= Due to sample matrix # = Due to come to sample quantity # = Due to interpret to sample quantity # = Due to interpre

= Due to concentration of other analytes + = Due to internal standard response

MINNESOTA VALLEY TESTING LABORATORIES, INC. 1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2 North German St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

Terri Olson Barr Engineering Company 4300 MarketPointe Drive, Suite 200 Minneapolis MN 55435

Project Name: MDU Lewis & Clark

Sample Description: T-13

1 of 1 Page:

Report Date: 12 Feb 19 Lab Number: 19-W191 Work Order #:82-0201 Account #: 013200

Date Sampled: 31 Jan 19 15:50 Date Received: 4 Feb 19 16:56

Sampled By: Client

PO #: 26411007.10

Temp at Receipt: 2.5C

	As Receive Result	d	Method RL	Method Reference	Date Analyzed	Analyst
Metal Digestion	7.80	units	NA	EPA 200.2 SM 4500 H+ B	5 Feb 19 31 Jan 19 15:50	svs
pH - Field Lithium - Total Selenium - Total	0.121 < 0.005	mg/l	0.020	6010D 6020B	7 Feb 19 11:43 12 Feb 19 12:19	FFP BMB

Approved by:

Claudette K. Canteo

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

The reporting limit was elevated for any analyte requiring a dilution as coded below:

= Due to sample matrix # = Due to con
! = Due to sample quantity + = Due to interport the control of the control

= Due to concentration of other analytes + = Due to internal standard response

MINNESOTA VALLEY TESTING LABORATORIES, INC. 1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2 North German St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

Terri Olson

Barr Engineering Company

4300 MarketPointe Drive, Suite 200

Minneapolis MN 55435

Project Name: MDU Lewis & Clark

Sample Description: T-1

1 of 1 Page:

Report Date: 12 Feb 19 Lab Number: 19-W192 Work Order #:82-0201 Account #: 013200

Date Sampled: 1 Feb 19 10:25 Date Received: 4 Feb 19 16:56

Sampled By: Client

PO #: 26411007.10

Temp at Receipt: 2.5C

	As Received Result	Method RL	Method Reference	Date Analyzed	Analyst
Metal Digestion	6.90 unit	s NA	EPA 200.2 SM 4500 H+ B	5 Feb 19 1 Feb 19 10:25	svs
pH - Field Lithium - Total Selenium - Total	0.048 mg/l < 0.005 mg/l	0.020 0.0050	6010D 6020B	7 Feb 19 11:43 12 Feb 19 12:19	FFP BMB

Approved by:

Claudette K. Canteo

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

The reporting limit was elevated for any analyte requiring a dilution as coded below:

= Due to sample matrix # = Due to con
! = Due to sample quantity # = Due to int

= Due to concentration of other analytes + = Due to internal standard response

MINNESOTA VALLEY TESTING LABORATORIES, INC. 1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2 North German St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

Terri Olson

Barr Engineering Company

4300 MarketPointe Drive, Suite 200

Minneapolis MN 55435

Project Name: MDU Lewis & Clark

Sample Description: T-2

1 of 1 Page:

Report Date: 12 Feb 19 Lab Number: 19-W193 Work Order #:82-0201 Account #: 013200

Date Sampled: 1 Feb 19 12:40 Date Received: 4 Feb 19 16:56

Sampled By: Client

PO #: 26411007.10

Temp at Receipt: 2.5C

	As Receive Result	ed	Method RL	Method Reference	Da t Ana	e lyze	d	Analyst
Metal Digestion	6.87	units	NA	EPA 200.2 SM 4500 H+ B	-	Feb	19 19 12:40	svs
pH - Field Lithium - Total Selenium - Total	0.043	mg/1 mg/1	0.020 0.0050	6010D 6020B	7	Feb	19 11:43 19 12:19	

Approved by:

Claudette K Canteo

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

The reporting limit was elevated for any analyte requiring a dilution as coded below:

= Due to sample matrix # = Due to con

! = Due to sample quantity + = Due to int

CERTIFICATION: ND # ND-00016

= Due to concentration of other analytes + = Due to internal standard response

MINNESOTA VALLEY TESTING LABORATORIES, INC. 1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2 North German St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

Terri Olson

Barr Engineering Company

4300 MarketPointe Drive, Suite 200

Minneapolis MN 55435

Project Name: MDU Lewis & Clark

Sample Description: T-5

1 of 1 Page:

Report Date: 12 Feb 19 Lab Number: 19-W194 Work Order #:82-0201 Account #: 013200

Date Sampled: 1 Feb 19 15:50 Date Received: 4 Feb 19 16:56

Sampled By: Client

PO #: 26411007.10

Temp at Receipt: 2.5C

	As Received Result	Method RL	Method Reference	Date Analyzed	Analyst
Metal Digestion pH - Field	6.89 units	NA	EPA 200.2 SM 4500 H+ B	5 Feb 19 1 Feb 19 15:50	svs
Lithium - Total Selenium - Total	0.145 mg/1 < 0.005 mg/1	0.020	6010D 6020B	7 Feb 19 11:43 12 Feb 19 12:19	FFP BMB

Approved by:

Claudette K Canteo

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

The reporting limit was elevated for any analyte requiring a dilution as coded below:

@ = Due to sample matrix # = Due to con
! = Due to sample quantity + = Due to int

= Due to concentration of other analytes
+ = Due to internal standard response

MINNESOTA VALLEY TESTING LABORATORIES, INC.

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890
2 North German St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890
2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724
1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

Terri Olson

Barr Engineering Company

4300 MarketPointe Drive, Suite 200

Minneapolis MN 55435

Project Name: MDU Lewis & Clark

Sample Description: T-6

1 of 1 Page:

Report Date: 12 Feb 19 Lab Number: 19-W195 Work Order #:82-0201 Account #: 013200

Date Sampled: 1 Feb 19 18:20 Date Received: 4 Feb 19 16:56

Sampled By: Client

PO #: 26411007.10

Temp at Receipt: 2.5C

	As Received Result	Method RL	Method Reference	Date Analyzed	Analyst
Metal Digestion Lithium - Total Selenium - Total	0.116 mg/l < 0.005 mg/l	0.020 0.0050	EPA 200.2 6010D 6020B	5 Feb 19 7 Feb 19 12:43 12 Feb 19 12:19	SVS FFP BMB

Approved by:

Claudette K. Canteo

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

The reporting limit was elevated for any analyte requiring a dilution as coded below:

= Due to sample matrix # = Due to con! = Due to sample quantity + = Due to int

= Due to concentration of other analytes
+ = Due to internal standard response

MINNESOTA VALLEY TESTING LABORATORIES, INC.

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890
2 North German St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890
2616 East Broadway Ave. ~ Bisharck No. 2000 1 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

Page:

1 of 1

4300 MarketPointe Drive, Suite 200

Report Date: 12 Feb 19 Lab Number: 19-W196 Work Order #:82-0201

Account #: 013200

Date Sampled: 1 Feb 19 18:00 Date Received: 4 Feb 19 16:56

Sampled By: Client

PO #: 26411007.10

Temp at Receipt: 2.5C

Minneapolis MN 55435

Project Name: MDU Lewis & Clark

Barr Engineering Company

Sample Description: T-12

Terri Olson

As Received Method Method Date Analyzed Analyst RL Reference Result EPA 200.2 SVS 5 Feb 19 Metal Digestion FFP 7 Feb 19 12:43 0.270 0.020 6010D Lithium - Total Selenium - Total mg/1mg/10.0050 6020B 12 Feb 19 12:19 BMB 0.0056

Approved by:

Claudette K. Canteo

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL - Method Reporting Limit

The reporting limit was elevated for any analyte requiring a dilution as coded below:

= Due to sample matrix # = Due to co
! = Due to sample quantity + = Due to in

= Due to concentration of other analytes + = Due to internal standard response

MINNESOTA VALLEY TESTING LABORATORIES, INC.

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890
2 North German St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890
2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724
1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

Terri Olson

Barr Engineering Company

4300 MarketPointe Drive, Suite 200

Minneapolis MN 55435

Project Name: MDU Lewis & Clark

Sample Description: Duplicate

1 of 1 Page:

Report Date: 12 Feb 19 Lab Number: 19-W197 Work Order #:82-0201 Account #: 013200

Date Sampled: 1 Feb 19

Date Received: 4 Feb 19 16:56

Sampled By: Client

PO #: 26411007.10

Temp at Receipt: 2.5C

	As Received Result	Method RL	Method Reference	Date Analyzed	Analyst
Metal Digestion Lithium - Total	0.048 mg/l	0.020	EPA 200.2 6010D	5 Feb 19 7 Feb 19 12:43	
Selenium - Total	< 0.005 mg/l	0.0050	6020B	12 Feb 19 12:19	вмв

Approved by:

Claudette K. Canto

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

The reporting limit was elevated for any analyte requiring a dilution as coded below:

@ = Due to sample matrix # = Due to complete the control of the contr

= Due to concentration of other analytes
+ = Due to internal standard response

MINNESOTA VALLEY TESTING LABORATORIES, INC. 1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2 North German St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

1 of 1 Page:

Report Date: 12 Feb 19 Lab Number: 19-W198 Work Order #:82-0201 Account #: 013200

Date Sampled: 1 Feb 19 15:20 Date Received: 4 Feb 19 16:56

Sampled By: Client

PO #: 26411007.10

Temp at Receipt: 2.5C

Terri Olson Barr Engineering Company 4300 MarketPointe Drive, Suite 200 Minneapolis MN 55435

Project Name: MDU Lewis & Clark

Sample Description: Field Blank

	As Received Result	Method RL	Method Reference	Date Analyzed	Analyst
Metal Digestion	20 / 20 P 20 20 P 20 P 20 P 20 P 20 P 20	10-107	EPA 200.2	5 Feb 19	SVS
Lithium - Total	< 0.02 mg/l	0.020	6010D	7 Feb 19 12:43	FFP
Selenium - Total	< 0.005 mg/l	0.0050	6020B	12 Feb 19 12:19	BMB

Approved by:

Claudette K Canteo

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL - Method Reporting Limit

The reporting limit was elevated for any analyte requiring a dilution as coded below:

= Due to sample matrix # = Due to con

! = Due to sample quantity + = Due to int

= Due to concentration of other analytes
+ = Due to internal standard response

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2 North German St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

Terri Olson

Barr Engineering Company

4300 MarketPointe Drive, Suite 200

Minneapolis MN 55435

Project Name: MDU Lewis & Clark

Sample Description: Equipment Blank

1 of 1 Page:

Report Date: 12 Feb 19 Lab Number: 19-W199 Work Order #:82-0201 Account #: 013200

Date Sampled: 1 Feb 19 15:30 Date Received: 4 Feb 19 16:56

Sampled By: Client

PO #: 26411007.10

Temp at Receipt: 2.5C

	As Received Result	Method RL	Method Reference	Date Analyzed	Analyst
Metal Digestion			EPA 200.2	5 Feb 19	svs
Lithium - Total	< 0.02 mg/1	0.020	6010D	7 Feb 19 12:43	FFP
Selenium - Total	< 0.005 mg/l	0.0050	6020B	12 Feb 19 12:19	вмв

Approved by:

Claudette K Canteo

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

The reporting limit was elevated for any analyte requiring a dilution as coded below:

@ = Due to sample matrix # = Due to con

! = Due to sample quantity + = Due to int

= Due to concentration of other analytes + = Due to internal standard response

JLVM

MINNESOTA VALLEY TESTING LABORATORIES, INC.

2616 E. Broadway Ave. ~ Bismarck, ND 58502 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Highway ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 1126 N. Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 www.mvtl.com

MEMBER ACIL

Page: 1 of 1

Quality Control Report

Lab IDs: 19-W185 to 19-W199

% Rec Limits Known Dup Known RPD Rec Limit (<) (%) MSD/ 202 20 MSD/ Dup RPD 2.7 0.5 MSD Rec % 101 104 107 94 0.5252 0.0939 Dup Result 0.466 MSD/ $0.5280 \\ 0.0968$ Dup Orig Result 0.567 0.453 MSD/ Matrix Matrix Spike Spike 75-125 75-125 Work Order: 201982-0201 Spike % Rec 75-125 75-125 Limits Rec 108 105 101 Spike Result 0.5280 0.0968Matrix 0.567 0.453 0.0959 < 0.005 Result Spike 0.148 Orig 19-W187 19-W195 19-W187 19-W197 Project: MDU Lewis & Clark Matrix Spike Matrix Spike 0.400 0.400 Amt % Rec 80-120 80-120 Limits TCS TCS Rec 106 66 0.1000LCS Spike Amt 0.400 Selenium - Total mg/1 Lithium - Total mg/l Analyte

< 0.005

< 0.02 < 0.02 < 0.02

Method Blank

Samples were received in good condition on 4 Feb 2019 at 1656.

Femperature upon receipt at the Bismarck laboratory was 2.5°C. Samples were received on ice and evidence of cooling had begun.

All samples were properly preserved unless noted here and/or flagged on the individual analytical laboratory report.

Approved methodology was followed for all sample analyses.

All acceptance criteria were met for calibration, method blanks, laboratory control samples, laboratory fortified matrix/duplicates unless noted here.

C. Chusto Approved by:

e (mm/dd/yyyy)	Custody Seal Intact? □Y □N □None		Temperature on Receipt (°C):	Lab WO:	Lab Location: 3/5 Marck, ND Lab WO: Te	Lab Location: 5/5M
Standard Turn Around Time		- 11	Other:			3
Dominated Disc Date:	Air Bill Number	Fodoral Evinoce	Courier	Samples Shipped VIA-	0×	Barr DQ Manager:
	Received by:	On Ice? Date Time	Б >	Relinquished by:	154	Barr Proj. Manager:
466249 1656	Received by:	2-4-19	An	Relinquished by: Muth	1132	Sampled by: MUT
,5°C						10.
						ര്.
thre samples.	50		HWX			ŏ
Lithium + Seleveum only	を]] M T	14:50	T	1910) MA	27
[Nua	Se	M1 1	00:71	7	W190 M/A-	=
T-7 FOr Li and	00		00.00	T	WA-	5-7-9
· Petorm Ms/MsD	Pe)] N	15.40	T	W189 MA	4. 7-8
with quetions.	WH	X	10:00	T	FIN LSICO	7-7
contact terri olson	Con	MIL	13:05	Ť	W196 NOA-	4-4;
e attached Table 1 requested analysis.	See	6 W 1 1	01/31/2014 13:50	T	WIBS MA	17-3
Preservative Code Field Filtered Y/N	Preser	Code Perfo	Date Time (mm/dd/yyyy) (hh:mm)	Stop (m./ft. or in.)	Start	Location
	S %		Collection Collection			2.00
11 1	sbilo	oquii /SW	01.50011100	Barr Project No: 26411007	Project Name: MDU LEW'S and Clark	Project Name: Mpり
$H = Na_2S_2O_3$ I = Ascorbic Acid	= !	VMS	/	P.O.	arr.com	Copy to: datamgt@barr.com
Other G =	20		16	email:	barr.com	email: Tolson @ barr.com
Soil/Solid E =	v 6		San	Name:	olson	Name: Terri O
Surface Water B = HCI Waste Water C = HNO ₃ Drinking Water D = H ₂ SO ₂		N ajners		Company: Address:	Century Ave	Address: Barr Engineering Address: B34 W. Century A
Matrix Code: Preservative Code: GW = Groundwater A = None	Ma GW =		INVOICE TO		REPORT TO	REPO
of	8		OMI OND O	☐ Jefferson City ☐ Minneapolís	☐ Duluth ☐ Hibbing	BARR S Bismarck
COC Number: 52676	alysis Requested		Sample Origination	n of Custody	ing Co. Chai	Barr Engineering Co. Chain of Custody
		84-030		e sam Mes.	* NUSH LI and SE	SON X
	12				> 1 2 2 1 1	**

Laboratory, Yellow Copy: Include in Field Documents; Pink Copy: Send to Data Management Administrators.

* Rush Li and se samples!

N siners		
14.50 Matrix Code Code A Matrix A Matri	Collection Matrix Time (th:mm) Matrix Code (th:mm) Code (th: MS/MSD Code (th: LLO N 1 Total Number of Code (oject No: 26411007.10 with Collection Collection Matrix of Code (m./At. (mm/dd/yyyy) (th:mm) 1 03/01/2019 09:35 6 W 1 1 1:40 N 1
14:50 [14:50 [14:50 [7:30	Collection Time (th:rmm) 19 09:35 11:40 11:40 14:15/14:20 14:15/17:30	Stop (m./ft. (mm/dd/yyy) (h:.mm) O3/0 /30 q Oq:35
		Address: Name: Sq. P.O. Barr Project No: A641/00 ple Depth Ount Date Orin.) A DA/O/A014

H:RLG/STDFORMS/Chain Of Custody Form 2015 RLG Rev. 06/16/15

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

Page: 1 of 1

Selenium Added 11Jun2020

Terri Olson Barr Engineering Company 4300 MarketPointe Drive, Suite 200

Minneapolis MN 55435

Report Date: 20 Apr 20 Lab Number: 20-W635 Work Order #:82-0830 Account #: 013200

Date Sampled: 6 Apr 20 12:02 Date Received: 9 Apr 20 15:05

Sampled By: Client

Project Name: 26411007.15 Sample Description: T-15 Sample Site: MDU L&C

Temp at Receipt: 0.4C

	As Receive Result	ed	Method RL	Method Reference	Da And	te alyze	đ	Analyst
Metal Digestion		1 171 F		EPA 200.2		Apr		HT
Lithium - Total	0.042	mg/l	0.020	6010D	15	Apr	20 11:09	MDE
Boron - Total	0.18	mg/l	0.10	6010D	16	Apr	20 11:42	MDE
Selenium - Total	< 0.005	mg/l	0,0050	6020B	17	Jun	20 9:48	MDE

Approved by:

JUL ZOZO Claudette K. Canteo

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

The reporting limit was elevated for any analyte requiring a dilution as coded below:

Due to sample matrix ## = Due to come is a Due to sample quantity ## Due to interpretable to the company of the code is the code is a Due to sample quantity ## Due to interpretable to the code is the code

= Due to concentration of other analytes
+ = Due to internal standard response

MINNESOTA VALLEY TESTING LABORATORIES, INC. 1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

Selenium Added 11Jun2020

Terri Olson Barr Engineering Company 4300 MarketPointe Drive, Suite 200 Minneapolis MN 55435

Project Name: 26411007.15 Sample Description: T-16 Sample Site: MDU L&C

1 of 1 Page:

Report Date: 20 Apr 20 Lab Number: 20-W636 Work Order #:82-0830 Account #: 013200

Date Sampled: 6 Apr 20 13:30 Date Received: 9 Apr 20 15:05

Sampled By: Client

Temp at Receipt: 0.4C

	As Receiv Result	red	Method RL	Method Reference	Date Analyzed	Analyst
Metal Digestion	1.734.7	171 47	0.00	EPA 200.2	9 Apr 20	HT
Lithium - Total	0.045	mg/l	0.020	6010D	15 Apr 20 11:0:	MDE
Boron - Total	0.15	mg/l	0.10	6010D	16 Apr 20 11:4:	MDE
Selenium - Total	< 0.005	mg/l	0.0050	6020B	17 Jun 20 9:4	MDE

Approved by:

Claudette K Canto 1 JUL 2020

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

The reporting limit was elevated for any analyte requiring a dilution as coded below:

0 = Due to sample matrix # = Due to con
! = Due to sample quantity + = Due to int

= Due to concentration of other analytes + = Due to internal standard response

MINNESOTA VALLEY TESTING LABORATORIES, INC.

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890

2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724

1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

1 of 1 Page:

Selenium Added 11Jun2020

Terri Olson Barr Engineering Company 4300 MarketPointe Drive, Suite 200 Minneapolis MN 55435

Report Date: 20 Apr 20 Lab Number: 20-W637 Work Order #:82-0830 Account #: 013200

Date Sampled: 6 Apr 20 15:45 Date Received: 9 Apr 20 15:05

Sampled By: Client

Project Name: 26411007.15 Sample Description: T-18 Sample Site: MDU L&C

Temp at Receipt: 0.4C

	As Received Result	Method RL	Method Reference	Date Analyzed	Analyst
Metal Digestion			EPA 200.2	9 Apr 20	HT
Lithium - Total	0.044 mg	/1 0.020	6010D	15 Apr 20 11:09	MDE
Boron - Total		/1 0.10	6010D	16 Apr 20 11:42	MDE
Selenium - Total		0.0050	6020B	17 Jun 20 9:48	MDE

Approved by:

Claudette K. Cantep 1 JUL2030

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

The reporting limit was elevated for any analyte requiring a dilution as coded below:

= Due to sample matrix # = Due to con
! = Due to sample quantity + = Due to in

= Due to concentration of other analytes
+ = Due to internal standard response

MINNESOTA VALLEY TESTING LABORATORIES, INC.

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890

2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724

1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

Page:

1 of 1

Selenium Added 11Jun2020

Terri Olson Barr Engineering Company 4300 MarketPointe Drive, Suite 200 Minneapolis MN 55435

Report Date: 20 Apr 20 Lab Number: 20-W638 Work Order #:82-0830 Account #: 013200

Date Sampled: 6 Apr 20 16:45 Date Received: 9 Apr 20 15:05

Sampled By: Client

Project Name: 26411007.15 Sample Description: T-17 Sample Site: MDU L&C

Temp at Receipt: 0.4C

	As Received Result	Method RL	Method Reference	Date Analyzed	Analyst
Metal Digestion		77 6 6 7	EPA 200.2	9 Apr 20	HT
Lithium - Total	0.033 mg/l	0.020	6010D	15 Apr 20 12:09	MDE
Boron - Total	0.16 mg/l	0.10	6010D	16 Apr 20 11:42	MDE
Selenium - Total	< 0.005 mg/l	0.0050	6020B	17 Jun 20 9:48	MDE

Approved by:

Clauditte K. Canteo 1 JUL 2020

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

The reporting limit was elevated for any analyte requiring a dilution as coded below:

= Due to sample matrix # = Due to concentration of other analytes

! = Due to sample quantity + = Due to internal standard response

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

1 of 1 Page:

Selenium Added 11Jun2020

Terri Olson Barr Engineering Company 4300 MarketPointe Drive, Suite 200

Minneapolis MN 55435

Report Date: 20 Apr 20 Lab Number: 20-W639 Work Order #:82-0830 Account #: 013200

Date Sampled: 6 Apr 20 17:33 Date Received: 9 Apr 20 15:05

Sampled By: Client

Temp at Receipt: 0.4C

Project Name: 26411007.15 Sample Description: T-21 Sample Site: MDU L&C

As Receive Result	ed	Method RL	Method Reference	Date Analyzed	Analyst
Taur Said	77.7	S (C)	EPA 200.2	9 Apr 20	HT
0.041	mg/1	0.020	6010D	15 Apr 20 12:09	MDE
0.19	mg/1	0.10	6010D	16 Apr 20 11:42	MDE
< 0.005	mg/l	0.0050	6020B	17 Jun 20 9:48	MDE
	0.041 0.19	0.041 mg/l 0.19 mg/l	Result RL 0.041 mg/l 0.020 0.19 mg/l 0.10	Result RL Reference EPA 200.2 0.041 mg/l 0.020 6010D 0.19 mg/l 0.10 6010D	Result RL Reference Analyzed EPA 200.2 9 Apr 20 0.041 mg/1 0.020 6010D 15 Apr 20 12:09 0.19 mg/1 0.10 6010D 16 Apr 20 11:42

Approved by:

Claudette K. Canteo 1 JUL 2020

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

The reporting limit was elevated for any analyte requiring a dilution as coded below:

Due to sample matrix ## Due to co

! = Due to sample quantity # = Due to in

= Due to concentration of other analytes
+ = Due to internal standard response

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

1 of 1 Page:

Selenium Added 11Jun2020

Terri Olson Barr Engineering Company

4300 MarketPointe Drive, Suite 200 Minneapolis MN 55435

Report Date: 20 Apr 20 Lab Number: 20-W640 Work Order #:82-0830 Account #: 013200

Date Sampled: 6 Apr 20 19:10 Date Received: 9 Apr 20 15:05

Sampled By: Client

Project Name: 26411007.15 Sample Description: T-19

Sample Site: MDU L&C

Temp at Receipt: 0.4C

	As Received Result	Method RL	Method Reference	Date Analyzed	Analyst
Metal Digestion		11117.111	EPA 200.2	9 Apr 20	HT
Lithium - Total	0.036 mg/l	0.020	6010D	15 Apr 20 12:09	MDE
Boron - Total	0.16 mg/l	0.10	6010D	16 Apr 20 12:42	MDE
Selenium - Total	< 0.005 mg/1	0.0050	6020B	17 Jun 20 9:48	MDE

Approved by:

Claudette K. Canteo 1 JUL 2020

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL - Method Reporting Limit

The reporting limit was elevated for any analyte requiring a dilution as coded below:

= Due to sample matrix # = Due to concentration of other analytes

! = Due to sample quantity + = Due to internal standard response

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

1 of 1 Page:

Selenium Added 11Jun2020

Terri Olson Barr Engineering Company 4300 MarketPointe Drive, Suite 200 Minneapolis MN 55435

Report Date: 20 Apr 20 Lab Number: 20-W641 Work Order #:82-0830 Account #: 013200

Date Sampled: 7 Apr 20 10:54 Date Received: 9 Apr 20 15:05

Sampled By: Client

Project Name: 26411007.15 Sample Description: T-14 Sample Site: MDU L&C

Temp at Receipt: 0.4C

As Receive Result	d	Method RL	Method Reference	Date Analyzed	Analyst
			EPA 200.2	9 Apr 20	нт
0.038	mq/1	0.020	6010D	15 Apr 20 12:09	MDE
0.17		0.10	6010D	16 Apr 20 12:42	MDE
< 0.005	mg/l	0.0050	6020B	17 Jun 20 9:48	MDE
	0.038 0.17	0.038 mg/l 0.17 mg/l	Result RL 0.038 mg/l 0.020 0.17 mg/l 0.10	Result RL Reference EPA 200.2 0.038 mg/l 0.020 6010D 0.17 mg/l 0.10 6010D	Result RL Reference Analyzed EPA 200.2 9 Apr 20 0.038 mg/l 0.020 6010D 15 Apr 20 12:09 0.17 mg/l 0.10 6010D 16 Apr 20 12:42

Approved by:

Claudette K. Cantes

CC 1 JUL 2020

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

The reporting limit was elevated for any analyte requiring a dilution as coded below:

@ = Due to sample matrix # = Due to con
! = Due to sample quantity + = Due to int

= Due to concentration of other analytes + = Due to internal standard response

Selenium - Total

MINNESOTA VALLEY TESTING LABORATORIES, INC.

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

1 of 1 Page:

Selenium Added 11Jun2020

Project Name: 26411007.15 Sample Description: T-20

Terri Olson Barr Engineering Company 4300 MarketPointe Drive, Suite 200

< 0.005

mg/1

Minneapolis MN 55435

Report Date: 20 Apr 20 Lab Number: 20-W642 Work Order #:82-0830 Account #: 013200

Date Sampled: 7 Apr 20 12:45 Date Received: 9 Apr 20 15:05

17 Jun 20 9:48

MDE

Sampled By: Client

Temp at Receipt: 0.4C

Sample Site: MDU L&C As Received Method Method Date Analyst Reference Analyzed Result EPA 200.2 9 Apr 20 нт Metal Digestion MDE 0.070 0.020 6010D 15 Apr 20 12:09 Lithium - Total mg/1MDE Boron - Total 0.21 mg/10.10 6010D 16 Apr 20 12:42

0.0050

6020B

Approved by:

Claudette K. Canteo

10 1 JUL 2020

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

= Due to concentration of other analytes
+ = Due to internal standard response

MINNESOTA VALLEY TESTING LABORATORIES, INC.

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy, ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mytl.com

Selenium Added 11Jun2020

Terri Olson Barr Engineering Company 4300 MarketPointe Drive, Suite 200 Minneapolis MN 55435

Project Name: 26411007.15 Sample Description: T-22 Sample Site: MDU L&C

1 of 1 Page:

Report Date: 20 Apr 20 Lab Number: 20-W643 Work Order #:82-0830 Account #: 013200

Date Sampled: 8 Apr 20 8:25 Date Received: 9 Apr 20 15:05

Sampled By: Client

Temp at Receipt: 0.4C

	As Receiv Result	red	Method RL	Method Reference	Date Analyzed	Analyst
Metal Digestion		10.00		EPA 200.2	9 Apr 20	HT
Lithium - Total	0.077	mg/1	0.020	6010D	15 Apr 20 12:09	MDE
Boron - Total	0.38	mg/l	0.10	6010D	16 Apr 20 12:42	MDE
Selenium - Total	0.0077	mg/l	0.0050	6020B	17 Jun 20 9:48	MDE

Approved by:

Claudette K. Cantep 1 JUL 2020

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

The reporting limit was elevated for any analyte requiring a dilution as coded below: \emptyset = Due to sample matrix $\|\cdot\|$ = Due to continuous $\|\cdot\|$ = Due to sample quantity $\|\cdot\|$ = Due to interpolation.

= Due to concentration of other analytes
+ = Due to internal standard response

MINNESOTA VALLEY TESTING LABORATORIES, INC.

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

1 of 1 Page:

Selenium Added 11Jun2020

Terri Olson Barr Engineering Company 4300 MarketPointe Drive, Suite 200

Minneapolis MN 55435

Report Date: 20 Apr 20 Lab Number: 20-W644 Work Order #:82-0830 Account #: 013200

Date Sampled: 8 Apr 20 9:00 Date Received: 9 Apr 20 15:05

Sampled By: Client

Project Name: 26411007.15 Sample Description: T-23 Sample Site: MDU L&C

Temp at Receipt: 0.4C

	As Receiv Result	red	Method RL	Method Reference	Date Analyzed	Analyst
Metal Digestion			7 7 7 7 7	EPA 200.2	14 Apr 20	HT
Lithium - Total	0.535	mg/l	0.020	6010D	15 Apr 20 12:09	MDE
Boron - Total	0.58	mg/1	0.10	6010D	16 Apr 20 12:42	MDE
Selenium - Total	0.0352	mg/l	0.0050	6020B	17 Jun 20 9:48	MDE

Approved by:

Claudette K. Canto

1 JUL 2020

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

The reporting limit was elevated for any analyte requiring a dilution as coded below:

= Due to sample matrix # = Due to co
! = Due to sample quantity + = Due to in

* Due to concentration of other analytes
+ = Due to internal standard response

MINNESOTA VALLEY TESTING LABORATORIES, INC.

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890
2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724
1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

Page:

1 of 1

Selenium Added 11Jun2020

Terri Olson Barr Engineering Company 4300 MarketPointe Drive, Suite 200 Minneapolis MN 55435

Report Date: 20 Apr 20 Lab Number: 20-W645 Work Order #:82-0830 Account #: 013200 Date Sampled:

Date Received: 9 Apr 20 15:05

Sampled By: Client

Project Name: 26411007.15 Sample Description: T-D Sample Site: MDU L&C

Temp at Receipt: 0.4C

	As Receive Result	d	Method RL	Method Reference	Date Analyzed	Analyst
Metal Digestion			- 1777	EPA 200.2	9 Apr 20	HT
Lithium - Total	0.044	mg/l	0.020	6010D	15 Apr 20 12:09	MDE
Boron - Total	0.16	mg/l	0.10	6010D	16 Apr 20 12:42	MDE
Selenium - Total	< 0.005	mg/l	0.0050	6020B	17 Jun 20 9:48	MDE

Approved by:

Claudette K Canteo 1 JUL 2020

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

= Due to concentration of other analytes + = Due to internal standard response

Selenium - Total

MINNESOTA VALLEY TESTING LABORATORIES, INC.

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

Selenium Added 11Jun2020

Project Name: 26411007.15 Sample Description: T-RB

Terri Olson Barr Engineering Company 4300 MarketPointe Drive, Suite 200 Minneapolis MN 55435

< 0.005

mg/1

Page: 1 of 1

Report Date: 20 Apr 20 Lab Number: 20-W646 Work Order #:82-0830 Account #: 013200

Date Sampled: Date Received: 9 Apr 20 15:05

17 Jun 20 9:48

MDE

Sampled By: Client

Temp at Receipt: 0.4C

Sample Site: MDU L&C As Received Method Method Date Reference Analyzed Analyst Result EPA 200.2 HT 9 Apr 20 Metal Digestion 15 Apr 20 12:09 0.020 6010D MDE Lithium - Total < 0.02 mg/1MDE Boron - Total < 0.1 mg/10.10 6010D 16 Apr 20 12:42

0.0050

6020B

CC

Approved by:

1 JUL 2020 Clauditte K. Canteo

Claudette K. Carroll, Laboratory Manager, Bismarck, ND

RL = Method Reporting Limit

= Due to concentration of other analytes
+ = Due to internal standard response

MINNESOTA VALLEY TESTING LABORATORIES, INC.

1126 N. Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 E. Broadway Ave. ~ Bismarck, ND 58502 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Highway ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

MEMBER

Page: 1 of 1

Quality Control Report - Amended

Lab IDs: 20-W635 to 20-W646	91	Pro	Project: 26411007.15	11007.15		^	Work Order: 202082-0830	der: 2020	082-0830								
Analyte	LCS Spike Amt	LCS Rec %	S LCS Matrix M % Rec Spike Sr Limits Amt II	Matrix Matrix Spike Spike Amt ID	Matrix Spike D	Matrix Spike Orig Result	Matrix Spike Result	Matrix Spike Rec %	Matrix Spike % Rec Limits	MSD/ Dup Orig Result	MSD/ Dup Result	MSD Rec %	MSD/ I Dup I	MSD/	Known Rec (%)	Known % Rec Limits	Method Blank
Boron - Total mg/l	0.40 0.40 0.40	92 90 92	80-120 80-120 80-120	0.400 0.400 0.400	20-D1057 20-D1072 20-D1132	0.32 0.13 1.56	0.75 0.53 2.04	108 100 120	75-125 75-125 75-125	0.75 0.53 2.04	0.75 0.54 1.97	108 102 102	0.0	20 20 20	1 1 1	1 1 1	<pre></pre>
	0.40	06	80-120	0.400	20-W638 20-W646	0.16	0.57	102	75-125 75-125	0.57	0.57	102	,,,,	20	1 1 1 1	1	<pre></pre>
Lithium - Total mg/l	0.400	102 99	80-120 0.400 80-120 0.400	0.400	20-W578 20-W638	< 0.02 0.033	0.411	103 108	75-125 75-125	0.411	0.402	100	2.2	20 20	1 1 1 T	1 1 1 1	0.020.020.020.020.02
Selenium - Total mg/l	0.1000 101	101	80-120 0.400 0.400	0.400	20W635q 20W645q	< 0.005 < 0.005	0.4034 0.4138	101	75-125 75-125	0.4034 0.4138	0.4102 0.4562	103 114	1.7	20 20	f t	1 1	< 0.005

Samples were received in good condition on 9 Apr 2020 at 1505.

Temperature upon receipt at the Bismarck laboratory was 0.4°C.

All samples were properly preserved unless noted here and/or flagged on the individual analytical laboratory report.

Approved methodology was followed for all sample analyses. All acceptance criteria were met for calibration, method blanks, laboratory control samples, laboratory fortified matrix/duplicates unless noted here.

Per email from Terri Olson with Barr dated 11 Jun 2020, selenium was added to the samples.

C. Caurlo Approved by: 1 15 XX

Claudette Carroll

From: Terri A. Olson <TOlson@barr.com>
Sent: Thursday, June 11, 2020 11:15 AM

To: Claudette Carroll

Subject: RE: 202082-0830 BARR.pdf

Hi Claudette,

Glad that Scott requested this. Please analyze selenium by EPA 6020B on all 10 samples.

Thanks Claudette.

Terri A. Olson Senior Data Quality Specialist Minneapolis, MN office: 952.842.3578 TOlson@barr.com

www.barr.com

resourceful, naturally,

This e-mail message (including attachments, forwards, and replies) is correspondence transmitted between Barr Engineering Co. and its clients and related parties in the course of business, and is intended solely for use by the addressees. This transmission contains information which may be confidential and proprietary. If you are not the addressee, note that any disclosure, copying, distribution, or use of the contents of this message (or any attachments, replies, or forwards) is prohibited. If you have received this transmission in error, please destroy it and notify us at 952-832-2600.

If you no longer wish to receive marketing e-mails from Barr, respond to <u>communications@barr.com</u> and we will be happy to honor your request.

From: Claudette Carroll <ccarroll@mvtl.com>

Sent: Thursday, June 11, 2020 9:46 AM To: Terri A. Olson <TOlson@barr.com> Subject: RE: 202082-0830 BARR.pdf

CAUTION: This email originated from outside your organization. Exercise caution when opening attachments or clicking links, especially from unknown senders.

Hi Terri,

Cost of selenium would be \$18 per sample. Per an earlier request by Scott Korum, we have held onto these samples and will be able to run them for selenium, if requested.

Claudette

Minnesota Valley Testing Laboratories, Inc.

Providing Analytical Excellence Since 1951

ccarroll@mvtl.com 701-258-9720

2616 E. Broadway Ave/Bismarck, ND 58501 #NDSmart, #NDStrong, #InThisTogether

From: Terri A. Olson < TOlson@barr.com>
Sent: Thursday, June 11, 2020 8:17 AM
To: Claudette Carroll < ccarroll@mvtl.com>

Subject: 202082-0830 BARR.pdf

Hi Claudette,

We are thinking about having selenium analyzed for the samples in the attached report. Do you have any sample left? Based on past work, I believe we would want the selenium by 6020 and the B and Li were by 6010 so reporting from the same run isn't an optino. If you have sample, what would be the associated cost for Se by 6020?

Thank-you,

Terri A. Olson Senior Data Quality Specialist Minneapolis, MN office: 952.842.3578 TOlson@barr.com www.barr.com

This e-mail message (including attachments, forwards, and replies) is correspondence transmitted between Barr Engineering Co. and its clients and related parties in the course of business, and is intended solely for use by the addressees. This transmission contains information which may be confidential and proprietary. If you are not the addressee, note that any disclosure, copying, distribution, or use of the contents of this message (or any attachments, replies, or forwards) is prohibited. If you have received this transmission in error, please destroy it and notify us at 952-832-2600.

If you no longer wish to receive marketing e-mails from Barr, respond to <u>communications@barr.com</u> and we will be happy to honor your request.

_									······································								ST/9	Rev. 06/1	SOTE BIG	dy Form	Of Custo	niedD/2	MRO30	172/9.	ян
33	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	GW = Groundwater A = None	19. 19.	ja D r	olid ent	Other G = NaHSO ₄	11	11 11	0	ive Code ed Y/N	Coutact Temi	3	Questions.								Date Time ACCAS 1505	Date Time	Requested Due Date:	X Standard Turn Around Time	(mm/dd/yyyy)
alysis Requeste	Water Soil CC	Matrix	SW		\$77/C \$4/2	" O '\ht.'	() -	ارد (إدرا	% \(\right)	D I I I Field Filtered V/N		3/0	8								te Time Received by:	te Time Received by.	ss Ksampler Air Bill Number:		(°C; O. · · · · Custody Seal Intact? □ · · □ · · □ None □ · · · · · · · · · · · · · · · · · ·
ample Origination	☐ Jefferson City ☐ MI ☐ ND Office: ☐ Minneapolis ☐ MN ☐ SD (MT)	INVOICE TO	Company:	Address:	Name: \mathcal{H}_{inc}	, , ,	Po.	Barr Project No: 264 [1007.15	Collection Collection Matrix		04/06/2020 12:02 GWM	13,30	Sh; 51	57:91	17:33	1 01:61 -		Sh; B! T	SY:80 Preb/80/40	T 00:50 T	Relinquished by: My the My On Ice? Date	On Ice?	Samples Shipped VIA: Courier Federal Express	Other:	Lab Location: 入分づかなってい Lab WO: Temperature on Receipt (*C): (Dictribution - White-Original Accompanies Chipment to Jahoratory Vellow Courr Include in Field Documents:
Barr Engineering Co. Chain	Duluth Hibbir	REPORT TO	Company: Ban Engineering	Address: 234 W Century Ave	Name: Terri Olson	email: Tolson @ barr, com		Project Name: Mのい しゃし		Location Start	17-15 11/25	27-16 WK220	3.7-18 (18/0.5)	4 T-17 wass	5.7-21 Wess 1	6.7-19 W640	1 333 1-1-12	CAN OR-T8	et 22 wers	10.7 - 73 WOTH	H	, ju	Barr DQ Manager: しゃん 0604	2	Lab Location: 1分がMaへこん Distribution - White Original Accompanies Shipm

nents; Pink Copy: S TW SC

82-0830

		Preservative Code: A = None		= HNO3 = H ₂ SO ₄	■ NaOH ■ MeOH		= Na ₂ > ₂ O ₃ = Ascorbic Acid	= NH ₄ Cl = Zn Acetate	= Other		Terr;						St/	1/90 '^95	אופ ו	Porm 2	Time 1550	E e e e e		****	
54258	4	Ter	(ab (ater C Water D	шц	. თ :	 ₩		.0	Code Y/N	· Coutact	m W	questions.								Date CASS	Date	Requested Due Date:	Rush	(ww/dd/yyyy)
COC Number:		Matrix Code:			11 11	O = Other	S	pilos	s %	Preservative Code Field Filtered Y/N	no).	nasjo	que								j				□N □ None
Analysis Requested	Soil			***************************************																	Received by	Received by:	Air Bill Number:		Seal Intact? Y
Anal	(12	, fot	·) 1	1-52 1-20 1-10	4 -	1; 2	m	- <i>T</i> 1541- 1941	<u>, , , , , , , , , , , , , , , , , , , </u>	Notal Notal	T-										Time 5.05	Time	Sampler		O-い Custody
in State:				N	/ A		SWA		ντω Δη Σ	Ood de sto	ON WO	4									On Ice? Date	On Ice? Date	☐ Federal Express		on Receipt (°C):
mple Originatio		E TO			Mo		\	1007.15	Collection	Time (h:mm)											will	0			Temperature
Custody Sa		INVOIC	V	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Z			1496	Collection	<u> </u>											by: Month	by:	İ		
of	☐ Jefferson City ☐ Minneapolis		Company:	2 Address:	Name:	email:	P.O.	Barr Project No:	Sample Depth	Stop (m./ft. or in.)											Relinquished by:	Relinquished	Samples Shipped VIA:		Lab WO:
ng Co. Chain	☐ Duluth ☐ Hibbing	10	Engineer, mg	Centry Are	Olson	& Borr, com	r.com	747	Sa	Start	1 240m	Ne46	1								ONLY	ereny bacusek	ri Olson	7	Lab Location: ちんかめでと、
Engineering	☐ Ann Arbor X Bismarck	REPORT TO	Barr	237 %	Terr,	Folson	Copy to: datamgt@barr.com	Project Name: MQU		Location	0 1	T- RB						***************************************			Sampled by ////	Barr Proj. Manager:	anag	Y	cation: 6/ 5 <i>md</i> でと
Barr	BARR		Company:	Address:	Name:	email:	Copy	Project			Į Li	2	m,	4,	25	6.	7.	∞i	6	10.	Sample	Barr Pr	Barr D(Lab Name:	Lab Location:

IN Se P

1673 Terra Avenue Sheridan, WY 82801

Date: 8/26/2020

CLIENT: Barr Engineering

26411007.15

Lab Order: S2008131

Project:

CASE NARRATIVE

Report ID: S2008131001

Samples COAL PILE COAL 2, SB-2 20.5-21, T-17 10.75-15, T-18 12.5-14.5, T-2 22.5-23.5, T-22 10-15, T-3 30-32.5, T-5 10-15 and T-6 19.5-20 were received on August 6, 2020.

ph: (307) 672-8945

Samples were analyzed using the methods outlined in the following references:

U.S.E.P.A. 600/2-78-054 "Field and Laboratory Methods Applicable to Overburden and Mining Soils", 1978

American Society of Agronomy, Number 9, Part 2, 1982

USDA Handbook 60 "Diagnosis and Improvement of Saline and Alkali Soils", 1969

Wyoming Department of Environmental Quality, Land Quality Division, Guideline No. 1, 1984

New Mexico Overburden and Soils Inventory and Handling Guideline, March 1987

State of Utah, Division of Oil, Gas, and Mining: Guidelines for Management of Topsoil and Overburden for Underground and Surface Coal Mining, April 1988

Montana Department of State Lands, Reclamation Division: Soil, Overburden, and Regraded Spoil Guidelines, December 1994

State of Nevada Modified Sobek Procedure

Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW846, 3rd Edition

All Quality Control parameters met the acceptance criteria defined by EPA and Pace Analytical (Formerly Inter-Mountain Laboratories) except as indicated in this case narrative.

Qualifiers by sample

SATPASTE QC - Saturated Paste Metals by ICP/Boron - Spike Recovery outside accepted recovery limits

Please note that during sample preparation for total metals analysis, a standard was used which did not contain lithium. This was not discovered until the samples were analyzed on August 25. Therefore, there is no spike QC data for lithium, but all QC for boron and selenium are present and acceptable.

Reviewed by: Karen Asecon

S2008131-001

20.5 - 21 Feet

Project:

Lab ID:

Depths:

1673 Terra Avenue Sheridan, WY 82801

Sample Analysis Report

ph: (307) 672-8945

CLIENT: Barr Engineering

Bismark, ND

Client Sample ID: SB-2 20.5-21

Date Reported: 8/26/2020

Report ID: S2008131001

Work Order: S2008131

Collection Date:

Date Received: 8/6/2020

Sampler:

Matrix: Solid

COC: 58270

Analyses	Result	RL	Qual	Units	Date Analyzed/Init	Method
Saturated Paste Metals						
Boron	9.4	0.1		ppm	08/20/2020 16:17 DG	EPA 200.7
Lithium	0.11	0.01		ppm	08/20/2020 16:17 DG	EPA 200.7
Selenium	ND	0.05		ppm	08/20/2020 16:17 DG	EPA 200.7
Total Metals-3050/6010						
Boron	59	5		mg/Kg	08/25/2020 15:46 DG	EPA 6010C
Lithium	1.8	0.2		mg/Kg	08/25/2020 15:46 DG	EPA 6010C
Selenium	ND	1.3		mg/Kg	08/25/2020 15:46 DG	EPA 6010C

These results apply only to the samples tested.

Qualifiers:

Analyte detected in the associated Method Blank

Report limit raised due to dilution

G Analyzed at IML Gillette laboratory

Analyte detected below quantitation limits

Value exceeds Monthly Ave or MCL or is less than LCL

Outside the Range of Dilutions 0

Analyte below method detection limit

KarenAsecor

RL - Reporting Limit

Calculated Value С

Value above quantitation range

Holding times for preparation or analysis exceeded

Analyzed by another laboratory L

ND Not Detected at the Reporting Limit

Spike Recovery outside accepted recovery limits S

Х Matrix Effect

Reviewed by:

Karen Secor, Soil Lab Supervisor

Page 1 of 9

S2008131-002

1673 Terra Avenue Sheridan, WY 82801

ph: (307) 672-8945

Sample Analysis Report

CLIENT: Barr Engineering

Project:

Lab ID:

Bismark, ND

Client Sample ID: T-2 22.5-23.5

Date Reported: 8/26/2020

Report ID: S2008131001

Work Order: S2008131

Collection Date:

Date Received: 8/6/2020

Sampler:

Matrix: Solid COC: 58270

Depths:	22.5 - 23.5 Feet					COC: 58270	
Analyses		Result	RL	Qual	Units	Date Analyzed/Init	Method
Saturated Paste I	Metals						•
Boron		3.2	0.1		ppm	08/20/2020 16:19 DG	EPA 200.7
Lithium		0.07	0.01		ppm	08/20/2020 16:19 DG	EPA 200.7
Selenium		0.13	0.05		ppm	08/20/2020 16:19 DG	EPA 200.7
Total Metals-3050	0/6010						
Boron		42	5		mg/Kg	08/25/2020 15:50 DG	EPA 6010C
Lithium		5.0	0.2		mg/Kg	08/25/2020 15:50 DG	EPA 6010C
Selenium		2.9	1.3		mg/Kg	08/25/2020 15:50 DG	EPA 6010C

These results apply only to the samples tested.

Qualifiers:

Analyte detected in the associated Method Blank

Report limit raised due to dilution

G Analyzed at IML Gillette laboratory

Analyte detected below quantitation limits

Value exceeds Monthly Ave or MCL or is less than LCL

Outside the Range of Dilutions 0

Analyte below method detection limit

KarenAsecor

RL - Reporting Limit

Calculated Value С

Value above quantitation range

Holding times for preparation or analysis exceeded

Analyzed by another laboratory L

ND Not Detected at the Reporting Limit

Spike Recovery outside accepted recovery limits S

Х Matrix Effect

Reviewed by:

Karen Secor, Soil Lab Supervisor

Page 2 of 9

S2008131-003

30 - 32.5 Feet

1673 Terra Avenue Sheridan, WY 82801

ph: (307) 672-8945

Sample Analysis Report

CLIENT: Barr Engineering

Project:

Lab ID:

Depths:

Bismark, ND

Client Sample ID: T-3 30-32.5

Date Reported: 8/26/2020

Report ID: S2008131001

Work Order: S2008131

Collection Date:

Date Received: 8/6/2020

Sampler:

Matrix: Solid

COC: 58270

-						
Analyses	Result	RL	Qual	Units	Date Analyzed/Init	Method
Saturated Paste Metals						
Boron	1.5	0.1		ppm	08/20/2020 16:21 DG	EPA 200.7
Lithium	0.13	0.01		ppm	08/20/2020 16:21 DG	EPA 200.7
Selenium	0.07	0.05		ppm	08/20/2020 16:21 DG	EPA 200.7
Total Metals-3050/6010						
Boron	33	5		mg/Kg	08/25/2020 15:59 DG	EPA 6010C
Lithium	13.4	0.2		mg/Kg	08/25/2020 15:59 DG	EPA 6010C
Selenium	3.1	1.3		mg/Kg	08/25/2020 15:59 DG	EPA 6010C

These results apply only to the samples tested.

Qualifiers:

Analyte detected in the associated Method Blank

Report limit raised due to dilution

G Analyzed at IML Gillette laboratory

Analyte detected below quantitation limits

Value exceeds Monthly Ave or MCL or is less than LCL

Outside the Range of Dilutions 0

Analyte below method detection limit

KarenAsecor

RL - Reporting Limit

Calculated Value С

Value above quantitation range

Holding times for preparation or analysis exceeded

Analyzed by another laboratory L

ND Not Detected at the Reporting Limit

Spike Recovery outside accepted recovery limits S

Х Matrix Effect

Reviewed by:

Karen Secor, Soil Lab Supervisor

Page 3 of 9

10 - 15 Feet

S2008131-004

1673 Terra Avenue Sheridan, WY 82801

ph: (307) 672-8945

Sample Analysis Report

CLIENT: Barr Engineering

Project:

Lab ID:

Depths:

Bismark, ND

Client Sample ID: T-5 10-15

Date Reported: 8/26/2020

Report ID: S2008131001

Work Order: S2008131

Collection Date:

Date Received: 8/6/2020

Sampler:

Matrix: Solid

COC: 58270

Analyses	Result	RL	Qual	Units	Date Analyzed/Init	Method
Saturated Paste Metals						
Boron	0.8	0.1		ppm	08/20/2020 16:24 DG	EPA 200.7
Lithium	0.09	0.01		ppm	08/20/2020 16:24 DG	EPA 200.7
Selenium	0.06	0.05		ppm	08/20/2020 16:24 DG	EPA 200.7
otal Metals-3050/6010						
Boron	33	5		mg/Kg	08/25/2020 16:02 DG	EPA 6010C
Lithium	15.9	0.2		mg/Kg	08/25/2020 16:02 DG	EPA 6010C
Selenium	ND	1.3		mg/Kg	08/25/2020 16:02 DG	EPA 6010C

These results apply only to the samples tested.

Qualifiers:

Analyte detected in the associated Method Blank

Report limit raised due to dilution

G Analyzed at IML Gillette laboratory

Analyte detected below quantitation limits

Value exceeds Monthly Ave or MCL or is less than LCL

Outside the Range of Dilutions 0

Analyte below method detection limit

KarenAsecor

RL - Reporting Limit

Calculated Value С

Value above quantitation range

Holding times for preparation or analysis exceeded

Analyzed by another laboratory L

ND Not Detected at the Reporting Limit

Spike Recovery outside accepted recovery limits S

Х Matrix Effect

Reviewed by:

Karen Secor, Soil Lab Supervisor

Page 4 of 9

S2008131-005

19.5 - 20 Feet

1673 Terra Avenue Sheridan, WY 82801

ph: (307) 672-8945

Sample Analysis Report

CLIENT: Barr Engineering

Project:

Lab ID:

Depths:

Bismark, ND

Client Sample ID: T-6 19.5-20

Date Reported: 8/26/2020

Report ID: S2008131001

Work Order: S2008131

Collection Date:

Date Received: 8/6/2020

Sampler:

Matrix: Solid

COC: 58270

1						
Analyses	Result	RL	Qual	Units	Date Analyzed/Init	Method
Saturated Paste Metals						
Boron	0.6	0.1		ppm	08/20/2020 16:26 DG	EPA 200.7
Lithium	0.08	0.01		ppm	08/20/2020 16:26 DG	EPA 200.7
Selenium	0.09	0.05		ppm	08/20/2020 16:26 DG	EPA 200.7
Total Metals-3050/6010						
Boron	25	5		mg/Kg	08/25/2020 16:04 DG	EPA 6010C
Lithium	18.8	0.2		mg/Kg	08/25/2020 16:04 DG	EPA 6010C
Selenium	ND	1.3		mg/Kg	08/25/2020 16:04 DG	EPA 6010C

These results apply only to the samples tested.

Qualifiers:

Analyte detected in the associated Method Blank

Report limit raised due to dilution

G Analyzed at IML Gillette laboratory

Analyte detected below quantitation limits

Value exceeds Monthly Ave or MCL or is less than LCL

Outside the Range of Dilutions 0

Analyte below method detection limit

KarenAsecor

RL - Reporting Limit

Calculated Value С

Value above quantitation range

Holding times for preparation or analysis exceeded

Analyzed by another laboratory L

ND Not Detected at the Reporting Limit

Spike Recovery outside accepted recovery limits S

Х Matrix Effect

Reviewed by:

Karen Secor, Soil Lab Supervisor

Page 5 of 9

S2008131-006

10.75 - 15 Feet

1673 Terra Avenue Sheridan, WY 82801

ph: (307) 672-8945

Sample Analysis Report

CLIENT: Barr Engineering

Project:

Lab ID:

Depths:

Bismark, ND

Client Sample ID: T-17 10.75-15

Date Reported: 8/26/2020

Report ID: S2008131001

Work Order: S2008131

Collection Date:

Date Received: 8/6/2020

Sampler:

Matrix: Solid

COC: 58270

Analyses	Result	RL	Qual	Units	Date Analyzed/Init	Method
Saturated Paste Metals						
Boron	2.2	0.1		ppm	08/20/2020 16:30 DG	EPA 200.7
Lithium	0.10	0.01		ppm	08/20/2020 16:30 DG	EPA 200.7
Selenium	0.06	0.05		ppm	08/20/2020 16:30 DG	EPA 200.7
Total Metals-3050/6010						
Boron	44	5		mg/Kg	08/25/2020 16:06 DG	EPA 6010C
Lithium	13.3	0.2		mg/Kg	08/25/2020 16:06 DG	EPA 6010C
Selenium	ND	1.3		mg/Kg	08/25/2020 16:06 DG	EPA 6010C

These results apply only to the samples tested.

Qualifiers:

Analyte detected in the associated Method Blank

Report limit raised due to dilution

G Analyzed at IML Gillette laboratory

Analyte detected below quantitation limits

Value exceeds Monthly Ave or MCL or is less than LCL

Outside the Range of Dilutions 0

Analyte below method detection limit KarenAsecor

RL - Reporting Limit

Calculated Value С

Value above quantitation range

Holding times for preparation or analysis exceeded

Analyzed by another laboratory L

ND Not Detected at the Reporting Limit

Spike Recovery outside accepted recovery limits S

Х Matrix Effect

Reviewed by:

Karen Secor, Soil Lab Supervisor

Page 6 of 9

S2008131-007

12.5 - 14.5 Feet

1673 Terra Avenue Sheridan, WY 82801

ph: (307) 672-8945

Sample Analysis Report

CLIENT: Barr Engineering

Project:

Lab ID:

Depths:

Bismark, ND

Client Sample ID: T-18 12.5-14.5

Date Reported: 8/26/2020

Report ID: S2008131001

Work Order: S2008131

Collection Date:

Date Received: 8/6/2020

Sampler:

Matrix: Solid

COC: 58270

Analyses	Result	RL	Qual	Units	Date Analyzed/Init	Method
Saturated Paste Metals						
Boron	3.3	0.1		ppm	08/20/2020 16:32 DG	EPA 200.7
Lithium	0.09	0.01		ppm	08/20/2020 16:32 DG	EPA 200.7
Selenium	0.07	0.05		ppm	08/20/2020 16:32 DG	EPA 200.7
otal Metals-3050/6010						
Boron	47	5		mg/Kg	08/25/2020 16:08 DG	EPA 6010C
Lithium	12.6	0.2		mg/Kg	08/25/2020 16:08 DG	EPA 6010C
Selenium	ND	1.3		mg/Kg	08/25/2020 16:08 DG	EPA 6010C

These results apply only to the samples tested.

Qualifiers:

Analyte detected in the associated Method Blank

Report limit raised due to dilution

G Analyzed at IML Gillette laboratory

Analyte detected below quantitation limits

Value exceeds Monthly Ave or MCL or is less than LCL

Outside the Range of Dilutions 0

Analyte below method detection limit

KarenAsecor

RL - Reporting Limit

Calculated Value С

Value above quantitation range

Holding times for preparation or analysis exceeded

Analyzed by another laboratory L

ND Not Detected at the Reporting Limit

Spike Recovery outside accepted recovery limits S

Х Matrix Effect

Reviewed by:

Karen Secor, Soil Lab Supervisor

Page 7 of 9

1673 Terra Avenue Sheridan, WY 82801

ph: (307) 672-8945

Sample Analysis Report

CLIENT: Barr Engineering

Project:

Bismark, ND

Date Reported: 8/26/2020

Report ID: S2008131001

Work Order: S2008131

Collection Date:

Date Received: 8/6/2020

Sampler:

Matrix: Solid COC: 58270

 Lab ID:
 \$2008131-008

 Client Sample ID:
 \$T-22 10-15

 Depths:
 10 - 15 Feet

Analyses	Result	RL	Qual	Units	Date Analyzed/Init	Method
Saturated Paste Metals						
Boron	0.9	0.1		ppm	08/20/2020 16:35 DG	EPA 200.7
Lithium	0.06	0.01		ppm	08/20/2020 16:35 DG	EPA 200.7
Selenium	ND	0.05		ppm	08/20/2020 16:35 DG	EPA 200.7
Total Metals-3050/6010						
Boron	34	5		mg/Kg	08/25/2020 16:10 DG	EPA 6010C
Lithium	12.4	0.2		mg/Kg	08/25/2020 16:10 DG	EPA 6010C
Selenium	ND	1.3		mg/Kg	08/25/2020 16:10 DG	EPA 6010C

These results apply only to the samples tested.

Qualifiers:

B Analyte detected in the associated Method Blank

D Report limit raised due to dilution

G Analyzed at IML Gillette laboratory

J Analyte detected below quantitation limits

M Value exceeds Monthly Ave or MCL or is less than LCL

O Outside the Range of Dilutions

U Analyte below method detection limit

Karen A Secon

RL - Reporting Limit

C Calculated Value

Value above quantitation range

H Holding times for preparation or analysis exceeded

L Analyzed by another laboratory

ND Not Detected at the Reporting Limit

S Spike Recovery outside accepted recovery limits

X Matrix Effect

Reviewed by:

Karen Secor, Soil Lab Supervisor

Page 8 of 9

S2008131-009

1673 Terra Avenue Sheridan, WY 82801

Sample Analysis Report

ph: (307) 672-8945

CLIENT: Barr Engineering

Project:

Lab ID:

Bismark, ND

Client Sample ID: COAL PILE COAL 2

Date Reported: 8/26/2020

Report ID: S2008131001

Work Order: S2008131

Collection Date:

Date Received: 8/6/2020

Sampler:

Matrix: Solid

COC: 58270

Depths: 0 - 0 Feet				COC : 58270	
Analyses	Result	RL Q	ual Units	Date Analyzed/Init	Method
Saturated Paste Metals					
Boron	2.6	0.1	ppm	08/20/2020 16:37 DG	EPA 200.7
Lithium	0.03	0.01	ppm	08/20/2020 16:37 DG	EPA 200.7
Selenium	ND	0.05	ppm	08/20/2020 16:37 DG	EPA 200.7
otal Metals-3050/6010					
Boron	63	5	mg/Kg	08/25/2020 16:15 DG	EPA 6010C
Lithium	1.3	0.2	mg/Kg	08/25/2020 16:15 DG	EPA 6010C
Selenium	ND	1.3	mg/Kg	08/25/2020 16:15 DG	EPA 6010C

These results apply only to the samples tested.

Qualifiers:

Analyte detected in the associated Method Blank

Report limit raised due to dilution

G Analyzed at IML Gillette laboratory

Analyte detected below quantitation limits

Value exceeds Monthly Ave or MCL or is less than LCL

Outside the Range of Dilutions 0

Analyte below method detection limit KarenAsecor

RL - Reporting Limit

С Calculated Value

Value above quantitation range

Holding times for preparation or analysis exceeded

Analyzed by another laboratory L

ND Not Detected at the Reporting Limit

Spike Recovery outside accepted recovery limits S

Х Matrix Effect

Reviewed by:

Karen Secor, Soil Lab Supervisor

Page 9 of 9

1673 Terra Avenue Sheridan, WY 82801

ANALYTICAL QC SUMMARY REPORT

ph: (307) 672-8945

CLIENT: Barr Engineering Date: 8/26/2020

Work Order: S2008131 Report ID: S2008131001

Project:

Oject.								
Satur	ated Paste Metals by ICP	Sample Type MBLK		Units:	ppm			
	SATPASTE BLK (08/20/20 16:46)	RunNo: 181804	ļ					
	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual
	Boron	ND	0.1					
	Lithium	ND	0.01					
	Selenium	ND	0.05					
Satur	ated Paste Metals by ICP	Sample Type LCS		Units:	ppm			
	SATPASTE QC (08/20/20 16:44)	RunNo: 181804	ļ					
	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual
	Boron	0.4	0.1	0.31		124	80 - 120	S
	Lithium	0.08	0.01	0.07		116	80 - 120	
	Selenium	0.10	0.05	0.11		86.7	80 - 120	
Satur	ated Paste Metals by ICP	Sample Type DUP	Sample Type DUP					
	S2008131-005AD (08/20/20 16:28)	RunNo: 181804	ļ					
	Analyte	Result	RL	Ref Samp	%RPD	%REC	% RPD Limits	Qual
	Boron	0.6	0.1	0.6	7.17		20	
	Lithium	0.08	0.01	0.08	5.44		20	
	Selenium	0.07	0.05	0.09	24.9		20	R

Qualifiers: Analyte detected in the associated Method Blank

Value above quantitation range

Holding times for preparation or analysis exceeded

Analyzed by another laboratory

0 Outside the Range of Dilutions

Spike Recovery outside accepted recovery limits

Report limit raised due to dilution

Analyzed at IML Gillette laboratory

Analyte detected below quantitation limits

Not Detected at the Reporting Limit

RPD outside accepted recovery limits

Χ Matrix Effect

1673 Terra Avenue Sheridan, WY 82801

ANALYTICAL QC SUMMARY REPORT

ph: (307) 672-8945

CLIENT: Barr Engineering Date: 8/26/2020

Work Order: \$2008131 Report ID: \$2008131001

Project:

,									
Total	(3050) Metals by ICP - 6010C	Sample Type MBLK	Units: mg/Kg						
	MB-17637 (08/25/20 14:57)	RunNo: 181916	Prep	Date: 08/20	0/20 17:23	Bato	chID 17637		
	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual	
	Boron	ND	5						
	Lithium	ND	0.2						
	Selenium	ND	1.3						
Total	(3050) Metals by ICP - 6010C	Sample Type LCS		Units:	mg/Kg				
	LCS-17637 (08/25/20 14:59)	RunNo: 181916	Prep	Date: 08/20	0/20 17:23	Bato	chID 17637		
	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual	
	Boron	47	5	50		93.9	80 - 120		
	Selenium	48.8	1.3	50		97.6	80 - 120		
Total	(3050) Metals by ICP - 6010C	Sample Type MS		Units:	mg/Kg				
	S2008131-009AS (08/25/20 16:17)	RunNo: 181916	Prep	PrepDate: 08/20/20 7:45 BatchID 17					
	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual	
	Boron	108	5	50	63	91.2	75 - 125		
	Selenium	41.2	1.3	50	ND	82.4	75 - 125		
Total	(3050) Metals by ICP - 6010C	Sample Type MSD		Units:	mg/Kg				
	S2008131-009AMSD (08/25/20 16:26)	RunNo: 181916	Prep	Date: 08/20	0/20 7:45	Bato	chID 17637		
	Analyte	Result	RL	Conc	%RPD	%REC	% RPD Limits	Qual	
	Boron	105	5	108	2.88	85.0	20		
	Selenium	40.0	1.3	41.2	2.96	80.0	20		
Total	(3050) Metals by ICP - 6010C	Sample Type DUP		Units:	mg/Kg				
	S2008131-001AD (08/25/20 15:48)	RunNo: 181916	Prep	Date: 08/20	0/20 7:45	Bato	chID 17637		
	Analyte	Result	RL	Ref Samp	%RPD	%REC	% RPD Limits	Qual	
	Boron	61	5	59	3.10		20		
	Lithium	1.7	0.2	1.8	6.08		20		
	Selenium	1.5	1.3	ND			20	R	
	S2008131-008AD (08/25/20 16:13)	RunNo: 181916	Prep	Date: 08/20	0/20 7:45	Bato	chID 17637		
	Analyte	Result	RL	Ref Samp	%RPD	%REC	% RPD Limits	Qual	
	Boron	36	5	34	4.95		20		
	Lithium	12.9	0.2	12.4	3.79		20		
	Selenium	ND	1.3	ND			20		

Qualifiers: B Analyte detected in the associated Method Blank

- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- L Analyzed by another laboratory
- O Outside the Range of Dilutions
- S Spike Recovery outside accepted recovery limits
- D Report limit raised due to dilution
- G Analyzed at IML Gillette laboratory
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- X Matrix Effect

sted COC Number: 58270 Soil COC \ of \ \	trix Code: Preserv	Surface Water B =	WW = Waste Water $C = HNO_3$ DW = Drinking Water $D = H_2SO_4$	шц	= Other	$H = Na_2S_2O_3$ $I = Ascorbic Acid$	11		Preservative Code	Held Filtered Y/N	OR SE ATHCHEN	WB (ETTER FOR	ard METAILS	San	at CONTACT (ROTT	WT KORDM W/ BUFSTIMIS	008 701-234-8125		by: Fedex Date Time	by: ASecr 8/620 1030	Number: Requested Due Date:
Analysis Requested Water S	7	SJE	ouie:	V5			<i>ALl</i>		sto	52008 (3)								>	te Time Received by:	Time Received	☐ Sampler Air Bill
Sample Origination State: Ks MO UT MI ND WI MN SD Other:	/OICE TO		N	1	a	SWA	411007.15	Collection Collection	(mm/dd/vvvv) (hh:mm) Code	W BYPE SD								→ ·	Of Lard on Ice? Bate	2dex On Ion Date	☐ Courier ☐ Federal Express ☐ Other:
Chain of Custody Hibbing Minneapolis Jefferson City Salt Lake City		Company:	Address:	Name:	email:	P.O.	Barr Project No: 2641100	H	Start Stop (m./ft. Di	- CL								->	Relinquished by:	Relinquished by:	Samples Shipped VIA:
Barr Engineering Co. Chain	PORT TO	Company: BAPP FAGINEERNG	1	Name: Scott KOROW	email: Skorom @ barr, com	Copy to: datamgt@barr.com	Project Name:		LOCATION	1.582 205-71	27-2 22,5-73.51	7-330-32.51	7-510-151	5,7-6 19.5-20'	6-7-17 10.75-151	7-18125-14.51	7-2210-151	COAL PLE COAL 2	Sampled by:		Barr DQ Manager: 1 AD Lab Name: PACE

Appendix C

Groundwater Flow Rate Calculations

Lewis & Clark Station CCR Unit Groundwater Velocity Calculation

Sampling Date 4/24/2023

Upgradient (MW103)

Top of Casing Elevation	1927.33	ft amsl	Groundwater Monitoring System Documentation (Barr, 2018)
Depth to Water	10.39	ft below TOC	
Water Level Elevation	1916.94	ft amsl	

Downgradient (MW117)

Top of Casing Elevation	1920.34	ft amsl	Gı
Depth to Water	5.00	ft below TOC	
Water Level Elevation	1915.34	ft amsl	

Groundwater Monitoring System Documentation (Barr, 2018)

horizontal hydraulic	0.001	cm/s
conductivity (Kh)	2.8	ft/day
porosity (n)	0.3	
horizontal distance	645	ft
WL elevation difference	1.60	ft
gradient (i)	0.002	ft/ft
horizontal linear velocity		
(V)	0.0234	ft/day
horizontal V	9	ft/yr

Placement Above the Uppermost Aquifer Determination (Barr, 2018)