

Integrated Resource Plan 2024

Submitted to the North Dakota Public Service Commission July 12, 2024

Volume IV: Attachments C-G

Montana-Dakota Utilities Co. 2024 Integrated Resource Plan

Submitted to the North Dakota Public Service Commission

July 12, 2024

Volume IV Attachments C – G

Attachment C

SUPPLY-SIDE AND INTEGRATION ANALYSIS DOCUMENTATION

Supply Side and Integration Analysis TABLE OF CONTENTS

Overview	1
Capacity Needs	
Load and Capability	2
1. Analysis Method	4
2. Resources	5
2.1. Current Resources	5
2.1.1. Coal	6
2.1.2. Natural Gas and Diesel	7
2.1.3. Renewable	8
2.1.4. Demand Response	8
2.1.5. MISO Energy Market	
2.1.6. Minnkota Power Capacity and Energy Purchase	9
2.2. Considered Supply-Side Resource Alternatives	
2.2.1. Simple Cycle Combustion Turbine	
2.2.2. Simple Cycle Reciprocating Internal Combustion Engine	
2.2.3. Combined Cycle Combustion Turbine	
2.2.4. Wind Generation	
2.2.5. Solar PV plus Battery Storage	12
2.2.6. Battery Storage	
2.3. Retirements	
2.4. Integration of Demand-Side and Supply-Side Resources	15
2.5. Transmission Alternatives	15
3. Summaries of Results	
3.1. Base Case Plan Results	24
3.2. Sensitivity Analysis	24
3.2.1. High and Low Gas Price	
3.2.2. High and Low Market Prices	
3.2.3. Gas and Market Price Combinations	
3.2.4. Higher Environmental Costs on Combustion Turbine Alternatives	25
3.2.5. Limiting Market Energy	
3.2.6. High Growth	
3.2.7. Low Growth	
3.2.8. Carbon Tax	
3.2.9. Coyote Retire 2032	26
3.2.10. Greenhouse Gas Rule	26
3.2.11. Lower Resource Accreditation	
3.2.12. Higher Renewables and Demand Response	
3.2.13. New Wind Opportunity	27
3.3. Additional Modeling	
3.3.1. Extreme Weather vs Normal Weather	
3.3.2. Natural Gas Fuel Delivery Outages	
4. Conclusions	
5. Future Resource Plan	
6. References	
APPENDIX A – EGEAS INPUT DATA FOR THE SUMMER BASE CASE	
APPENDIX B – EGEAS OUTPUT REPORT FOR THE SUMMER BASE CASE	

Supply-Side

Overview

To determine the most cost-effective plan, a supply-side analysis was conducted to identify the feasible supply-side resources to be added to Montana-Dakota's generating system. Potential new planning resources consisting of both capacity resources (generation or external resources) and load modifying resources must be proven technology and be able to provide the same system reliability that Montana-Dakota's customers have come to expect over the years. The integration process considers the potential planning resources and integrates those resources into a single least-cost plan. The analysis also considers possible future economic and social issues.

The least-cost resource plan, developed through the integration process, provides the basis for evaluating and determining the most cost-effective, long-term plan for future supply. Criteria other than simply least cost must be considered in the ultimate future resource selection.

Capacity Needs

The resource expansion analysis considers all planning resource options available to Montana-Dakota and produces a least-cost plan which satisfies the energy and capacity requirements to reliably serve Montana-Dakota's customers. Montana-Dakota is a member of MISO, which currently requires a planning reserve margin (PRM) of 9 percent on an unforced capacity (UCAP) basis for the summer peak and 27.4 percent for the winter. The PRM is adjusted annually through MISO's Loss of Load Expectation (LOLE) study. To meet the planning reserve margin requirement (PRMR), enough planning resources are needed to cover the projected yearly MISO coincident summer and winter peak demand with an adder for MISO losses, plus the PRM.

Montana-Dakota is required to meet a PRMR based on an 82.6 percent coincident factor in the summer and 92 percent coincident factor in the winter for the 2024-2025 Planning Year in MISO based on MDU's analysis of Montana-Dakota's peak at the time of the MISO system-wide peak.

MISO implemented a four-season resource adequacy requirement beginning with the 2023-2024 MISO Planning Year. The impacts of the four-season resource adequacy requirement have not had a large impact on the generation requirements for Montana-Dakota's fleet.

MISO is developing another change to Resource Adequacy that currently is expected to go into effect for the 2028-2029 Planning Year called the Direct Loss of Load (DLOL) method of calculating each Load Serving entities requirement and will develop each resources capacity credit. Montana-Dakota did receive numbers based on the 2022-2023 Planning Year and was able to manipulate those results to provide a look at how the DLOL method would affect Montana-Dakota.

Load and Capability

To further understand Montana-Dakota's capacity needs, a comparison of its zonal resource credits (ZRC) in MISO and the planning reserve margin requirement (PRMR) for summer and winter is shown in Figures 1-1 and 1-2, and Figures 1-3 and 1-4 showing the future summer and winter DLOL comparison. The ZRC is established by MISO annually through a Generator Verification Test Capability (GVTC) process. The GVTC is run annually by all Montana-Dakota's steam units and combustion turbines, as required by MISO for all generation resources, greater than 10 MW. All planning resources are corrected to MISO's seasonal peak to develop an Installed Capacity (ICAP) value to be used for each season. MISO then converts the ICAP value to a Seasonal Accredited Capacity (SAC) based on each unit's availability during the periods of highest risk and greatest need during each of the four seasons. The SAC values are then directly converted to a ZRC to be used to meet PRMR.

Figure 1-1 shows that, under the current summer system forecast, Montana-Dakota has adequate capacity to meet its PRMR through 2030. The capacity deficit in 2031 will be 2.2 ZRC and grow to 87.2 ZRC by 2043. As shown in Figure 1-2, under the current winter system forecast, a capacity deficit occurs in 2034 at 18.6 ZRC and grows to 150.9 ZRC by 2043. With the summer DLOL, as shown in Figure 1-3, a capacity deficit of 7.4 ZRC will occur in 2027 and grow to 92.2 ZRC by 2043. The winter DLOL, as shown in Figure 1-4, has a capacity deficit that shows up in 2026 at 0.5 ZRC and by 2043 will be 139.9 ZRC.

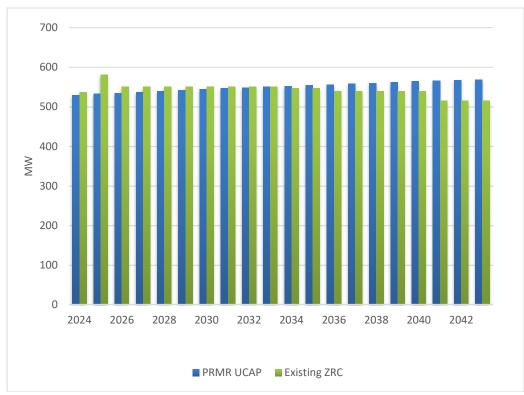


Figure 1-1: Zonal Resource Credit and Planning Reserve Margin Requirement Summer

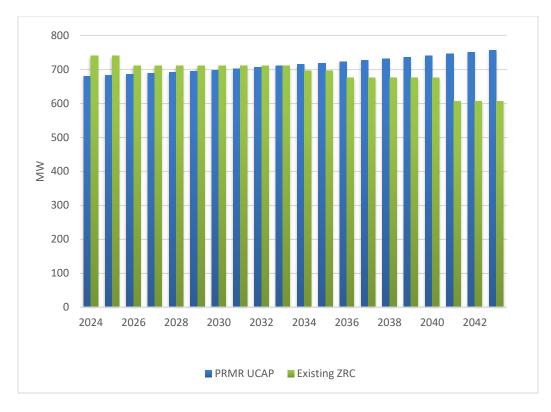


Figure 1-2: Zonal Resource Credit and Planning Reserve Margin Requirement Winter

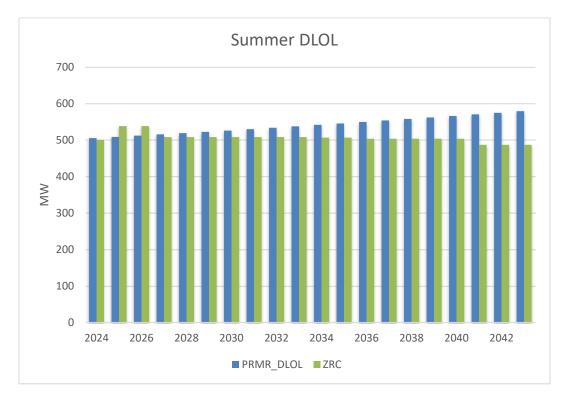


Figure 1-3: Zonal Resource Credit and Summer DLOL requirements

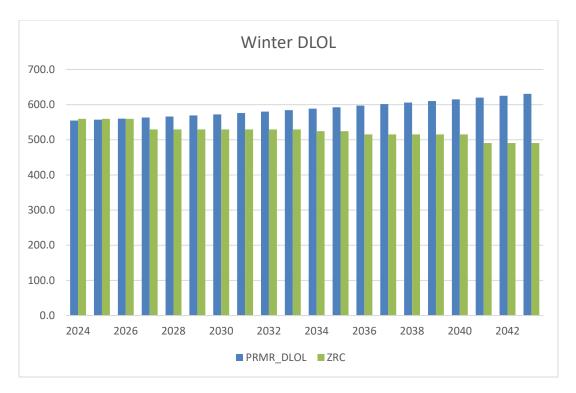


Figure 1-4: Zonal Resource Credit and Winter DLOL requirements

1. Analysis Method

The Electric Generation Expansion Analysis System (EGEAS) version 13, a computer model developed by the Electric Power Research Institute (EPRI), is used to perform the resource expansion analysis, and develop the least-cost integrated resource expansion plan. The analysis was performed on various scenarios based on the load forecasts, availability of resources, and economic variables. Each of the scenarios constitutes a resource expansion plan unique to the assumptions used in that scenario. The resource expansion analysis minimizes the present worth, or the net present value (NPV), of the total revenue requirement over fifty years by using an algorithm called "dynamic programming". The dynamic programming utilized in EGEAS calculates each scenario one year at a time to satisfy the reliability constraints and to fulfill the forecasted energy and capacity requirements. This process identifies all possible states that satisfy the reliability requirements for each year. Finally, the annual results are combined to determine the least-cost plan.

The base year used in the resource expansion analysis was 2023 with the study period starting in 2024. Costs indicated in this report are in 2023 dollars, unless otherwise specified. The study for each scenario was conducted over a 20-year period (2024-2043) in which new resources can be added to meet the forecasted load growth and to compensate for unit retirements. To model the remaining life of capital investments installed during the study period, an additional 30 years, called the extension period, was added. During this extension period, loads stayed the same as the final year of the study

period. All associated operational and fuel costs continue to be escalated at specified rates through the extension period.

2. Resources

Montana-Dakota's existing generation portfolio includes coal, natural gas, diesel, waste heat and wind. The resource expansion analysis considered other potential available alternative resources to expand the generation portfolio to meet forecasted energy and capacity requirements. All resources were modeled with applicable ZRC amounts, fixed and variable O&M costs, and fuel costs that are shown in Tables 2-1 through 2-5 below.

For resource capacity accreditation, MISO considers wind generation resources differently than thermal resources. The ZRC for wind generation resources is only available if the wind resources have been designated as a network resource in MISO or if the wind resource has been granted a transmission service request and has been designated an energy only resource. The ZRC value for wind resources is based on an effective load carrying capability (ELCC) study performed annually by MISO. This study examines MISO's top eight annual summer peaks for the last five years to determine how much wind is generated during summer peak conditions and compares the amount of wind generated to MISO's peak load. This study is done on a MISO system-wide basis and on all single commercial pricing nodes (CPNode). On a system-wide basis for the 2024-2025 planning year, the ELCC study concluded that 18.1 percent in summer and 53.1 percent in winter of nameplate wind capacity could be converted into a ZRC value if the wind resource is a network resource or has a transmission service request (TSR) for the nameplate value. Based upon production data collected at Montana-Dakota's wind farms' CPNodes, Diamond Willow was determined to contribute up to 19.85 percent in summer and 72.35 percent in winter of its nameplate capacity to ZRCs, Cedar Hills was allowed up to 26.65 percent in summer and 68.02 percent in winter of its nameplate capacity to ZRCs, and Thunder Spirit was allowed up to 24.4 percent in summer and 69.67 percent in winter of its nameplate capacity to ZRCs. Diamond Willow, Cedar Hills, and Thunder Spirit are all designated network resources and have been granted a TSR from MISO.

2.1. Current Resources

The existing resource portfolio is broken down into five groups: coal, natural gas/oil, renewable, contract, and Demand Side Management ("DSM"). Figure 2-1 shows Montana-Dakota's 2024 summer resource mix by zonal resource credits. Thirty nine percent of Montana-Dakota's ZRCs comes from coal generation, thirty two percent from gas-fired generation, twelve percent from capacity contract, ten percent from renewable resources and seven percent from DSM. Figure 2-2 shows Montana-Dakota's 2024 winter resource mix by zonal resource credits. Twenty nine percent of Montana-Dakota's ZRCs comes from coal generation, thirty eight percent from gas-fired generation, thirty nine percent of Montana-Dakota's 2024 winter resource mix by zonal resource credits.

generation, twenty two percent from renewable resources, six percent from DSM, and five percent from capacity contract.

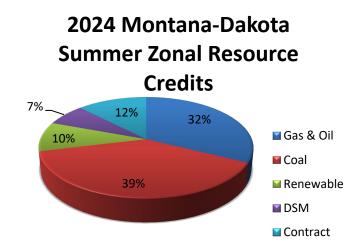


Figure 2-1: Montana-Dakota's Current Summer Generation Mix by Zonal Resource Credits

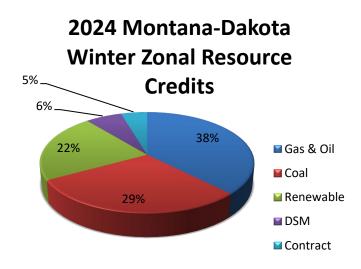


Figure 2-2: Montana-Dakota's Current Winter Generation Mix by Zonal Resource Credits

2.1.1. Coal

Montana-Dakota currently jointly owns two coal-fired units with other regional utilities as part of its integrated system. Coal-fired units currently account for 39 percent in summer and 29 percent in winter of the zonal resource credits on Montana-Dakota's system. Table 2-1 shows the capacity in MW established by the MISO Generator Verification Test Capability (GVTC) process, number of zonal resource credits, and various costs for each coal-fired plant serving Montana-Dakota's customers.

		Summer		Winter			
	Summer	Zonal	Winter	Zonal		Variable	
	GVTC	Resource	GVTC	Resource	Fixed O&M	O&M	Fuel
<u>Unit</u>	<u>(MW)</u>	Credit ¹	<u>(MW)</u>	Credit 1	(<u>\$/kW-year)</u>	<u>(\$/MWh)</u>	<u>(\$/MBTU)</u>
Coyote ²	106.6	99.7	108.3	109.3	33.83	5.20	2.19
Big Stone ³	108.3	108.7	111.5	83.7	27.79	3.80	2.10

Table 2-1: Montana-Dakota's Coal-Fired Units

1. Based on MISO 2024-25 Planning Year

2. Montana-Dakota's 25 percent ownership share

3. Montana-Dakota's 22.7 percent ownership share

2.1.2. Natural Gas and Diesel

Simple cycle combustion turbines capable of firing natural gas or fuel oil, along with reciprocating internal combustion engines firing natural gas or diesel, are operated as peaking units and make up about 32 percent in summer and 38 percent in winter percent of Montana-Dakota's existing zonal resource credits. To determine the natural gas price, a combination of forward index prices at Henry Hub and Montana-Dakota's knowledge of natural gas pricing was used to produce a forward-looking natural gas price and escalates the prices by three percent which can be seen in Figure 2-3.

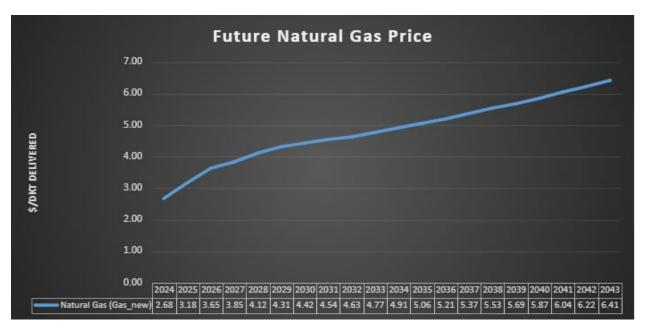


Figure 2-3: Future Natural Gas Prices of Future natural gas alternatives

The capacity in MW established by the MISO Generator Verification Test Capability (GVTC) process, number of zonal resource credits, and various costs for Montana-Dakota's existing combustion turbines and diesel generator are shown in Table 2-2.

		Summer		Winter			
	Summer	Zonal	Winter	Zonal		Variable	F 1
	GVTC	Resource	GVTC	Resource	Fixed O&M	O&M	Fuel
<u>Unit</u>	<u>(MW)</u>	Credit ¹	<u>(MW)</u>	Credit ¹	<u>(\$/kW-year)</u>	<u>(\$/MWh)</u>	<u>(\$/MBTU)²</u>
Glendive 1	31.4	29	34	30.3	6.70	4.20	4.76
Glendive 2	41	24.9	41	38.6	7.41	4.20	4.76
Miles City	21.6	16.2	21.6	21	9.27	4.20	4.76
Heskett 3	83.1	85.7	99	70.9	40.28	0.90	3.30
Heskett 4 ³	83	80.1	99	70.9	40.28	0.90	3.30
Lewis & Clark 2	18.4	14.4	16.7	18.2	78.77	3.59	4.76
Diesel 2	2.1	1.8	1.6	1.8	19.26	4.20	21.59
Diesel 3	2	1.7	1.5	1.8	19.26	4.20	21.59
1 D 1 MG	O 2021 22 DI	· V ICAD	1 VEFOR				

Table 2-2: Montana-Dakota's Natural Gas Combustion Turbines and Diesel Generators

1. Based on MISO 2021-22 Planning Year ICAP and XEFOR_d

2. 2024 natural gas price

3. Estimated GVTC, ZRC, and O&M

2.1.3. Renewable

In addition to coal, diesel, and natural gas, Montana-Dakota owns four renewable resources, as shown in Table 2-3. The renewable resources make up about 10 percent in the summer and 22 percent in the winter of Montana-Dakota's existing zonal resource credits.

	Summer Zonal Resource	Winter Zonal Resource	Variable O&M	Fuel
<u>Unit</u>	Credits ¹	Credits ¹	<u>(\$/MWh)</u>	<u>(\$/MBTU)</u>
Diamond Willow	6	21.7	0	-
Cedar Hills	5.2	13.3	0	-
Glen Ullin Station 6	2.9	4.4	8.13	-
Thunder Spirit ²	36.7	104.5	-37.04	-

Table 2-3: Montana-Dakota's Renewable Generation

1. ZRC is based on MISO ELCC study.

2. Variable O&M cost includes the Production Tax Credit, which is represented by a negative MWh cost value.

2.1.4. Demand Response

In addition to the supply side resources, two different demand response programs were included into the model. The totals below reflect the number of MWs and ZRCs contracted with the company in 2024.

- Montana-Dakota Interruptible loads
 - o Summer 12.2 ZRC
 - Winter 11.8 ZRC

- Commercial DSM
 - \circ Summer 25.7 ZRC
 - Winter 29.9 ZRC

2.1.5. MISO Energy Market

The MISO energy market provides a source of energy when prices are lower than Montana-Dakota's generating cost, or when energy is required due to planned maintenance or forced outages. Montana-Dakota used the Wood Mackenzie pricing for the off-peak and on-peak pricing based of the pricing they established for Montana-Dakota. The model included a 250 MW block of energy for off-peak and on-peak periods.

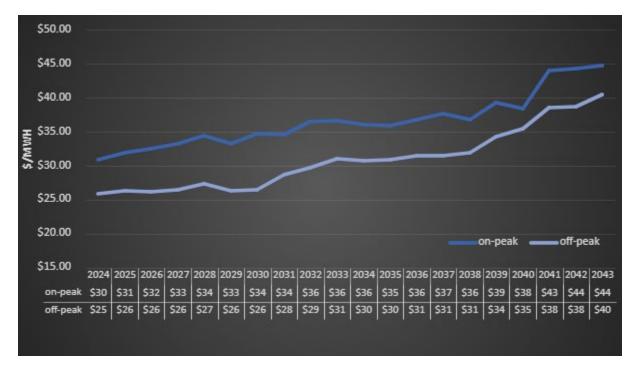


Figure 2-4: Forecasted On-Peak and Off-Peak MISO Market Prices developed by Wood Mackenzie

2.1.6. Minnkota Power Capacity and Energy Purchase

The Company has entered into a power purchase agreement with Minnkota Power Cooperative to purchase capacity and energy from June 2021 through May 2026. The timing of the Minnkota Power Purchase Agreement (PPA) came about during the evaluation of the 2020 RFP as the Company was out contacting its neighboring utilities to determine availability and pricing of capacity and energy as a bridge product to the in-service date for Heskett 4. The Minnkota PPA includes the following purchased capacity and firm energy amounts.

Year	Capacity (MWs)	Energy (MWh)
2021-2022	75	30
2022-2023	90	75
2023-2024	30	75
2024-2025	30	75
2025-2026	30	75

Table 2-4: Minnkota Capacity and Energy

2.2. Considered Supply-Side Resource Alternatives

Montana-Dakota analyzed the following supply-side alternatives that are described in more detail below:

- Simple Cycle Combustion Turbine,
- Simple Cycle Reciprocating Internal Combustion Engines,
- Combined Cycle Combustion Turbine,
- Wind Generation (self-built),
- Solar plus Storage,
- Battery Storage

Information regarding the resource alternatives available to Montana-Dakota is summarized in Table 2-5. Performance and cost estimates for the resource alternatives were developed by a consulting engineer using thermal engineering/costing software, budgetary quotations from original equipment manufacturers (OEMs), input from Montana-Dakota, published information, and engineering experience. More detail of the Supply-Side resource alternatives can be seen in Attachment E.

2.2.1. Simple Cycle Combustion Turbine

Simple cycle combustion turbines (SCCT) are primarily built to serve peaking capacity needs. SCCTs typically have one of the lower capital costs per MW compared to other generating types and can be installed with a shorter lead time than baseload and intermediate resources. Two basic types of SCCT exist: aeroderivative (Aero), and heavy-duty Frame (Frame). Aero SCCTs are adapted from jet and turboshaft jet engines and are usually smaller and more thermally efficient than similar sized Frame units. However, they generally have a higher capital cost, more expensive maintenance costs, are more susceptible to cold weather reliability issues, and do not normally exceed 100 MWs generating capability in a single unit size. Frame units are designed to drive stationary generation and process plant equipment. They are usually less expensive on a unit basis than an Aero, more robust, require less frequent inspection and maintenance intervals, and are available in over 500 MWs in a single unit size. Montana-Dakota has operating experience with six Frame units, and one Aero unit. Three options for the SCCT were analyzed in the resource expansion analysis and are shown in Table 2-5: 77.9 MW summer net large frame greenfield unit (dual fuel sub-option), a 99.9 MW summer net aero-hybrid unit, and a 45 MW summer net Aero unit (dual fuel sub-option).

Additional larger simple cycle combustion turbines were added to the model in the Coyote retirement sensitivity that are both over 400 MW in size with MDU taking a 25 percent ownership based on the current Coyote ownership.

2.2.2. Simple Cycle Reciprocating Internal Combustion Engine

Simple cycle reciprocating internal combustion engines (RICE) are primarily built to serve peaking capacity needs. These units require a shorter lead time than baseload and intermediate resources and are normally more thermally efficient and require lower fuel pressure compared to SCCTs of similar power output. Three RICE natural gas fired plants were analyzed in the resource expansion analysis and are shown in Table 2-5: a 36.5 MW (net) four-engine unit, a 55.0 MW (net) three-engine unit, and a 44.4 MW (net) four-engine unit (dual fuel sub-option).

2.2.3. Combined Cycle Combustion Turbine

A conventional combined cycle combustion turbine (CCCT) burns natural gas or fuel oil in one or more SCCTs. The hot exhaust gases from the SCCT passes through a heat recovery steam generator to produce additional power in a steam turbine. With some of the latest advanced CCCT technology configurations, CCCTs have one of the highest efficiencies of any alternative fossil fuel power plant that was modeled. These units are usually used as an intermediate unit today, but in the future could be used as more of a baseload unit to replace retired coal units. Three natural gas fired CCCTs were analyzed in the resource expansion analysis and are shown in Table 2-5: a 198.6 MW (summer net) 2x1 large frame unit (modeled in blocks of 100 MW), 329.7 MW (summer net) 2x1 large frame unit (Heskett Expansion includes Heskett 3 and 4 in the total MW), and a 409.6 MW (summer net) 1x1 large frame unit (modeled in blocks of 200 MW).

2.2.4. Wind Generation

A wind energy resource is characterized as being a clean, renewable resource with low operating and maintenance costs. The main disadvantage of wind generation is that, because of the variability of wind, it cannot be relied on as a firm capacity resource. Unlike the thermal resources such as coal-fired and gas-fired units, wind energy resources are allowed limited zonal resource credits (ZRC) by MISO. Therefore, the installation of additional wind generation on Montana-Dakota's system would require adding other capacity resources to meet the MISO planning reserve margin requirements.

This option represents Montana-Dakota's self-built wind generation. Two wind options were analyzed in the resource expansion analysis and are shown in Table 2-5: 50 MW and 100 MW (net) options. Both projects assume Federal Production Tax Credits (PTCs) are available for a future wind project.

Montana-Dakota also included in its analysis a potential off-take from a 150 MW wind project that recently became available to the company for consideration.

2.2.5. Solar PV plus Battery Storage

Solar PV resources are characterized as renewable, high capital cost, low operational and maintenance cost energy sources. Like wind generation, solar PV is a variable output energy resource that cannot be relied on as a firm capacity resource to meet Montana-Dakota's MISO planning reserve margin requirements. In MISO's four-season planning model for resource adequacy, solar PV capacity credit ranges from 50 percent in the summer, spring and fall seasons to 5 percent in the winter to meet peak seasonal demand forecast requirements. Two solar PV options were included in the resource expansion analysis and are shown in Table 2-5: a 50 MW with an option to add 10 MW battery storage and a 5 MW with an option to add 1 MW battery storage. Both projects assume Federal Earned Income Tax Credits (ITCs) are available for a future solar project.

2.2.6. Battery Storage

Battery Storage is a standalone resource that can store energy during times when there is excess energy on the grid, specifically from renewable resources, and when the load on the system is low. This unit can then dispatch for short durations when load increases or there is a shortage of generation on the system to serve the load. As of now in MISO, there is very little battery storage on the system and very little operating history to establish a resource accreditation number for battery storage units, so for now this technology is assumed to receive accreditation for close to nameplate of the facility. The model had one option of 50 MW of Battery Storage.

Table 2-5: Considered Resource Alternatives Available to Montana-Dakota

EGEAS Model Input Summary Summer, 2024 \$	Plant Size (Summer MW,net)	Summer ZRC	Capital Cost Summer (\$/kW)	Plant Size (Winter MW,net)	Winter ZRC	Capital Cost Winter (\$/kW)	Fixed O&M (\$/kW- month)	Variable O&M (\$/MWh)	Reservation Fee (\$/kW- yr)	Total Fixed O&M (\$/kW- year)	Full Load Heat Rate (BTU/kWh)	Carbon Intensity (ton/GWh)	Fuel Cost (\$/MBtu)
GE 7E.03 LLI no SCR	77.9	75.5	\$2,077.00	94.8	74.9	\$1,708.86	\$3.02	\$0.90	\$2.62	\$38.86	11800	675	\$2.68
GE LMS 100 PB+	99.9	96.8	\$2,485.00	109.9	86.8	\$2,256.60	\$2.69	\$1.33	\$1.65	\$33.93	8970	525	\$2.68
GE LM6000 PF+ no SCR	45	42.1	\$3,252.00	53.1	41.9	\$2,749.53	\$5.04	\$0.90	\$2.10	\$62.58	9730	565	\$2.68
GE 7E.03 (2x1) Addition to existing w/duct firing	329.7	323.8	\$1,201.00	365.4	321.7	\$1,082.92	\$2.09	\$4.60	\$3.23	\$28.31	9990	450	\$2.68
GE 7F.05 (1X1) w/duct firing	409.6	402.2	\$1,618.00	425.4	413.5	\$1,558.53	\$2.12	\$4.00	\$2.58	\$28.02	8030	420	\$2.68
SIEMENS SGT-800 (2x1) w/duct firing	198.6	195.0	\$2,464.00	225.1	216.5	\$2,175.03	\$3.94	\$5.20	\$2.44	\$49.72	9590	500	\$2.68
WARTSILA 20V34SG	36.5	34.1	\$3,789.00	36.5	30.1	\$3,789.00	\$6.25	\$5.11	\$1.58	\$76.58	8470	510	\$2.68
WARTSILA 18V50SG	55	53.3	\$3,425.00	55	45.4	\$3 <i>,</i> 425.00	\$4.60	\$5.29	\$1.56	\$56.76	8330	500	\$2.68
WARTSILA 31DF	44.4	41.5	\$3,356.00	44.4	36.4	\$3 <i>,</i> 356.00	\$5.26	\$5.76	\$1.60	\$64.72	8370	500	\$2.68
PV SOLAR + Storage ¹	50+10	35.0	\$2,280.00	50+10	3.0	\$2,280.00	\$2.90	\$0.00	-	\$34.80	-	-	\$0.00
PV SOLAR + Storage ²	5+1	3.5	\$2,467.00	5+1	0.3	\$2,467.00	\$3.30	\$0.00	-	\$39.60	-	-	\$0.00
Wind	50	9.1	\$2,660.00	50	20.0	\$2,660.00	\$4.90	\$0.00	-	\$58.80	-	-	\$0.00
Wind	100	18.1	\$2,156.00	100	40.0	\$2,156.00	\$4.70	\$0.00	-	\$56.40	-	-	\$0.00
Battery Storage	50	45.0	\$2,070.00	50	45.5	\$2,070.00	\$3.74	\$0.00	-	\$44.88	-	-	\$0.00

1 - Storage additional \$19.4 million and \$3.33MM/yr fixed O&M (\$1940/kW and \$333/kW/yr)

2 - Storage additional \$3.2 million and \$4.75MM/yr fixed O&M (\$3200/kW and \$4750/kW/yr)

2.3. Retirements

Montana-Dakota's Diamond Willow, Cedar Hills, and Thunder Spirit wind projects are assumed to be retired in the model after a 25-year operating life or by year 19 of the IRP study period as a conservative assumption. This would require the model to replace the wind projects within the initial 20-year study period.

2.4. Integration of Demand-Side and Supply-Side Resources

As indicated in Chapter 2 of the current Integrated Resource Plan, the energy efficiency programs reductions have been included into the load forecast while the Rate 38/39 Interruptible Loads and the Commercial Demand Response programs are modeled as resources in EGEAS.

2.5. Transmission Alternatives

Montana-Dakota did not identify any transmission issues that could be mitigated with local generation resources additions as part of the 2024 IRP Analysis.

3. Summaries of Results

Four base cases were established along with 22 sensitivity runs for each base case for a total of 92 scenarios. The least-cost resource plan and associated net present value (NPV) of the total revenue requirement for each scenario are shown in Tables 3-1 to 3-8.

					Current S	ummer Ba	ase Case an	d Sensitivi	ties			
-	Base Case - Summer	High Gas +\$2	High Gas +\$5	High Gas +\$7	Low Gas -\$1	High Market +25%	High Market +50%	Low Market - 25%	Low Market -25% & Low Gas -\$1	High Market +25% & High Gas +\$5	High Market +50% & High Gas +\$7	High CT
2024												
2025												
2026												
2027												
2028							Wind(100 MW)			Wind(100 MW)	Wind(100 MW)	
2029												
2030												
2031												
2032												
2033	PP(10 MW)	PP(10 MW)	PP(10 MW)	PP(10 MW)	PP(10 MW)	PP(10 MW)		PP(10 MW)	PP(10 MW)			PP(10 MW)
2034	PP(10 MW)	PP(10 MW)	PP(10 MW)	PP(10 MW)	PP(10 MW)	PP(10 MW)		PP(10 MW)	PP(10 MW)			PP(10 MW)
2035	PP(20 MW)	PP(20 MW)	PP(20 MW)	PP(20 MW)	PP(20 MW)	PP(20 MW)		PP(20 MW)	PP(20 MW)			PP(20 MW)
2036	CT (77.9 MW)	Solar(50 MW)	Solar(50 MW)	Solar(50 MW)	CT (77.9 MW)	CT (77.9 MW)	PP(10 MW)	CT (77.9 MW)	CT (77.9 MW)	PP(10 MW)	PP(10 MW)	Solar(50 MW)
2037		PP(10 MW)	PP(10 MW)	PP(10 MW)			PP(20 MW)			PP(20 MW)	PP(20 MW)	PP(10 MW)
2038		PP(10 MW)	PP(10 MW)	PP(10 MW)			PP(20 MW)			PP(20 MW)	PP(20 MW)	PP(10 MW)
2039		PP(20 MW)	PP(20 MW)	PP(20 MW)			PP(20 MW)			PP(20 MW)	PP(20 MW)	PP(20 MW)
2040		PP(20 MW)	PP(20 MW)	PP(20 MW)			Solar(50 MW)			Solar(50 MW)	Solar(50 MW)	PP(20 MW)
							Solar(50 MW),			Solar(50 MW),	Solar(50 MW),	
2041		Storage(50 MW)	Storage(50 MW)	Storage(50 MW)			PP(10 MW)			PP(10 MW)	PP(10 MW)	Storage(50 MW)
2042	PP(20 MW)	PP(20 MW)	PP(20 MW)	PP(20 MW)	PP(20 MW)	PP(20 MW)	PP(20 MW)	PP(20 MW)	PP(20 MW)	PP(20 MW)	PP(20 MW)	PP(20 MW)
							Solar(5 MW),			Solar(5 MW),	Solar(5 MW),	
2043	PP(20 MW)	PP(20 MW)	PP(20 MW)	PP(20 MW)	PP(20 MW)	PP(20 MW)	PP(20 MW)	PP(20 MW)	PP(20 MW)	PP(20 MW)	PP(20 MW)	PP(20 MW)
NPV (\$M)	\$2,644.41	\$2,649.55	\$2,652.00	\$2,653.52	\$2,599.53	\$2,877.51	\$3,007.54	\$2,361.88		\$2,875.88	\$3,031.05	
Difference	0.00%	0.19%	0.29%	0.34%	-1.70%	8.81%	13.73%	-10.68%	-11.72%	8.75%	14.62%	0.09%

Table 3-1: Least-Cost Resource Expansion Plans for the Summer Studied Scenarios

Alternative Resources:

PP(XX MW) - Purchase Capacity

CT (77.9 MW) - Simple Cycle Combustion Turbine Frame Unit(GE 7E.03 LLI)

CT (107.3 MW) - Simple Cycle Combustion Turbine Frame Unit(2xGE 7F.05 - MDU 25% of 429 MW Total)

Solar(50 MW) - Self built 50 MW solar

Solar(5 MW) - Self built 5 MW solar

Wind(100 MW) - Self built 100 MW wind

Storage(50 MW) - Self built 50 MW Battery Storage

CC(200 MW) - Combined Cycle Combustion Turbine(1x1 GE 75.05)

ľ						liel base case	e and Sensi	tivities Conti	nuea			
	Base Case - Summer	Limit Energy 5 years	Limit Energy 10 years	High Growth	Low Growth	Carbon Tax	Coyote Retire 2032	Greenhouse Gas Rule	Lower RA - 10%	+25% Demand	Renewable +50% Demand Response +10%	New Wind Opportunity
2024												
2025									PP(10 MW)			
2026				PP(20 MW)					PP(10 MW)			New Wind(150 MW)
2027		CC(200 MW),	CC(200 MW),	CT (77.9 MW) PP(10 MW),					CT (77.9 MW)			
2028		Wind(100 MW)	Wind(100 MW)	Wind(100 MW)		Wind(100 MW)		Wind(100 MW)		Wind(50 MW)	Wind(100 MW)	
2029				CC(200 MW)								
2025												
2031								CC(200 MUM)				
2032							CT(107.3 MW)	CC(200 MW)				
2033	PP(10 MW)											
2034	PP(10 MW)			PP(20 MW)				PP(10 MW)				
2035	PP(20 MW)			CC(200 MW)				PP(10 MW)	PP(10 MW)	PP(10 MW)		
2036	CT (77.9 MW)				PP(10 MW)	Wind(100 MW)	PP(20 MW)	Wind(100 MW)	PP(20 MW)	PP(20 MW)	PP(10 MW)	PP(10 MW)
2037					PP(10 MW)		PP(20 MW)	PP(10 MW)	PP(20 MW)	PP(20 MW)	PP(10 MW)	PP(20 MW)
2038					PP(20 MW)		PP(20 MW)	PP(10 MW)	PP(20 MW)	CT (77.9 MW)	PP(10 MW)	PP(20 MW)
2039				CT (77.9 MW)	PP(20 MW)	PP(10 MW)	Wind(100 MW), PP(10 MW)	PP(20 MW)	CT (77.9 MW)		PP(20 MW)	CT (77.9 MW)
2040				PP(20 MW)	PP(20 MW)	PP(10 MW)	PP(10 MW)	PP(20 MW)			PP(20 MW)	
2041		Storage(50 MW)	Storage(50 MW)	CC(200 MW)	Storage(50 MW)		Storage(50 MW)	Storage(50 MW)			Storage(50 MW)	
2042	PP(20 MW)				PP(10 MW)	Solar(50 MW), PP(10 MW)	PP(10 MW)	PP(20 MW)	PP(10 MW)		PP(20 MW)	
	PP(20 MW)	PP(10 MW)	PP(10 MW)	PP(20 MW)	PP(10 MW)	PP(20 MW)	Solar(5 MW), PP(20 MW)	PP(20 MW)	PP(10 MW)	PP(10 MW)	PP(20 MW)	PP(20 MW)
NPV (\$M)	\$2,644.41	\$3,479.91	\$3,366.94	\$6,093.14	\$2,474.99	\$4,649.72	\$2,729.15	\$3,103.55	\$2,899.12	\$2,706.62	\$2,642.32	\$2,624.1
Difference	0.00%	31.60%	27.32%	130.42%	-6.41%	75.83%	3.20%	17.36%	9.63%	2.35%	-0.08%	-0.76
	Resources:											
• •	- Purchase Cap		rbine Frame Unit(0									
	, , ,		urbine Frame Unit(,	1 25% of 429 M/M	Total)						

Table 3-2: Additional Least-Cost Resource Expansion Plans for the Summer Studied Scenarios

Solar(50 MW) - Self built 50 MW solar

Solar(5 MW) - Self built 5 MW solar

Wind(100 MW) - Self built 100 MW wind

Storage(50 MW) - Self built 50 MW Battery Storage

CC(200 MW) - Combined Cycle Combustion Turbine(1x1 GE 75.05)

Table 3-3: Least-Cost Resource Expansion Plans for the Winter Studied Scenarios

					Current	Winter Base	Case and Sen	sitivities				
	Base Case -									High Market +25% & High Gas	High Market +50%	
	Winter	High Gas +\$2	High Gas +\$5	High Gas +\$7	Low Gas -\$1	High Market +25%	High Market +50%	Low Market -25%	-\$1	+\$5	& High Gas +\$7	High CT
2024												
2025												
2026												
2027												
2028						Wind(100 MW)	Wind(100 MW)	Wind(100 MW)		Wind(100 MW)	Wind(100 MW)	
2029												
2030												
2031												
2032												
2033												
2034												
2035	. ,	PP(10 MW)	PP(10 MW)	PP(10 MW)	PP(10 MW)				PP(10 MW)			PP(10 MW)
2036	Wind(100 MW)	Wind(100 MW)	Wind(100 MW)	Wind(100 MW)	CC(200 MW)				CC(200 MW)			Wind(100 MW)
2037												
2038												
2039												
2040												
	PP(20 MW),	PP(20 MW),	PP(20 MW),	PP(20 MW),		PP(20 MW),	PP(20 MW),	PP(20 MW),		PP(20 MW),	PP(20 MW),	PP(20 MW),
2041		Wind(100 MW)	Wind(100 MW)	Wind(100 MW)		Wind(100 MW)	Wind(100 MW)	Wind(100 MW)		Wind(100 MW)	Wind(100 MW)	Wind(100 MW)
	PP(10 MW),	PP(10 MW),	PP(10 MW),	PP(10 MW),		Wind(100 MW),	Wind(100 MW),	Storage(50 MW),		Wind(100 MW),	Wind(100 MW),	PP(10 MW),
	Storage(50 MW)		Storage(50 MW)	Storage(50 MW)		PP(10 MW)	PP(10 MW)	PP(10 MW)		PP(10 MW)	PP(10 MW)	Storage(50 MW)
2043	· · · /	PP(20 MW)	PP(20 MW)	PP(20 MW)	40.000.00	PP(10 MW)	PP(10 MW)	PP(20 MW)	40.000.00	PP(10 MW)	PP(10 MW)	PP(20 MW)
NPV (\$M)	\$2,713.27	\$2,713.56	\$2,713.86		\$2,630.97		\$2,998.27	\$2,455.07	\$2,425.56		\$3,014.80	\$2,713.27
Difference	0.00% Resources:	0.01%	0.02%	0.03%	-3.03%	6.39%	10.50%	-9.52%	-10.60%	6.30%	11.11%	0.00%

Alternative Resources:

PP(XX MW) - Purchase Capacity

CT (94.8 MW) - Simple Cycle Combustion Turbine Frame Unit(GE 7E.03 LLI)

CT (116.6 MW) - Simple Cycle Combustion Turbine Frame Unit(2xGE 7F.05 - MDU 25% of 429 MW Total)

Solar(50 MW) - Self built 50 MW solar

Solar(5 MW) - Self built 5 MW solar

Wind(100 MW) - Self built 100 MW wind

Wind(50 MW) - Self built 50 MW wind

Storage(50 MW) - Self built 50 MW Battery Storage

CC(200 MW) - Combined Cycle Combustion Turbine(1x1 GE 75.05)

Table 3-4: Additional Least-Cost Resource Expansion Plans for the Winter Studied Scenarios

				Cu	rrent Winte	r Base Case	and Sensit	ivities Conti	inued			
										Renewable +25%	Renewable +50%	
	Base Case -	Limit Energy 5	Limit Energy 10				Coyote Retire	Greenhouse Gas		Demand	Demand	New Wind
	Winter	years	years	High Growth	Low Growth	Carbon Tax	2032	Rule	Lower RA -10%	Response +5%	Response +10%	Opportunity
2024									PP(10 MW)			
2025									PP(10 MW)			
2026				PP(30 MW)					PP(10 MW)			New Wind(150 M)
				PP(10 MW),								
2027				CT(94.8 MW)					CT(94.8 MW)			
2028		CC(200 MW)		Wind(100 MW)		Wind(100 MW)				Wind(50 MW)	Wind(100 MW)	
2029				CC(200 MW)								
2030		PP(10 MW)										
2031		PP(10 MW)	CC(200 MW)									
								CC(200 MW),				
2032							CT(116.6 MW)	Wind(100 MW)				
2033		PP(10 MW)		PP(20 MW)								
2034		PP(10 MW)	PP(10 MW)	CC(200 MW)					PP(10 MW)			
2035	PP(10 MW)	Wind(100 MW)	Wind(100 MW)						PP(10 MW)			
	Wind(100 MW)			PP(10 MW)	Wind(100 MW)	Wind(100 MW)	Wind(100 MW)		Wind(100 MW)			
2037				CC(200 MW)						PP(10 MW)		
2038										PP(10 MW)		
2039										PP(20 MW)		
2040		PP(10 MW)	PP(10 MW)	Wind(100 MW)					Wind(100 MW)	PP(20 MW)		
	PP(20 MW),						PP(20 MW),	PP(20 MW),		PP(20 MW),	PP(10 MW),	
2041		Storage(50 MW)	Storage(50 MW)	CC(200 MW)	Wind(100 MW)	Wind(100 MW)	Wind(100 MW)	Wind(100 MW)	Wind(100 MW)	CT (94.8 MW)	Wind(100 MW)	Wind(100 MW)
	PP(10 MW),				PP(10 MW),			PP(10 MW),		PP(10 MW),	PP(10 MW),	
2042	Storage(50 MW)			Wind(100 MW)	Wind(50 MW)	PP(10 MW)	Wind(100 MW)	Wind(100 MW)	PP(10 MW)	Wind(100 MW)	Storage(50 MW)	Wind(100 MW)
2043	PP(20 MW)	PP(10 MW), Solar(5 MW)	PP(10 MW), Solar(5 MW)	PP(10 MW), Wind(100 MW)	PP(20 MW)	PP(10 MW)	PP(10 MW)	PP(10 MW)	PP(20 MW)	PP(10 MW)	PP(10 MW)	PP(20 MW), Storage(50 MW
PV (\$M)	\$2,713.27	\$3,553.70		· · · · ·	\$2,608.05	\$4,664.46	\$2,769.63	\$3,028.02	\$3,017.51	\$2,771.23	\$2,725.27	\$2,702
fference	0.00%				-3.88%	71.91%	2.08%		11.21%	2.14%	0.44%	

PP(XX MW) - Purchase Capacity

CT (94.8 MW) - Simple Cycle Combustion Turbine Frame Unit(GE 7E.03 LLI)

CT (116.6 MW) - Simple Cycle Combustion Turbine Frame Unit(2xGE 7F.05 - MDU 25% of 429 MW Total)

Solar(50 MW) - Self built 50 MW solar

Solar(5 MW) - Self built 5 MW solar

Wind(100 MW) - Self built 100 MW wind

Wind(50 MW) - Self built 50 MW wind

Storage(50 MW) - Self built 50 MW Battery Storage

CC(200 MW) - Combined Cycle Combustion Turbine(1x1 GE 75.05)

					Summe	r DLOL Bas	se Case and	Sensitivities				
	Base Case -					High Market	High Market		Low Market -25%	High Market +25%	High Market +50%	
	Summer DLOL	High Gas +\$2	High Gas +\$5	High Gas +\$7	Low Gas -\$1	+25%	+50%	Low Market -25%	& Low Gas -\$1	& High Gas +\$5	& High Gas +\$7	High CT
2024		-	-	-						-	-	
2025												
2026												
2027												
						Wind (100						
2028	PP(10 MW)	PP(10 MW)	PP(10 MW)	PP(10 MW)	PP(10 MW)	MW)	Wind (100 MW)	PP(10 MW)	PP(10 MW)	Wind (100 MW)	Wind (100 MW)	PP(10 MW)
2029	PP(10 MW)	PP(10 MW)	PP(10 MW)	PP(10 MW)	PP(10 MW)			PP(10 MW)	PP(10 MW)			PP(10 MW)
2030	PP(10 MW)	PP(10 MW)	PP(10 MW)	PP(10 MW)	PP(10 MW)			PP(10 MW)	PP(10 MW)			PP(10 MW)
2031	PP(20 MW)	PP(20 MW)	PP(20 MW)	PP(20 MW)	PP(20 MW)	PP(10 MW)	PP(10 MW)	PP(20 MW)	PP(20 MW)	PP(10 MW)	PP(10 MW)	PP(20 MW)
2032	PP(20 MW)	PP(20 MW)	PP(20 MW)	PP(20 MW)	PP(20 MW)	PP(10 MW)	PP(10 MW)	PP(20 MW)	PP(20 MW)	PP(10 MW)	PP(10 MW)	PP(20 MW)
2033	Storage(50 MW)	Storage(50 MW)	Storage(50 MW)	Storage(50 MW)	CC(200 MW)	PP(10 MW)	Storage(50 MW)	Storage(50 MW)	Storage(50 MW)	PP(10 MW)	Storage(50 MW)	Storage(50 MW)
2034						PP(20 MW)				PP(20 MW)		
2035						PP(20 MW)				PP(20 MW)		
2036						CT (77.9 MW)				CT (77.9 MW)		
2037												
2038												
2039	PP(10 MW)	PP(10 MW)	PP(10 MW)	PP(10 MW)				PP(10 MW)	PP(10 MW)			PP(10 MW)
2040	PP(10 MW)	PP(10 MW)	PP(10 MW)	PP(10 MW)				PP(10 MW)	PP(10 MW)			PP(10 MW)
	1 1	Storage(50 MW)	Storage(50 MW)				PP(20 MW)	(- /	Storage(50 MW)		PP(20 MW)	Storage(50 MW)
							Solar(50 MW),				Wind(100 MW),	
2042						PP(10 MW)	PP(20 MW)			PP(10 MW)	PP(20 MW)	
											Wind(50 MW),	
2043						PP(20 MW)	PP(20 MW)			PP(20 MW)	PP(20 MW)	
NPV (\$M)	\$2,684.72	\$2,685.95	\$2,687.09	\$2,687.79	\$2,647.01	\$2,926.23		\$2,401.14	\$2,402.75	\$2,923.36	· · · /	\$2,684.72
Difference	0.00%	0.05%	0.09%	0.11%	-1.40%	9.00%		-10.56%	-10.50%	8.89%	15.04%	0.00%
	Resources:											

Table 3-5: Least-Cost Resource Expansion Plans for the Summer DLOL Studied Scenarios

Alternative Resources:

PP(XX MW) - Purchase Capacity

CT (77.9 MW) - Simple Cycle Combustion Turbine Frame Unit(GE 7E.03 LLI)

CT (107.3 MW) - Simple Cycle Combustion Turbine Frame Unit(2xGE 7F.05 - MDU 25% of 429 MW Total)

Solar(50 MW) - Self built 50 MW solar

Solar(5 MW) - Self built 5 MW solar

Wind(100 MW) - Self built 100 MW wind

Wind(50 MW) - Self built 50 MW wind

Storage(50 MW) - Self built 50 MW Battery Storage

CC(200 MW) - Combined Cycle Combustion Turbine(1x1 GE 75.05)

CC(329.7 MW) - Heskett 3 & 4 Expansion to Combined Cycle

				Su	mmer DLOL	. Base Case a	and Sensitiv	ities Continu	led			
	Base Case - Summer DLOL	Limit Energy 5 years	Limit Energy 10 years	High Growth	Low Growth	Carbon Tax	Coyote Retire 2032	Greenhouse Gas Rule	Lower RA - 10%	Renewable +25% Demand Response +5%	Renewable +50% Demand Response +10%	New Wind Opportunity
2024									PP(20 MW)			
2025				PP(20 MW)					PP(20 MW)			
2026				PP(40 MW)					PP(20 MW)			New Wind(150 MW)
2027				CC(329.7 MW)					CT (77.9 MW)			
2028	PP(10 MW)	CC(200 MW), Wind(100 MW)	Wind(100 MW)	Wind(100 MW)		Wind(100 MW)	PP(10 MW)	PP(10 MW)		Wind(50 MW)	Wind(100 MW)	
2029	PP(10 MW)				PP(10 MW)		PP(10 MW)	PP(10 MW)				
2030	PP(10 MW)			Storage(50 MW)	PP(10 MW)		PP(10 MW)	PP(10 MW)		PP(10 MW)		
2031	PP(20 MW)		PP(10 MW)	PP(20 MW)	PP(10 MW)	PP(10 MW)	PP(20 MW)	PP(20 MW)	PP(10 MW)	PP(10 MW)		
2032	PP(20 MW)		CC(200 MW)	CC(200 MW)	PP(10 MW)	PP(10 MW)	PP(10 MW), CT(107.3 MW)	CC(200 MW), Storage(50 MW)	PP(10 MW)	PP(10 MW)	PP(10 MW)	PP(10 MW)
2033	Storage(50 MW)				Storage(50 MW)	Storage(50 MW)	Storage(50 MW)		PP(20 MW)	Storage(50 MW)	PP(10 MW)	Storage(50 MW)
2034									PP(20 MW)		PP(20 MW)	
2035								PP(10 MW)	CT (77.9 MW)		PP(20 MW)	
2036				CC(200 MW)				PP(10 MW)			CT (77.9 MW)	
2037				PP(20 MW)				PP(20 MW)				
2038				PP(20 MW)				PP(20 MW)				
2039	PP(10 MW)			PP(20 MW)		Wind(100 MW)		PP(20 MW)				
2040	PP(10 MW)	PP(10 MW)	PP(10 MW)	Solar(50 MW), PP(20 MW)				Storage(50 MW)				
2041	Storage(50 MW)	Storage(50 MW)	Storage(50 MW)	CC(200 MW)		Wind(100 MW)	PP(20 MW)		PP(10 MW)	PP(20 MW)		PP(20 MW)
2042					PP(10 MW)	PP(10 MW)	PP(20 MW), Solar (50 MW)	PP(20 MW)	PP(20 MW)	PP(20 MW), Solar(50 MW)	PP(10 MW)	Storage(50 MW)
2043		Solar(5 MW), PP(10 MW)	Solar(5 MW), PP(10 MW)	PP(20 MW)	PP(20 MW)	PP(20 MW)	PP(20 MW)	PP(20 MW)	PP(20 MW)	PP(20 MW)	PP(10 MW)	
NPV (\$M)	\$2,684.72	\$3,500.42	\$3,387.92	\$6,333.57	\$2,499.25	\$4,755.60	\$3,056.21	\$3,141.19	\$2,929.89	\$2,730.05	\$2,721.64	\$2,678.12
Difference	0.00%	30.38%	26.19%	135.91%	-6.91%	77.14%	13.84%	17.00%	9.13%	1.69%	1.38%	-0.25%

Table 3-6: Additional Least-Cost Resource Expansion Plans for the Summer DLOL Studied

Alternative Resources:

PP(XX MW) - Purchase Capacity

CT (77.9 MW) - Simple Cycle Combustion Turbine Frame Unit(GE 7E.03 LLI)

CT (107.3 MW) - Simple Cycle Combustion Turbine Frame Unit(2xGE 7F.05 - MDU 25% of 429 MW Total)

Solar(50 MW) - Self built 50 MW solar

Solar(5 MW) - Self built 5 MW solar

Wind(100 MW) - Self built 100 MW wind

Wind(50 MW) - Self built 50 MW wind

Storage(50 MW) - Self built 50 MW Battery Storage

CC(200 MW) - Combined Cycle Combustion Turbine(1x1 GE 75.05)

CC(329.7 MW) - Heskett 3 & 4 Expansion to Combined Cycle

	Current Winter DLOL Base Case and Sensitivities											
	Base Case - Winter DLOL	High Gas +\$2	High Gas +\$5	High Gas +\$7	Low Gas -\$1	High Market +25%	High Market +50%	Low Market -25%		High Market +25% & High Gas +\$5	High Market +50% & High Gas +\$7	High CT
2024												
2025												
2026												
2027	CT(94.8 MW)	CT(94.8 MW)	CT(94.8 MW)	CT(94.8 MW)	CT(94.8 MW)	CT(94.8 MW)	CT(94.8 MW)	CT(94.8 MW)	CT(94.8 MW)	CT(94.8 MW)	CT(94.8 MW)	CT(94.8 MW)
2028											Wind(100 MW)	
2029												
2030												
2031												
2032												
2033												
2034												
2035												
2036	PP(10 MW)	PP(10 MW)	PP(10 MW)	PP(10 MW)	PP(10 MW)	PP(10 MW)	PP(10 MW)	PP(10 MW)	PP(10 MW)	PP(10 MW)		PP(10 MW)
2037	PP(20 MW)	PP(20 MW)	PP(20 MW)	PP(20 MW)	PP(20 MW)	PP(20 MW)	PP(20 MW)	PP(20 MW)	PP(20 MW)	PP(20 MW)		PP(20 MW)
2038	PP(20 MW)	PP(20 MW)	PP(20 MW)	PP(20 MW)	PP(20 MW)	PP(20 MW)	PP(20 MW)	PP(20 MW)	PP(20 MW)	PP(20 MW)	PP(10 MW)	PP(20 MW)
2039	PP(10 MW), Wind(100 MW)	PP(10 MW), Wind(100 MW)	PP(10 MW), Wind(100 MW)	PP(10 MW), Wind(100 MW)	CT(94.8 MW)	PP(10 MW), Wind(100 MW)	PP(10 MW), Wind(100 MW)	PP(10 MW), Wind(100 MW)	CT(94.8 MW)	PP(10 MW), Wind(100 MW)	PP(10 MW)	PP(10 MW), Wind(100 MW)
2040	PP(20 MW)	PP(20 MW)	PP(20 MW)	PP(20 MW)		PP(20 MW)	PP(20 MW)	PP(20 MW)		PP20(MW)	PP(20 MW)	PP(20 MW)
2041	Storage(50 MW)	Storage(50 MW)	Storage(50 MW)	Storage(50 MW)		Storage(50 MW)	Storage(50 MW)	Storage(50 MW)	PP(10 MW)	Storage(50 MW)	Storage(50 MW)	Storage(50 MW)
2042	PP(20 MW)	PP(20 MW)	PP(20 MW)	PP(20 MW)	PP(20 MW)	PP(20 MW)	PP(20 MW)	PP(20 MW)	PP(20 MW)	PP(20 MW)	PP(20 MW)	PP(20 MW)
2043	PP(20 MW)	PP(20 MW)	PP(20 MW)	PP(20 MW)	PP(20 MW)	PP(20 MW)	PP(20 MW)	PP(20 MW)	PP(20 MW)	PP(20 MW)	PP(20 MW)	PP(20 MW)
NPV (\$M)	\$2,934.87	\$2,937.84	\$2,941.96	\$2,944.12	\$2,825.25	\$3,158.68	\$3,282.67	\$2,661.10	\$2,591.92	\$3,154.86	\$3,336.09	\$2,984.70
Difference 0.00% 0.10% 0.24% 0.32% -3.73% 7.63% 11.85% -9.33% -11.69% 7.50% 13.67% 1.70%												
PP(XX MW) CT (53.1 MV	Alternative Resources: PP(XX MW) - Purchase Capacity CT (53.1 MW) - Simple Cycle Combustion Aeroderivative Unit(GE LM 6000 PF+) CT (94.8 MW) - Simple Cycle Combustion Turbine Frame Unit(GE 7E.03 LLI)											
CT (109.9 MW) - Simple Cycle Combustion Aeroderivative Unit(GE LMS 100 PB+)												

Table 3-7: Least-Cost Resource Expansion Plans for the Winter DLOL Studied Scenarios

CT (116.6 MW) - Simple Cycle Combustion Turbine Frame Unit(2xGE 7F.05 - MDU 25% of 429 MW Total) RICE(44.4 MW) - Reciprocating Engine (4 x 11 MW Wartsila 31DF)

Wind(100 MW) - Self built 100 MW wind

Wind(50 MW) - Self built 50 MW wind

Storage(50 MW) - Self built 50 MW Battery Storage

CC(200 MW) - Combined Cycle Combustion Turbine(1x1 GE 75.05)

CC(365.4 MW) - Heskett 3 & 4 Expansion to Combined Cycle

Table 3-8: Additional Least-Cost Resource Expansion Plans for the Winter DLOL Studied

	Winter DLOL Base Case and Sensitivities Continued											
										Renewable +25%	Renewable +50%	
	Base Case -	Limit Energy 5	Limit Energy 10				Coyote Retire	Greenhouse Gas		Demand	Demand	New Wind
	Winter DLOL	years	years	High Growth	Low Growth	Carbon Tax	2032	Rule	Lower RA -10%	Response +5%	Response +10%	Opportunity
2024				PP(30 MW)					PP(50 MW)			
2025				PP(60 MW)					PP(50 MW)			
2026				PP(90 MW)					PP(50 MW)			New Wind(150 MW)
				CT(109.9 MW),								
				CT(94.8 MW),				PP(10 MW),	CT(109.9 MW),			
2027	CT(94.8 MW)	CC(365.4 MW)	RICE(44.4 MW)	PP(20 MW)	CT(94.8 MW)	CT(53.1 MW)	CT(94.8 MW)	CT(53.1 MW)	PP(20 MW)	CT(94.8 MW)	CT(94.8 MW)	PP(10 MW)
2028		Wind(100 MW)		CC(200 MW)		Wind(100 MW)			PP(20 MW)	Wind(50 MW)	Wind(100 MW)	PP(10 MW)
2029			PP(10 MW)						PP(20 MW)			PP(10 MW)
									Wind(100 MW),			
2030			PP(10 MW)						PP(10 MW)			PP(10 MW)
2031			Wind(100 MW)	CC(200 MW)				PP(10 MW)	PP(20 MW)			PP(20 MW)
								CC(200 MW),				
2032			CC(200 MW)				CT(116.6 MW)	Wind(100 MW)	PP(20 MW)			PP(20 MW)
2033								Storage(50 MW)	Storage(50 MW)			Storage(50 MW)
2034				CC(200 MW)		PP(10 MW)						
2035						PP(10 MW)						
2036	PP(10 MW)				PP(10 MW)	PP(10 MW)			PP(10 MW)			PP(10 MW)
2037	PP(20 MW)			CC(200 MW)	CT(94.8 MW)	PP(10 MW)			PP(10 MW)	PP(10 MW)		PP(10 MW)
2038	PP(20 MW)					PP(20 MW)			PP(20 MW)	PP(10 MW)		PP(20 MW)
	PP(10 MW),											
2039	Wind(100 MW)			PP(20 MW)	PP(20 MW)	PP(20 MW)	PP(10 MW)		PP(20 MW)	PP(20 MW)	PP(10 MW)	PP(20 MW)
2040	PP(20 MW)		PP(10 MW)	CC(200 MW)	PP(20 MW)	Storage(50 MW)	PP(10 MW)	PP(10 MW)	CT(94.8 MW)	PP(20 MW)	PP(10 MW)	Storage(50 MW)
2041	Storage(50 MW)	Wind(100 MW)	Storage(50 MW)	PP(20 MW)	Storage(50 MW)	PP(10 MW)	Storage(50 MW)	Storage(50 MW)		CT(94.8 MW)	Storage(50 MW)	PP(10 MW)
						PP(10 MW),						
2042	PP(20 MW)	PP(10 MW)		CC(200 MW)	PP(20 MW)	Wind(100 MW)	PP(10 MW)	PP(10 MW)	PP(10 MW)	PP(10 MW)	PP(10 MW)	Storage(50 MW)
2043	PP(20 MW)	PP(20 MW)	PP(10 MW)	PP(20 MW)	PP(20 MW)	PP(20 MW)	PP(20 MW)	PP(10 MW)	PP(20 MW)	PP(10 MW)	PP(20 MW)	PP(10 MW)
NPV (\$M)	\$2,934.87	\$3,748.51	\$3,662.38				\$2,990.08		\$3,258.35	\$3,004.83	\$2,959.90	1 /
Difference	0.00%	27.72%	24.79%	151.35%	-5.07%	71.08%	1.88%	17.43%	11.02%	2.38%	0.85%	-3.80%

Alternative Resources:

PP(XX MW) - Purchase Capacity

CT (53.1 MW) - Simple Cycle Combustion Aeroderivative Unit(GE LM 6000 PF+)

CT (94.8 MW) - Simple Cycle Combustion Turbine Frame Unit(GE 7E.03 LLI)

CT (109.9 MW) - Simple Cycle Combustion Aeroderivative Unit(GE LMS 100 PB+)

CT (116.6 MW) - Simple Cycle Combustion Turbine Frame Unit(2xGE 7F.05 - MDU 25% of 429 MW Total)

RICE(44.4 MW) - Reciprocating Engine (4 x 11 MW Wartsila 31DF)

Wind(100 MW) - Self built 100 MW wind

Wind(50 MW) - Self built 50 MW wind

Storage(50 MW) - Self built 50 MW Battery Storage

CC(200 MW) - Combined Cycle Combustion Turbine(1x1 GE 75.05)

CC(365.4 MW) - Heskett 3 & 4 Expansion to Combined Cycle

3.1. Base Case Plan Results

The Summer and Winter Base Cases least-cost plan consists of the following resource additions for 2024-2029:

- Complete commissioning of Heskett 4 an 88 MW natural gas-fired Simple Cycle Combustion Turbine unit to be online in 2024.
- Continue to grow the Commercial Demand Response program to a total of 45 MW.
- Inclusion of the Minnkota Power capacity and energy purchase agreement through May 2026.

The Summer DLOL Base Case least-cost plan consists of the following resource additions for 2024-2029:

- Complete commissioning of Heskett 4 an 88 MW natural gas-fired Simple Cycle Combustion Turbine unit to be online in 2024.
- Continue to grow the Commercial Demand Response program to a total of 45 MW.
- Inclusion of the Minnkota Power capacity and energy purchase agreement.
- In 2028 and 2029 purchase 10 MW of capacity.

The Winter DLOL Base Case least-cost plan consists of the following resource additions for 2024-2029:

- Complete commissioning of Heskett 4 an 88 MW natural gas-fired Simple Cycle Combustion Turbine unit to be online in 2024.
- Continue to grow the Commercial Demand Response program to a total of 45 MW.
- Inclusion of the Minnkota Power capacity and energy purchase agreement.
- In 2027 the model selected another simple cycle combustion turbine similar to Heskett 3 and 4.

3.2. Sensitivity Analysis

The 22 sensitivity scenarios consist of various assumptions regarding low and high natural gas prices, high and low market prices, combination of gas and market prices, high environmental cost on combustion turbine alternatives, limiting energy, low and high load growth, carbon tax, Coyote retirement, greenhouse gas rule, lower resource accreditation, higher renewable and demand response, and new wind opportunity.

3.2.1. High and Low Gas Price

Prices for natural gas supplies as delivered to Montana-Dakota's existing turbines, future combustion turbines, and future combined cycle plants were developed in-house for use in the resource expansion analysis based on Montana-Dakota's view of the long-term outlook of natural gas pricing. Due to potential fluctuations of natural gas prices, there is a need to

consider what impact both higher and lower gas prices would have on the Base Case. Therefore, high, and low gas price scenarios were also developed, whereby the gas price used in the Base Case was increased by \$2/MMBtu, \$5/MMBtu, and \$7/MMBtu and decreased by \$1/MMBtu from the Base Case, respectively. The results can be seen in Tables 3-1, 3-3, 3-5 and 3-7.

3.2.2. High and Low Market Prices

These scenarios were used to look at the effects the MISO market could have on the resource plan if the market prices went higher or lower than the Base Case. The high market price cases increased the on-peak and off-peak market prices of the Base Case by 25% and 50%. The lower market price case decreased the base year on- and off-peak prices by 25%. The results can be seen in Tables 3-1, 3-3, 3-5 and 3-7.

3.2.3. Gas and Market Price Combinations

These sensitivities were looking at a combination of both natural gas prices and the energy market were both increasing or decreasing. Two combinations of a high gas price and market price (+\$5 Gas and +25% market and +\$7 and +50% market) and one sensitivity of lower natural gas prices and energy market prices (-\$1 Gas and -25% market). The results can be seen in Tables 3-1, 3-3, 3-5 and 3-7.

3.2.4. Higher Environmental Costs on Combustion Turbine Alternatives

This sensitivity looked at adding environmental controls on combustion turbine resources, which adds capital cost and O&M costs to some of the simple and combined cycle combustion turbine options. This scenario was done in part to show if the additional costs were added if it would still pick the same resources as the Base Cases. The results can be seen in Tables 3-1, 3-3, 3-5 and 3-7 under High CT.

3.2.5. Limiting Market Energy

The on-peak and off-peak markets were set at 250 MW in the Base Case. These two scenarios limited the amount of market energy that could be selected to zero MW either over five or ten years. The results can be seen in Tables 3-2, 3-4, 3-6, and 3-8.

3.2.6. High Growth

A high-growth scenario evaluated the effects of a continued long-term average load growth rate of 4.4 percent per year starting in 2024. The results can be seen in Tables 3-2, 3-4, 3-6, and 3-8.

3.2.7. Low Growth

This scenario was used to evaluate the load growth potential at less than the optimal resource case with an average growth rate of 0.5 percent per year during the 20-year forecast. The results can be seen in Tables 3-2, 3-4, 3-6, and 3-8.

3.2.8. Carbon Tax

With the potential of a future carbon penalty applied to all fossil fuel units and MISO energy purchases, a carbon tax was modeled to assess the impact on the resource expansion plan. The assumed carbon tax was applied to all carbon emissions from Montana-Dakota's existing fossil fueled resources, energy purchases from the MISO market, and new fossil fuel generating units added to the resource plan starting in 2028. While no carbon tax was modeled in the Base Case, Montana-Dakota modeled a carbon tax of \$50 per ton for a sensitivity analysis. The results can be seen in Tables 3-2, 3-4, 3-6, and 3-8.

3.2.9. Coyote Retire 2032

This scenario looked at retiring Coyote at the end of 2031 with the option to select it to run at sixty percent coal and forty percent natural gas along with twenty-five million capital cost to add a natural gas pipeline (twenty-five percent of estimated total \$100 million). The model also included two larger additional simple cycle combustion turbines; 2 - GE F Class Frame Unit (429 MW Summer MDU 25 percent) and 1 - GE J-Class Frame Unit (392.6 MW Summer MDU 25 percent) that were used as part of Coyote replacement analysis. The results can be seen in Tables 3-2, 3-4, 3-6, and 3-8.

3.2.10. Greenhouse Gas Rule

With the recent new Greenhouse Gas Rule by the EPA (Chapter 2 of the Main Report), this option was put together to look at all coal retirements (Coyote and Big Stone) at the end of 2031. The new combustion turbine options were also limited on run times if selected. The results can be seen in Tables 3-2, 3-4, 3-6, and 3-8.

3.2.11. Lower Resource Accreditation

As part of the new rules in North Dakota, a new sensitivity was developed to look at what effects a lower resource accreditation would have on existing and new alternatives. The case was set up lowering all thermal and renewable resources reserve capacity by ten percent from all the Base Cases. The results can be seen in Tables 3-2, 3-4, 3-6, and 3-8 under Lower RA - 10%.

3.2.12. Higher Renewables and Demand Response

As part of the new rules in Montana, a couple new sensitivities were included as part of the IRP that includes higher renewables and higher demand response. The first case increased renewables by twenty five percent (50 MW wind added in 2028) and demand response by five percent (increased the CPower by an additional 5%). The other case increased renewables by fifty percent (100 MW wind added in 2028) and demand response by ten percent (increased CPower by an additional 10%). The results can be seen in Tables 3-2, 3-4, 3-6, and 3-8.

3.2.13. New Wind Opportunity

A final sensitivity was added with a late addition of a possible new wind opportunity that presented itself in the later stages of the IRP process. This option was included as a 150 MW wind farm option that is available in that 2025-2026 timeframe. The project has made it through the MISO queue process and has a final GIA signed with minimal network upgrades. With the delays in the MISO Queue, potential high network upgrade cost and future JTIQ cost adders this project is going to be further analyzed. The results can be seen in Tables 3-2, 3-4, 3-6, and 3-8.

3.3. Additional Modeling

Additional modeling was conducted using the Winter DLOL base case results as the Winter DLOL base case was the most restrictive scenario for needing new resources. The additional models forced in the future resources selected from the Winter DLOL base case.

3.3.1. Extreme Weather vs Normal Weather

In this scenario, the model was set up in EGEAS to reduce the amount of available on-peak and off-peak MISO purchases by one-third what is assumed to normally be available in the first quarter of the year to show the effects of having less energy available from the market under an extreme weather event. Table 3-9 shows the difference in annual costs and unserved energy for years 5, 10, and 20 of the study periods.

	Normal Weather	Extreme Weather	Normal Weather	Extreme Weather
	annual costs	annual costs	unserved energy	unserved energy
	(\$M)	(\$M)	(GWh)	(GWh)
5 th year	137.37	137.88	0.00	0.09
10 th year	159.13	160.61	0.00	0.64
20 th year	267.43	271.46	0.06	0.61

Table 3-9: Winter DLOL Extreme Weather vs Normal Weather

3.3.2. Natural Gas Fuel Delivery Outages

In this scenario, the model was set up in EGEAS to reduce the amount of available on-peak and off-peak MISO purchases by one-third of what is assumed to normally be available in the first quarter of the year to show the effects of having potentially less energy available from the market in a natural gas fuel delivery outage event, along with increasing the forced outage rate on the MDU owned combustion turbines to show the effect increased outages associated with natural gas supply. Table 3-10 shows the difference in unserved energy for years 5, 10, and 20 of the study periods.

Table 3-10: Winter DLOL Base Case vs Natural Gas fuel delivery outages

	Base Case	NG Shortage
	unserved energy	unserved energy
	(GWh)	(GWh)
5 th year	0.00	0.58
10 th year	0.00	3.43
20 th year	0.06	3.09

4. Conclusions

Based on the current results of the supply-side and integration analysis, the current summer and winter Base Cases are the least-cost plan. The future summer and winter DLOL Base Cases show a need for capacity sooner, but more time is needed to see potential impacts as DLOL is not going into effect until 2028 in MISO. In both the current summer and winter plans, the following resources are selected as the least-cost options in meeting the forecasted capacity and energy requirements:

- Complete commissioning of the Heskett 4 an 88 MW natural gas-fired Simple Cycle Combustion Turbine unit to be online in 2024.
- Continue to grow the Commercial Demand Response program to a total of 45 MW.
- Continue the evaluation of the new 150 MW wind opportunity.

Figures 4-1 and 4-2 show a comparison of the summer resource mix that Montana-Dakota has available to serve its customers' needs in 2024 which includes a new simple cycle combustion turbine

online in 2024, as compared to the least cost plan in 2029. Figures 4-3 and 4-4 show the comparison of the winter mix. Note a Zonal Resource Credit (ZRC) represents one megawatt of accredited generating capacity under the MISO resource adequacy rules.

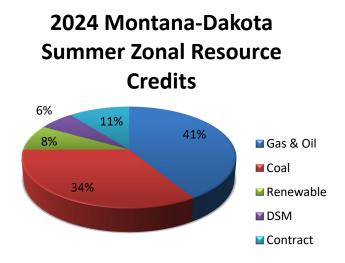


Figure 4-1: 2024 Montana-Dakota Summer Zonal Resource Credits

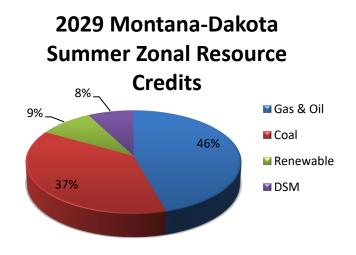


Figure 4-2: 2029 Montana-Dakota Summer Zonal Resource Credits

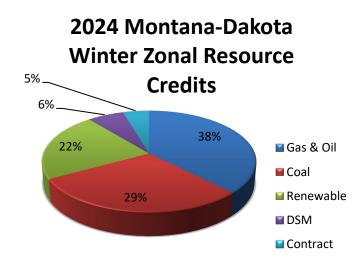


Figure 4-3: 2024 Montana-Dakota Winter Zonal Resource Credits

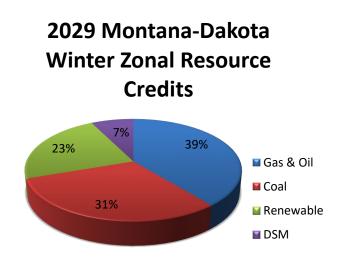
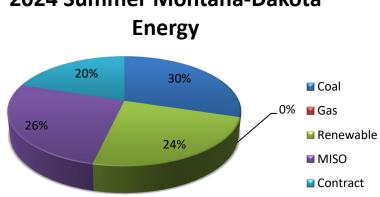



Figure 4-4: 2029 Montana-Dakota Summer Zonal Resource Credits

As shown in Figures 4-1 and 4-2; in 2024 approximately 34 percent of Montana-Dakota's resource capacity comes from natural gas and oil-fired combustion turbines and reciprocating internal combustion engines while in 2029, based on the Base Case plan, approximately 46 percent of the Company's resource capacity would be made up by natural gas and oil-fired combustion turbines and reciprocating internal combustion engines. In the winter with the expiration of the Minnkota capacity and energy contract on May 31, 2026, there is slight difference in the ZRCs from 2024 to 2029 as shown in Figures 4-3 and 4-4. It should be noted that while natural gas makes up a sizable portion of the capacity, these are peaking resources that, while critical to the system, contribute little to the actual energy usage.

Figures 6-6 and 6-7 shows the percentage of energy on a yearly basis in 2024 and in 2029. In 2024, 30 percent of Montana-Dakota's energy will come from coal, 26 percent from MISO energy market, 24 percent from renewable, and 20 percent from energy contract. In 2029, 32 percent of energy will come from coal, 45 percent will come from MISO energy market, and 23 percent will come from renewable based upon forecasted fuel and MISO energy prices. If MISO energy prices increase higher than forecasted, Montana-Dakota's natural gas-fired units could be dispatched to offset forecasted MISO energy purchases and provide pricing protection for customers.

2024 Summer Montana-Dakota

Figure 6-6: 2024 Montana-Dakota Energy by Resource Type

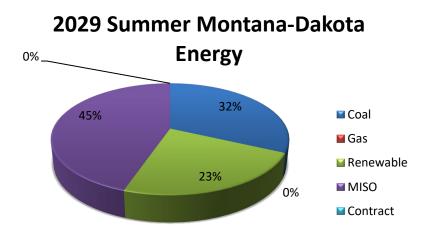


Figure 6-7: 2029 Montana-Dakota Energy by Resource Type

The sensitivity scenarios show that the largest variations in NPV of supply plans reflect potential carbon tax, high load growth scenarios, limiting MISO energy market, and the Greenhouse Gas Rule.

5. Future Resource Plan

Based on the analysis of the resource expansion models and the consideration of customer impacts, market availability of capacity and energy, and other factors such as environmental regulations and the balance of its generation mix, Montana-Dakota's recommended resource plan is to pursue the following resource changes to meet the requirements identified for the 2024-2029 period:

- Continue to grow the Commercial Demand Response program to a total of 45 MW with a goal of reaching 60 MW.
- Complete the commissioning of the Heskett 4 natural gas-fired simple cycle combustion turbine resource, to be online in 2024.
- Issue a new request for proposal prior to the next IRP.
- Continue the evaluation of the new 150 MW wind opportunity.

Montana-Dakota's recommended resource plan satisfies future customer requirements through the current MISO Resource Adequacy process for both capacity and energy. With the unknowns of the new MISO DLOL process, the current plan will allow Montana-Dakota to continue to evaluate the DLOL process within MISO and react once more information is provided by MISO. Montana-Dakota will continue its reliance on Big Stone and Coyote to provide base load energy as well as having nearly 300 MW of natural gas-fired peaking capacity with the Heskett 4 addition to provide energy when it is needed. In addition, Montana-Dakota has the Minnkota contract for capacity and energy that goes through May 2026, the use of the MISO energy market to meet customer demands, and 200 MW of renewables.

A new request for proposals will be issued prior to the next IRP to see what impacts the uncertainties with final project pricing, network upgrade costs, delays in the MISO queue process and potential JTIQ price adder will have on potential projects that could potentially be future options to Montana-Dakota.

6. References

MISO Resource Adequacy Business Practice Manual-11-r29 Resource Adequacy. (October 1, 2023) <u>EGEAS User's Guide Version 13.</u> EPRI, Palo Alto, CA, November 2018. <u>MISO Planning Year 2024-2025 Loss of load Expectation Study Report.</u> (April 18, 2024) <u>MISO Planning Year 2024-2025 Wind & Solar Capacity Credit.</u> (March 28, 2024) Appendix A

EGEAS INPUT DATA FOR THE SUMMER BASE CASE

6/28/24 12:8:0

EGEAS	EDIT	VERSION 13.0	2024 IRP	BUILD 1 - 10/31/18
*****	* * * * * * * * *	* * * * * * * * * * * * * * * * * * *	**********	******

EEEEEEE	GGGGGG	EEEEEEE	AAAAA	SSSSSS
EEEEEEE	GGGGGGGG	EEEEEEE	AAAAAAA	SSSSSSSS
EE	GG GG	EE	AA AA	SS
EEEEEE	GG	EEEEEE	AAAAAAA	SSSSSSS
EEEEEE	GG GGG	EEEEEEE	AAAAAAA	SSSSSSS
EE	GG GG	EE	AA AA	SS
EEEEEEE	GGGGGGGG	EEEEEEE	AA AA	SSSSSSSS
EEEEEEE	GGGGGG	EEEEEEE	AA AA	SSSSSS
ELECTRIC	GENERATION	EXPANSION	ANALYSIS	SYSTEM

EDIT PROGRAM

Montana-Dakota Utilities Co. 2024 Model Base Case Run -- Data updated for the 2024 Model

RPI 1529

ELECTRIC POWER RESEARCH INSTITUTE 3420 HILLVIEW AVENUE PALO ALTO, CALIFORNIA 94304

ELECTRIC POWER RESEARCH INST	ITUTE		2024 II	RP			6/28/24	12: 8: 0
EGEAS EDIT *******************************	****	* * * * * * * * *		ONTROL REPO:		* * * * * * * * * * * * * * * * * * * *		AGE * * * * * * * * * *
NUMBER OF LOAD AREAS	1							
LOAD MODIFICATION OPTION	1							
NUMBER OF LOAD COMPONENTS	1							
COST ANALYSIS FORMAT	1	- NO CON	STRUCTIO	N COSTS, LE	VELIZED FIX	ED CHARGES		
REPORT FILE OPTION	0	- STANDA	RD					
REPORT OPTIONS								
ERROR DATA BASE CONTENTS INPUT FILES		- ALL ME - GENERA VERSION	TE WITHO	UT ORTHOG D. CREATION DATE		DESCRIPTION		EGEAS VERS
				DAIL		DESCRIPTION		VER5
ORTHOGONALIZED LOAD	2024	1	0	6/28/24	12: 7:57	2024 IRP		1300
HOURLY LOADS SYSTEM A	HOURLOAD	1	0					
HOURLY NDT TECHNOLOGY 1 TECHNOLOGY 2 TECHNOLOGY 3 TECHNOLOGY 4 TECHNOLOGY 5 TECHNOLOGY 6	windDWcf windCHcf windTScf wind46cf slr16cf slr20cf	1 1 1 1 1	0 0 0 0 0					
OUTPUT FILE	NAME	VERSION	UPDATE	CREATION DATE	CREATION TIME	DESCRIPTION		EGEA VERS

EGEAS * * * * * * *	EDIT	* * * * :	* * * * * *	***	* * * * * * * *	***	****	****	****	* * * *			ROR * * * * *					****	* * * * *	* * * *	* * * * * *	******	PAGE	
HEADER	RECORD				RSION																			N
RECORD	DESCRIPTION												FIEL											N
																						8	 9	
	COLUMNS	123	45678	90	1234567	890	1234	15678	3901	L2345	678	901	2345	6789	0123	3456	7890)1234	56789	0123	456789	9012345	67890	
		*			Montana			u Ut:	ilit	cies	Co.													
		*			2024 Mc																			
		*			Base Ca Da			+od	for	c +hc	20	24	Mode	1										
		*			DC	cu	upuc	liccu	101		- 20	21	nouc	-										
		*			Control	re	cord	ł.																
		*				a		סחס	سرد															
		*			M O																			
		*						R																
		*								L T		D	ESCR	IPTI	VE]	INFO	RMA	TION						
	RECORD	* CC								- +		- 2	024											
UNIROL	I RECORD	*			Ţ	T	1 1			0 1		2	024	IKP										
		*			EGEAS I	ATA	BAS	SΕ	(ORTHO	GON.	ALI	ZED	LOAD	FII	LE (1	FROM	1 ORT	HOG)					
		*			NAME																			
יד אידי	DENTIFY	* FF			2024					 2024														
		*			2021	-	. 0			-021		-	0											
		*			== GENE																			
		*			BASE I																			
		*			YEAR F	ATE +++		W +		1 EAF	K P. +	EAK 	- ++	Ş/MW ++++	н ++		D. +++-	LSC +++	RATE +	2R ++				
GENERAI	DATA	GLA			2023 6														0000					
		*																						
		*			== GENE A E																			
		*			+++																			
GENERAI	L DATA	GLB *			SYSA																			
		*			== GENE	RAL	DAT	'A -	SYS	STEM	NAM	ES												
		*			NAME																			
		*		1																				
LNERAL	l data	GLC *		T	SYSA																			
		*			== GENE	RAT	ING	COM	PANI	EES =														
		*			N																			
		*			U IDEN		1.17	ME																
		*			M CODE		NZ																	
GENERAI	TING COMPANY	GC	1	1	4 NDAF			ζ																
		GC		2																				
		GC	1	3	SDAF		SDAF	ί.																

GEAS EDIT ***************	****	* * * * *	* * * :	MIRROR IMAGE REPORT	PAGE	
ECORD DESCRIPTION	TYP	REF	SQ	DATA FIELDS		NU
				2 3 4 5 6 7	· 0	
COLUMNS				12345678901234567890123456789012345678901234567890123456789012345678		
ENERATING COMPANY	GC	1	4	MISO MISO		4
ENERATING COMPANY ENERATING COMPANY ENERATING COMPANY	GC	2	1	1 SYSB SYSB		4
ENERATING COMPANY	GC	3	1	1 SYSC SYSC		4
ENERATING COMPANY				1 SYSD SYSD		4
ENERATING COMPANY				1 SYSE SYSE		4
ENERATING COMPANY				1 SYSF SYSF		5
ENERATING COMPANY				1 SYSG SYSG 1 SYSH SYSH		5
ENERATING COMPANY				I SISH SISH I SYSI SYSI		5
ENERATING COMPANY ENERATING COMPANY						5
	*	10	Ŧ	1 5150 5150		5
	*			== SYSTEM DEMAND ==		5
	*			PEAK PEAK ENRG		5
	*			LOAD ENERGY TJ TJ		
	*			++++++++++++++++		5
YSTEM DEMAND	SD		1	498.50003274.1999 1 2		6
	*					(
	*					(
	*			== BASIC PLANT TYPE DATA ==		6
	*			LL SA FL SRVC GEN OWNER UNIT INST LIFE		6
	*			NAME TYPECD TV CLS AREA CO PCT. GRP. YEAR OP BK		6
	*BP	А		+++++ -+ ++++ +++++ +++++- ++		6
	*					é
	*			RATEDCAPACITY MULT EQV. HEAT ENRGY STOR CAP.MULT.		e
	*			CAP. OPER. EMER. CHRG. FOR RATE LIMIT EFF. RESERVE		7
	*BP	В		++++++++++++++++++++++++++++++++++		7
	*					7
	*			INSTALL. INSTALL. LEVEL. FIXED VAR. AFUDC DEBT M CAP		7
	*			COST 1 COST 2 CARRY. O+M O+M PCT. AFUDC U STR		-
	*BP	С		+++++++++++++++++++++++++++		-
	*					2
	*			INST FIX VAR FOR OPER		-
	*			COST O+M O+M OUT MNT FUEL CAP ENRG CAP ENRG WEEK LOAD TJ TJ TJ TJ CYC TYPE TJ TJ SM SM ENRG BLK		-
	~ *BD	D	1	+++++++++++++++++++++++++		، ج
	*	D	T			6
	*			RES HEAT RATED		6
	*			ENV GEN CAP RATE TAX CAP		6
	*			NDT PLNT SITE TJ TJ DEPR TJ		8
	*BP	D	2	++++++++++++++		E
	*					8
	*			M S DISPATCH 2ND HT RT MUST-RUN SPINNING MUST		6
	*			R P MODIF TJ FUEL MULT YR 1 LAST YR 1 LAST SM - ++++++++++++ ++++		8
		E		- +++++++++++++++++++++++++++++++		8
	*					9
	*			CONSTRUC CONSTRUC EXP PCT		ç

GEAS ******		****	*****	* * * '	MIRROR IMAGE REPORT	PAGE	
ECORD I	ESCRIPTION	TYP	REF	SQ	DATA FIELDS		NU
					2 3 4 5 6 7		
	COLUMNS	123	45678	90	12345678900123456789000000000000000000000000000000000000	578901234567890	
		*			COST 1 COST 2 TJ PATT CWIP		9
		*BP *	F				(
		*			STARTING EQUITY DEBT		
		* +DD	C		CWIP AFUDC AFUDC		
		*BP *	G 				
		*					
ASIC PI	LANT TYPE				STORAGE1 STOR P G STRG MDU NDAK 100.0 1 30 25 1.0001.00001.00001.00000.0010 0.33 95.00 0.9500		1 1
		BPC	1		2240.000 11.1304750.00.0000 2 1		1
		BPD BPD			51 22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		1 1
		ыгы *	1				1
ASIC PI	LANT TYPE	BPA	2		ENERGY THRM B E PURC MDU MISO 100.0 1 2021 6 6		1
		BPB BPC	2		75.0001.00001.0000 0.0000 10500 0.0000 0.000023.000 2 0		1 1
		BPD	2	1	42 0 7 8 0 0 0 0 6		1
		BPD *	2	2	0 0 0 0 0 0 28		1 1
ASIC PI	LANT TYPE	BPA	3		CAPACITY THRM P E PURC MDU MISO 100.0 1 2021 6 6		1
		BPB	3		30.0001.00001.0000 0.0000 1 1.0000		1
		BPC BPD	د ۲	1	0.000 24.0001000.0 2 0 21 23 0 7 8 0 0 0 0 0		1 1
		BPD	3	2	0 0 0 0 0 45		1
		BPF	3		0.000 00.0000 0.0000000.0000000.0000000		1
		BPG *	3		0.00000000.0000000000000000000000000000		1 1
ASIC PI	LANT TYPE	BPA			WRTSLA 31DF THRM P G GAS MDU NDAK 100.0 1 40 35		1
		BPB BPC	4		44.4001.00001.00000.500083700.93483356.00010.04064.7205.760011		1 1
		BPD	4	1	30 22 56 0 5 3 0 0 0 0 9		1
		BPD BPF			0 0 0 0 0 20 0 857.000 30 370.0000		1 1
		BPG			0.00000000.0000000000000000000000000000		1
		*					1
ASIC PI	LANT TYPE	BPA BPB			STORAGE10 STOR P G STRG MDU NDAK 100.0 1 30 25 10.0001.00001.00001.00000.0010 13.14 95.00 0.9500		1 1
		BPC	24		1358.000 11.130333.000.0000 2 1		1
		BPD BPD			51 22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		1 1
		ьгл *	24	2			1
SIC PI	LANT TYPE				STORAGE50 STOR P G STRG MDU NDAK 100.0 1 30 25		1
		BPB BPC			50.0001.00001.00001.00000.001065.7095.000.95001449.00011.13044.8800.000021		1 1
		BPD	27	1	51 22 0 0 0 0 0 0 0 0		1
		BPD	27	2	0 0 0 0 0 0		1

GEAS * * * * *	EDIT *********	* * * * *	*****	* * * '	MIRROR IMAGE REPORT	PAGE ******	* * * *
ECORD	DESCRIPTION	TYP	REF	SQ	DATA FIELDS		NU
				1	2 3 4 5 6 7	8 9	
					1234567890123456789012345678901234567890123456789012345678901234		
		*			MISO - On peak HYDR P E PURC MDU MISO 100.0 1 2014 50 50 250.01.00001.0000 0.0000 105001095.0 0.0000		13
ASIC	PLANT TYPE	BPA	80		MISO - On peak HYDR P E PURC MDU MISO 100.0 1 2014 50 50		14
		BPB	80		250.01.00001.0000 0.0000 105001095.0 0.0000 0.000025.890 2 0		14
		BPD	80	1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		14 14
		BPD	80	2			14
		*					14
ASIC	PLANT TYPE	BPA	90		MISO - Off peak HYDR P E PURC MDU MISO 100.0 1 2014 50 50 250.01.00001.0000 0.0000 105001095.0 0.0000		14
		BPB			250.01.00001.0000 0.0000 105001095.0 0.0000		14
		BPC	90		0.000023.230 2 0		14
		BPD	90	1	46 0 0 8 0 0 0 0 7 0 0 0 0 0 0 0 0 0 7		14
		BPD *	90	2			1: 1:
ASTC	PLANT TYPE		100		INTERRUPTIBLES DTHR1P E DSM MDU MISO 100.0 1 2012 50 30		1
1010		BPB	100		15.2001.00001.0000 0.0000 1 0.8026		1
		BPC	100		15.2001.00001.0000 0.0000 1 0.8026 0.000 50.040300.00 1 1		1
		BPD	100	1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1
		BPD	100	2	0 0 0 0 0 16		1
		BPF	100		0.000 00.0000		1
		BPG	100		0.00000000.00000000.0000000		1
		*	110				1
ASIC	PLANT TYPE	BPA BPB	110		COMMERCIAL DSM DTHR1P E DSM MDU MISO 100.0 1 2013 50 30 25.0001.00001.0000 1.0280		1 1
		BPC	110		0.000 50.040300.00 2 0		1
		BPD	110	1			1
		BPD	110	2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1
		BPF	110		0.000 00.0000		1
		BPG	110		0.0000000.00000000.0000000		1
		*					1
ASIC	PLANT TYPE		120		MILES CITY C.T. THRM P E GAS MDU MONT 100.0 1 1972 99 30		1
		BPB	120		20.7000.85711.0000 0.5000 16266 0.7826		1 1
		BPC BPD	120	1			1
		BPD	120	2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1
		*	100				1
ASIC	PLANT TYPE	BPA	130		GLENDIVE CT #1 THRM P E GAS MDU MONT 100.0 1 1979 99 30		1
		BPB	130		31.3000.84511.0000 0.5000 13010 0.9265		1
		BPC	130		6.70004.2000 2 0		1
		BPD	130	1	3 6 0 3 1 0 0 0 0 5 0 0 0 0 0 0 0		1
		BPD *	130	2	U U U O O O O		1
NGTO	יזמעיה העובי		1 2 0		GLENDIVE CT #2 THRM P E GAS MDU MONT 100.0 1 2003 99 30		1 1
JUTC	LUANI IIFE	BPR	132 132		43.3000.92381.0000 0.5000 9322 0.5751		1
		BPC	1.32		43.3000.92381.0000 0.5000 9322 0.5751 7.41004.2000 2 0		1
		BPD	132	1	3 7 0 4 1 0 0 0 0 13		1
					0 0 0 0 0 0		1
		*					1

GEAS EDIT *************	* * * * * *	*****	***	MIRROR IMAGE REPORT	PAGE 6
ECORD DESCRIPTIO				DATA FIELDS	NUM
			1	2 3 4 5 6 7 12345678901234567890123456789012345678901234567890123456789012345	8 9
ASIC PLANT TYPE	BPA BPB BPC BPD BPD *	136 136 136	1	DIESEL 2 THRM P E GAS MDU NDAK 100.0 1 2012 99 30 2.0001.00001.0000 0.5000 8687 0.9048 19.2604.2000 2 0 3 8 23 2 0 0 0 0 0 0 0 0 0 0 0	186 187 188 189 190 191
ASIC PLANT TYPE		138 138 138	1	DIESEL 3 THRM P E GAS MDU NDAK 100.0 1 2012 99 30 2.0001.00001.0000 0.5000 8687 0.8500 19.2604.2000 2 0 3 8 0 23 2 0 0 0 0 0 0 0 0 0	192 193 194 195 196 197
ASIC PLANT TYPE		152 152 152	1	HESKETT #3 THRM P E GAS MDU NDAK 100.0 1 2014 40 25 84.5000.95451.0000 0.5000 11482 1.0142 40.2800.9000 1 1 3 15 0 17 13 0 0 0 2 0 0 0 0 0 0 0 2	197 198 199 200 201 202 202 203
ASIC PLANT TYPE	BPA	154 154 154 154 154	1 2	HESKETT #4 THRM P E GAS MDU NDAK 100.0 1 2023 40 35 88.0000.88641.0000 0.5000 11770 0.9102 878.000 8.729040.2800.9000 1 1 30 22 60 0 37 13 0 0 0 8 0 0 0 0 20 0 857.000 30 370.0000 0.000000000.0000000000000000000000000	204 204 205 206 207 208 209 210 211
ASIC PLANT TYPE		162 162 162	1	LEWIS & CLARK2 THRM P E GAS MDU MONT 100.0 1 2015 40 25 18.5001.00001.0000 0.5000 8643 0.7784 78.7703.5900 1 1 3 20 0 19 11 0 0 0 0 11 0 0 0 0 0 0 0 0	211 212 213 214 215 216 217
ASIC PLANT TYPE	BPA BPB BPC BPD BPD BPE *	170 170 170	1 2	BIG STONE THRM B E COAL MDU SDAK 100.0 1 1975 99 30 107.81.00001.0000 0.0375 10197 1.0083 27.7903.8000 2 0 3 12 0 6 0 0 0 17 0 0 0 0 0 0 0 0 M 0.0000 0 1980 2080 0 0	218 218 219 220 221 222 223 224
ASIC PLANT TYPE	BPA	180 180 180 180	1 2	COYOTE THRM B E COAL MDU NDAK 100.0 1 1981 99 30 $106.81.00001.0000$ $0.1633 11011$ 0.9335 $33.8305.2000$ 2 0 $3 13$ 0 22 7 0 0 0 18 0 0 0 0 0 0 0 0 M 0.0000 0 1980 2080 0 0	224 225 226 227 228 229 230 231
ASIC PLANT TYPE		190		DIAMOND WILLOW NDT B E WIND MDU MONT 100.0 1 2008 28 25	231

GEAS EDIT ******************	*****	*****	***	MIRROR IMAGE REPORT	PAGE ********
RECORD DESCRIPTION					NU
			1	2 3 4 5 6 7 12345678900123456789000000000000000000000000000000000000	
BASIC PLANT TYPE	BPB BPC BPD BPD	190 190	1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23 23 23 23 23 23
BASIC PLANT TYPE	BPA	200 200 200 200	1 2	GLEN ULLIN ORMAT THRM B E WH MDU NDAK 100.0 1 2009 35 20 7.5000.66670.6667 0.0500 1 0.3867 122.088.1300 2 1 44 18 0 15 5 0 0 0 0 0 0 0 0 0 0 0 0 0 M 0.0000 0 1980 2080 0 0 0	23 23 24 24 24 24 24 24
BASIC PLANT TYPE	BPA	210 210 210	1	CEDAR HILLS NDT B E WIND MDU NDAK 100.0 1 2010 26 25 19.5001.00000.3810 0.0000 0.2667 28.7700.0000 2 1 3 0 10 0 0 0 2 0 0 0 0 0 0	24 24 24 24 24 24 24 24 24 24
BASIC PLANT TYPE	BPA BPB BPC BPD BPD	220 220 220 220 220 220		THUNDER SPIRIT NDT B E WIND MDU NDAK 100.0 1 2015 27 25 150.01.00000.4186 0.0000 0.2447 29.470-37.04 2 1 3 32 0 13 0 0 0 3 0 0 0 9	25 25 25 25 25 25 25 25 25 25 25 25 25 2
BASIC PLANT TYPE	BPA BPB	230 230 230 230	1 2	WAPA PUR-FT PECK HYDR B E HYDR MDU NDAK 100.0 1 2001 50 30 2.8000.89291.0000 0.0000 14.35 0.0000 0.000 0.000024.000 2 0 14 0 0 0 0 0 0 0 0 0 0 M 0.0000 0 1980 2080 0	25 25 26 26 26 26
BASIC PLANT TYPE	* BPA BPB BPC BPD BPD BPF BPG *	310 310 310 310 310	1 2	PURCHASE POWER THRM P G PURC MDU MISO 100.0 1 1 1 10.0001.00001.0000 0.0000 1 1.0000 0.000 12.0001000.0 2 0 10 23 0 8 0 0 0 0 0 0 0 0 0 0 0 0.000 0 0 0 0 0 0 0 0 0.000 00.0000 00.0000 00.0000 0 0 0 0	26 26 26 26 26 26 26 26 26 26 26 27 27
ASIC PLANT TYPE	BPA BPB BPC BPD BPD BPF BPG *	320 320 320 320 320	1 2	GE TEA THRM P G GAS MDU NDAK 100.0 1 40 35 77.9000.91951.0000 0.5000 11800 0.9694 2077.000 10.04038.8600.9000 1 1 30 22 60 0 28 3 0 0 0 2 0 0 0 20 0 857.000 30 370.0000 30 0.00000000000000000000000000000000000	27 27 27 27 27 27 27 27 27 27 27 27
				2 3 4 5 6 7 12345678901234567	8 9

GEAS EDIT	*****	******		PAGE
ECORD DESCRIPTION				NU
			1 2 3 4 5 6 7 0 12345678901234567890123456789012345678901234567890123456789012345	
ASIC PLANT TYPE		330 330 330 330 330 330	GE LMS100PB THRM P G GAS MDU NDAK 100.0 1 40 35 99.900.90411.0000 0.5000 8970 0.9694 2485.000 1 1 1 1 30 22 24 0 28 3 0 0 0 13 2 0 0 0 13 30 30 370.0000 0 13 2 0 0 0 13 370.0000 0 0 13 370.0000 30 370.0000 370.0000 0 14 <th< td=""><td>28 28 28 28 28 28 28 28 28 28 28</td></th<>	28 28 28 28 28 28 28 28 28 28 28
ASIC PLANT TYPE	BPA BPB BPC BPD BPD BPF BPG *	340 340 340 340 340	GE LM6000PH THRM P G GAS MDU NDAK 100.0 1 40 35 45.0000.92721.0000 0.5000 9730 0.9349 3252.000 1 1 1 30 22 62 0 28 3 0 0 0 13 2 0 0 0 20 0 850.000 13 0.00000000000000000000000000000000000	28 28 29 29 29 29 29 29 29 29 29
ASIC PLANT TYPE	BPA BPB BPC BPD BPD BPF BPG	370 370 370 370 370	GE 7EA 2x1 ADD THRM I G GAS MDU NDAK 100.0 1 50 35 329.70.90961.0000 0.0166 9990 0.9820 1201.000 10.04028.3104.6000 1 1 1 59 59 0 21 3 0 0 0 4 2 0 0 0 20 0 750.000 30 370.0000 0.00000000000000000000000000000000000	29 29 29 30 30 30 30 30 30
ASIC PLANT TYPE	BPA BPB BPC BPD BPD BPF BPG	380 380 380 380 380	GE 7FA.05 1x1 THRM I G GAS MDU NDAK 100.0 1 50 35 200.00.85711.0000 0.0166 8030 0.9820 1618.000 10.04028.0204.0000 1 1 1 30 22 54 0 24 3 0 0 0 2 2 0 0 0 20 0 750.000 30 370.0000 0.00000000.00000000000000000000000000	30 30 30 30 30 30 30 31
ASIC PLANT TYPE		400 400 400 400 400	SMN SGT-800 2x1 THRM I G GAS MDU NDAK 100.0 1 50 35 100.00.85711.0000 0.0166 9589 0.9820 2464.000 10.04049.7205.2000 1 1 1 30 22 69 0 25 3 0 0 0 3 2 0 0 0 20 0 750.000 30 370.0000 0.000000000.0000000000000000000000000	31 31 31 31 31 31 31 31 31 31
ASIC PLANT TYPE	BPA BPB BPC BPD BPD BPF BPG	410 410 410 410 410	WRTSLA 18V50SG THRM P G GAS MDU NDAK 100.0 1 40 35 55.0001.00001.0000 0.5000 8330 0.9695 3425.000 10.04056.7605.2900 1 1 1 30 22 56 0 1 3 0 0 0 1 2 0 0 0 20 0 857.000 30 370.0000 0.00000000000000000000000000000000000	31 32 32 32 32 32 32 32 32
COLUMNS	123	45678	1 2 3 4 5 6 7 0 12345678901234567890123456789012345678901234567890123456789012345	

	EDIT ******	* * * * *	*****	***;	MIRROR IMAGE REPORT	PAGE	
ECORD	DESCRIPTION	TYP	REF	SQ	DATA FIELDS		NU
					2 3 4 5 6 7		
	COLUMNS	123	45678	90	123456789001234567890012345678900123456789000000000000000000000000000000000000	901234567890	
		*	400				32
ASIC	PLANT TYPE	BPA BPB	420		WRTSLA 20V34SG THRM P G GAS MDU NDAK 100.0 1 40 35		32 32
		BPC	420		36.5001.00001.0000 0.5000 8470 0.9348 3789.000 10.04076.5805.1100 1 1		33
		BPD	420	1	30 22 56 0 28 3 0 0 0 0 10		33
		BPD	420	2	0 0 0 0 20 0		33
		BPF			857.000 30 370.0000		33
		BPG	420		0.00000000.00000000.0000000		33
AGTO		*	420				33
ASIC	PLANT TYPE	BPA BPB	43U ⊿२∩		BIOMASS THRM B G BMP MDU NDAK 100.0 1 40 25 25.0001.00001.0000 0.0928 12300 0.9072 0.9072		3:
		BPC	430		7980.000 10.040252.005.6000 1 1		3.
		BPD	430	1	30 22 58 0 28 10 0 0 0 0 19		33
		BPD	430	2	0 0 0 0 20 0		3,
		BPF			857.000 30 370.0000		3,
		BPG	430		0.00000000.00000000.0000000		3
AGTO		*	450				3
ASIC	PLANT TYPE	BPA BPB	450		PV SOLAR50 NDT B G SOLR MDU NDAK 100.0 1 30 25		3
		BPC	450		50.0001.00001.00000.00000.50002280.00011.13034.800-37.041		3
		BPD	450	1	30 22 17 0 10 0 0 0 0 0 0		3
		BPD	450	2	6 0 0 0 0 0		3
		BPF	450		2558.000 30 380.0000		3
		BPG	450		0.0000000.0000000.0000000		3
ACTO		* גםם	160		PV SOLAR5 NDT B G SOLR MDU NDAK 100.0 1 30 25		3
ASIC	PLANT TYPE	BPB	460 460		SOLARS NDT B G SOLR MD0 NDAK 100.0 1 30 25 5.0001.00001.0000 0.0000 0.5000 0.5000		3
		BPC	460		2467.000 11.13039.600-37.04 1 1		3
		BPD	460	1	30 22 17 0 10 0 0 0 0 0 0		3
		BPD	460	2	6 0 0 0 0 0		3
		BPF			2558.000 30 380.0000		3
		BPG *	460		0.00000000.00000000.0000000		3
NGTO	PLANT TYPE	* BPA	490		CFBC THRM B G LIGN MDU NDAK 100.0 1 50 50		3
4910	FLANI IIFS	BPB	490		30.0000.95001.0000 0.0936 10000 0.9143		3
		BPC	490		5880.000 9.4200168.7214.060 1 1		3
		BPD	490	1	30 22 61 0 33 12 0 0 0 0 0 0		3
		BPD	490	2	0 0 0 0 20 0		3
		BPE	490		M 0.0000 0 0 1980 2080 0		3
		BPF			3900.000 30 310.0000		3
		BPG *	490		0.0000000.0000000.0000000		3
ASIC	PLANT TYPE	BPA	500		CFBC CO2 THRM B G COAL MDU NDAK 100.0 1 50 50		3
					30.0000.95001.0000 0.0936 13800 0.9143		3
			500		10400.000 9.4200267.4822.290 1 1		3
		BPD			30 22 25 0 33 12 0 0 0 0 0 0		3
		BPD	500	2	0 0 0 0 20 0		3

	PAGE	*****	*****	REPORT	1AGE R ****	ROR IM	MIRF ****	****	* * * * *	****	****	******	***	******	* * * * * *	EDIT ********	
NU						FIELDS										DESCRIPTION	
	8 9 678901234567890	7	6		5		4		3		2		1			COLUMNS	
37 37 37 37		0)	2080	1980 .0000	310.	30			000	M 3900. 0.00000		500 500 500	BPE BPF BPG *	PLANT TYPE	BASIC
37 37 38 38 38 38 38 38 38		25 25 0.1810 1 0 0	1		4	0-37.0 0 0	21 380.	0.0 .1305 10 0 30	0 11 0 0	0.381 17 0	.0000 22 0 000	50.0001 2660. 30	1	510 510	BPA BPB BPC BPD BPD BPF BPG	PLANT TYPE	BASIC
		25 25 0.1810 1 0 0	1	0.00	4	0-37.0 0 0	000 6.400 21 380.	0.0 .1305 10 0 30	0 11 0 0	0.381 17 0	.0000 000 22 0 000	WIND100 100.01 2156. 30 4 2400. 0.00000	1 2	520 520 520	BPA BPB BPC BPD BPD BPF BPG	PLANT TYPE	BASIC
		10 W S	9 W S	8 W S	7 W S	6 W S	5 W S	EEKS 4 W S	OFW 3 WS	UMBER 2 W S	N 1 W S	== MAIN Y YBO I RAP N PST +++-			* * * *		
4 C											2	1 110	1	1		NANCE CYCLE	AINTE
4 C 4 C 4 C		0	0	237	0	0	0	0	0	0	0	101011	1	2	* MC *	NANCE CYCLE	IAINTE
4 C 4 C		0	0	0	216	0	0	0	0	216	0	101011	1	3	MC *	NANCE CYCLE	IAINTE:
40		221	0	238	0	0	221	0	238	0	0	101011	1	4	MC *	NANCE CYCLE	AINTE
40											2	1 110	1	5	MC	NANCE CYCLE	AINTE
4C 41						2923	0	0	0	0	23 1	6 101	1	7		NANCE CYCLE	AINTE
41 41		340	340	814	341	340	340	340	814	341	340	101011	1	8		NANCE CYCLE	IAINTE:
41 41											1	1 110	1	10		NANCE CYCLE	AINTE
41 41											1	1 110	1	13		NANCE CYCLE	AINTE
41 41											1	1 100	1	14		NANCE CYCLE	AINTE
41											1	1 120	1	15	* MC	NANCE CYCLE	AINTE

* * *	PAGE * * * * * * *		* * * * * * * *	* * * * *	****				ROR IM		*****	* * * *	*****	*****	*****	****	* * * * * * *	* * * * *	EDIT *********	EGEAS ******
N									FIELDS	ATA I	D								DESCRIPTION	
	9 7890	8 90123456		7 89012	34567	6 89012	34567		234567		234567	3 8901		2		1			COLUMNS	
4																		*		
4					0	0	0	239	0	0	0	0	239	0	101011	1	17	MC *	NANCE CYCLE	AINTEN.
4					0	0	220	241	0	0	0	220	241	0	101011	1	19	MC *	NANCE CYCLE	AINTEN.
4														2	1 110	1	21	MC *	NANCE CYCLE	AINTEN.
4									122 138						101012		22 22	MC MC	NANCE CYCLE	AINTEN.
4														2	1 110	1	23	MC *	NANCE CYCLE	AINTEN.
4														2	1 110	1	24	MC	NANCE CYCLE	AINTEN
4 4 4														2	1 110	1	25	* MC *	NANCE CYCLE	AINTEN.
4														2	1 110	1	28	MC *	NANCE CYCLE	AINTEN
4														3	1 110	1	33	MC *	NANCE CYCLE	AINTEN
4															1 110			MC *	NANCE CYCLE	AINTEN.
4															== FUE			*		
4			LONG NAME		AV SM	CS TJ	AV TJ		FUEL COST		AVAILA FUEL		HEAT CONTE	IASS JNIT	NAME U			*		
4			++++++	+	+++	++	+++	++		+++	+++++		 ТЈ		+ MIN. F		A	*FL *		
4																	в 	*FL *		
4			AS	0G	0	33	0	000	5.370	000	-1.000	400	1.1	KT	GAS I		1	* FLA	YPE	JEL TY
4			IL2	00	0	34	0	000	19.000	000	-1.000	700	39.1	AL	OIL2 G		2	* FLA	YPE	JEL TY
4			AS	0G2	0	11	0	000	5.060	000	-1.000	400	1.1	KT	GAS I		3	* FLA	YPE	UEL TY
4			SM	0 D	0		0	000	0.000	000	-1.000	100	0.0	IONE	DSM N		4	* FLA *	YPE	UEL TY
4			Н	OW	0		0	000	0.000	000	-1.000	100	0.0	IONE	WH N		5	FLA	YPE	UEL TY
4			OAL	0C(0	38	0	000	2.100	000	-1.000	400	16.4	ON	COAL 1		6	* FLA	YPE	JEL TY
4			OAL	0C(0	39	0	000	2.190	000	-1.000	300	14.1	ON	COAL 1		7	* FLA	YPE	JEL TY
4			URC	0 PI	0		0	000	0.000	000	-1.000	100	0.0	IONE	PURC N		8	* FLA *	YPE	JEL TY

GEAS EDIT *******	* * * * *	*****	**:	* * * * * * * * * * * * *	*****	* * * * * *			IMAGE *****			* * * * * *	* * * * * * * * * *		PAGE 1 *******
ECORD DESCRIPTION			~				DATA 1								NU
			 1	2	3		4		 5		 6		7	8	 9
COLUMNS	123	45678	90	123456789012	234567890	123456	5789012	2345	5678901	23456	578901	234567	890123456	78901234567	890
UEL TYPE		10		BMP TON	14.9000	-1.00	00000	6.7	750000	0	63	0	OBMP		46
UEL TYPE	* FLA	11		GAS DKT	1.1400	-1.00	0000	5.0	000080	0	47	0	OGAS		46
UEL TYPE	* FLA	12		COAL TON	14.0700	-1.00	0000	2.8	380000	0	43	0	0COAL		4
	*									0	50	0			4
UEL TYPE	FLA *	13		GAS DKT	1.1400	-1.00	10000	5.0	100000	0	50	0	OGAS		4 4
	*			== PLANNING	ALTERNAT			Ψī	EXIST -		REO 2	\T.T			4
	*			NAME	BP		YEAR		RET	PA	~	LLR			4
	*				++++	+	++++		++++		++-+	-++ +			4
ANNING ALTERN	* PA	1	1	ge 7ea	32	0 2025	2013	0	0	0	0.0	0-1 0			4
DANNING ALIEAN	гА *	T	T	GL /LA	52	0 2021	2045	0	0	0	00	0-1 0			4
LANNING ALTERN	PA *	2	1	WRTSLA 18V50)SG 41	0 2027	2043	0	0	0	00	0-1 0			4
LANNING ALTERN	PA	3	1	STORAGE1		1 2028	3 2043	0	0	12	100	0-1 0			4
LANNING ALTERN	* PA	4	1	WRTSLA 31DF		1 202-	1 2012	0	0	0	0.0	0-1 0			4
LANNING ALIERN	PA *	4	Ţ	WRISLA SIDE		4 2021	2045	0	0	0	00	0-1 0			4
LANNING ALTERN	PA *	5	1	CFBC	49	0 2030	2043	0	0	0	00	0-1 0			4
LANNING ALTERN	PA	6	1	GE LM6000PH	34	0 2027	2043	0	0	0	00	0-1 0			4
LANNING ALTERN	* PA	7	1	PURCHASE PON	VER 31	0 2024	2043	1	0	0	0.0	0-1 0			4
	*														4
LANNING ALTERN	PA			GE 7EA 2x1 A	ADD 37	0 2027	2043	0	152	0		0-1 0			4
	PA *	8	2						154	0	00	0-1 0			4
LANNING ALTERN	PA *	9	1	GE 7FA.05 12	41 38	0 2028	8 2043	0	0	0	00	0-1 0			4
LANNING ALTERN	PA	10	1	BIOMASS	43	0 2028	3 2043	0	0	0	00	0-1 0			4 5
LANNING ALTERN	* PA	11	1	CFBC CO2	50	0 2030) 2043	0	0	0	0.0	0-1 0			5 5
	*								-	Ţ					5
LANNING ALTERN	PA *	12	1	PV SOLAR5	46	0 2028	3 2043	0	0	0	00	0-1 0			5
LANNING ALTERN	PA *	13	1	WIND100	52	0 2028	8 2043	0	0	0	00	0-1 0			5 5
LANNING ALTERN	PA	14	1	GE LMS100PB	33	0 2027	2043	0	0	0	00	0-1 0			5
LANNING ALTERN	* PA	16	1	PV SOLAR50	45	0 2028	3 2043	0	0	0	00	0-1 0			5 5
LANNING ALTERN	* PA	19	1	SMN SGT-800	2x1 40	0 2028	3 2043	0	0	0	00	0-1 0			5
LANNING ALTERN	*			WIND50					0	0					5
JANNING ALTEKN	PA	22	T	UCUMITM	51	U 2026	5 2043	U	U	U	00	0-1 0			5:

GEAS EDIT **************	****	* * * * * *	* * *	**;	* * *	* * *	* * * * * * * * * *	* * *		IRROR *****				* * * * * *	* * * * * * *	* * * * * * *	* * * * * * *	PAGE * * * * *	1****
ECORD DESCRIPTION			SQ							A FIEI									NU
COLUMNS			1				2 8901234567	3	3	4	5		6		7		 8 0123456	9 7890	
LANNING ALTERN	* PA *	23	1	WI	RTS	LA	20V34SG	42	20 2027 20	43 0	0	0	00	0-1 0					51 51 51
LANNING ALTERN	PA *	40	1	S	IOR.	AGE	10	2	24 2028 20	43 0	0	16	100	0-1 0					51
LANNING ALTERN	PA	43	1	S	TOR.	AGE	50	2	27 2028 20	43 0	0	0	00	0-1 0					51 52
	* * * *				ГВ ҮА	N	ECTORIES = YEAR RATE ++++	У											52 52 52 52 52
RAJECTORY	* TJ TJ TJ TJ TJ *	1 1 1	2 3 4				2033.6995	4 2 8 2 2 2	2024.59794 2029.65933 2034.69470 2039.68914	2030. 2035.	71458 70908	2031 2036	.70950 .72312	2032 2037	.70449 .71793				52 52 52 52 53 53 53
RAJECTORY	TJ TJ TJ TJ TJ TJ	2						8 2 5 2 9 2	2029.40971 2034.56616	2030. 2035.	55805 60382	2031 2036	.56987 .60600	2032 2037	.56665 .58793				53 53 53 53 53
RAJECTORY	тј *	3	1		1 1	1	20233.000	0											53 53 54
RAJECTORY	TJ TJ *	4 4			1 1	6	2023.0000 2028.0000		20246.6680	20256	.2474	20265	5.8836	2027	.00000				54 54 54
RAJECTORY	тј *	5	1		1 1	1	20233.000	0											54 54 54
RAJECTORY	TJ *	6	1		1 1	1	20233.000	0											54 54
RAJECTORY	TJ *	7	1		1 1	1	20233.000	0											54
RAJECTORY	тј *	8	1		1 1	1	20233.000	0											54 55 55
RAJECTORY	TJ TJ TJ TJ TJ	9 9				20	2033.0000	0 2	2024.00000 2029.00000 2034.00000 2039.00000	2030. 2035.	00000	2031 2036	.00000	2032 2037	.00000				55 55 55
RAJECTORY	× TJ *	10	1		1 1	1	20233.000	0											55 55
RAJECTORY	* TJ TJ *		1 2		1 1	6	2023-47.0 20283.000		202418.656	20251	4.779	20265	5.4794	2027	7.0129				55 55 56 56

EAS EDIT ************	*****	* * * * * *	* * * *	* * *	* * * *	* * * * * * * * * * *	**		IRROR IMAGE *****			******	* * * * * *	******		AGE * * * * *	1
CORD DESCRIPTI								DAT.	A FIELDS								NU
			1			2											
COLUMNS	123	45678	90	12	3456	78901234567	89	0123456789	01234567890)12	23456789012	34567890	123456	/890123	3456/	890	
AJECTORY	TJ *	12	1	1	1	1 20233.000	0										56
AJECTORY	TJ	13	1	1	1	1 20233.000	0										56 56
AJECTORY	* TJ	14	1	1	1	1 2023.0000	0										56 56
	*	15	1	1	1	1 20222 000	0										56 56
ADECIORI	*	10	T	T	T	1 20233.000	0										56
AJECTORY	TJ	16	1	1	1	6 2023.0000	0	2024.00000	2025.00000) 2	2026.00000	2027.000	00				57
	TJ	16				2028.0000											57
TECHODY	*	17	1	1	1	1 2022 0000	0	2024 00000	2025 00000								57 57
AJECTORY	*		T	T	Ţ	4 2023.0000	0	2024.00000	2025.00000) 2	2026.00000						57
AJECTORY	ТJ	18	1	1	1	6 20231.476	0	20241.4545	20251.5531	L 2	20261.5294	20271.50	63				57
	TJ	18	2			20281.500	0										57
	*		_														57
AJECTORY	TJ *	20	1	1	1	1 20233.000	0										57 57
AJECTORY		21	1	1	1	3 202325.00	0	202420.000	2025.00000)							58
	*		-	-	-	0 202020.00	Ŭ	202120.000	2020.00000	, ,							58
AJECTORY	TJ *	22	1	1	1	1 20243.000	0										58
AJECTORY			1	1	1	1 20233.000	0										58 58
AJECTORI	*	23	T	T	Ţ	1 20233.000	0										58
AJECTORY	ТЈ *	24	1	1	1	1 20243.000	0										58 58
AJECTORY	TJ	25	1	1	1	1 20243.000	0										58
AJECTORY	* TJ	28	1	1	1	3 2023.0000	0	2024.00000	2025.00000)							58 59
	*																59
AJECTORY		29	1	1	1 2	8 202319.46	6	20243.2654	20251.5967	7 2	20262.3728	20273.79	28				59
	TJ					2028-3.82											59
	TJ TJ		3 4			2033-1.47	2	2034-0.222	20352.1146	o ∠ n ::	20362.4795	2037-2.1	00 34				59 59
	TJ		5			20386.518 20438.238	2	2039-2.141	204014.390	5 2	2041.03003	2042.920	94				59
	TJ					20483.860						20177127					59
	*																59
AJECTORY	ТЈ *	30	1	1	1	1 20243.000	0										59
AJECTORY		31	1	1	1	1 20233.000	0										60 60
101010111	*	01	-	-	-	1 20200.000	Ŭ										60
AJECTORY	TJ					6 2023.0000		2024.00000	2025-66.70) 2	2026.00000	2027-100	.0				60
	ТJ	32	2			2028.0000	0										60
AJECTORY	* TJ	23	1	1	1	6 2023-11.3	5	20241 0504	2025-1 871		2026-0 423	2027 212	78				60 60
101010101	10 TJ *	33				20283.000		20211.0304	2020 1.0/1	L 2		2021.212	, 0				60 60

EGEAS EDIT	* * * * *	*****	****	***	* * *	***	* * * * * * * * * * * * *	M ********	IRROR IMAGE	REPORT	* * * * * * * * * * * * * * * *	P	AGE * * * * * *	15
RECORD DESCRIPTION	TYP							DAT.	A FIELDS					NUM
COLUMNS	123		 1 90		 345	678					7 234567890123456		-	
TRAJECTORY	TJ TJ *		1 2	1	1	6	202313.631 20283.0000	2024-33.99	20251.0526	20263.9583	2027.00000			609 610 611
TRAJECTORY	TJ TJ *		1 2	1	1	6	20237.1428 20283.0000	20241.7777	20253.0567	20262.9661	20272.8806			612 613 614
TRAJECTORY	TJ TJ *		1 2	1	1	6	20237.3059 20283.0000	2024.85106	2025-6.751	2026-0.904	202736.073			615 616 617
TRAJECTORY	TJ TJ TJ *	40		1	1	15	2023.00000 2028.00000 2033-65.00	2029.00000	2030.00000	2031.00000	2032.00000			618 619 620 621
TRAJECTORY	TJ *	42	1	1	1	3	20234.3478	20244.1666	2025.00000					622 623
TRAJECTORY	TJ *	43	1	1	1	1	20243.0000							623 624
TRAJECTORY	тј *	44	1	1	1	1	20233.0000							626
TRAJECTORY	тј *	45	1	1	1	3	2023.00000	2024.00000	2025.00000					627 628 629
TRAJECTORY	TJ TJ TJ TJ TJ TJ TJ TJ	46 46 46 46	2 3 4		1	28	202311.622 2028-3.626 2033-1.096 20387.6247 2043-0.840 20489.1446	2029.76017 2034.61970 20393.2944 204412.568	20307.9215 20351.9449 20408.6085 20454.1648	20313.9846 2036.03179 2041.59772	20324.2016 20371.3032 20424.4691			630 631 632 633 634 635 636
TRAJECTORY	TJ TJ *	47 47		1	1	6	2023-6.299 20283.0000	20241.0504	2025-1.871	2026-0.423	2027.21278			637 638 639
TRAJECTORY	TJ *	48	1	1	1	1	20233.0000							64C 641
TRAJECTORY	TJ *	49	1	1	1	1	2023.00000							642 643
TRAJECTORY	TJ TJ *		1 2		1	6	2023-34.78 20283.0000	20248.1818	2025-9.243	20269.2592	2027-6.497			644 645 646
TRAJECTORY	TJ TJ TJ TJ *	51 51	1 2 3 4		1	20	20243.0000 20293.0000 203412.967 20393.0000	20303.0000 203521.176	20313.0000 20363.0000	20323.0000 20373.0000	203314.035 20383.0000			647 648 649 650 651
TRAJECTORY	TJ *	54	1	1	1	1	20243.0000							652 653
TRAJECTORY	TJ *	56	1	1	1	1	20243.0000							654 655

EGEAS EDIT ****************	* * * * *	*****	* * * ;	* * 7	MIRROR IMAGE REPORT		AGE *****	16 ****
RECORD DESCRIPTION	TYP	REF	SQ		DATA FIELDS			NUM
COLUMNS	123	45678	 1 90	12	2 3 4 5 6 7 3456789012345678901234567890123456789012345678901234567890123	8 456789012345678	9 90	
IRAJECTORY	TJ *	58	1		1 1 20243.0000			656 657
IRAJECTORY	TJ *	59	1		1 1 20243.0000			658 659
IRAJECTORY	тј *	60	1		1 1 20243.0000			660
IRAJECTORY	тј *	61	1		1 1 20243.0000			661 662
IRAJECTORY	TJ	62	1		1 1 20243.0000			663 664
IRAJECTORY	* TJ	63	1		1 1 20243.0000			665 666
IRAJECTORY	* TJ	69	1		1 1 20243.0000			667 668
	* *			==	LOADING BLOCKS ==			669 670
	* *			N	-A:CAPACITY, B:HEAT RATE, C:FORCED OUTAGE- 1 2 3 4 5			671 672
	*			-	++++++++			673 674
LOADING BLOCK	LBA	1		5	0.2325580.2093020.1860470.1860470.186047			675
	LBB LBC *	1			L.8436370.7766110.6303580.7719000.794509 L.0000000.0000000.0000000.0000000.000000			676 677
LOADING BLOCK	LBA	2		5	0.0946750.2130180.2011830.3076920.183432			678 679
	LBB LBC	2 2			3.2613650.8753020.6785150.6585090.903074 L.0000000.0000000.000000.000000.000000			680 681
LOADING BLOCK	* LBA	3		5	0.0873940.1966630.1857260.2841110.246106			682 683
	LBB LBC	3 3			3.0460290.8174930.6337540.6219811.132241 L.0000000.0000000.000000.000000.000000			684 685
LOADING BLOCK	* LBA	4		5	0.0946330.2129470.2011220.2171920.274106			686 687
	LBB LBC	4 4			2.9498470.7916370.6136950.6402401.057082 L.000000.000000.000000.000000.000000			688 689
LOADING BLOCK	* LBA	5		6).2875400.1916930.1597440.1916930.169329			690 691
LOADING BLOCK	LBB	5		J	L.6009220.7367790.7009220.7632850.827680			692
	LBC *	5		_				693 694
LOADING BLOCK	LBA LBB	6 6		5).2000000.2000000.2000000.2000000.200000 L.0000001.0000001.0000001.0000001.000000			695 696
	LBC *	6			1.0000000.000000.000000.000000.000000			697 698
LOADING BLOCK	LBA LBB	7 7		5).2000000.2000000.2000000.2000000.200000 L.0000001.0000001.0000001.0000001.000000			699 700
	LBC *	7						701
			1		2 3 4 5 6 7		9	, , , 2

1ELECTRIC POWER RESEARCH INSTITUTE

RECORD	DESCRIPTION	TYP	REF	SQ		1	DATA FIELD	S				N
					2		4		 6	7	·	
	COLUMNS	123	45678	1 90	123456789012345678							
OADING	BLOCK	LBA	8		5 0.0953370.214508	0.2025910	0.3098450.	177720				7
		LBB	8		3.2591500.874707							7
		LBC *	8		1.000000.00000	0.000000	0.0000000.	000000				7
OADING	BLOCK	LBA	9		5 0.2325580.209302	0.1860470	0.1860470.	186047				-
		LBB	9		1.8436370.776611	0.6303580	0.7719000.	794509				-
		LBC	9		1.0000000.000000	0.000000	.0000000.	000000				
		*										
OADING	G BLOCK	LBA	10		5 0.2325580.209302							
		LBB LBC	10 10		1.8436370.776611							•
		*	10		1.0000000.000000	0.0000000	5.0000000.	000000				
OADING	BLOCK	LBA	11		5 0.1891890.243243	0.2162160	0.2162160.	135135				
		LBB	11		1.2000461.152943							
		LBC	11		1.0000000.00000	0.000000	.0000000.	000000				
		*										
OADING	G BLOCK	LBA	12		5 0.3381640.144927							
		LBB	12		1.5721750.648776							
		LBC *	12		0.8019250.085619	0.1114440	0.1309420.	231734				
ONDING	BLOCK	LBA	13		5 0.2309470.207852	0 1847570	1 1 8 4 7 5 7 0	191686				
OADING	5 BLOCK	LBA	13		1.8148470.764273							
		LBC	13		1.0000000.000000							
		*										
OADING	G BLOCK	LBA	17		5 0.2631680.164225	0.1642250	0.2462910.	162092				-
		LBB	17		1.2424240.796043	0.8631700	0.9475121.	031431				-
		LBC	17		1.0000000.000000	0.000000	0.0000000.	000000				
		*	1.0		- 0 0510000 140515	0 1 4 0 5 1 5	0 1 4 0 5 1 5 0	007166				-
OADING	G BLOCK	LBA LBB	18 18		5 0.3512880.140515							-
		LBB	18		1.1612020.891018							-
		*	10		1.0000000.000000	0.0000000	5.0000000.	000000				
OADING	BLOCK	LBA	19		5 0.2325580.209302	0.1860470	0.1860470.	186047				
		LBB	19		1.8436370.776611							-
		LBC	19		1.0000000.00000	0.000000	.0000000.	000000				-
		*										
		*			== ALLOWANCE FOR F	UNDS USE	D DURING C	ONSTRUCT	ION ==			
		*			YEAR OPT RATE							
ਦਾ ਹ	J. D. C.	ZA	1		2024 1 10.500							
• F• C	D. D. C.	⊿А *	Ŧ		2024 1 10.500							-
		*										-
		*			== EXPENDITURE PAT	TERNS - (CONSTRUCTI	ON COST 2	AND CAPITAI	L EXPENSES	5 ==	-
		*							ORE ON-LINE			-
		*				3	4 5			10		-
		*ZC	A						++++++			-
		*			ANNUAL E	XPENDITU	RES FOR YE	ARS OF O	PERATING LI	ΓE		

GEAS EDIT	****	*****	* * *	* * * * * * * * * *	MIRROR IMAGE REPORT ************************************		\GE ******
ECORD DESCRIPTION	TYP	REF	SQ		DATA FIELDS		N
COLUMNS	123	45678	_		2 3 4 5 6 7 90123456789012345678901234567890123456789012345678	-	-
	* *ZC *	в			J 1 2 3 4 5 - +++++++++++++++++++++++++++++++++++		7 7 7
CONSTRUCTION EXPEN	* ZCA *	31	1	4	13.7035.1034.8016.50		7 7 7
CONSTRUCTION EXPEN	ZCA *	37	1	3	69.0027.004.000		7
CONSTRUCTION EXPEN		38	1	1	100.0		7 7 7
	* * *			CA YEAR CON	N ON RATE BASE == PITAL STRUCRATES OF RETURN- INCOME PROP M PREF DEBT COMM PREF DEBT TAX TAX +++++++++++++++		7 7 7
ETURN ON RATEBASE	ZR *	1	1		000.000050.0009.7500 4.6524.4001.2650		י ד ד
	* *				EPRECIATION TABLES == DEPRECIATION PERCENTAGES FOR YEARS		7
	* * *			YR 	1 2 3 4 5 6 7 8 9 10		7 7 7
AX DEPRECIATION	ZT ZT ZT *	20	2		3.7507.2196.6776.1775.7135.2854.8884.5224.4624.464 4.4624.4624.4624.4624.4624.		, 7 7 7
AX DEPRECIATION					3.7507.2196.6776.1775.7135.2854.8884.5224.4624.464 4.4624.4624.4624.4624.4624.		7 7 7

1ELECTRI	IC POWER RESEARCH INSTITUTE	2024 IRP	6/28/24	12:	8: 0
EGEAS	EDIT	DIAGNOSTIC SUMMARY	F	PAGE	20
* * * * * * *	*********************************	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	*****	****

* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *
******	* * * * * * * * * * * * * * * * * * * *
**	* *
**	* *
** DIAGNOSTIC S	UMMARY **
**	* *
**	* *
** TERMINAL ERRORS	0 **
** FATAL ERRORS	0 **
** WARNING MESSAGES	0 **
** DEFAULTS	0 **
* *	* *
* *	* *
** HIGHEST ERROR LEVEL F	OUND IS WARNING **
* *	* *
* *	* *
** DATA BASE HAS BEEN SU	CCESSFULLY CREATED **
* *	* *
* *	* *
* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *

1ELECTRI	C POWER RESEARCH	INSTITUTE	2024 IRP	6/28/24	12:	8:	0
EGEAS	EDIT	DAT#	A BASE CONTENTS REPORT		PAGE	2	1
* * * * * * *	* * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * *	* * * * * * *	****	*

SOURCE FILE HEADERS	NAME	VERSION	UPDATE	CREATION DATE	CREATION TIME	DESCRIPTION	EGEAS VERS.
	2024	1	0	6/28/24	12: 8: 0	 2024 IRP	1300

FILE CONTENTS

LOAD FORMAT	2	SUBPERIOD
COST ANALYSIS FORMAT	1	NO CONSTRUCTION COSTS, LEVELIZED FIXED CHARGES
NUMBER OF LOAD AREAS	1	
LOAD MODIFICATION OPTION	1	
NUMBER OF LOAD COMPONENTS	1	
NUMBER OF NON-DISPATCHABLE		
TECHNOLOGIES	6	
NUMBER OF YEARS	21	
FIRST CALENDAR YEAR	2023	
LAST CALENDAR YEAR	2043	
NUMBER OF DAYS PER YEAR	364	
NUMBER OF CUMULANTS	8	
NUMBER OF SEGMENTS PER YEAR	4	
NUMBER OF SUBWEEKS PER SEGMENT	3	
NUMBER OF CONTRACTS	0	
DAY OF WEEK OPTION	0	- DETERMINED BY CALENDAR YEAR IN COLUMNS 5-6
TIME INTERVAL OPTION	0	ONE HOUR

SOURCE FILE H		NAME	VERSION	UPDATE	CREATION DATE	CREATION TIME	DESCRIPTION	EGEAS VERS.
ORTHOGONALIZEI HOURLY LOADS		2024	1	0	6/28/24	12: 7:57		1300
SYSTEM A		HOURLOAD	1	0				
HOURLY NDT								
TECHNOLOGY	1	windDWcf	1	0				
TECHNOLOGY	2	windCHcf	1	0				
TECHNOLOGY	3	windTScf	1	0				
TECHNOLOGY	4	wind46cf	1	0				
TECHNOLOGY	5	slr16cf	1	0				
TECHNOLOGY	6	slr20cf	1	0				

1ELECTRIC	POWER	RESEARCH	INSTITUTE
-----------	-------	----------	-----------

2024 IRP

EGEAS	EDIT	DATA BASE CONTENTS REPORT	PAGE	22	
*****	* * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	*****	****	

ADDITIONAL HOURLY FILE PARAMETERS

SOURCE FILE		HEADER RECORD OPTION	DUPLICATE RECORD OPTION	 1 21	2 22	3 23	4	LE 5 25	6	7	8 28	9 29	 10 30	 11	 12	13	 14	 15	 16	 17	 18	 19	 20
HOURLY LOADS SYSTEM A		0	0	1 1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
HOURLY NDT TECHNOLOGY	1	0	0	1 1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
TECHNOLOGY	2	0	0	1 1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
TECHNOLOGY	3	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
TECHNOLOGY	4	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
TECHNOLOGY	5	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
TECHNOLOGY	6	0	0	1 1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

LELECTRIC POWER RESEARCH INSTITUTE	2024 IRP	6/28/24 12: 8: 0
EGEAS EDIT ************************************	DATA BASE CONTENTS REPORT	PAGE 23
	GENERAL DATA	
BASE YEAR	. 2023	SYSTEM DISCOUNT RATE (PERCENT) 6.63 CUSTOMER DISCOUNT RATE (PERCENT) 6.63 INFLATION RATE (PERCENT) 3.00
NUMBER OF DAYS PER YEAR NUMBER OF HOURS PER YEAR STORAGE GENERATION SUBWEEK	. 8736	NUMBER OF CUMULANTS 8 USED IN REPRESENTING PLANT OUTAGES AND LOAD CURVES
UNSERVED ENERGY COST YEARLY ESCALATION TRAJECTORY CAPITAL STRUCTURE FOR NON-EGEAS ASSETS	130.00 \$/MWH . 31 . 1	BENCHMARK YEAR 2023 BENCHMARK PEAK 498. MW

SERVICE AREAS AND NAMES IDENTIFYING SYSTEMS

SYSTEM A - SYSA SYSA

GENERATING COMPANIES -----

SYSTEM	COMPANY	CODE	NAME
A	1	NDAK	NDAK
	2	MONT	MONT
	3	SDAK	SDAK
	4	MISO	MISO

SYSTEM DEMAND

IN	BASE	YEAR	202	3	-				
	PEAK	LOAD						498.5	MW
	ENER	GY .						3274.2	GWH

YEARLY ESCALATION TRAJECTORIES

PEAK I	LOAI)					1
ENERG	у.						2

EGEAS	EDIT	DATA BASE CONTENTS REPORT	PAGE	24
* * * * * * *	* * * * * * * * * * *	***************************************	* * * * * * * * *	* * * *

DATA SET REF. NO.	FIRST YEAR CURVE USED		PEAK LOAD MW	MINIMUM LOAD MW	ENERGY GWH	LOAD FACTOR	MINIMUM LOAD FRACTION	FIRST DAY OF YEAR
1	2023	INITIAL LOAD LOAD AFTER CONTRACTS	498.5 498.5	299.5 299.5	3274.2 3274.2	0.75184344 0.75184344	0.60070605 0.60070605	SUNDAY

LOAD DURATION CURVE (50 POINTS)

1.000000000000000 1.00000000000000 1.00000000	$\begin{array}{c} 1.00000000000000\\ 1.000000000000000\\ 1.0000000000$	1.00000000000000 1.00000000000000 1.00000000	1.000000000000000 1.00000000000000 1.00000000	1.00000000000000 1.0000000000000 1.00000000
0.210255571192081 0.029791913181943	0.15192/342/01//1 0.012784269258154	0.107753126604412 0.004451665188109	0.0072596386144499 0.001141452612338	0.0000000000000000000000000000000000000

CUMULANTS

0.751843444629574D+00	0.639333026136678D-02	0.213731425384362D-03	-0.176545548123336D-04
-0.461110897290212D-05	-0.873174365973736D-07	0.186493728507732D-06	0.365043544613861D-07

DATA SET REF. NO.	FIRST YEAR CURVE USED		PEAK LOAD MW	MINIMUM LOAD MW	ENERGY GWH	LOAD FACTOR	MINIMUM LOAD FRACTION	FIRST DAY OF YEAR
2	2024	INITIAL LOAD	485.0	303.4	3251.0	0.76729544	0.62556895	SUNDAY
		LOAD AFTER CONTRACTS	485.0	303.4	3251.0	0.76729544	0.62556895	

1.0000000000000000	1.0000000000000000	1.0000000000000000	1.0000000000000000	1.0000000000000000
1.0000000000000000	1.0000000000000000	1.0000000000000000	1.00000000000000000	1.0000000000000000
1.0000000000000000	1.0000000000000000	1.0000000000000000	1.0000000000000000	1.0000000000000000
1.0000000000000000	1.0000000000000000	1.0000000000000000	1.0000000000000000	1.0000000000000000
1.0000000000000000	1.0000000000000000	1.0000000000000000	1.0000000000000000	1.0000000000000000
1.0000000000000000	1.0000000000000000	1.0000000000000000	1.0000000000000000	1.0000000000000000
1.0000000000000000	0.991774136130578	0.938761235400579	0.865461238815337	0.797656368140123
0.713045873572744	0.603479627102962	0.490209917205143	0.394315145609839	0.317712521781177
0.246361344593525	0.182887337367391	0.126948014452272	0.084936441324183	0.055368513497621
0.034362726933576	0.015526016156036	0.004908960990514	0.001141618835006	0.000000000000000
CUMULANTS				

0.767295435822661D+00	0.562193006764228D-02	0.176240545196878D-03	-0.136512805098868D-04
-0.334349854720935D-05	-0.593711800903649D-07	0.118909975104312D-06	0.218261866297033D-07

EGEAS	EDIT	DATA BASE CONTENTS REPORT	PAGE	25
******	* * * * * * * * * * * * *	***************************************	******	* * * *

DATA SET	FIRST YEAR		PEAK LOAD	MINIMUM LOAD	ENERGY	LOAD	MINIMUM LOAD	FIRST DAY
REF. NO.	CURVE USED		MW	MW	GWH	FACTOR	FRACTION	OF YEAR
3	2025	INITIAL LOAD LOAD AFTER CONTRACTS	487.9 487.9	303.8 303.8	3262.9 3262.9	 0.76552668 0.76552668	0.62272289 0.62272289	SUNDAY

LOAD DURATION CURVE (50 POINTS)

		1.00000000000000 1.0000000000000 1.0000000000	1.00000000000000 1.0000000000000 1.00000000	1.00000000000000 1.0000000000000 1.00000000	$\begin{array}{c} 1.00000000000000\\ 1.00000000000000\\ 1.0000000000$	$\begin{array}{c} 1.00000000000000\\ 1.00000000000000\\ 1.0000000000$
--	--	---	---	---	---	---

CUMULANTS

0.765526676541266D+00	0.570771900629581D-02	0.180289960069608D-03	-0.140710864025213D-04
-0.347251360661033D-05	-0.621308559290343D-07	0.125382865966392D-06	0.231892411961186D-07

DATA SET REF. NO.	FIRST YEAR CURVE USED		PEAK LOAD MW	MINIMUM LOAD MW	ENERGY GWH	LOAD FACTOR	MINIMUM LOAD FRACTION	FIRST DAY OF YEAR
4	2026	INITIAL LOAD	491.1	304.4	3276.4	0.76368513	0.61975974	SUNDAY
		LOAD AFTER CONTRACTS	491.1	304.4	3276.4	0.76368513	0.61975974	

1.0000000000000000	1.0000000000000000	1.0000000000000000	1.0000000000000000	1.0000000000000000
1.0000000000000000	1.0000000000000000	1.0000000000000000	1.0000000000000000	1.0000000000000000
1.0000000000000000	1.0000000000000000	1.0000000000000000	1.0000000000000000	1.0000000000000000
1.0000000000000000	1.0000000000000000	1.0000000000000000	1.0000000000000000	1.0000000000000000
1.0000000000000000	1.0000000000000000	1.0000000000000000	1.0000000000000000	1.0000000000000000
1.0000000000000000	1.0000000000000000	1.0000000000000000	1.0000000000000000	1.0000000000000000
0.997375020875455	0.982478721589999	0.920918409906301	0.848785851796532	0.783656033050014
0.689069796581908	0.581575358182532	0.472201743510592	0.380524277350292	0.308369658902832
0.235986703055223	0.173079749313846	0.121932171680204	0.079918090052569	0.054572638635898
0.033337260421931	0.014499424909540	0.004909254103232	0.001141687000754	0.0000000000000000
CUMULANTS				

0.763685127254037D+00	0.579772524279304D-02	0.184571274211489D-03	-0.145183655610364D-04
-0.361103391534234D-05	-0.651166892303471D-07	0.132440531539490D-06	0.246868885262832D-07

EGEAS	EDIT	DATA BASE CONTENTS REPORT	PAGE	26
* * * * * * *	* * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	*******	* * * *

DATA SET REF. NO.	FIRST YEAR CURVE USED		PEAK LOAD MW	MINIMUM LOAD MW	ENERGY GWH	LOAD FACTOR	MINIMUM LOAD FRACTION	FIRST DAY OF YEAR
5	2027	INITIAL LOAD LOAD AFTER CONTRACTS	494.3 494.3	305.2 305.2	3291.3 3291.3	0.76219177 0.76219177	0.61735691 0.61735691	SUNDAY

LOAD DURATION CURVE (50 POINTS)

1.000000000000000 1.00000000000000 1.00000000	1.00000000000000 1.00000000000000 1.00000000	1.00000000000000 1.00000000000000 1.00000000	1.000000000000000 1.00000000000000 1.00000000	1.00000000000000 1.0000000000000 1.00000000
0.231299735631564 0.033319942182744	0.172989836811767 0.014491892661675	0.119244313633442 0.004906703814585	0.079876573725752 0.001141093910371	0.053289085614181 0.000000000000000

CUMULANTS

0.762191768157039D+00	0.587123328438413D-02	0.188092585948354D-03	-0.148888501729070D-04
-0.372658347704686D-05	-0.676250101307112D-07	0.138411405245291D-06	0.259629190304449D-07

DATA SET REF. NO.	FIRST YEAR CURVE USED		PEAK LOAD MW	MINIMUM LOAD MW	ENERGY GWH	LOAD FACTOR	MINIMUM LOAD FRACTION	FIRST DAY OF YEAR
6	2028	INITIAL LOAD	497.4	305.7	3304.3	0.76043320	0.61452734	SUNDAY
		LOAD AFTER CONTRACTS	497.4	305.7	3304.3	0.76043320	0.61452734	

1.0000000000000000	1.0000000000000000	1.0000000000000000	1.00000000000000000	1.0000000000000000
1.0000000000000000	1.0000000000000000	1.0000000000000000	1.00000000000000000	1.0000000000000000
1.0000000000000000	1.0000000000000000	1.0000000000000000	1.0000000000000000	1.0000000000000000
1.0000000000000000	1.0000000000000000	1.0000000000000000	1.0000000000000000	1.0000000000000000
1.0000000000000000	1.0000000000000000	1.0000000000000000	1.0000000000000000	1.0000000000000000
1.0000000000000000	1.0000000000000000	1.0000000000000000	1.0000000000000000	1.0000000000000000
0.997404860833362	0.969431750772230	0.907844276132064	0.837122690308775	0.762661026723329
0.669221040716301	0.559214322473794	0.454991306505528	0.372536727938232	0.295562554231804
0.226354320899319	0.169708638171741	0.116717515620135	0.078801453794417	0.051849072496618
0.031748991528767	0.014504035698395	0.004910815236467	0.001142050054995	0.0000000000000000
CUMULANTS				

0.760433196524448D+00	0.595838768278093D-02	0.192296233990724D-03	-0.153341625861621D-04
-0.386642316800694D-05	-0.706813416043668D-07	0.145737016961918D-06	0.275391781705624D-07

EGEAS	EDIT	DATA BASE CONTENTS REPORT	PAGE	27
		* * * * * * * * * * * * * * * * * * * *		

DATA SET	FIRST YEAR		PEAK LOAD	MINIMUM LOAD	ENERGY	LOAD	MINIMUM LOAD	FIRST DAY
REF. NO.	CURVE USED		MW	MW	GWH	FACTOR	FRACTION	OF YEAR
7	2029	INITIAL LOAD LOAD AFTER CONTRACTS	500.5 500.5	306.6 306.6	3319.4 3319.4	 0.75917671 0.75917671	0.61250554 0.61250554	SUNDAY

LOAD DURATION CURVE (50 POINTS)

1.00000000000000 1.0000000000000 1.00000000	$\begin{array}{c} 1.00000000000000\\ 1.000000000000000\\ 1.0000000000$	$\begin{array}{c} 1.00000000000000\\ 1.00000000000000\\ 1.0000000000$	1.00000000000000 1.00000000000000 1.00000000	$\begin{array}{c} 1.00000000000000\\ 1.00000000000000\\ 1.0000000000$
0.224294201533642 0.031748364575539	0.166393407145885 0.013475924532065	0.004910718261687	0.001142027502720	0.051848048623360
0.001/100010/0000	0.0101/0921002000	0.001010/1020100/	0.00111202/002/20	0.0000000000000000000000000000000000000

CUMULANTS

0.759176705548413D+00	0.602105469357785D-02	0.195337913014178D-03	-0.156584087935501D-04
-0.396888917005913D-05	-0.729352433834940D-07	0.151172656353486D-06	0.287161603729087D-07

DATA SET REF. NO.	FIRST YEAR CURVE USED		PEAK LOAD MW	MINIMUM LOAD MW	ENERGY GWH	LOAD FACTOR	MINIMUM LOAD FRACTION	FIRST DAY OF YEAR
8	2030	INITIAL LOAD	503.8	307.1	3333.0	0.75729404	0.60947627	SUNDAY
		LOAD AFTER CONTRACTS	503.8	307.1	3333.0	0.75729404	0.60947627	

LOAD DURATION CURVE (50 POINTS)

1.0000000000000000	1.0000000000000000	1.0000000000000000	1.0000000000000000	1.0000000000000000
1.0000000000000000	1.0000000000000000	1.0000000000000000	1.00000000000000000	1.0000000000000000
1.0000000000000000	1.0000000000000000	1.0000000000000000	1.0000000000000000	1.0000000000000000
1.0000000000000000	1.0000000000000000	1.0000000000000000	1.0000000000000000	1.0000000000000000
1.0000000000000000	1.0000000000000000	1.0000000000000000	1.0000000000000000	1.0000000000000000
1.0000000000000000	1.0000000000000000	1.0000000000000000	1.0000000000000000	1.0000000000000000
0.995830350315625	0.956164097497814	0.890199600376943	0.823802875482635	0.746264456789440
0.649541274708239	0.545052831255701	0.435996586996495	0.359942703565467	0.286515305598274
0.221081559042750	0.162727903737562	0.115108580328045	0.076053883431031	0.050588393933855
0.030375875364348	0.013475012379675	0.004910385867172	0.001141950201670	0.0000000000000000

0.757294042538043D+00	0.611556324180848D-02	0.199955037034727D-03	-0.161538270615899D-04
-0.412646957129563D-05	-0.764237848249182D-07	0.159641866061318D-06	0.305620083436303D-07

EGEAS	EDIT	DATA BASE CONTENTS REPORT	PAGE	28
******	* * * * * * * * * * * * *	· * * * * * * * * * * * * * * * * * * *	* * * * * * * * *	* * * *

DATA SET REF. NO.	FIRST YEAR CURVE USED		PEAK LOAD MW	MINIMUM LOAD MW	ENERGY GWH	LOAD FACTOR	MINIMUM LOAD FRACTION	FIRST DAY OF YEAR
9	2031	INITIAL LOAD LOAD AFTER CONTRACTS	507.4 507.4	308.3 308.3	3351.6 3351.6	0.75611719 0.75611719	0.60758267 0.60758267	SUNDAY

LOAD DURATION CURVE (50 POINTS)

		00000 1.00000000000000 00000 1.0000000000000 00000 0.74154946127399 40205 0.28295036316687
0.218338133348749 0.159466856555763 0.112598461439016 0.076132563775011 0.05064072935	8338133348749 0.159466856555763 0.112598461439016 0.0761325637	75011 0.05064072935785

CUMULANTS

0.756117191156485D+00	0.617501397456692D-02	0.202877826786801D-03	-0.164694243279004D-04
-0.422748796971814D-05	-0.786742892029703D-07	0.165139914472625D-06	0.317678425435161D-07

DATA SET REF. NO.	FIRST YEAR CURVE USED		PEAK LOAD MW	MINIMUM LOAD MW	ENERGY GWH	LOAD FACTOR	MINIMUM LOAD FRACTION	FIRST DAY OF YEAR
10	2032	INITIAL LOAD LOAD AFTER CONTRACTS	511.0	309.6	3370.7	0.75506886	0.60589588	SUNDAY
		LOAD AFTER CONTRACTS	511.0	309.6	3370.7	0.75506886	0.00389388	

	1.0000000000000000	1.0000000000000000	1.0000000000000000	1.0000000000000000	1.0000000000000000
	1.0000000000000000	1.0000000000000000	1.0000000000000000	1.0000000000000000	1.0000000000000000
	1.0000000000000000	1.0000000000000000	1.0000000000000000	1.0000000000000000	1.0000000000000000
	1.0000000000000000	1.0000000000000000	1.0000000000000000	1.0000000000000000	1.0000000000000000
	1.0000000000000000	1.0000000000000000	1.0000000000000000	1.0000000000000000	1.0000000000000000
	1.0000000000000000	1.0000000000000000	1.0000000000000000	1.0000000000000000	1.0000000000000000
	0.990545825396714	0.943438497428517	0.876822850865630	0.813256896496003	0.733742494793495
	0.634292533924885	0.530513708780207	0.429468903178308	0.355650375523258	0.281034425501563
	0.217582388612885	0.158914885924071	0.112208718734919	0.075869042312139	0.050465444060478
	0.030302049932478	0.013442262752003	0.004898451680817	0.001139174809495	0.000000000000000
CUMU	JLANTS				

0.755068860506882D+00	0.622821337709493D-02	0.205505238361093D-03	-0.167544246234342D-04
-0.431912932577012D-05	-0.807251854450220D-07	0.170173286021215D-06	0.328768161362423D-07

EGEAS	EDIT	DATA BASE CONTENTS REPORT	PAGE	29
*****	*******	***************************************	*******	****

DATA SET REF. NO.	FIRST YEAR CURVE USED		PEAK LOAD MW	MINIMUM LOAD MW	ENERGY GWH	LOAD FACTOR	MINIMUM LOAD FRACTION	FIRST DAY OF YEAR
11	2033	INITIAL LOAD LOAD AFTER CONTRACTS	514.6 514.6	310.9 310.9	3389.8 3389.8	0.75403534 0.75403534	0.60423289 0.60423289	SUNDAY

LOAD DURATION CURVE (50 POINTS)

1.00000000 1.00000000 1.00000000 1.00000000	0000000 1.000 0000000 1.000 0000000 1.000 0000000 1.000 0000000 1.000 0000000 1.000 0000000 1.000 1202748 0.938 2378710 0.524	00000000000 1.0000 000000000000 1.0000 000000000000 1.0000 00000000000 1.0000 00000000000 1.0000 000000000000 1.0000 000000000000 1.0000 859514165799 0.8705 771868882321 0.4249	00000000000 1.000 00000000000 1.000 00000000000 1.000 00000000000 1.000 00000000000 1.000 1.0000000000 1.000 1.0000000000 1.000 1.0000000000 1.000 14332130142 0.809 45558971157 0.350	00000000000 1.000 000000000000 1.000 000000000000 1.000 000000000000 1.000 00000000000 1.000 00000000000 1.000 383863945405 0.731 987482336059 0.278	000000000000 00000000000 00000000000 0000
0.214694940					457327056448 000000000000

CUMULANTS

0.754035336976229D+00	0.628088801149283D-02	0.208117796561618D-03	-0.170390217701356D-04
-0.441103124875120D-05	-0.827907425613776D-07	0.175264089905160D-06	0.340032301412971D-07

DATA SET FIRST YEAR REF. NO. CURVE USED		PEAK LOAD MW	MINIMUM LOAD MW	ENERGY GWH	LOAD FACTOR	MINIMUM LOAD FRACTION	FIRST DAY OF YEAR
12 2034	INITIAL LOAD LOAD AFTER CONTRACTS	518.2 518.2	312.3	3408.9 3408.9	0.75301599 0.75301599	0.60259271 0.60259271	SUNDAY

LOAD DURATION CURVE (50 POINTS)

1.0000000000000000	1.0000000000000000	1.0000000000000000	1.00000000000000000	1.0000000000000000
1.0000000000000000	1.00000000000000000	1.0000000000000000	1.00000000000000000	1.00000000000000000
1.0000000000000000	1.0000000000000000	1.0000000000000000	1.00000000000000000	1.0000000000000000
1.0000000000000000	1.0000000000000000	1.0000000000000000	1.0000000000000000	1.0000000000000000
1.0000000000000000	1.0000000000000000	1.0000000000000000	1.0000000000000000	1.0000000000000000
1.0000000000000000	1.0000000000000000	1.0000000000000000	1.0000000000000000	1.0000000000000000
0.988384788721530	0.935580180075643	0.865778366293620	0.805463070348840	0.725992695536696
0.626753590475624	0.519291542550307	0.420454954451722	0.346156318363755	0.272770722350603
0.210227477225863	0.151907042447136	0.110477849052464	0.073956246059915	0.049532424058648
0.029787932440801	0.012782561047395	0.004451070364720	0.001141300093521	0.000000000000000

0.753015986720159D+00	0.633305362306173D-02	0.210715952558285D-03	-0.173232290100062D-04
-0.450319175630693D-05	-0.848708614526449D-07	0.180411975819457D-06	0.351470253306801D-07

EGEAS	EDIT	DATA BASE CONTENTS REPORT	PAGE	30
*****	* * * * * * * *	***************************************	* * * * * * * * * *	* * * *

DATA SET FIRST YEAR		PEAK LOAD	MINIMUM LOAD	ENERGY	LOAD	MINIMUM LOAD	FIRST DAY
REF. NO. CURVE USED		MW	MW	GWH	FACTOR	FRACTION	OF YEAR
13 2035	INITIAL LOAD LOAD AFTER CONTRACTS	521.8 521.8	313.6 313.6	3428.2 3428.2	 0.75205480 0.75205480	0.60104607 0.60104607	SUNDAY

LOAD DURATION CURVE (50 POINTS)

1.00000000000000 1.00000000000000 1.00000000	$\begin{array}{c} 1.00000000000000\\ 1.000000000000000\\ 1.0000000000$	1.00000000000000 1.00000000000000 1.00000000	1.000000000000000 1.00000000000000 1.00000000	$\begin{array}{c} 1.00000000000000\\ 1.00000000000000\\ 1.0000000000$
0.210346111676745 0.029804742208271	0.151992765820711 0.012789774434203	0.107799527373969 0.004453582169055	0.072627647679921 0.001141944145914	0.048532626201206

CUMULANTS

0.752054798890927D+00	0.638244721481031D-02	0.213185925459589D-03	-0.175945023040776D-04
-0.459151082975305D-05	-0.868721952100220D-07	0.185384986304839D-06	0.362564230822009D-07

	ST YEAR		PEAK LOAD MW	MINIMUM LOAD MW	ENERGY GWH	LOAD FACTOR	MINIMUM LOAD FRACTION	FIRST DAY OF YEAR
14	2036	INITIAL LOAD LOAD AFTER CONTRACTS	525.5 525.5	315.2 315.2	3448.9 3448.9	0.75126861 0.75126861	0.59978110 0.59978110	SUNDAY

LOAD DURATION CURVE (50 POINTS)

1.0000000000000000	1.0000000000000000	1.0000000000000000	1.00000000000000000	1.0000000000000000
1.0000000000000000	1.0000000000000000	1.0000000000000000	1.0000000000000000	1.0000000000000000
1.0000000000000000	1.0000000000000000	1.0000000000000000	1.0000000000000000	1.0000000000000000
1.0000000000000000	1.0000000000000000	1.0000000000000000	1.0000000000000000	1.0000000000000000
1.0000000000000000	1.0000000000000000	1.0000000000000000	1.0000000000000000	1.0000000000000000
1.0000000000000000	1.0000000000000000	1.0000000000000000	1.0000000000000000	0.998115904599398
0.984774267149904	0.927743680759726	0.858614905942036	0.798741374618216	0.719182350143477
0.613198429832457	0.507067091050486	0.410855515870602	0.343142616091906	0.269409707014150
0.207141560142772	0.149573037244337	0.107855285590061	0.072665213596694	0.048557729211629
0.028449116643991	0.012796389815773	0.004455885739423	0.001142534804983	0.0000000000000000
 (TTT 3.).TO				

0.751268613902810D+00	0.642298289642150D-02	0.215220087330055D-03	-0.178187012633776D-04
-0.466476161019968D-05	-0.885379642233313D-07	0.189538734393341D-06	0.371863006938468D-07

EGEAS	EDIT	DATA BASE CONTENTS REPORT	PAGE	31
* * * * * * *	* * * * * * * * *	***************************************	*******	* * * *

DATA SET REF. NO.	FIRST YEAR CURVE USED		PEAK LOAD MW	MINIMUM LOAD MW	ENERGY GWH	LOAD FACTOR	MINIMUM LOAD FRACTION	FIRST DAY OF YEAR
15	2037	INITIAL LOAD LOAD AFTER CONTRACTS	529.3 529.3	316.7 316.7	3469.8 3469.8	0.75039501 0.75039501	0.59837540 0.59837540	SUNDAY

LOAD DURATION CURVE (50 POINTS)

$\begin{array}{c} 1.00000000000000\\ 1.00000000000000\\ 1.0000000000$	1.000000000000000 1.00000000000000 1.00000000	$\begin{array}{c} 1.000000000000000\\ 1.000000000000000\\ 1.0000000000$	$\begin{array}{c} 1.00000000000000\\ 1.000000000000000\\ 1.0000000000$	1.00000000000000 1.0000000000000 1.00000000
0.607504697649270 0.206989380884339	0.504177122623074 0.148762914115993	0.410553675488184 0.105378487896441	0.337827676799093 0.072611829146411	0.265558356280734
0.028428216128078	0.012786988780503	0.004452612164642	0.001141695426834	0.0000000000000000

CUMULANTS

0.750395006912355D+00	0.646817988808877D-02	0.217495766323406D-03	-0.180703543899391D-04
-0.474725654196302D-05	-0.904201578385764D-07	0.194247973961006D-06	0.382440731240439D-07

REF. NO. CURVE USED		MW	MINIMUM LOAD MW	ENERGY GWH	LOAD FACTOR	MINIMUM LOAD FRACTION	FIRST DAY OF YEAR
	-						
	NITIAL LOAD DAD AFTER CONTRACTS	533.1 533.1	318.2 318.2	3490.2 3490.2	0.74942644	0.59681698	SUNDAY

1.0000000000000000	1.0000000000000000	1.0000000000000000	1.0000000000000000	1.0000000000000000
1.0000000000000000	1.0000000000000000	1.0000000000000000	1.0000000000000000	1.0000000000000000
1.0000000000000000	1.0000000000000000	1.0000000000000000	1.0000000000000000	1.0000000000000000
1.0000000000000000	1.0000000000000000	1.0000000000000000	1.0000000000000000	1.0000000000000000
1.0000000000000000	1.0000000000000000	1.0000000000000000	1.0000000000000000	1.0000000000000000
1.0000000000000000	1.0000000000000000	1.0000000000000000	1.0000000000000000	0.997487278228225
0.977659238417433	0.921554306091210	0.851621549282706	0.786772391355952	0.707668028057240
0.601742896266899	0.500832946521046	0.406056077936353	0.333203497024263	0.265603610033735
0.204169928951126	0.145476783827593	0.105396445426114	0.071025556939376	0.048530324275298
0.028433060575411	0.012560789812433	0.004453370933501	0.001141889982951	0.0000000000000000
CUMULANTS				

0.749426436772990D+00	0.651847473973581D-02	0.220037502099961D-03	-0.183524705977042D-04
-0.484008029344303D-05	-0.925459530209609D-07	0.199586104184947D-06	0.394475607486315D-07

EGEAS	EDIT	DATA BASE CONTENTS REPORT	PAGE	32
* * * * * *	* * * * * * * * * *	·*************************************	******	* * * *

DATA SET	FIRST YEAR		PEAK LOAD	MINIMUM LOAD	ENERGY	LOAD	MINIMUM LOAD	FIRST DAY
REF. NO.	CURVE USED		MW	MW	GWH	FACTOR	FRACTION	OF YEAR
17	2039	INITIAL LOAD LOAD AFTER CONTRACTS	536.9 536.9	319.7 319.7	3511.2 3511.2	 0.74859947 0.74859947	0.59548631 0.59548631	SUNDAY

LOAD DURATION CURVE (50 POINTS)

1.000000000000000 1.000000000000000 1.00000000	1.000000000000000 1.000000000000000 1.00000000	1.000000000000000 1.000000000000000 1.00000000	1.000000000000000 1.000000000000000 1.00000000	1.000000000000000 1.000000000000000 1.00000000
1.0000000000000000	1.0000000000000000	1.00000000000000000	1.0000000000000000	1.0000000000000000
1.00000000000000000	1.0000000000000000	1.0000000000000000	1.0000000000000000	1.0000000000000000
1.0000000000000000	1.0000000000000000	1.0000000000000000	1.0000000000000000	0.997380526913215
0.974475764000446	0.918000461795501	0.847949987635941	0.784123982197246	0.698994868078822
0.597694614287940	0.495909853687802	0.402850465442986	0.333196615125464	0.261829965209969
0.204165712078250	0.145473779187747	0.102882162518180	0.071024089995903	0.047501642183756
0.028432473326336	0.012560530385130	0.004453278954730	0.001141866398651	0.000000000000000

CUMULANTS

0.748599472316957D+00	0.656157277072799D-02	0.222223287175436D-03	-0.185959481257110D-04
-0.492047793009835D-05	-0.943937347806704D-07	0.204242837525659D-06	0.405011972600324D-07

DATA SET REF. NO.	FIRST YEAR CURVE USED		PEAK LOAD MW	MINIMUM LOAD MW	ENERGY GWH	LOAD FACTOR	MINIMUM LOAD FRACTION	FIRST DAY OF YEAR
18	2040	INITIAL LOAD	540.6	321.3	3532.2	0.74792256	0.59439721	SUNDAY
		LOAD AFTER CONTRACTS	540.6	321.3	3532.2	0.74792256	0.59439721	

1.0000000000000000	1.0000000000000000	1.0000000000000000	1.0000000000000000	1.0000000000000000
1.0000000000000000	1.0000000000000000	1.0000000000000000	1.0000000000000000	1.0000000000000000
1.0000000000000000	1.0000000000000000	1.0000000000000000	1.0000000000000000	1.0000000000000000
1.0000000000000000	1.0000000000000000	1.0000000000000000	1.0000000000000000	1.0000000000000000
1.0000000000000000	1.0000000000000000	1.0000000000000000	1.0000000000000000	1.0000000000000000
1.0000000000000000	1.0000000000000000	1.0000000000000000	1.000000000000000	0.996880115121422
0.971497068832687	0.915028004414411	0.844468449137221	0.783222129915428	0.694834093550451
0.595012009911988	0.488229333581047	0.402700786462711	0.329534345384878	0.261732682357994
0.199752374237458	0.145419728444870	0.102843936678830	0.070997701014687	0.047483992961593
0.028421909248647	0.012555863523501	0.004451624340152	0.001141442138503	0.0000000000000000
CUMULANTS				

0.747922557790190D+00	0.659695544175906D-02	0.224023188986495D-03	-0.187970468394151D-04
-0.498708031708717D-05	-0.959289130221919D-07	0.208123749668172D-06	0.413818638360477D-07

					·
EGEAS	EDIT	DATA BASE CONTEN'	'S REPORT	PAGE	33
* * * * * * *	******	******	* * * * * * * * * * * * * * * * * * * *	******	* * *

DATA SET REF. NO.	FIRST YEAR CURVE USED		PEAK LOAD MW	MINIMUM LOAD MW	ENERGY GWH	LOAD FACTOR	MINIMUM LOAD FRACTION	FIRST DAY OF YEAR
19	2041	INITIAL LOAD LOAD AFTER CONTRACTS	544.6 544.6	323.3 323.3	3556.1 3556.1	0.74745274 0.74745274	0.59364123 0.59364123	SUNDAY

LOAD DURATION CURVE (50 POINTS)

0.970250166584435 0.911793766087885 0.844459102389871 0.779744680502749 0.6942 0.590061189321682 0.489120861397081 0.399204191999659 0.329757511388560 0.2584	0000000000 0000000000 39086078500 68916451799 83286550853
0.199887649785239 0.143005335732069 0.102913584260859 0.068989794554450 0.0475	83286550853 16149891808 000000000000

CUMULANTS

0.747452744297387D+00	0.662156945495480D-02	0.225278127608299D-03	-0.189375792881596D-04
-0.503372902323241D-05	-0.970065777693191D-07	0.210854339058521D-06	0.420029194521150D-07

DATA SET REF. NO.	FIRST YEAR CURVE USED		PEAK LOAD MW	MINIMUM LOAD MW	ENERGY GWH	LOAD FACTOR	MINIMUM LOAD FRACTION	FIRST DAY OF YEAR
20	2042	INITIAL LOAD LOAD AFTER CONTRACTS	548.6 548.6	325.3 325.3	3580.1 3580.1	0.74701057 0.74701057	0.59292976 0.59292976	SUNDAY

LOAD DURATION CURVE (50 POINTS)

1.0000000000000000	1.0000000000000000	1.0000000000000000	1.0000000000000000	1.0000000000000000
1.0000000000000000	1.0000000000000000	1.0000000000000000	1.00000000000000000	1.0000000000000000
1.0000000000000000	1.0000000000000000	1.0000000000000000	1.0000000000000000	1.0000000000000000
1.0000000000000000	1.0000000000000000	1.0000000000000000	1.00000000000000000	1.0000000000000000
1.0000000000000000	1.0000000000000000	1.0000000000000000	1.00000000000000000	1.0000000000000000
1.0000000000000000	1.0000000000000000	1.0000000000000000	1.0000000000000000	0.996512054779568
0.967191143586846	0.909782222710525	0.839944312367691	0.779422351430170	0.689031599931299
0.590513858054040	0.483931611262215	0.398884628574685	0.329493540113052	0.258276370376114
0.199727639486611	0.142890859792708	0.102831201815680	0.068934568142810	0.047478113157963
0.027733609368715	0.012554308767733	0.004336943028855	0.001141300797070	0.0000000000000000

0.747010572746985D+00	0.664477380088119D-02	0.226463382267645D-03	-0.190705342084855D-04
-0.507794527614890D-05	-0.980302852296766D-07	0.213451845420316D-06	0.425948139498044D-07

EGEAS	EDIT	DATA BASE CONTENTS REPORT	PAGE	34
* * * * * *	* * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * *	* * * *

LOAD CURVES - SYSTEM A

DATA SET	FIRST YEAR		PEAK LOAD	MINIMUM LOAD	ENERGY	LOAD	MINIMUM LOAD	FIRST DAY
REF. NO.	CURVE USED		MW	MW	GWH	FACTOR	FRACTION	OF YEAR
21	2043	INITIAL LOAD LOAD AFTER CONTRACTS	552.7 552.7	327.2 327.2	3604.3 3604.3	0.74648113 0.74648113	0.59207789 0.59207789	SUNDAY

1.0000000000000000	1.0000000000000000	1.0000000000000000	1.0000000000000000	1.00000000000000000
1.0000000000000000	1.00000000000000000	1.00000000000000000	1.00000000000000000	1.00000000000000000
1.0000000000000000	1.0000000000000000	1.0000000000000000	1.0000000000000000	1.0000000000000000
1.0000000000000000	1.00000000000000000	1.0000000000000000	1.0000000000000000	1.0000000000000000
1.0000000000000000	1.00000000000000000	1.0000000000000000	1.0000000000000000	1.0000000000000000
1.0000000000000000	1.0000000000000000	1.0000000000000000	1.0000000000000000	0.996686400388106
0.965194096681686	0.905652220383957	0.839727046635939	0.774412239171496	0.687603287340387
0.584820760352794	0.485227636120908	0.399027332153993	0.325615436710498	0.258368770433331
0.196259795128103	0.142941979930417	0.100356230318561	0.068959229934484	0.047495098762825
0.027743531248478	0.012558800153634	0.004338494598530	0.001141709104879	0.000000000000000
CUMULANTS				

0.746481127007751D+00	0.667261564372998D-02	0.227888176250935D-03	-0.192306877862858D-04
-0.513130445031530D-05	-0.992673977952783D-07	0.216598615072828D-06	0.433131993836233D-07

EGEAS EDIT

_____ DATA BASE CONTENTS REPORT

PAGE 35

BASIC PLANT TYPES - 1 _____

DATA SET REF. NO.	1	2	3	4	24
NAME TYPE / LOADING / STATUS /AVD	STORAGE1 STOR P G	ENERGY THRM B E	CAPACITY THRM P E	WRTSLA 31DF THRM P G	STORAGE10 STOR P G
LOAD COMPONENT FOR DSM CLASS / AREA / GENERATING CO. OWNERSHIP PCT. / NO. UNITS	100.0 1	PURC MDU MISO 100.0 1	PURC MDU MISO 100.0 1	GAS MDU NDAK 100.0 1	STRG MDU NDAK 100.0 1
INSTALLATION DATE OPERATING/BOOK LIVES, YEARS	30 25	1/ 1/2021 6 6		40 35	30 25
RATED CAPACITY, MW	1.000 0.9500	75.000		44.400	
CAPACITY - OPERATING MULTIPLIERS - EMERGENCY		1.0000	1.0000	1.0000	1.0000
- CHARGING	1.0000	0.0000	0.0000	0.0000	1.0000
EQUIVALENT FORCED OUTAGE RATE FULL LOAD HEAT RATE, BTU/KWH HEAT RATE MULT 2ND FUEL	0.0010 0.	0.0000 10500.	0.0000	0.5000 8370.	Δ
HEAT RATE MULT 2ND FUEL ANNUAL ENERGY LIMIT, GWH STORAGE EFFICIENCY, PERCENT	0.330000	0.00000	0.0000 0.000000 0.00	0.000000	0.0000 13.140000 95.00
INSTALLATION COST 1, \$/KW	2240.00	0.00		3356.00	
INSTALLATION COST 2, \$/KW MULTI-UNIT CAPITAL COST OPT.	2240.00 2	0.00 2 0.00	0.00 2	1	1358.00 2
LEVEL. CARRYING CHARGE, PCT	11.13		0.00	10.04	11.13
FIXED O+M COST, \$/KW-YR VARIABLE O+M COST, \$/MWH	4750.00 0.00	0.00 23.00	24.00 1000.00	64.72 5.76	333.00 0.00
DEFAULT AFUDC, PCT. OF GBV DEFAULT DEBT, PCT. OF AFUDC CAPITAL STRUCTURE			0.00 0.00 0	0.00 0.00 1	0.00 0.00 1
YEARLY TRAJECTORIES COSTS-CAPITAL/FIX OM/VAR OM F.O.R./RESERVE CAP/OPER CAP ENERGY / HEAT RATE		$\begin{array}{cccc} 0 & 0 & 42 \\ 0 & 0 & 0 \\ & 0 & 0 \\ 28 \end{array}$	$egin{array}{cccc} 0 & 21 & 23 \\ 0 & 0 & 0 \\ & 0 & 0 \\ 45 \end{array}$	30 22 56 0 0 0 0 0 0	
RATED CAPACITY SEGMENT MULT CAP / ENERGY SUBWEEK ENERGY ALLOCATION	0 0 0 0		45 0 0 0	0 0 0 0	0 0 0

NOTE: SUPPLY-SIDE - THRM=THERMAL, HYDR=HYDRO, STOR=STORAGE, NDT =NON-DISPATCHABLE TECHNOLOGY DEMAND-SIDE - DTHR=THERMAL, DHYD=HYDRO, DSTO=STORAGE, DNDT=NON-DISPATCHABLE TECHNOLOGY B=BASE, I=INTERMEDIATE, P=PEAKING, E=EXISTING, C=COMMITTED, G=GENERIC RPS CONTRIBUTIONS ARE SHOWN WITH THE RPS CONSTRAINTS

0

0

0

0

0

0

0

0

0 0.00

0 100.00

0 0.00

0

0

0

ELECTRIC POWER RESEARCH INSTITUT		2024 IRP		6/28	3/24 12: 8: 0
EGEAS EDIT ************************************		ATA BASE CONTENTS RI		* * * * * * * * * * * * * * * * * * * *	PAGE 36
		BASIC PLANT TYPES	- 2		
DATA SET REF. NO.	1	2	3	4	24
MAINTENANCE REQUIREMENTS	0	7	7	5	0
FUEL 1 / FUEL 2	0 0	8 0	8 0	3 0	0 0
LOADING BLOCKS / NDT NO.	0 0	6 0	0 0	9 0	0 0
EMISSIONS / SITE / TAX DEPR.	0 0 0	0 0 0	0 0 0	0 0 20	0 0 0
MUST RUN / 1ST YR / LAST YR					
SPIN RSV / 1ST YR / LAST YR	0 00	0.00	0 00	0.00	0 00
DISPATCH MODIFIER, \$/MWH TJ-DISP MODIF / SM-MUST-RUN	0.00	0.00	0.00	0.00	0.00
ID-DISE MODIE / SM-MUST-RUN	0 0	U U	0 0	U U	0 0
CONSTRUCTION COST 1, \$/KW	0.00	0.00	0.00	857.00	0.00
CONSTRUCTION COST 2, \$/KW	0.00	0.00	0.00	857.00	0.00
TRAJECTORY / EXPEND. PATTERN	0 0	0 0	0 0	30 37	0 0
PERCENT CWIP IN RATE BASE	0.00	0.00	0.00	0.00	0.00
STARTING VALUE OF CWIP, \$/KW	0.00	0.00	0.00	0.00	0.00
EQUITY AFUDC, \$/KW	0.00	0.00	0.00	0.00	0.00
DEBT AFUDC, \$/KW	0.00	0.00	0.00	0.00	0.00
DSM CUSTOMER COST / OPT / TJ	0.00 0 0	0.00 0 0	0.00 0 0	0.00 0 0	0.00 0 0
BK LIFE/CAP STRUCT/TAX DEPR	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0
LEV.CARRYING CHARGE, PCT	0.00	0.00	0.00	0.00	0.00
EXPENDITURE PATTERN	0	0	0	0	0
REBOUND BENEFITS / OPT / TJ	0.00 0 0	0.00 0 0	0.00 0 0	0.00 0 0	0.00 0 0
BK LIFE/CAP STRUCT/TAX DEPR	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0
LEV.CARRYING CHARGE, PCT	0.00	0.00	0.00	0.00	0.00
EXPENDITURE PATTERN	0	0	0	0	0
CUSTOMER BENEFITS / OPT / TJ	0.00 0 0	0.00 0 0	0.00 0 0	0.00 0 0	0.00 0 0
BK LIFE/CAP STRUCT/TAX DEPR	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0
LEV.CARRYING CHARGE, PCT	0.00	0.00	0.00	0.00	0.00
EXPENDITURE PATTERN	0	0	0	0	0
TRANS/DISTR COSTS / OPT / TJ	0.00 0 0	0.00 0 0	0.00 0 0	0.00 0 0	0.00 0 0
BK LIFE/CAP STRUCT/TAX DEPR	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0
LEV.CARRYING CHARGE, PCT EXPENDITURE PATTERN	0.00	0.00	0.00	0.00	0.00
OTHER COSTS / OPT / TJ		0.00 0 0	0.00 0 0	0.00 0 0	0.00 0 0
BK LIFE/CAP STRUCT/TAX DEPR	0 0 0				0.00000
	0.00	0.00		0.00	0.00
LEV.CARRYING CHARGE, PCT			0.00	0 00	

PERCENTAGE	FOR 2ND	FUEL	
MINIMUM /	TRAJ /	SEG MULT	
MAXIMUM /	TRAJ /	SEG MULT	
TARGET /	traj /	SEG MULT	
BID MULTIPL	IERS		

0.00 0 0.00 0 0.00 0 0 0 0 100.00 0 0 100.00 100.00 0 0 0 0.00 0 0.00 0.00 0 0 0

0 0.00

0 100.00

0 0.00

EGEAS EDIT

_____ DATA BASE CONTENTS REPORT

BASIC PLANT TYPES - 1 ------

DATA SET REF. NO.	27	80	90	100	110
NAME TYPE / LOADING / STATUS /AVD LOAD COMPONENT FOR DSM	STORAGE50 STOR P G	MISO - On peak HYDR P E	MISO - Off peak HYDR P E	INTERRUPTIBLES DTHR P E	COMMERCIAL DSM DTHR P E
CLASS / AREA / GENERATING CO.	STRG MDU NDAK 100.0 1	PURC MDU MISO 100.0 1 1/ 1/2014	PURC MDU MISO 100.0 1 1/ 1/2014	DSM MDU MISO 100.0 1 1/ 1/2012	DSM MDU MISO 100.0 1 1/ 1/2013
OPERATING/BOOK LIVES, YEARS	30 25	50 50	50 50	50 30	50 30
RATED CAPACITY, MW	50.000	250.000	250.000	15.200	25.000
- RESERVE	0.9500	0.0000	0.0000	0.8026	1.0280
CAPACITY - OPERATING	1.0000	1.0000	1.0000	1.0000	1.0000
MULTIPLIERS - EMERGENCY	1.0000	1.0000	1.0000	1.0000	1.0000
- CHARGING	1.0000	0.0000	0.0000	0.0000	0.0000
EQUIVALENT FORCED OUTAGE RATE	0.0010	0.0000	0.0000	0.0000	0.0000
FULL LOAD HEAT RATE, BTU/KWH	0.	10500.	10500.	1.	1.
HEAT RATE MULT 2ND FUEL	0.0000	0.0000	0.0000	0.0000	0.0000
ANNUAL ENERGY LIMIT, GWH	65.699997	1095.000000	1095.000000	0.000000	0.000000
STORAGE EFFICIENCY, PERCENT	95.00	0.00	0.00	0.00	0.00
INSTALLATION COST 1, \$/KW	1449.00	0.00	0.00	0.00	0.00
INSTALLATION COST 2, \$/KW	1449.00	0.00	0.00	0.00	0.00
MULTI-UNIT CAPITAL COST OPT.	2	2	2	1	2
LEVEL. CARRYING CHARGE, PCT	11.13	0.00	0.00	0.00	0.00
FIXED O+M COST, \$/KW-YR	44.88	0.00	0.00	50.04	50.04
VARIABLE O+M COST, \$/MWH	0.00	25.89	23.23	300.00	300.00
DEFAULT AFUDC, PCT. OF GBV	0.00	0.00	0.00	0.00	0.00
DEFAULT DEBT, PCT. OF AFUDC	0.00	0.00	0.00	0.00	0.00
CAPITAL STRUCTURE	1	0	0	1	0
YEARLY TRAJECTORIES COSTS-CAPITAL/FIX OM/VAR OM F.O.R./RESERVE CAP/OPER CAP ENERGY / HEAT RATE RATED CAPACITY SEGMENT MULT CAP / ENERGY SUBWEEK ENERGY ALLOCATION	51 22 0 0 0 0 0 0 0 0 0 0 0 0	0 0 29 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{ccccccc} 0 & 48 & 49 \\ 0 & 0 & 0 \\ & 0 & 0 \\ 16 \\ & 0 & 0 \\ 0 \end{array}$	$\begin{array}{ccccccc} 0 & 48 & 49 \\ 0 & 0 & 0 \\ & 0 & 0 \\ & 4 \\ & 0 & 0 \\ & 0 \end{array}$

0

0

0

0

0

0

0.00

0

1.00

0

0

0

0

0.00

0 0 0 0 0

0

0

0.00

0

EGEAS EDIT ************************************	*****		'A BASE *****				* * * * *	* * * * * * *	*****	* * * * * *	* * * * * * *	I * * * * *	PAGE ******	38
		E -	BASIC E	PLANT	TYPES	- 2								
DATA SET REF. NO.	27			80			90			100			110	
MAINTENANCE REQUIREMENTS	0)	8	0 0		8	0 0		4	14	0		14 0 0	0
MUST RUN / 1ST YR / LAST YR SPIN RSV / 1ST YR / LAST YR DISPATCH MODIFIER, \$/MWH TJ-DISP MODIF / SM-MUST-RUN	0.00			0.00	0		0.00	0		0.00			0.00	
CONSTRUCTION COST 1, \$/KW CONSTRUCTION COST 2, \$/KW TRAJECTORY / EXPEND. PATTERN PERCENT CWIP IN RATE BASE	0.00 0.00 0 (0.00			0.00 0.00 0 0.00	0		0.00 0.00 0 0.00			0.00 0.00 0 0.00	0		0.00 0.00 0 0.00	0
STARTING VALUE OF CWIP, \$/KW EQUITY AFUDC, \$/KW DEBT AFUDC, \$/KW	0.00 0.00 0.00			0.00 0.00 0.00			0.00 0.00 0.00			0.00 0.00 0.00			0.00	C
LEV.CARRYING CHARGE, PCT	0.00		C			0				.00 0 0 0.00 0			0.00	
EXPENDITURE PATTERN REBOUND BENEFITS / OPT / TJ BK LIFE/CAP STRUCT/TAX DEPR LEV.CARRYING CHARGE, PCT EXPENDITURE PATTERN		C	0.	00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0	0. 0 0	0 0 0	0	0		0	0		
LEV.CARRYING CHARGE, PCT	0 0 0)	0. 0 0	0 00 0	0	0. 0 0	0000	0	0	0.00	0	0	0.00	
EXPENDITURE PATTERN TRANS/DISTR COSTS / OPT / TJ BK LIFE/CAP STRUCT/TAX DEPR LEV.CARRYING CHARGE, PCT EXPENDITURE PATTERN)	0. 0 0	0000	0	0. 0 0	00 0	0	0		0	0		0

PERCENTAGE FOR 2ND FUEL MINIMUM / TRAJ / SEG MULT 0.00 0 0 0.00 0 0 0.00 0 0 0.00 0 0 0.00 MAXIMUM / TRAJ / SEG MULT 100.00 0 0 100.00 0 0 100.00 0 0 100.00 0 0 100.00 TARGET / TRAJ / SEG MULT 0.00 0 0.00 0 0 0.00 0 0 0.00 0 0 0.00 1.00 BID MULTIPLIERS 1.00 1.00 1.00 TRAJECTORY / SEG MULT 0 0 0 0 0 0 0 0.00 0.00 0.00 0.00 NDT REVENUES TRAJECTORY 0 0 0

0.00

0

BK LIFE/CAP STRUCT/TAX DEPR 0 0 0 0 0 0

0.00

0

OTHER COSTS / OPT / TJ

EXPENDITURE PATTERN

LEV.CARRYING CHARGE, PCT

0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0

0.00

0

0 0 0

6/28/24 12:8:0

PAGE 39

DATA BASE CONTENTS REPORT EGEAS EDIT

BASIC PLANT TYPES - 1 _____

DATA SET REF. NO.	120	130	132	136	138
 NAME TYPE / LOADING / STATUS /AVD LOAD COMPONENT FOR DSM	MILES CITY C.T. THRM P E	GLENDIVE CT #1 THRM P E	GLENDIVE CT #2 THRM P E	DIESEL 2 THRM P E	DIESEL 3 THRM P E
CLASS / AREA / GENERATING CO. OWNERSHIP PCT. / NO. UNITS INSTALLATION DATE	100.0 1 1/ 1/1972				GAS MDU NDAK 100.0 1 1/1/2012
OPERATING/BOOK LIVES, YEARS			99 30	99 30	99 30
	0.7826 0.8571 1.0000	31.300 0.9265 0.8451 1.0000 0.0000	0.5751 0.9238 1.0000	0.9048 1.0000	1.0000 1.0000
EQUIVALENT FORCED OUTAGE RATE FULL LOAD HEAT RATE, BTU/KWH HEAT RATE MULT 2ND FUEL ANNUAL ENERGY LIMIT, GWH STORAGE EFFICIENCY, PERCENT	16266. 0.0000 0.000000 0.00	0.0000	9322. 0.0000		8687.
INSTALLATION COST 1, \$/KW INSTALLATION COST 2, \$/KW MULTI-UNIT CAPITAL COST OPT. LEVEL. CARRYING CHARGE, PCT	2	0.00 0.00 2 0.00	0.00 0.00 2 0.00	0.00 0.00 2 0.00	0.00 0.00 2 0.00
FIXED O+M COST, \$/KW-YR VARIABLE O+M COST, \$/MWH		6.70 4.20	7.41 4.20	19.26 4.20	19.26 4.20
DEFAULT AFUDC, PCT. OF GBV DEFAULT DEBT, PCT. OF AFUDC CAPITAL STRUCTURE	0.00 0.00 0	0.00 0.00 0	0.00 0.00 0	0.00 0.00 0	0.00 0.00 0
YEARLY TRAJECTORIES COSTS-CAPITAL/FIX OM/VAR OM F.O.R./RESERVE CAP/OPER CAP ENERGY / HEAT RATE RATED CAPACITY SEGMENT MULT CAP / ENERGY SUBWEEK ENERGY ALLOCATION	0 3 5 0 0 0 0 0 0 0 0 0 0 0 0 0	0 3 6 0 0 0 0 0 0 0 0 0 0 0 0 0	0 3 7 0 0 0 0 0 0 0 0 0 0 0	0 3 8 0 0 0 0 0 0 0 0 0 0 0	0 3 8 0 0 0 0 0 0 0 0 0 0 0

1ELECTRIC POWER RESEARCH INSTITU					6/28	3/24 12: 8: 0
EGEAS EDIT ************************************				EPORT ************************************	****	PAGE 40
			PLANT TYPES -			
DATA SET REF. NO.	120		130	132	136	138
MAINTENANCE REQUIREMENTS FUEL 1 / FUEL 2 LOADING BLOCKS / NDT NO. EMISSIONS / SITE / TAX DEPR.	$ \begin{array}{c} 2 \\ 1 & 0 \\ 12 & 0 \\ 0 & 0 & 0 \end{array} $	 1 0	3 0 5 0 0 0	$ \begin{array}{cccc} & 4 \\ 1 & 0 \\ & 13 & 0 \\ 0 & 0 & 0 \end{array} $	23 2 0 0 0 0 0 0	23 2 0 0 0 0 0 0
MUST RUN / 1ST YR / LAST YR SPIN RSV / 1ST YR / LAST YR DISPATCH MODIFIER, \$/MWH TJ-DISP MODIF / SM-MUST-RUN	0.00 0 0			0.00 0 0		0.00 0 0
CONSTRUCTION COST 1, \$/KW CONSTRUCTION COST 2, \$/KW TRAJECTORY / EXPEND. PATTERN PERCENT CWIP IN RATE BASE	0.00 0.00 0 0 0.00		0.00 0.00 0 0 0.00	0.00 0.00 0 0 0.00	0.00 0.00 0 0 0.00	0.00 0.00 0 0 0.00
STARTING VALUE OF CWIP, \$/KW EQUITY AFUDC, \$/KW DEBT AFUDC, \$/KW	0.00 0.00 0.00		0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00
DSM CUSTOMER COST / OPT / TJ BK LIFE/CAP STRUCT/TAX DEPR LEV.CARRYING CHARGE, PCT EXPENDITURE DATTERN	$\begin{smallmatrix}&0.00&0\\0&0&0\\&0.00\\0\end{smallmatrix}$	0 0. 0 0				
BK LIFE/CAP STRUCT/TAX DEPR LEV.CARRYING CHARGE, PCT EXPENDITURE PATTERN REBOUND BENEFITS / OPT / TJ BK LIFE/CAP STRUCT/TAX DEPR LEV.CARRYING CHARGE, PCT EXPENDITURE PATTERN CUSTOMER BENEFITS / OPT / TJ BK LIFE/CAP STRUCT/TAX DEPR LEV.CARRYING CHARGE, PCT EXPENDITURE PATTERN TRANS/DISTR COSTS / OPT / TJ BK LIFE/CAP STRUCT/TAX DEPR LEV.CARRYING CHARGE, PCT		0 0. 0 0				
CUSTOMER BENEFITS / OPT / TJ BK LIFE/CAP STRUCT/TAX DEPR LEV.CARRYING CHARGE, PCT EXPENDITURE PATTERN		0 0. 0 0				
TRANS/DISTR COSTS / OPT / TJ BK LIFE/CAP STRUCT/TAX DEPR LEV.CARRYING CHARGE, PCT EXPENDITURE PATTERN OTHER COSTS / OPT / TJ		0 0. 0 0	00000 000 0000			
OTHER COSTS / OPT / TJ	0.00 0	0 0.	.00 0 0	0.00 0 0	0.00 0 0	0.00 0 0

PERCENTAGE FOR 2ND FUEL MINIMUM / TRAJ / SEG MULT 0.00 0 0 0.00 0 0 0.00 0 0 0.00 0 0 0.00 MAXIMUM / TRAJ / SEG MULT 100.00 0 0 100.00 0 0 100.00 0 0 100.00 0 0 100.00 TARGET / TRAJ / SEG MULT 0 0 0.00 0 0 0.00 0 0 0.00 0.00 0 0 0.00 1.00 BID MULTIPLIERS 1.00 1.00 1.00 TRAJECTORY / SEG MULT 0 0 0 0 0 0 0 0.00 0.00 0.00 0.00 NDT REVENUES TRAJECTORY 0 0 0

0.00

0

0 0 0 0 0

0.00

0

BK LIFE/CAP STRUCT/TAX DEPR LEV.CARRYING CHARGE, PCT

EXPENDITURE PATTERN

A-40

0 0 0

0.00

0

0 0 0

0.00

0

0 0 0

0.00

1.00

0

0.00

0

0

0

0

0

0

0

0

0

0

0

EGEAS EDIT

DATA BASE CONTENTS REPORT

PAGE 41

BASIC PLANT TYPES - 1 _____

DATA SET REF. NO.	152	154	162	170	180
 NAME TYPE / LOADING / STATUS /AVD LOAD COMPONENT FOR DSM	HESKETT #3	HESKETT #4	LEWIS & CLARK2 THRM P E	BIG STONE THRM B E	COYOTE THRM B E
CLASS / AREA / GENERATING CO. OWNERSHIP PCT. / NO. UNITS INSTALLATION DATE OPERATING/BOOK LIVES, YEARS	100.0 1 1/ 1/2014		GAS MDU MONT 100.0 1 1/1/2015 40 25		COAL MDU NDAK 100.0 1 1/1/1981 99 30
RATED CAPACITY, MW	84.500 1.0142 0.9545	88.000	18.500 0.7784 1.0000 1.0000	107.800 1.0083 1.0000 1.0000	106.800 0.9335 1.0000 1.0000
EQUIVALENT FORCED OUTAGE RATE FULL LOAD HEAT RATE, BTU/KWH HEAT RATE MULT 2ND FUEL ANNUAL ENERGY LIMIT, GWH STORAGE EFFICIENCY, PERCENT	0.00000	0.00000	0.5000 8643. 0.0000 0.000000 0.00	0.0375 10197. 0.0000 0.000000 0.00	0.1633 11011. 0.0000 0.000000 0.00
INSTALLATION COST 1, \$/KW INSTALLATION COST 2, \$/KW MULTI-UNIT CAPITAL COST OPT. LEVEL. CARRYING CHARGE, PCT	0.00 1	878.00 1	0.00	0.00 2	0.00
FIXED O+M COST, \$/KW-YR VARIABLE O+M COST, \$/MWH		40.28 0.90	78.77 3.59		33.83 5.20
DEFAULT AFUDC, PCT. OF GBV DEFAULT DEBT, PCT. OF AFUDC CAPITAL STRUCTURE	0.00	0.00 0.00 1	0.00 0.00 1		0.00 0.00 0
YEARLY TRAJECTORIES COSTS-CAPITAL/FIX OM/VAR OM F.O.R./RESERVE CAP/OPER CAP ENERGY / HEAT RATE RATED CAPACITY SEGMENT MULT CAP / ENERGY SUBWEEK ENERGY ALLOCATION	0 0 0 0 0 0	30 22 60 0 0 0 0 0 0 0 0 0 0	$\begin{array}{ccccccc} 0 & 3 & 20 \\ 0 & 0 & 0 \\ & 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{ccccccc} 0 & 3 & 13 \\ 0 & 0 & 0 \\ & 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{array}$

EGEAS EDIT ************************************	* * * * * * *	* * * * * * *	* * * *	DATA BA	SE CO1	NTENTS	REPORI	*******	****	*****	* * * * * *	* * * * * *		AGE * * * * * *	42
					PLAN										
DATA SET REF. NO.		152			154	-		162			170			180	
	13	0		13 0	37 0 8 0			19 0 11 0		6	8 0 17 0	0	- 7 0	18	
MUST RUN / 1ST YR / LAST YR SPIN RSV / 1ST YR / LAST YR DISPATCH MODIFIER, \$/MWH NJ-DISP MODIF / SM-MUST-RUN		0.00			0.0	00		0.00		M 1	0.00			980 20 0.00)
CONSTRUCTION COST 1, \$/KW CONSTRUCTION COST 2, \$/KW TRAJECTORY / EXPEND. PATTERN PERCENT CWIP IN RATE BASE		0.00 0.00 0 0.00	0		857.0 857.0 30 0.0	00 37		0.00 0.00 0 0.00	0		0.00 0.00 0 0.00	0		0.00 0.00 0 0.00	0
STARTING VALUE OF CWIP, \$/KW EQUITY AFUDC, \$/KW DEBT AFUDC, \$/KW		0.00 0.00 0.00			0.0 0.0 0.0	00		0.00)		0.00 0.00 0.00			0.00)
DSM CUSTOMER COST / OPT / TJ BK LIFE/CAP STRUCT/TAX DEPR LEV.CARRYING CHARGE, PCT EXPENDITURE PATTERN	0	0.00	0	0	0.00 (0	0		0	0		0	0	.00 0 0 0.00	
EBOUND BENEFITS / OPT / TJ BK LIFE/CAP STRUCT/TAX DEPR LEV.CARRYING CHARGE, PCT EXPENDITURE PATTERN	0	0.00 0 0.00 0	0	0	0.00 (0	0	0.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0	0	0.00 0	0	0	.00 0 0 0.00 0	
CUSTOMER BENEFITS / OPT / TJ BK LIFE/CAP STRUCT/TAX DEPR LEV.CARRYING CHARGE, PCT EXPENDITURE PATTERN	0	0.00 0	0	0	0.00 0	0	0	0.00 0	0	0	0.00 0	0	0	.00 0 0 0.00 0	0
TRANS/DISTR COSTS / OPT / TJ BK LIFE/CAP STRUCT/TAX DEPR LEV.CARRYING CHARGE, PCT EXPENDITURE PATTERN OTHER COSTS / OPT / TJ BK LIFE/CAP STRUCT/TAX DEPR	0	0	0	0	0.00 (0	0	0.00 0	0	0	0.00 0	0	0	0.00	0
OTHER COSTS / OPT / TJ BK LIFE/CAP STRUCT/TAX DEPR LEV.CARRYING CHARGE, PCT EXPENDITURE PATTERN		0.00 0 0 0.00 0	0	0	0.00 0		0	0.00 0	0	0	0.00 0	0		.00 0 0 0.00 0	0
MAXIMUM / TRAJ / SEG MULT	0.00 100.00 0.00	0	() 0.00) 100.00) 0.00) (0 0	0.00	0 0	0	0.00 100.00 0.00	0 0	0 0	0.00 100.00 0.00	0 0	

MAXIMUM / INAU / SEG MULL	100.00	0	0.	100.00	0	0.	100.00	0	0	100.00	0	0.	100.00	0	
TARGET / TRAJ / SEG MULT	0.00	0	0	0.00	0	0	0.00	0	0	0.00	0	0	0.00	0	(
BID MULTIPLIERS	1.00			1.00			1.00)		1.00			1.00		
TRAJECTORY / SEG MULT	C)	0		0	0		0	0		0	0		0	(
NDT REVENUES	0.	00		(0.00			0.00			0.00			0.00	
TRAJECTORY			0			0			0			0			(

0

6/28/24 12:8:0

EGEAS EDIT DATA BASE CONTENTS REPORT PAGE 43

BASIC PLANT TYPES - 1

DATA SET REF. NO.	190	200	210	220	230
NAME TYPE / LOADING / STATUS /AVD LOAD COMPONENT FOR DSM	DIAMOND WILLOW NDT B E	GLEN ULLIN ORMAT THRM B E	CEDAR HILLS NDT B E	THUNDER SPIRIT NDT B E	WAPA PUR-FT PECK HYDR B E
CLASS / AREA / GENERATING CO. OWNERSHIP PCT. / NO. UNITS INSTALLATION DATE	100.0 1	WH MDU NDAK 100.0 1 1/1/2009 35 20	WIND MDU NDAK 100.0 1 1/1/2010 26 25	WIND MDU NDAK 100.0 1 1/1/2015 27 25	HYDR MDU NDAK 100.0 1 1/1/2001 50 30
RATED CAPACITY, MW - RESERVE CAPACITY - OPERATING MULTIPLIERS - EMERGENCY - CHARGING	30.000 0.2000 1.0000 0.3810 0.0000	7.500 0.3867 0.6667 0.6667 0.0000		150.000 0.2447 1.0000 0.4186 0.0000	0.0000 0.8929 1.0000
EQUIVALENT FORCED OUTAGE RATE FULL LOAD HEAT RATE, BTU/KWH HEAT RATE MULT 2ND FUEL ANNUAL ENERGY LIMIT, GWH STORAGE EFFICIENCY, PERCENT	0. 0.0000 0.000000	0.0500 1. 0.0000 0.000000 0.00	0.0000 0. 0.0000 0.000000 0.00		0.0000 0. 0.0000 14.350000 0.00
INSTALLATION COST 1, \$/KW INSTALLATION COST 2, \$/KW MULTI-UNIT CAPITAL COST OPT. LEVEL. CARRYING CHARGE, PCT	0.00	0.00 0.00 2 0.00	0.00 0.00 2 0.00	0.00 0.00 2 0.00	0.00 0.00 2 0.00
FIXED O+M COST, \$/KW-YR VARIABLE O+M COST, \$/MWH		122.08 8.13	28.77 0.00	29.47 -37.04	0.00 24.00
DEFAULT AFUDC, PCT. OF GBV DEFAULT DEBT, PCT. OF AFUDC CAPITAL STRUCTURE	0.00 0.00 1	0.00 0.00 1	0.00 0.00 1	0.00 0.00 1	0.00 0.00 0
YEARLY TRAJECTORIES COSTS-CAPITAL/FIX OM/VAR OM F.O.R./RESERVE CAP/OPER CAP ENERGY / HEAT RATE RATED CAPACITY SEGMENT MULT CAP / ENERGY SUBWEEK ENERGY ALLOCATION	$\begin{array}{ccccccc} 0 & 3 & 0 \\ 0 & 0 & 0 \\ & 0 & 0 \\ & 40 \\ & 0 & 0 \\ & 0 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

 EGEAS ******	EDIT ************************************	DATA	BASE CONTENTS F		****	PAGE	44 ****
		BAS	SIC PLANT TYPES	- 2			
DATA SI	ET REF. NO.	190	200	210	220	230	

MAINTENANCE REQUIREMENTS	10		15		10	13	0
FUEL 1 / FUEL 2	0 0		5 0	0	0	0 0	0 0
LOADING BLOCKS / NDT NO.	0	1	0 0		0 2	0 3	0 0
FUEL 1 / FUEL 2 LOADING BLOCKS / NDT NO. EMISSIONS / SITE / TAX DEPR.	0 0	0	0 0 0	0	0 0	0 0 0	0 0 0
MUST RUN / 1ST YR / LAST YR SPIN RSV / 1ST YR / LAST YR			M 1980 2080				M 1980 2080
DISPATCH MODIFIER, \$/MWH	0.00		0.00		0.00	0.00	
TJ-DISP MODIF / SM-MUST-RUN	0	0	0 0		0 0	0 0	0 0
CONSTRUCTION COST 1, \$/KW CONSTRUCTION COST 2, \$/KW	0.00	0	0.00		0.00	0.00	0.00
TRAJECTORY / EXPEND. PATTERN PERCENT CWIP IN RATE BASE	0.00	0	0 0 0		0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
STARTING VALUE OF CWIP, \$/KW			0.00		0.00	0.00	0.00
EQUITY AFUDC, \$/KW	0.00		0.00		0.00	0.00	0.00
DEBT AFUDC, \$/KW	0.00		0.00		0.00	0.00	0.00
DSM CUSTOMER COST / OPT / TJ	0.00 0	0	0.00 0	0	0.00 0		0 0.00 0 0
BK LIFE/CAP STRUCT/TAX DEPR			0 0 0		0 0	0 0 0	0 0 0
LEV.CARRYING CHARGE, PCT EXPENDITURE PATTERN	0.00		0.00		0.00	0.00	0.00
REBOUND BENEFITS / OPT / TJ	0 00 0	0	0.00 0			-	÷
BK LIFE/CAP STRUCT/TAX DEPR	0 0	0	0 0 0		0 0	0 0 0	0 0 0
LEV.CARRYING CHARGE, PCT	0.00		0.00		0.00		0.00
EXPENDITURE PATTERN	0		0 0.00 0	0	0.00 0	0	0
CUSTOMER BENEFITS / OPT / TJ BK LIFE/CAP STRUCT/TAX DEPR	0.00 0	0	0.000				
			0.00		0.00		
LEV.CARRYING CHARGE, PCT EXPENDITURE PATTERN	0.00		0.00		0.00	0.00	0.000
TRANS/DISTR COSTS / OPT / TJ	0.00 0	0	0.00 0	0			0 0.00 0 0
BK LIFE/CAP STRUCT/TAX DEPR	0 0	0	0 0 0	0	0 0	0 0 0	0 0 0
LEV.CARRYING CHARGE, PCT EXPENDITURE PATTERN	0.00		0.00		0.00	0.00	0.00
EXPENDITURE PATTERN	0	0	0	0	0		
OTHER COSTS / OPT / TJ BK LIFE/CAP STRUCT/TAX DEPR	0.00 0	0	0.00 0	0	0.00 0 0	0.00 0	0 0.00 0 0 0 0
IFU CARRYING CHARGE DOT		0	0.00	0	0 00	0.00	0.00
LEV.CARRYING CHARGE, PCT EXPENDITURE PATTERN	0.00		0.00		0.00	0	0
DEDGENERGE FOD OND FUEL							
PERCENTAGE FOR 2ND FUEL	0 00 0	0 0	0.0 0	0 0 0	0 0	0.00 0	0 0.00 0 0
MINIMUM / TRAJ / SEG MULT MAXIMUM / TRAJ / SEG MULT	100 00 0	0 100		0 100.0			0 100.00 0 0
TARGET / TRAJ / SEG MULT	0.00 0	0 0.	.00 0	0 0.0			0 0.00 0 0
							1 00
BID MULTIPLIERS TRAJECTORY / SEG MULT	1.00	0	1.00	0	1.00	1.00	1.00
NDT REVENUES	0.00	U	0.00	U	0.00	0.00	0.00
TRAJECTORY	0.00	0	0.00	0	0.00		0 0
11/10/2010/11		0		0	,	,	0

DATA BASE CONTENTS REPORT EGEAS EDIT

PAGE 45

BASIC PLANT TYPES - 1 _____

DATA SET REF. NO.		310		320			330)			0		37	
NAME	PURCHASE	POWER							 GE LM60					
TYPE / LOADING / STATUS /AVD LOAD COMPONENT FOR DSM	THRM	P G	THRM	Ρ	G	THRM								
CLASS / AREA / GENERATING CO.	PURC MDU	MISO	GAS M	DU N	DAK	GAS M	IDU N	JDAK	GAS MD	U	NDAK	GAS	MDU	NDAK
OWNERSHIP PCT. / NO. UNITS INSTALLATION DATE		1				100.0		1	100.0		1	100.0		1
OPERATING/BOOK LIVES, YEARS		1 1		40	35		40	35		40	35		50	35
RATED CAPACITY, MW	1	0.000		77.9	00		99.9	900		45.	000		329.	700
- RESERVE		1.0000		0.9	694		0.9	9694		Ο.	9349		Ο.	9820
CAPACITY - OPERATING MULTIPLIERS - EMERGENCY		1.0000		0.9	195		0.9	041		Ο.	9272		Ο.	9096
- CHARGING		0.0000		0.0	000		0.0	0000		0.	0000		0.	0000
EQUIVALENT FORCED OUTAGE RATE FULL LOAD HEAT RATE, BTU/KWH HEAT RATE MULT 2ND FUEL		0.0000		0.5	000		0.5	5000		Ο.	5000		0.	0166
FULL LOAD HEAT RATE, BTU/KWH		1.	11	800.		8	3970.		97	30.			9990.	
HEAT RATE MULT 2ND FUEL		0.0000		0.0	000		0.0	0000		Ο.	0000		Ο.	0000
ANNUAL ENERGY LIMIT, GWH		0.000000		0.0	00000		0.0	000000		Ο.	000000		Ο.	000000
STORAGE EFFICIENCY, PERCENT		0.00		0.0	0		0.0	00		0.	00		0.	00
INSTALLATION COST 1, \$/KW		0.00	2	077.0	0	2	2485.0	00	32	52.	00		1201.	00
INSTALLATION COST 2, \$/KW		0.00	2	077.0	0	2	2485.0	0	32	52.	00		1201.	00
INSTALLATION COST 2, \$/KW MULTI-UNIT CAPITAL COST OPT. LEVEL. CARRYING CHARGE, PCT		2		1			1			1			1	
LEVEL. CARRYING CHARGE, PCT		0.00		10.0	4		10.0)4		10.	04		10.	04
FIXED O+M COST, \$/KW-YR VARIABLE O+M COST, \$/MWH	1	2.00		38.8	6		33.9	93		62.	58		28.	31
VARIABLE O+M COST, \$/MWH	100	0.00		0.9	0		1.3	33		0.	90		4.	60
DEFAULT AFUDC, PCT. OF GBV		0.00		0.0	0		0.0	00		Ο.	00		Ο.	00
DEFAULT DEBT, PCT. OF AFUDC		0.00		0.0	0		0.0	00		Ο.				00
DEFAULT AFUDC, PCT. OF GBV DEFAULT DEBT, PCT. OF AFUDC CAPITAL STRUCTURE		0		1			1			1			1	
YEARLY TRAJECTORIES														
COSTS-CAPITAL/FIX OM/VAR OM	0 1	0 23	30	22	60	30	22	24	30	22	62	59	59	59
COSTS-CAPITAL/FIX OM/VAR OM F.O.R./RESERVE CAP/OPER CAP	0	0 0	0	0	0	0	0	0	0	0	0	0	0	
ENERGY / HEAT RATE		0 0		0	0		0	0		0	0		0	0
		0		0			0			0			0	
SEGMENT MULT CAP / ENERGY SUBWEEK ENERGY ALLOCATION		0 0		0	0		0	0		0	0		0	0
CUDWEER ENERCY ATTOCATION		0		0			0			0			0	

0 0

0

EGEAS EDIT ***********************************	* * * * * *	****	D. *****	ATA BA:	SE CO:	NTENTS F ******	EPORT	*****	******	* * * * * *	* * * * *	* * * * * * * *	:*****	PAGE *****	46
				BASIC	PLAN	I TYPES	- 2								
DATA SET REF. NO.		310			32			33			34	0		37	C
MAINTENANCE REQUIREMENTS		0			28			28			28			21	
	8				0		3	0			0		3	0	
LOADING BLOCKS / NDT NO.		•	0		2				0			0		4	-
EMISSIONS / SITE / TAX DEPR.	0	0	0	0	0	20	0	0	20	0	0	20	0	0	20
MUST RUN / 1ST YR / LAST YR SPIN RSV / 1ST YR / LAST YR															
DISPATCH MODIFIER, \$/MWH		0.00)		Ο.	00		0.	00		Ο.	00		0.	00
TJ-DISP MODIF / SM-MUST-RUN		0	0		0	0		0	0		0	0		0	0
CONSTRUCTION COST 1, \$/KW		0.00)		857.	00		857.	00		850.	00		750.	00
CONSTRUCTION COST 2, \$/KW		0.00)		857.	00		857.	00		850.	00		750.	00
TRAJECTORY / EXPEND. PATTERN		0	0		30	37		30	37		30	37		30	37
PERCENT CWIP IN RATE BASE		0.00)		0.	00		0.	00		0.	00		0.	00
STARTING VALUE OF CWIP, \$/KW		0.00)		0.	00		0.	00		Ο.	00		0.	00
EQUITY AFUDC, \$/KW		0.00)		Ο.	00		0.	00		Ο.	00		0.	00
DEBT AFUDC, \$/KW		0.00)		0.	00		0.	00		0.	00		0.	00
DSM CUSTOMER COST / OPT / TJ	0.	00 0	0	(0.00	0 0		0.00	0 C		0.00	0 0	(0.00	0 C
BK LIFE/CAP STRUCT/TAX DEPR	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

DSM CUSTOMER COST / OPT / TJ	0.0	0 00	0	(0.00.0	0	(0.00.0	0		0.00 0	0	r	0.00 0	
BK LIFE/CAP STRUCT/TAX DEPR	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
LEV.CARRYING CHARGE, PCT	0	.00			0.00			0.00			0.00			0.00	
EXPENDITURE PATTERN		0			0			0			0			0	
REBOUND BENEFITS / OPT / TJ	0.0	0 00	0	(0.00.0	0	(0.00.0	0		0.00 0	0	(0.00 0	
BK LIFE/CAP STRUCT/TAX DEPR	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
LEV.CARRYING CHARGE, PCT	0	.00			0.00			0.00			0.00			0.00	
EXPENDITURE PATTERN		0			0			0			0			0	
CUSTOMER BENEFITS / OPT / TJ	0.0	0 00	0	(0.00.0	0	(0.00.0	0		0.00 0	0	ſ	0.00 0	
BK LIFE/CAP STRUCT/TAX DEPR	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
LEV.CARRYING CHARGE, PCT	0	.00			0.00			0.00			0.00			0.00	
EXPENDITURE PATTERN		0			0			0			0			0	
TRANS/DISTR COSTS / OPT / TJ	0.0	0 00	0	(0.00.0	0	(0.00.0	0		0.00 0	0	r	0.00 0	
BK LIFE/CAP STRUCT/TAX DEPR	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
LEV.CARRYING CHARGE, PCT	0	.00			0.00			0.00			0.00			0.00	
EXPENDITURE PATTERN		0			0			0			0			0	
OTHER COSTS / OPT / TJ	0.0	0 00	0	(0.00.0	0	(0.00.0	0		0.00 0	0	(0.00 0	
BK LIFE/CAP STRUCT/TAX DEPR	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
LEV.CARRYING CHARGE, PCT	0	.00			0.00			0.00			0.00			0.00	
EXPENDITURE PATTERN		0			0			0			0			0	
PERCENTAGE FOR 2ND FUEL															
MINIMUM / TRAJ / SEG MULT	0.00	0	0	0.00	0	0	0.00	0	0	0.00	0	0	0.00	0	
MAXIMUM / TRAJ / SEG MULT	100.00	Ő	0	100.00	Õ	Õ	100.00	0	Ő	100.00	-	0	100.00	-	
TARGET / TRAJ / SEG MULT	0.00	0	0	0.00	0	0	0.00	0	0	0.00	0	0	0.00	0	
BID MULTIPLIERS	1.00	n		1	.00		1	.00		1	.00		1	.00	
TRAJECTORY / SEG MULT	1.00	0	0	1.	.00	0	1.	.00	0	T	.00	0		.00	
NDT REVENUES		0.00	0		0.00	0		0.00	0		0.00	0		0.00	
TRAJECTORY		0.00	0		0.00	0		0.00	, 		0.00	, 		0.00	
TIVADECTONT			0			0			0			0			

6/28/24 12:8:0

PAGE 47

_____ DATA BASE CONTENTS REPORT EGEAS EDIT

BASIC PLANT TYPES - 1 _____

DATA SET REF. NO.	380	400	410	420	430
 NAME TYPE / LOADING / STATUS /AVD LOAD COMPONENT FOR DSM	GE 7FA.05 1x1 THRM I G	SMN SGT-800 2x1 THRM I G	WRTSLA 18V50SG THRM P G	WRTSLA 20V34SG THRM P G	BIOMASS THRM B G
CLASS / AREA / GENERATING CO. OWNERSHIP PCT. / NO. UNITS INSTALLATION DATE	100.0 1	GAS MDU NDAK 100.0 1	GAS MDU NDAK 100.0 1	GAS MDU NDAK 100.0 1	BMP MDU NDAK 100.0 1
OPERATING/BOOK LIVES, YEARS	50 35	50 35	40 35	40 35	40 25
RATED CAPACITY, MW - RESERVE CAPACITY - OPERATING MULTIPLIERS - EMERGENCY - CHARGING	0.9820 0.8571 1.0000	100.000 0.9820 0.8571 1.0000 0.0000	0.9695 1.0000 1.0000	36.500 0.9348 1.0000 1.0000 0.0000	25.000 0.9072 1.0000 1.0000 0.0000
EQUIVALENT FORCED OUTAGE RATE FULL LOAD HEAT RATE, BTU/KWH HEAT RATE MULT 2ND FUEL ANNUAL ENERGY LIMIT, GWH STORAGE EFFICIENCY, PERCENT	8030. 0.0000 0.000000	0.0166 9589. 0.0000 0.000000 0.00	0.5000 8330. 0.0000 0.000000 0.00	0.5000 8470. 0.0000 0.000000 0.00	0.0928 12300. 0.0000 0.000000 0.00
INSTALLATION COST 1, \$/KW INSTALLATION COST 2, \$/KW MULTI-UNIT CAPITAL COST OPT. LEVEL. CARRYING CHARGE, PCT	1	2464.00 2464.00 1 10.04	3425.00 3425.00 1 10.04	3789.00 3789.00 1 10.04	7980.00 7980.00 1 10.04
FIXED O+M COST, \$/KW-YR VARIABLE O+M COST, \$/MWH		49.72 5.20	56.76 5.29	76.58 5.11	252.00 5.60
DEFAULT AFUDC, PCT. OF GBV DEFAULT DEBT, PCT. OF AFUDC CAPITAL STRUCTURE	0.00 0.00 1	0.00 0.00 1	0.00 0.00 1	0.00 0.00 1	0.00 0.00 1
YEARLY TRAJECTORIES COSTS-CAPITAL/FIX OM/VAR OM F.O.R./RESERVE CAP/OPER CAP ENERGY / HEAT RATE RATED CAPACITY SEGMENT MULT CAP / ENERGY SUBWEEK ENERGY ALLOCATION	0 0 0 0 0 0	30 22 69 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30 22 58 0 0 0 0 0 0 0 0 0 0 0

1ELECTRIC POWER RESEARCH INSTITUTE

2024 IRP

				., .		
EGEAS EDIT	DAT	FA BASE CONTENTS R	EPORT		PAGE	48
* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	*****	*******	* * * *
	E	BASIC PLANT TYPES	- 2			
	-					
DATA SET REF. NO.	380	400	410	420	430	

MAINTENANCE REQUIREMENTS FUEL 1 / FUEL 2 LOADING BLOCKS / NDT NO. EMISSIONS / SITE / TAX DEPR.	$ \begin{array}{c} 24\\ 3 & 0\\ 2 & 0\\ 0 & 0 & 20 \end{array} $		$ \begin{array}{c} 1 \\ 3 & 0 \\ 1 & 0 \\ 0 & 0 & 20 \end{array} $	$ \begin{array}{c} 28\\ 3 & 0\\ 10 & 0\\ 0 & 0 & 20 \end{array} $	28 10 0 19 0 0 0 20
MUST RUN / 1ST YR / LAST YR SPIN RSV / 1ST YR / LAST YR DISPATCH MODIFIER, \$/MWH TJ-DISP MODIF / SM-MUST-RUN	0.00 0 0	0.00 0 0	0.00 0 0	0.00 0 0	0.00 0 0
CONSTRUCTION COST 1, \$/KW CONSTRUCTION COST 2, \$/KW TRAJECTORY / EXPEND. PATTERN PERCENT CWIP IN RATE BASE	750.00 750.00 30 37 0.00	750.00 750.00 30 37 0.00	857.00 857.00 30 37 0.00	857.00 857.00 30 37 0.00	857.00 857.00 30 37 0.00
STARTING VALUE OF CWIP, \$/KW EQUITY AFUDC, \$/KW DEBT AFUDC, \$/KW	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00
DSM CUSTOMER COST / OPT / TJ BK LIFE/CAP STRUCT/TAX DEPR LEV.CARRVING CHARGE, PCT EXPENDITURE PATTERN REBOUND BENEFITS / OPT / TJ BK LIFE/CAP STRUCT/TAX DEPR LEV.CARRVING CHARGE, PCT	$\begin{smallmatrix} 0.00 & 0 \\ 0 & 0 \\ 0.00 \\ 0 \end{smallmatrix}$				
REBOUND BENEFITS / OPT / TJ BK LIFE/CAP STRUCT/TAX DEPR LEV.CARRYING CHARGE, PCT EXPENDITURE PATTERN	$\begin{array}{cccc} 0.00 & 0 & 0 \\ 0 & 0 & 0 \\ 0.00 & 0 \end{array}$				
EXPENDITURE PATTERN CUSTOMER BENEFITS / OPT / TJ BK LIFE/CAP STRUCT/TAX DEPR LEV.CARRYING CHARGE, PCT EXPENDITURE PATTERN					
TRANS/DISTR COSTS / OPT / TJ BK LIFE/CAP STRUCT/TAX DEPR LEV.CARRYING CHARGE, PCT EXPENDITURE PATTERN	$\begin{array}{cccc} 0.00 & 0 & 0 \\ 0 & 0 & 0 \\ 0.00 & 0 \\ 0 \end{array}$	$\begin{smallmatrix} 0.00 & 0 & 0 \\ 0 & 0 & 0 \\ 0.00 \\ 0 \\ 0 \end{smallmatrix}$	$\begin{array}{cccc} 0.00 & 0 & 0 \\ 0 & 0 & 0 \\ 0.00 & 0 \\ 0 \end{array}$	$\begin{smallmatrix} 0.00 & 0 & 0 \\ 0 & 0 & 0 \\ 0.00 \\ 0 \\ 0 \end{smallmatrix}$	$\begin{array}{cccc} 0.00 & 0 & 0 \\ 0 & 0 & 0 \\ 0.00 & 0 \\ 0 \end{array}$
LEV.CARRYING CHARGE, PCT EXPENDITURE PATTERN TRANS/DISTR COSTS / OPT / TJ BK LIFE/CAP STRUCT/TAX DEPR LEV.CARRYING CHARGE, PCT EXPENDITURE PATTERN OTHER COSTS / OPT / TJ BK LIFE/CAP STRUCT/TAX DEPR LEV.CARRYING CHARGE, PCT EXPENDITURE PATTERN			$\begin{array}{cccc} 0.00 & 0 & 0 \\ 0 & 0 & 0 \\ 0.00 \\ 0 \end{array}$		0.00 0 0 0 0 0 0.00 0
PERCENTAGE FOR 2ND FUEL MINIMUM / TRAJ / SEG MULT MAXIMUM / TRAJ / SEG MULT TARGET / TRAJ / SEG MULT					
BID MULTIPLIERS TRAJECTORY / SEG MULT NDT REVENUES TRAJECTORY	1.00 0 0 0.00 0	1.00 0 0 0.00 0	1.00 0 0 0.00 0	1.00 0 0 0.00 0	1.00 0 0 0.00 0

EGEAS EDIT

DATA BASE CONTENTS REPORT

PAGE 49

BASIC	PLANT	TYPES -	1

DATA SET REF. NO.	450	460	490	500	510
NAME	PV SOLAR50	PV SOLAR5	CFBC	CFBC CO2	WIND50
TYPE / LOADING / STATUS /AVD	NDT B G	NDT B G	THRM B G	THRM B G	NDT B G
LOAD COMPONENT FOR DSM					
CLASS / AREA / GENERATING CO.	SOLR MDU NDAK	SOLR MDU NDAK	LIGN MDU NDAK	COAL MDU NDAK	WIND MDU NDAK
OWNERSHIP PCT. / NO. UNITS	100.0 1	100.0 1	100.0 1	100.0 1	100.0 1
INSTALLATION DATE					
OPERATING/BOOK LIVES, YEARS	30 25	30 25	50 50	50 50	25 25
RATED CAPACITY, MW	50.000	5.000	30.000	30.000	50.000
- RESERVE	0.5000	0.5000		0.9143	0.1810
CAPACITY - OPERATING		1.0000	0.9500	0.9500	
MULTIPLIERS - EMERGENCY	1.0000	1.0000	1.0000	1.0000	
- CHARGING	0.0000	0.0000	0.0000	0.0000	0.0000
EQUIVALENT FORCED OUTAGE RATE	0 0000	0 0000	0.0936	0.0936	0 0000
		0.	10000.	13800.	0.
FULL LOAD HEAT RATE, BTU/KWH HEAT RATE MULT 2ND FUEL	0.0000	0.0000	0.0000	0.0000	0.0000
ANNUAL ENERGY LIMIT, GWH	0 00000	0.000000			
STORAGE EFFICIENCY, PERCENT	0.00		0.00	0.00	0.00
INSTALLATION COST 1, \$/KW	2280.00	2467.00	5880.00	10400.00	2660.00
INSTALLATION COST 2, \$/KW	2280.00	2467.00	5880.00	10400.00	2660.00
MULTI-UNIT CAPITAL COST OPT.	1	1	1	1	1
MULTI-UNIT CAPITAL COST OPT. LEVEL. CARRYING CHARGE, PCT	11.13	11.13	9.42	9.42	11.13
FIXED O+M COST, \$/KW-YR	34.80	39.60	168.72	267.48	58.80
VARIABLE O+M COST, \$/MWH	-37.04	-37.04	14.06	22.29	-37.04
DEFAULT AFUDC, PCT. OF GBV	0 00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00
CAPITAL STRUCTURE	1	1	1	1	1
YEARLY TRAJECTORIES					
COSTS-CAPITAL/FIX OM/VAR OM	30 22 17	30 22 17	30 22 61	30 22 25	30 22 17
F.O.R./RESERVE CAP/OPER CAP		0 0 0	0 0 0	0 0 0	0 0 0
ENERGY / HEAT RATE	0 0	0 0	0 0	0 0	0 0
RATED CAPACITY	0	0	0	0	0
SEGMENT MULT CAP / ENERGY	0 0	0 0	0 0	0 0	0 0
SUBWEEK ENERGY ALLOCATION	0	0	0	0	0

EGEAS	EDIT	DATA BASE CONTENTS REPORT	PAGE	50
******	*******	* * * * * * * * * * * * * * * * * * * *	******	* * * *

BASIC PLANT TYPES - 2 -----

DATA SET REF. NO.	450	460	490	500	510
MAINTENANCE REQUIREMENTS FUEL 1 / FUEL 2 LOADING BLOCKS / NDT NO. EMISSIONS / SITE / TAX DEPR.	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
MUST RUN / 1ST YR / LAST YR SPIN RSV / 1ST YR / LAST YR DISPATCH MODIFIER, \$/MWH TJ-DISP MODIF / SM-MUST-RUN	0.00 0 0	0.00 0 0	M 1980 2080 0.00 0 0	M 1980 2080 0.00 0 0	0.00 0 0
CONSTRUCTION COST 1, \$/KW CONSTRUCTION COST 2, \$/KW TRAJECTORY / EXPEND. PATTERN PERCENT CWIP IN RATE BASE	2558.00 2558.00 30 38 0.00	2558.00 2558.00 30 38 0.00	3900.00 3900.00 30 31 0.00	3900.00 3900.00 30 31 0.00	2400.00 2400.00 30 38 0.00
STARTING VALUE OF CWIP, \$/KW EQUITY AFUDC, \$/KW DEBT AFUDC, \$/KW	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00
DSM CUSTOMER COST / OPT / TJ BK LIFE/CAP STRUCT/TAX DEPR LEV.CARRYING CHARGE, PCT EXPENDITURE PATTERN REBOUND BENEFITS / OPT / TJ BK LIFE/CAP STRUCT/TAX DEPR LEV.CARRYING CHARGE, PCT EXPENDITURE PATTERN CUSTOMER BENEFITS / OPT / TJ BK LIFE/CAP STRUCT/TAX DEPR LEV.CARRYING CHARGE, PCT EXPENDITURE PATTERN TRANS/DISTR COSTS / OPT / TJ BK LIFE/CAP STRUCT/TAX DEPR LEV.CARRYING CHARGE, PCT EXPENDITURE PATTERN OTHER COSTS / OPT / TJ BK LIFE/CAP STRUCT/TAX DEPR LEV.CARRYING CHARGE, PCT EXPENDITURE PATTERN	$\begin{smallmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 &$	$\begin{smallmatrix} 0.00 & 0 & 0 \\ 0 & 0 & 0 \\ 0.000 & 0 \\ 0.000 & 0 \\ 0.000 & 0 \\ 0.000 & 0 \\ 0.000 & 0 \\ 0.000 & 0 \\ 0.000 & 0 \\ 0.000 & 0 \\ 0.000 & 0 \\ 0.000 & 0 \\ 0.000 & 0 \\ 0.000 & 0 \\ 0.000 & 0 \\ 0.000 & 0 \\ 0.000 & 0 \\ 0 \\ 0.000 & 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	$\begin{smallmatrix} 0.00 & 0 & 0 \\ 0 & 0 & 0 \\ 0.00 & 0 \\ 0 & 0 & 0 \\ 0.00 & 0 & 0 \\ 0.00 & 0 & 0 \\ 0.00 & 0 & 0 \\ 0.00 & 0 & 0 \\ 0.00 & 0 & 0 \\ 0.00 & 0 & 0 \\ 0.00 & 0 & 0 \\ 0.00 & 0 & 0 \\ 0.00 & 0 & 0 \\ 0.00 & 0 & 0 \\ 0.00 & 0 & 0 \\ 0.00 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 &$	$\begin{smallmatrix} 0.00 & 0 & 0 \\ 0 & 0 & 0 \\ 0.00 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 &$	$\begin{smallmatrix} 0.00 & 0 & 0 \\ 0 & 0 & 0 \\ 0.00 & 0 \\ 0 & 0 & 0 \\ 0.00 & 0 & 0 \\ 0.00 & 0 & 0 \\ 0.00 & 0 & 0 \\ 0.00 & 0 & 0 \\ 0.00 & 0 & 0 \\ 0.00 & 0 & 0 \\ 0.00 & 0 & 0 \\ 0.00 & 0 & 0 \\ 0.00 & 0 & 0 \\ 0.00 & 0 & 0 \\ 0.00 & 0 & 0 \\ 0.00 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 &$
PERCENTAGE FOR 2ND FUEL MINIMUM / TRAJ / SEG MULT MAXIMUM / TRAJ / SEG MULT TARGET / TRAJ / SEG MULT	0.00 0 0 100.00 0 0 0.00 0 0	0.00 0 0 100.00 0 0 1 0.00 0 0	0.00 0 0 100.00 0 0 1 0.00 0 0	0.00 0 0 100.00 0 0 1 0.00 0 0	0.00 0 0 L00.00 0 0 0.00 0 0
BID MULTIPLIERS TRAJECTORY / SEG MULT NDT REVENUES TRAJECTORY	1.00 0 0 0.00 0	1.00 0 0 0.00 0	1.00 0 0 0.00 0	1.00 0 0 0.00 0	1.00 0 0 0.00 0

		BASIC PLANT TYPES - 1	
DATA SET REF. NO.	520		
NAME IYPE / LOADING / STATUS /AVD LOAD COMPONENT FOR DSM	NDT B G		
CLASS / AREA / GENERATING CO. DWNERSHIP PCT. / NO. UNITS INSTALLATION DATE	100.0 1		
DPERATING/BOOK LIVES, YEARS	25 25		
RATED CAPACITY, MW - RESERVE	100.000 0.1810		
CAPACITY - OPERATING MULTIPLIERS - EMERGENCY - CHARGING	1.0000 0.3810 0.0000		
EQUIVALENT FORCED OUTAGE RATE	0.		
HEAT RATE MULT 2ND FUEL ANNUAL ENERGY LIMIT, GWH STORAGE EFFICIENCY, PERCENT	0.0000 0.000000 0.00		
INSTALLATION COST 1, \$/KW INSTALLATION COST 2, \$/KW MULTI-UNIT CAPITAL COST OPT. LEVEL. CARRYING CHARGE, PCT	2156.00 2156.00 1 11.13		
FIXED O+M COST, \$/KW-YR VARIABLE O+M COST, \$/MWH	56.40		
DEFAULT AFUDC, PCT. OF GBV DEFAULT DEBT, PCT. OF AFUDC CAPITAL STRUCTURE	0.00 0.00 1		
YEARLY TRAJECTORIES COSTS-CAPITAL/FIX OM/VAR OM F.O.R./RESERVE CAP/OPER CAP ENERGY / HEAT RATE RATED CAPACITY SEGMENT MULT CAP / ENERGY	0 0 0		
SEGMENT MULT CAP / ENERGY SUBWEEK ENERGY ALLOCATION	0 0 0		

RPS CONTRIBUTIONS ARE SHOWN WITH THE RPS CONSTRAINTS

	DATA BASE CONTENTS REPORT	PAGE 5
* * * * * * * * * * * * * * * * * * * *	***************************************	***************************************
	BASIC PLANT TYPES - 2	
DATA SET REF. NO.	520	
MAINTENANCE REQUIREMENTS FUEL 1 / FUEL 2 LOADING BLOCKS / NDT NO. EMISSIONS / SITE / TAX DEPR.	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
MUST RUN / 1ST YR / LAST YR SPIN RSV / 1ST YR / LAST YR DISPATCH MODIFIER, \$/MWH TJ-DISP MODIF / SM-MUST-RUN	0.00	
CONSTRUCTION COST 1, \$/KW CONSTRUCTION COST 2, \$/KW TRAJECTORY / EXPEND. PATTERN PERCENT CWIP IN RATE BASE	2400.00 2400.00 30 38 0.00	
STARTING VALUE OF CWIP, \$/KW EQUITY AFUDC, \$/KW DEBT AFUDC, \$/KW		
DSM CUSTOMER COST / OPT / TJ BK LIFE/CAP STRUCT/TAX DEPI LEV.CARRYING CHARGE, PCT EXPENDITURE PATTERN REBOUND BENEFITS / OPT / TJ BK LIFE/CAP STRUCT/TAX DEPI		
REBOUND BENEFITS / OPT / TJ BK LIFE/CAP STRUCT/TAX DEPI LEV.CARRYING CHARGE, PCT EXPENDITURE PATTERN CUSTOMER BENEFITS / OPT / TJ BK LIFE/CAP STRUCT/TAX DEPI		
CUSTOMER BENEFITS / OPT / TJ BK LIFE/CAP STRUCT/TAX DEPI LEV.CARRYING CHARGE, PCT EXPENDITURE PATTERN		
EK LIFE/CAP STRUCT/TAX DEPI LEV.CARRYING CHARGE, PCT EXPENDITURE PATTERN IRANS/DISTR COSTS / OPT / TJ EK LIFE/CAP STRUCT/TAX DEPI LEV.CARRYING CHARGE, PCT EXPENDITURE PATTERN DTHER COSTS / OPT / TJ EK LIFE/CAP STRUCT/TAX DEPI LEV.CARRYING CHARGE PCT		
OTHER COSTS / OPT / TJ BK LIFE/CAP STRUCT/TAX DEPI LEV.CARRYING CHARGE, PCT EXPENDITURE PATTERN		
PERCENTAGE FOR 2ND FUEL MINIMUM / TRAJ / SEG MULT MAXIMUM / TRAJ / SEG MULT TARGET / TRAJ / SEG MULT	0.00 0 0 100.00 0 0 0.00 0 0	
BID MULTIPLIERS TRAJECTORY / SEG MULT NDT REVENUES	1.00 0 0 0.00	

EGEAS EI		* * * * * * * * * * * *			BASE CONTENTS REPORT		******	* * * * * * * * * *		PAGE *******
					AINTENANCE CYCLES					
DATA SET REF. NO.		IN CYCLE	BASIS FOR YEARS		MAINTENANCE SPECIFICATION		FIRST NO. OF WEEKS	START WEEK	SECOND NO. OF WEEKS	START WEEK
1	1			0	- NO. WEEKS ONLY	1	2			
2	10	10	1 - BASE YEAR=0	1	- START WEEKS	2 3	0 0 0	0 0 0		
						4 5 6	0 0 0	0 0 0		
						7 8 9 10	0 2 0 0	0 37 0 0		
3	10	10	1 - BASE YEAR=0	1	- START WEEKS	1 2 3	0 2 0	0 16 0		
						3 4 5 6	0 0 0	0 0 0		
						7 8 9	2 0 0	16 0 0		
						10	0	0		
4	10	10	1 - BASE YEAR=0	1	- START WEEKS	1 2 3 4	0 0 2 0	0 0 38 0		
						5 6 7 8	2 0 0 2	21 0 0 38		
						9 10	0	0 21		
5	1	1	1 - BASE YEAR=0	0	- NO. WEEKS ONLY	1	2			
7	6	1	0 - INSTALLATION	1	- START WEEKS	1 2 3 4 5	23 0 0 0	1 0 0 0 0		

EGEAS E:		******			BASE CONTENTS REPOR		* * * * * * * * *	* * * * * * * * * *		PAGE 5
					AINTENANCE CYCLES					
REF. NO.	INPUT		FOR YEARS		MAINTENANCE SPECIFICATION	YEAR	NO. OF WEEKS	START WEEK	WEEKS	START WEEK
8			1 - BASE YEAR=0		- START WEEKS	1 2 3 4 5 6 7 8 9 10	3 3 3 3 3 3 3 8 3 3 3 3 3 3	40 41 14 40 40 40 41 14 40 40		
10	1	1	1 - BASE YEAR=0	0	- NO. WEEKS ONLY	1	1			
13	1	1	1 - BASE YEAR=0	0	- NO. WEEKS ONLY	1	1			
14	1	1	0 - INSTALLATION	0	- NO. WEEKS ONLY	1	1			
15	1	1	2 - BASE YEAR=1	0	- NO. WEEKS ONLY	1	1			
17	10	10	1 - BASE YEAR=0	1	- START WEEKS	1 2 3 4 5 6 7 8 9 10	0 2 0 0 0 2 0 0 0	0 39 0 0 0 39 0 0 0		
19	10	10	1 - BASE YEAR=0	1	- START WEEKS	1 2 3 4 5 6 7 8 9 10	0 2 0 0 2 2 2 0 0	0 41 20 0 0 41 20 0 0		
21	1	1	1 - BASE YEAR=0	0	- NO. WEEKS ONLY	1	2			

	DIT *******	* * * * * * * * * * * *			BASE CONTENTS REPO		* * * * * * * * * *	* * * * * * * * * *		PAGE *******
				M	AINTENANCE CYCLES					
ATA SET EF. NO.	YEARS INPUT	YEARS IN CYCLE	BASIS FOR YEARS	-	MAINTENANCE SPECIFICATION	YEAR	FIRST H NO. OF WEEKS	PERIOD START WEEK	SECOND NO. OF WEEKS	PERIOD. START WEEK
22	10	10	1 - BASE YEAR=0	2	- TWO PERIODS	1	1	22	1	38
						2	7	14	1	39
						3	1	22	1	38
						4	1	23	1	38
						5	7	14	1	38
						6	1	22	1	38
						7	7	14	1	39
						8	1	22	1	38
						9	1	23	1	38
						10	7	14	1	38

					10	1 7	23 14
23	1	1	1 - BASE YEAR=0	0 - NO. WEEKS ONLY	1	2	
24	1	1	1 - BASE YEAR=0	0 - NO. WEEKS ONLY	1	2	
25	1	1	1 - BASE YEAR=0	0 - NO. WEEKS ONLY	1	2	
28	1	1	1 - BASE YEAR=0	0 - NO. WEEKS ONLY	1	2	
33	1	1	1 - BASE YEAR=0	0 - NO. WEEKS ONLY	1	3	
37	1	1	1 - BASE YEAR=0	0 - NO. WEEKS ONLY	1	2	

EGEAS EDIT DATA BASE CONTENTS REPORT PAGE 56

FUEL TYPES

DATA	SET		MASS	HEAT CONTENT	MASS UNITS	AVAILABLE	FUEL COST	TRA	JECTOR	IES	SEG	MENT M	ULT
REF.	NO.	NAME	UNIT	MBTU/MASS UNIT	MAXIMUM	MINIMUM	\$/MBTU	MAX.	MIN.	COST	MAX.	MIN.	COST
	1	GAS	DKT	1.14	-1.00	0.00	5.370000	0	0	33	0	0	0
	2	OIL2	GAL	39.17	-1.00	0.00	19.000000	0	0	34	0	0	0
	3	GAS	DKT	1.14	-1.00	0.00	5.060000	0	0	11	0	0	0
	4	DSM	NONE	0.01	-1.00	0.00	0.00000	0	0	0	0	0	0
	5	WH	NONE	0.01	-1.00	0.00	0.00000	0	0	0	0	0	0
	6	COAL	TON	16.44	-1.00	0.00	2.100000	0	0	38	0	0	0
	7	COAL	TON	14.13	-1.00	0.00	2.190000	0	0	39	0	0	0
	8	PURC	NONE	0.01	-1.00	0.00	0.00000	0	0	0	0	0	0
	10	BMP	TON	14.90	-1.00	0.00	6.750000	0	0	63	0	0	0
	11	GAS	DKT	1.14	-1.00	0.00	5.080000	0	0	47	0	0	0
	12	COAL	TON	14.07	-1.00	0.00	2.880000	0	0	43	0	0	0
	13	GAS	DKT	1.14	-1.00	0.00	5.060000	0	0	50	0	0	0

PAGE 57

EGEAS EDIT

DATA BASE CONTENTS REPORT

CAPACITY PLANNING ALTERNATIVES

DATA SET REF. NO.	NAME	BASIC PLANT INSTALLED	GENERIC SITE	-AVAIL FIRST YEAR		TYPE	BASIC PLANT RETIRED		DEPE MULT	EQUISIT NDENCY IPLIER FLAG	E PLANNIN RETIRE. OPTION	LAG MIN	YEAR MAX	IVE REQUIRED OPTION
1	 GE 7EA	320	0	2027	2043	0	0	0	0	0	0 - NO	0		0
2	WRTSLA 18V50SG	410	0	2027	2043	0	0	0	0	0	0 - NO	0	-1	0
3	STORAGE1	1	0	2028	2043	0	0	12	1	0	0 - NO	0	-1	0
4	WRTSLA 31DF	4	0	2027	2043	0	0	0	0	0	0 - NO	0	-1	0
5	CFBC	490	0	2030	2043	0	0	0	0	0	0 - NO	0	-1	0
6	GE LM6000PH	340	0	2027	2043	0	0	0	0	0	0 - NO	0	-1	0
7	PURCHASE POWER	310	0	2024	2043	1	0	0	0	0	0 - NO	0	-1	0
8	GE 7EA 2x1 ADD	370	0	2027	2043	0	152 154	0 0	0 0	0 0	0 - NO 0 - NO	0 0	-1 -1	0 0
9	GE 7FA.05 1x1	380	0	2028	2043	0	0	0	0	0	0 - NO	0	-1	0
10	BIOMASS	430	0	2028	2043	0	0	0	0	0	0 - NO	0	-1	0
11	CFBC CO2	500	0	2030	2043	0	0	0	0	0	0 - NO	0	-1	0
12	PV SOLAR5	460	0	2028	2043	0	0	0	0	0	0 - NO	0	-1	0
13	WIND100	520	0	2028	2043	0	0	0	0	0	0 - NO	0	-1	0
14	GE LMS100PB	330	0	2027	2043	0	0	0	0	0	0 - NO	0	-1	0
16	PV SOLAR50	450	0	2028	2043	0	0	0	0	0	0 - NO	0	-1	0
19	SMN SGT-800 2x1	400	0	2028	2043	0	0	0	0	0	0 - NO	0	-1	0
22	WIND50	510	0	2026	2043	0	0	0	0	0	0 - NO	0	-1	0
23	WRTSLA 20V34SG	420	0	2027	2043	0	0	0	0	0	0 - NO	0	-1	0
40	STORAGE10	24	0	2028	2043	0	0	16	1	0	0 - NO	0	-1	0
43	STORAGE50	27	0	2028	2043	0	0	0	0	0	0 - NO	0	-1	0

EGEAS	EDIT	DATA BASE CONTENTS REPORT	PAGE	58
* * * * * * * *	* * * * * * * *	* * * * * * * * * * * * * * * * * * * *	******	* * * *

TRAJECTORIES

DATA SET REF. NO.	TRAJECTORY TYPE	YEAR M	RATE OR ULTIPLIER		RATE OR MULTIPLIER	YEAR	RATE OR MULTIPLIER	YEAR	RATE OR MULTIPLIER	YEAR 1	RATE OR MULTIPLIER
1	1 - RATE	2023 2028 2033 2038 2043	-2.71 0.62 0.70 0.71 0.70	2024 2029 2034 2039	0.60 0.66 0.69 0.69	2025 2030 2035 2040	0.66 0.71 0.71 0.74	2026 2031 2036 2041	0.65 0.71 0.72 0.73	2027 2032 2037 2042	0.63 0.70 0.72 0.75
2	1 - RATE	2023 2028 2033 2038 2043	-0.71 0.46 0.56 0.60 0.70	2024 2029 2034 2039	0.37 0.41 0.57 0.60	2025 2030 2035 2040	0.41 0.56 0.60 0.68	2026 2031 2036 2041	0.45 0.57 0.61 0.67	2027 2032 2037 2042	0.39 0.57 0.59 0.68
3	1 - RATE	2023	3.00								
4	1 - RATE	2023 2028	0.00	2024	6.67	2025	6.25	2026	5.88	2027	0.00
5	1 - RATE	2023	3.00								
6	1 - RATE	2023	3.00								
7	1 - RATE	2023	3.00								
8	1 - RATE	2023	3.00								
9	1 - RATE	2023 2028 2033 2038	0.00 0.00 0.00 0.00	2024 2029 2034 2039	0.00 0.00 0.00 0.00	2025 2030 2035 2040	0.00 0.00 0.00 -66.66	2026 2031 2036 2041	0.00 0.00 0.00 0.00	2027 2032 2037 2042	0.00 0.00 0.00 0.00
10	1 - RATE	2023	3.00								
11	1 - RATE	2023 2028	-47.03 3.00	2024	18.66	2025	14.78	2026	5.48	2027	7.01
12	1 - RATE	2023	3.00								
13	1 - RATE	2023	3.00								
14	1 - RATE	2023	0.00								
15	1 - RATE	2023	3.00								
16	1 - RATE	2023 2028	0.00	2024	0.00	2025	0.00	2026	0.00	2027	0.00
17	1 - RATE	2023	0.00	2024	0.00	2025	0.00	2026	0.00		

	POWER RESEARCH	INSTITUTE	· 		2024 IRP 				б, 	/ 28/ 24	12: 8: 0
EGEAS E *******	EDIT *************	* * * * * * * * *	* * * * * * * * * * *		BASE CONTEN'			* * * * * * * *	* * * * * * * * * * * *		PAGE 59 *****
					TRAJECTORI						
REF. NO.	TRAJECTORY TYPE	YEAR	RATE OR MULTIPLIER	YEAR	MULTIPLIER	YEAR	RATE OR MULTIPLIER	YEAR	MULTIPLIER	YEAR	MULTIPLIER
	1 - RATE		1.48 1.50				1.55				1.51
20	1 - RATE	2023	3.00								
21	1 - RATE	2023	25.00	2024	20.00	2025	0.00				
22	1 - RATE	2024	3.00								
23	1 - RATE	2023	3.00								
24	1 - RATE	2024	3.00								
25	1 - RATE	2024	3.00								
28	1 - RATE	2023	0.00	2024	0.00	2025	0.00				
29	1 - RATE	2023 2028 2033 2038 2043 2043	19.47 -3.83 -1.48 6.52 8.24 3.86	2024 2029 2034 2039 2044 2049	3.27 4.58 -0.22 -2.14 -5.32 3.08	2025 2030 2035 2040 2045 2050	1.60 -0.14 2.11 14.59 22.00 3.00	2026 2031 2036 2041 2046	2.37 5.31 2.48 0.64 -3.58	2027 2032 2037 2042 2047	3.79 0.25 -2.10 0.93 7.28
30	1 - RATE	2024	3.00								
31	1 - RATE	2023	3.00								
32	1 - RATE	2023 2028	0.00 0.00	2024	0.00	2025	-66.70	2026	0.00	2027	-100.00
33	1 - RATE		-11.35 3.00	2024	1.05	2025	-1.87	2026	-0.42	2027	0.21
34	1 - RATE	2023 2028	13.63 3.00	2024	-33.99	2025	1.05	2026	3.96	2027	0.00
38	1 - RATE	2023 2028	7.14 3.00	2024	1.78	2025	3.06	2026	2.97	2027	2.88
39	1 - RATE	2023 2028	7.31 3.00	2024	0.85	2025	-6.75	2026	-0.90	2027	36.07
40	1 - RATE	2028	0.00 0.00 -65.00	2024 2029 2034	0.00 0.00 0.00	2025 2030 2035		2026 2031 2036	0.00 0.00 0.00	2027 2032 2037	0.00 0.00 0.00
42	1 - RATE	2023	4.35	2024	4.17	2025	0.00				

1ELECTRIC POWER RESEARCH INSTITUTE 2024 IRP

6/28/24 12: 8: 0

1ELECTRIC POWER RESEARCH INSTITUTE

69 1 - RATE 2024 3.00

EGEAS EDIT DATA BASE CONTENTS REPORT PAGE 60

TRAJECTORIES

DATA SET REF. NO.	TRAJECTORY TYPE	YEAR	RATE OR MULTIPLIER	YEAR	RATE OR MULTIPLIER	YEAR	RATE OR MULTIPLIER	YEAR	RATE OR MULTIPLIER	YEAR	RATE OR MULTIPLIER
43	1 - RATE	2024	3.00								
44	1 - RATE	2023	3.00								
45	1 - RATE	2023	0.00	2024	0.00	2025	0.00				
46	1 - RATE	2023 2028 2033 2038 2043 2043	11.62 -3.63 -1.10 7.62 -0.84 9.14	2024 2029 2034 2039 2044 2049	1.47 0.76 0.62 3.29 12.57 9.85	2025 2030 2035 2040 2045 2050	-0.87 7.92 1.94 8.61 4.16 3.00	2026 2031 2036 2041 2046	1.69 3.98 0.03 0.60 1.34	2027 2032 2037 2042 2047	2.94 4.20 1.30 4.47 3.04
47	1 - RATE	2023 2028	-6.30 3.00	2024	1.05	2025	-1.87	2026	-0.42	2027	0.21
48	1 - RATE	2023	3.00								
49	1 - RATE	2023	0.00								
50	1 - RATE	2023 2028	-34.78 3.00	2024	8.18	2025	-9.24	2026	9.26	2027	-6.50
51	1 - RATE	2024 2029 2034 2039	3.00 3.00 12.97 3.00	2025 2030 2035 2040	3.00 3.00 21.18 3.00	2026 2031 2036 2041	3.00 3.00 3.00 3.00	2027 2032 2037 2042	3.00 3.00 3.00 3.00	2028 2033 2038 2043	3.00 14.03 3.00 3.00
54	1 - RATE	2024	3.00								
56	1 - RATE	2024	3.00								
58	1 - RATE	2024	3.00								
59	1 - RATE	2024	3.00								
60	1 - RATE	2024	3.00								
61	1 - RATE	2024	3.00								
62	1 - RATE	2024	3.00								
63	1 - RATE	2024	3.00								

EGEAS EDIT DATA BASE CONTENTS REPORT PAGE 61

LOADING BLOCKS

DATA REF.		NUMBER OF BLOCKS	BLOCK NUMBER	CAPACITY MULTIPLIER	HEAT RATE MULTIPLIER	FORCED OUTAGE RATE MULTIPLIER
	1	5	1	0.232558	1.843637	1.00000
			2	0.209302	0.776611	0.00000
			3	0.186047	0.630358	0.00000
			4	0.186047	0.771900	0.00000
			5	0.186047	0.794509	0.00000
	2	5	1	0.094675	3.261365	1.000000
			2	0.213018	0.875302	0.00000
			3	0.201183	0.678515	0.00000
			4	0.307692	0.658509	0.00000
			5	0.183432	0.903074	0.000000
	3	5	1	0.087394	3.046029	1.000000
			2	0.196663	0.817493	0.00000
			3	0.185726	0.633754	0.00000
			4	0.284111	0.621981	0.00000
			5	0.246106	1.132241	0.000000
	4	5	1	0.094633	2.949847	1.000000
			2	0.212947	0.791637	0.00000
			3	0.201122	0.613695	0.00000
			4	0.217192	0.640240	0.00000
			5	0.274106	1.057082	0.00000
	5	5	1	0.287540	1.600922	1.000000
			2	0.191693	0.736779	0.00000
			3	0.159744	0.700922	0.00000
			4	0.191693	0.763285	0.00000
			5	0.169329	0.827680	0.00000
	6	5	1	0.200000	1.000000	1.000000
			2	0.200000	1.000000	0.00000
			3	0.200000	1.000000	0.00000
			4	0.200000	1.000000	0.00000
			5	0.200000	1.000000	0.000000
	7	5	1	0.200000	1.000000	1.000000
			2	0.200000	1.000000	0.00000
			3	0.200000	1.000000	0.00000
			4	0.200000	1.000000	0.00000
			5	0.200000	1.000000	0.000000
	8	5	1	0.095337	3.259150	1.000000
			2	0.214508	0.874707	0.00000
			3	0.202591	0.678054	0.00000
			4	0.309845	0.658062	0.00000
			5	0.177720	0.902461	0.00000

EGEAS EDIT DATA BASE CONTENTS REPORT PAGE 62

LOADING BLOCKS

DATA SET REF. NO.	NUMBER OF BLOCKS	BLOCK NUMBER	CAPACITY MULTIPLIER	HEAT RATE MULTIPLIER	FORCED OUTAGE RATE MULTIPLIER
9	5	1	0.232558	1.843637	1.00000
		2	0.209302	0.776611	0.00000
		3	0.186047	0.630358	0.00000
		4	0.186047	0.771900	0.00000
		5	0.186047	0.794509	0.000000
10	5	1	0.232558	1.843637	1.000000
		2	0.209302	0.776611	0.00000
		3	0.186047	0.630358	0.000000
		4	0.186047	0.771900	0.000000
		5	0.186047	0.794509	0.000000
11	5	1	0.189189	1.200046	1.000000
		2	0.243243	1.152943	0.000000
		3	0.216216	0.880944	0.000000
		4	0.216216	0.864515	0.000000
		5	0.135135	0.851903	0.00000
12	5	1	0.338164	1.572175	0.801925
		2	0.144927	0.648776	0.085619
		3	0.193237	0.700848	0.111444
		4	0.144927	0.737264	0.130942
		5	0.178744	0.738719	0.231734
13	5	1	0.230947	1.814847	1.000000
10	0	2	0.207852	0.764273	0.000000
		3	0.184757	0.620991	0.000000
		4	0.184757	0.759400	0.000000
		5	0.191686	0.871078	0.000000
17	5	1	0.263168	1.242424	1.000000
- /	0	2	0.164225	0.796043	0.000000
		3	0.164225	0.863170	0.000000
		4	0.246291	0.947512	0.000000
		5	0.162092	1.031431	0.000000
18	5	1	0.351288	1.161202	1.000000
10	0	2	0.140515	0.891018	0.000000
		3	0.140515	0.902961	0.000000
		4	0.140515	0.915403	0.000000
		5	0.227166	0.930482	0.000000
19	5	1	0.232558	1.843637	1.000000
	9	2	0.209302	0.776611	0.000000
		3	0.186047	0.630358	0.000000
		4	0.186047	0.030330	0.000000
		5	0.186047	0.794509	0.000000
		5	0.10001/	0.151000	0.000000

EGEAS	EDIT	DATA BASE CONTENTS REPORT	PAGE	63
******	* * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * *	* * * *

ALLOWANCE FOR FUNDS USED DURING CONSTRUCTION

DATA SET REF. NO.	CALENDAR YEAR	COMPOUNDING OPTION	AFUDC RATE
1	2024	1 - COMPOUND	10.50

1ELECTRIC POWER RESEARCH INSTITUTE	2024 IRP	6/28/24 12: 8: 0	

EGEAS	EDIT	DATA BASE CONTENTS REPORT	PAGE	64
* * * * * * *	********	• * * * * * * * * * * * * * * * * * * *	* * * * * * * * * *	* * * *

CONSTRUCTION COST EXPENDITURE PATTERN -----

DATA SET REF. NO.	NUMBER OF YEARS	YEAR BEFORE ON-LINE	PERCENT OF COST								
31	4	1	13.70	2	35.10	3	34.80	4	16.50		
37	3	1	69.00	2	27.00	3	4.00				
38	1	1	100.00								

EGEAS EDIT DATA BASE CONTENTS REPORT PAGE 65

RETURN ON RATE BASE

DATA SET REFERENCE NUMBER 1 (DEFAULT)

	CAF	ITAL STRUCT	URE	RETURN	COST OF	DEBT	ANNUAL		CALCULATED
	COMMON	PREFERRED		ALLOWED	PREFERRED	INTEREST	INCOME	PROPERTY	RETURN ON
CALENDAR	STOCK	STOCK	DEBT	ON EQUITY	STOCK	RATE	TAX RATE	TAX RATE	RATE BASE
YEAR	PERCENT	PERCENT	PERCENT	PERCENT	PERCENT	PERCENT	PERCENT	PERCENT	PERCENT
2024	50.00	0.00	50.00	9.75	0.00	4.65	24.40	1.26	8.77

TAX DEPRECIATION TABLE

DATA SET REF. NO.	TAX LIFE YEARS	DH YEAR	EPRECIATION PERCENT	DI YEAR	EPRECIATION PERCENT	DH YEAR	EPRECIATION PERCENT	DH YEAR	PRECIATION PERCENT	DH YEAR	EPRECIATION PERCENT
20	21	1 6 11 16 21	3.75 5.28 4.46 4.46 2.22	2 7 12 17	7.22 4.89 4.46 4.46	3 8 13 18	6.68 4.52 4.46 4.46	4 9 14 19	6.18 4.46 4.46 4.46	5 10 15 20	5.71 4.46 4.46 4.46 4.46
21	20	1 6 11 16	3.75 5.28 4.46 4.46	2 7 12 17	7.22 4.89 4.46 4.46	3 8 13 18	6.68 4.52 4.46 4.46	4 9 14 19	6.18 4.46 4.46 4.46	5 10 15 20	5.71 4.46 4.46 6.69

EGEAS EDIT DATA BASE CONTENTS REPORT PAGE 67

SUBPERIOD DEFINITION

SEGMENT	WEEKS	HOURS	
1	13	2184	
2	13	2184	
3	13	2184	
4	13	2184	
	52	8736	
SEGMENT	SUBWEEK	HOURS	TIM

SEGMENT	SUBWEEK	HOURS	TIME FRAME	HOURS
ALL	1	60	1	60
	2	60	2	60
	3	48	3	48

SUBWEEK DEFINITION

DAY	HOUR	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
SUNDAY		3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
MONDAY		2	2	2	2	2	2	2	2	2	1	1	1	1	1	1	1	1	1	1	1	1	2	2	2
TUESDAY		2	2	2	2	2	2	2	2	2	1	1	1	1	1	1	1	1	1	1	1	1	2	2	2
WEDNESDAY	7	2	2	2	2	2	2	2	2	2	1	1	1	1	1	1	1	1	1	1	1	1	2	2	2
THURSDAY		2	2	2	2	2	2	2	2	2	1	1	1	1	1	1	1	1	1	1	1	1	2	2	2
FRIDAY		2	2	2	2	2	2	2	2	2	1	1	1	1	1	1	1	1	1	1	1	1	2	2	2
SATURDAY		3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3

1ELECTRIC POWER RESEARCH INST	ITUTE		2024 IRP	6/28/24 12: 8: 0
EGEAS EDIT ************************************	****	******	INDEX OF REPORTS	PAGE 68
CONTROL REPORT	PAGE	1		
MIRROR IMAGE REPORT	PAGE	2		
ERROR REPORT	PAGE	19		
	11102	10		
DATA BASE CONTENTS REPORT	PAGE	21		

Appendix B

EGEAS OUTPUT REPORT FOR THE SUMMER BASE CASE

4/ 1/24 14:43:50

EGEAS	REPORT	VERSION 13.0	2024 IRP	BUILD 1 - 10/31/18			

EEEEEEE	GGGGGG	EEEEEEE	AAAAA	SSSSSS
EEEEEEE	GGGGGGGG	EEEEEEE	AAAAAAA	SSSSSSSS
EE	GG GG	EE	AA AA	SS
EEEEEE	GG	EEEEEE	AAAAAAA	SSSSSSS
EEEEEE	GG GGG	EEEEEE	AAAAAAA	SSSSSSS
EE	GG GG	EE	AA AA	SS
EEEEEEE	GGGGGGGG	EEEEEEE	AA AA	SSSSSSSS
EEEEEEE	GGGGGG	EEEEEEE	AA AA	SSSSSS
ELECTRIC	GENERATION	EXPANSION	ANALYSIS	SYSTEM

REPORT PROGRAM

Montana-Dakota Utilities Co. 2024 Model Base Case Run -- Data updated for the 2024 Model

RPI 1529

ELECTRIC POWER RESEARCH INSTITUTE 3420 HILLVIEW AVENUE PALO ALTO, CALIFORNIA 94304 1ELECTRIC POWER RESEARCH INSTITUTE

EGEAS	REPORT	CONTROL REPORT	PAGE	1
******	*******	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * *	+++

REPORT FILE OPTION 0 - STANDARD

REPORT OPTIONS

CONTROL	1	-	GENERATE
MIRROR IMAGE	1	-	GENERATE
ERROR	3	-	ALL MESSAGES
REPORT SELECTION	1	-	GENERATE

INPUT FILES	NAME	VERSION	UPDATE	RUN	CREATION DATE	CREATION TIME	DESCRIPTION	EGEAS VERS.
EGEAS DATA BASE	2024	1	0		4/ 1/24	14:39:59	2024 IRP	1300
EXPANSION PLAN	2024	1	0	1	4/ 1/24	14:40: 2	2024 IRP	1300
SUBPERIOD REPORT	2024	1	0	1	4/ 1/24	14:40: 2	2024 IRP	1300
UNIT REPORT	2024	1	0	1	4/ 1/24	14:40: 2	2024 IRP	1300
UNIT CAPITAL COST REPORT	2024	1	0	1	4/ 1/24	14:40: 2	2024 IRP	1300

EGEAS REPORT ****************	****		ROR IMAGE REPORT PAGE	2 ****
HEADER RECORD		VERSION DATE & TIME MODIFIED 13 03/15/24 13:14:37		NUN 1
RECORD DESCRIPTION	TYP REF	SQ DAT	'A FIELDS	NUN
COLUMNS	123 45678 * *	1 2 3 90 12345678901234567890123456789 Montana-Dakota Utilities Co. 2024 Model	4 5 6 7 8 9 01234567890123456789012345678901234567890	2
	* * *	Base Case Run Data updated for the 202	24 Model	4
	* *	CONTROL RECORD SbUnUcc		5
	* * *	CMES F TIRE I LRRL L	DESCRIPTIVE INFORMATION	10 11 12
CONTROL RECORD	* CC *	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2024 IRP	13 14 15
	* * *	INPUT FILES NAME V U RUN ++-++++		1 (1 (1 (
ILE IDENTIFICATION	FF *	2024 1 0 1		1 2
	* * *	== PLAN SELECTION == PLANS C O C E M DR 1 L P M S N O	AREAS TO INCLUDE	2 2 2
LAN SELECTION	* RA *	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	++++++++	2 2 2
	* * *	== TIME PERIODS == YEARSSGSW- 1ST LAST 1 L 1 L		21 21 21
IME PERIOD	* RB *	++++++ - + 2024 2043 113 1 3		3 3 3
	* * *	S S S UOBRRSU DOSPD -PJ-	-FL -EMECON INTCOST -EM RED CAP SU SSU GCF TSTU CUT UCTCA RR I TU N	3
	*	Y U YAFNRLEEYN EPWRS C 1 L	YN YIN E+M RYIN OFF NOOOS AU N ON D	3

EGEAS * * * * * * *	REPORT	*****	*****	****	* * * * * * * * * * * * * * * * *	M	IRROR IMAG	GE REPORT	****	* * * * * * *	* * * * * *	* * * *	PAGE	: * * * *
RECORD	DESCRIPTION	TYP	REF	SQ		D	ATA FIELDS	3						NUN
	COLUMNS	123	45678	1 90	2 1234567890123450	3 578901234567	4 8901234567	5 7890123456	6 578901234567	7 890123	456789	8 0123	9 9 94567890	
		*				+-+-+ -++	+- +-+			- +-	C + 0	TI U -+ -	-	37 38 39
REPORT	SELECTION	RC *			1 2 0111101100	00000 0	10 000	001 0000	0.0000 0000	0 00	0	00 (J	4(

1electri	C POWER RESEARCH	INSTITUTE	2024	IRP	4/	1/24	14:43	3:50
EGEAS ******	REPORT ******	****	*****	DIAGNOSTIC SUMMARY	* * * * *		PAGE * * * * * * * * *	 4 ****

*****	* * * * * * * * * * * * * * * * * * * *
*****	* * * * * * * * * * * * * * * * * * * *
**	* *
* *	* *
** DIAGNOSTIC SUMM	MARY **
**	* *
* *	* *
** TERMINAL ERRORS	0 **
** FATAL ERRORS	0 **
** WARNING MESSAGES	0 **
** DEFAULTS	0 **
* *	* *
* *	* *
** HIGHEST ERROR LEVEL FOUN	ND IS NONE **
* *	* *
* *	* *
** REPORT PROGRAM INPUT SUC	CCEEDED **
* *	* *
* *	* *
* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *

lelectri	IC POWER RESEARCH INSTITUTE			4/ 1/24 14:43:50
	REPORT		SELECTED REPORTS *****	PAGE 5
RA	EXPANSION PLAN DIRECTORY	= 1 - YES		
			CAPACITY OPTION = 0 - RATED FIXED O+M OPTION = 1 - SEPARATE ITE	M IN PRODUCTION COST
	COST SCALING OPTION ENERGY SCALING OPTION MONTHLY OUTPUT OPTION	= 2 - 0.010 GWH		
RB	FIRST YEAR = 2024 FI LAST YEAR = 2043 LA			
RC	SYSTEM/DISPATCH OPTION	= 1 - SYSTEM A, IN	DEPENDENT DISPATCH	
	EXPANSION PLAN SUMMARY	= 2 - YES, WITH RES	ERVE CAPACITY	
	PRODUCTION COST REPORTS SYSTEM SERVICE AREAS FUEL CLASSES UNITS DETAILED COSTS BY UNITS NDT UTILIZTION	= 1 - ANNUAL = 1 - ANNUAL = 1 - ANNUAL = 0 - NO	UNIT ORDER OPTION = 1 - CAPACITY LOADING BLOCK OPTION = 0 - UNIT	FACTOR
	RELIABILITY REPORTS RELIABILITY RESERVE			
	FUEL USAGE REPORTS SYSTEM UNITS	= 1 - ANNUAL = 0 - NO		

EGEAS REPORT EXPANSION PLAN DIRECTORY PAGE 6

PLAN	1														
				EW UNI	TS ADE										
YEAR	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
2024	0	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
2025	0	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
2025	0	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
2020	0	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
2028	0	0	0	0	0	0	0	0	0.	0.	0.	0	0	0.	0.
2020	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2020	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2030	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2032	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2032	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2033	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2035	2+	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2036	0	Ö	1+	0	Ő	0	0	0	0	0	0	0	0	0	0
2030	0	0	0+	0	0	0	0	0	0	0	0	0	0	0	0
2038	0	0	0+	0	0	0	0	0	0	0	0	0	0	0	0
2030	0	0	0+	0	0	0	0	0	0	0	0	0	0	0	0
2035	0	0	0+	0	0	0	0	0	0	0	0	0	0	0	0
2040	0	0	0+	0	0	0	0	0	0	0	0	0	0	0	0
2041	2+	0	0+	0	0	0	0	0	0	0	0	0	0	0	0
2042	2+	0	0+	0	0	0	0	0	0	0	0	0	0	0	0
2045	<u>۲</u>														

PLAN 1

2024 IRP

EGEAS *****	REPORT	* * * * * * * * * * * *	*****		ON PLAN DIRECT		* * * * * * * * * * * * * * * * * * * *	PAGE 7
UNIT T	YPES 							
1 PA	7 PURCHASE POWER	10.000 MW	2 PA	8 GE 7EA 2x1 ADD	329.700 MW	3 PA	1 GE 7EA	77.900 MW
4 PA	6 GE LM6000PH	45.000 MW	5 PA	14 GE LMS100PB	99.900 MW	6 PA	9 GE 7FA.05 1x1	200.000 MW
7 PA	16 PV SOLAR50	50.000 MW	8 PA	12 PV SOLAR5	5.000 MW	9 PA	3 STORAGE1	1.000 MW
10 PA	40 STORAGE10	10.000 MW	11 PA	22 WIND50	50.000 MW	12 PA	2 WRTSLA 18V50SG	55.000 MW
13 PA 16 PA	23 WRTSLA 20V34SG 4 WRTSLA 31DF	36.500 MW 44.400 MW	14 PA	43 STORAGE50	50.000 MW	15 PA	13 WIND100	100.000 MW

NOTES: ALL COSTS ARE IN MILLIONS OF DOLLARS DISCOUNTED TO THE BEGINNING OF 2023. W/O $\rm EXT$ = COST FOR STUDY PERIOD ONLY.

WITH EXT = TOTAL COST FOR STUDY AND EXTENSION PERIODS.

+ MEANS CUMULATIVE NUMBER OF UNITS IS AT AN UPPER BOUND.

. MEANS LOWER AND UPPER BOUNDS ARE EQUAL.

2024 IRP

EGEAS	REPORT	EXPANSION PLAN SUMMARY

PAGE 8

PLAN 1

NUMBER OF NEW UNITS ADDED

YEAR	1	2	3	4	5	6	7	8	9	10
2024	0.00	0.00 .	0.00 .	0.00 .	0.00 .	0.00 .	0.00 .	0.00 .	0.00 .	0.00 .
2025	0.00	0.00 .	0.00 .	0.00 .	0.00 .	0.00 .	0.00 .	0.00 .	0.00 .	0.00 .
2026	0.00	0.00 .	0.00 .	0.00 .	0.00 .	0.00 .	0.00 .	0.00 .	0.00 .	0.00 .
2027	0.00	0.00	0.00	0.00	0.00	0.00 .	0.00 .	0.00 .	0.00 .	0.00 .
2028	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2029	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2030	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2031	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2032	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2033	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2034	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2035	2.00 +	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2036	0.00	0.00	1.00 +	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2037	0.00	0.00	0.00 +	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2038	0.00	0.00	0.00 +	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2039	0.00	0.00	0.00 +	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2040	0.00	0.00	0.00 +	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2041	0.00	0.00	0.00 +	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2042	2.00 +	0.00	0.00 +	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2043	2.00 +	0.00	0.00 +	0.00	0.00	0.00	0.00	0.00	0.00	0.00
TOTAL	8.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
NOTE:			I.UU IUMBER OF UN				0.00	0.00	0.00	0.0

. MEANS LOWER AND UPPER BOUNDS ARE EQUAL

UNIT TYPES -----

1 PA	7 PURCHASE POWER	10.000 MW 2	PA	8 GE 7EA 2x1 ADD	329.700 MW	3 PA	1 GE 7EA	77.900 MW
4 PA	6 GE LM6000PH	45.000 MW 5	PA	14 GE LMS100PB	99.900 MW	6 PA	9 GE 7FA.05 1x1	200.000 MW
7 PA	16 PV SOLAR50	50.000 MW 8	PA	12 PV SOLAR5	5.000 MW	9 PA	3 STORAGE1	1.000 MW
10 PA	40 STORAGE10	10.000 MW						

EGEAS	REPORT	EXPANSION PLAN SUMMARY	PAGE	9
* * * * * *	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * *	* * *

PLAN 1

NUMBER OF NEW UNITS ADDED

YEAR	11				15	16
2024	0.00 .		0.00 .			0.00
2025	0.00 .	0.00 .	0.00 .	0.00 .	0.00 .	0.00
2026	0.00 .	0.00 .	0.00 .	0.00 .	0.00 .	0.00
2027	0.00 .	0.00	0.00	0.00 .	0.00 .	0.00
2028	0.00	0.00	0.00	0.00	0.00	0.00
2029	0.00	0.00	0.00	0.00	0.00	0.00
2030	0.00	0.00	0.00	0.00	0.00	0.00
2031	0.00	0.00	0.00	0.00	0.00	0.00
2032	0.00	0.00	0.00	0.00	0.00	0.00
2033	0.00	0.00	0.00	0.00	0.00	0.00
2034	0.00	0.00	0.00	0.00	0.00	0.00
2035	0.00	0.00	0.00	0.00	0.00	0.00
2036	0.00	0.00	0.00	0.00	0.00	0.00
2037	0.00	0.00	0.00	0.00	0.00	0.00
2038	0.00	0.00	0.00	0.00	0.00	0.00
2039	0.00	0.00	0.00	0.00	0.00	0.00
2040	0.00	0.00	0.00	0.00	0.00	0.00
2041	0.00	0.00	0.00	0.00	0.00	0.00
2042	0.00	0.00	0.00	0.00	0.00	0.00
2043	0.00	0.00	0.00	0.00	0.00	0.00
TOTAL	0.00	0.00	0.00			0.00

UNIT TYPES

11 PA	22 WIND50	50.000 MW 12 PA	2 WRTSLA 18V50SG	55.000 MW 13 PA	23 WRTSLA 20V34SG	36.500 MW
14 PA	43 STORAGE50	50.000 MW 15 PA	13 WIND100	100.000 MW 16 PA	4 WRTSLA 31DF	44.400 MW

2024 IRP

EGEAS	REPORT	EXPANSION PLAN SUMMARY	PAGE	10
* * * * * * *	* * * * * * * * * * * * * * * * * * * *	***************************************	* * * * * * * * *	* * * *

PLAN 1

NEW CAPACITY ADDED, MW

YEAR	1	2	3	4	5	6	7	8	9	10
2024	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2025	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2026	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2027	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2028	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2029	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2030	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2031	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2032	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2033	10.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2034	10.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2035	20.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2036	0.000	0.000	77.900	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2037	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2038	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2039	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2040	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2041	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2042	20.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2043	20.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
TOTAL	80.000	0.000	77.900	0.000	0.000	0.000	0.000	0.000	0.000	0.000
NOTE:	. MEANS	LOWER AND U	JPPER BOUNDS	S ARE EOUAL						
UNIT T	YPES									

1 PA	7 PURCHASE POWER	10.000 MW 2 PA	8 GE 7EA 2x1 ADD	329.700 MW 3 PA	1 GE 7EA	77.900 MW
4 PA	6 GE LM6000PH	45.000 MW 5 PA	14 GE LMS100PB	99.900 MW 6 PA	9 GE 7FA.05 1x1	200.000 MW
7 PA	16 PV SOLAR50	50.000 MW 8 PA	12 PV SOLAR5	5.000 MW 9 PA	3 STORAGE1	1.000 MW
10 PA	40 STORAGE10	10.000 MW				

2024 IRP

36.500 MW 44.400 MW

EGEAS	REPORT	EXPANSION PLAN SUMMARY	PAGE	11							
*****	*****										

PLAN 1

NEW CAPACITY ADDED, MW

YEAR	11	12	13	14	15	16		
2024	0.000	0.000	0.000	0.000	0.000	0.000		
2025	0.000	0.000	0.000	0.000	0.000	0.000		
2026	0.000	0.000	0.000	0.000	0.000	0.000		
2027	0.000	0.000	0.000	0.000	0.000	0.000		
2028	0.000	0.000	0.000	0.000	0.000	0.000		
2029	0.000	0.000	0.000	0.000	0.000	0.000		
2030	0.000	0.000	0.000	0.000	0.000	0.000		
2031	0.000	0.000	0.000	0.000	0.000	0.000		
2032	0.000	0.000	0.000	0.000	0.000	0.000		
2033	0.000	0.000	0.000	0.000	0.000	0.000		
2034	0.000	0.000	0.000	0.000	0.000	0.000		
2035	0.000	0.000	0.000	0.000	0.000	0.000		
2036	0.000	0.000	0.000	0.000	0.000	0.000		
2037	0.000	0.000	0.000	0.000	0.000	0.000		
2038	0.000	0.000	0.000	0.000	0.000	0.000		
2039	0.000	0.000	0.000	0.000	0.000	0.000		
2040	0.000	0.000	0.000	0.000	0.000	0.000		
2041	0.000	0.000	0.000	0.000	0.000	0.000		
2042	0.000	0.000	0.000	0.000	0.000	0.000		
2043	0.000	0.000	0.000	0.000	0.000	0.000		
TOTAL	0.000	0.000	0.000	0.000	0.000	0.000		
UNIT TY	PES							
 11 PA	 22 WIND50		50.000 MW	12 PA 2	WRTSLA 18V5	0.SG 55.000	MW 13 PA	23 WRTSL
14 PA	43 STORAGE	50	50.000 MW		WIND100		MW 16 PA	4 WRTSL

EGEAS	REPORT						SION PLAN S		* * * * * * * * * * * * * * *	PAC	
***** PLAN	1	* * * * * * * * * *	******	* * * * * * * * * * * *	* * * * * * * * * * *	* * * * * * * * *	****	******	* * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * *	****
YEAR	PEAK LOAD,MW	ENERGY GWH	I INSTALLED	RATED CAPA(RETIRED	CITY, MW CHANGED		RESERVE CAPACITY	RESERVE PERCENT	RELATIVE RELIABILITY	.CAPITAL CO NEW UNITS	OSTS, M\$ CHANGES
BENCH	498.5	3274.20				1359.9	580.9		1.0000		
2024	485.0	3251.00	0.0	0.0	0.0	1359.9	580.9		1.0000	0.000	0.000
2025	487.9	3262.90	0.0	0.0	1.7	1361.6	582.6	21.13	1.0000		0.000
2026	491.1	3276.40	0.0	0.0	1.7	1363.2	584.3	20.73	1.0000	0.000	0.000
2027	494.3	3291.30	0.0	105.0	1.7	1259.9	556.0	13.68	1.0000	0.000	0.000
2028	497.4	3304.30	0.0	0.0	0.0	1259.9	556.0	12.91	1.0000	0.000	0.000
2029	500.5	3319.40	0.0	0.0	0.0	1259.9	556.0	12.14	1.0000	0.000	0.000
2030	503.8	3333.00	0.0	0.0	0.0	1259.9	556.0	11.34	1.0000	0.000	0.000
2031	507.4	3351.60	0.0	0.0	0.0	1259.9	556.0	10.48	1.0000	0.000	0.000
2032	511.0	3370.70	0.0	0.0	0.0	1259.9	556.0	9.63	1.0000	0.000	0.000
2033	514.6	3389.80	10.0	0.0	0.0	1269.9	566.0	10.91	1.0000	0.000	0.000
2034	518.2	3408.90	10.0	10.0	-19.5	1250.4	562.1	9.25	1.0000	0.000	0.000
2035	521.8	3428.20	20.0	10.0	0.0	1260.4	572.1	10.52	1.0000		0.000
2036	525.5	3448.90	77.9	50.0	0.0	1288.3	620.4	19.66	1.0000	230.686	0.000
2037	529.3	3469.80	0.0	0.0	0.0	1288.3	620.4	18.73	1.0000	0.000	0.000
2038	533.1	3490.20	0.0	0.0	0.0	1288.3	620.4	17.81	1.0000	0.000	0.000
2039	536.9	3511.20	0.0	0.0	0.0	1288.3	620.4	16.90	1.0000	0.000	0.000
2040	540.6	3532.20	0.0	0.0	0.0	1288.3	620.4	16.03	1.0000		0.000
2041	544.6	3556.10	0.0	0.0	-100.0	1188.3	595.9	10.23	1.0000		0.000
2042	548.6	3580.10	20.0		0.0	1158.3	603.7	10.89	1.0000		0.000
2043	552.7	3604.30	20.0	20.0	0.0	1158.3	603.7	10.00	1.0000	0.000	0.000

					UMMARY	
	PRODUCTION	CAPITAL		CUMULATIVE	PRESENT	CUMULATIVE
YEAR	COST	FIXED CHARGES	ANNUAL	ANNUAL	WORTH	PRES WORTH
2024	70.446		77.190	77.190	72.390	72.390
2024	72.927	6.744 6.744				
			79.671	156.861	70.072	142.462
2026	89.903	6.744	96.647	253.509	79.717	222.179
2027	92.320	6.744	99.064	352.573	76.630	298.809
2028	106.459	6.744	113.204	465.776	82.123	380.932
2029	107.716	6.744	114.461	580.237	77.872	458.804
2030	110.539	6.744	117.284	697.521	74.831	533.635
2031	116.063	6.744	122.808	820.329	73.484	607.118
2032	120.632	6.744	127.377	947.705	71.479	678.597
2033	124.598	6.744	131.342	1079.047	69.121	747.718
2034	128.897	6.744	135.641	1214.689	66.945	814.663
2035	131.509	6.744	138.254	1352.942	63.992	878.654
2036	142.279	29.905	172.184	1525.126	74.741	953.396
2037	146.230	29.905	176.135	1701.261	71.702	1025.098
2038	148.306	29.905	178.211	1879.473	68.037	1093.135
2039	157.186	29.905	187.091	2066.564	66.986	1160.121
2040	160.113	29.905	190.018	2256.582	63.804	1223.924
2041	187.179	29.905	217.084	2473.666	68.359	1292.284
2042	200.195	29.905	230.100	2703.767	67.953	1360.237
2043	206.903	29.905	236.808	2940.574	65.585	1425.822
EXT.	1108.882	109.703	200.000	2010.071	1218.585	2644.407

NOTES - ANNUAL COSTS ARE IN MILLIONS OF CURRENT DOLLARS. PRESENT WORTH COSTS ARE SHOWN FOR THE EXTENSION PERIOD.

- PRESENT WORTH COSTS ARE IN MILLIONS OF DOLLARS DISCOUNTED TO THE BEGINNING OF 2023.

- CAPACITY TOTALS INCLUDE BOTH SUPPLY-SIDE AND DEMAND-SIDE RESOURCES. SEE RESERVE REPORT FOR DETAILS.

1ELECTRIC POWER RESEARCH INSTITUTE	2024 IRP	4/ 1/24	14:43:50
EGEAS REPORT	PRODUCTION COST - ANNUAL BY SERVICE AREAS REPOR		PAGE 13

PLAN 1

YEAR	TOTAL ENERGY, GWH	SYSTEM COST, M\$	SERVICE ARE ENERGY, GWH	A - MDU Cost, M\$
2024	3251.00	70.446	3251.00	70.446
2025	3262.90	72.927	3262.90	72.927
2026	3276.40	89.903	3276.40	89.903
2027	3291.30	92.320	3291.30	92.320
2028	3304.30	106.459	3304.30	106.459
2029	3319.40	107.716	3319.40	107.716
2030	3333.00	110.539	3333.00	110.539
2031	3351.60	116.063	3351.60	116.063
2032	3370.70	120.632	3370.70	120.632
2033	3389.80	124.598	3389.80	124.598
2034	3408.90	128.897	3408.90	128.897
2035	3428.20	131.509	3428.20	131.509
2036	3448.90	142.279	3448.90	142.279
2037	3469.80	146.230	3469.80	146.230
2038	3490.20	148.306	3490.20	148.306
2039	3511.20	157.185	3511.20	157.185
2040	3532.20	160.111	3532.20	160.111
2041	3555.86	187.125	3555.86	187.125
2042	3579.90	200.148	3579.90	200.148
2043	3604.03	206.839	3604.03	206.839
EXT.	3604.03	1108.559	3604.03	1108.559

NOTES - ANNUAL COSTS ARE IN MILLIONS OF CURRENT DOLLARS.

- EXTENSION PERIOD COSTS ARE IN MILLIONS OF DOLLARS DISCOUNTED TO THE BEGINNING OF 2023.

- COSTS INCLUDE FUEL, VARIABLE O+M, AND FIXED O+M.

	RIC POW	VER RESEARCH INS	TITUTE	202	4 IRP			4/ 1/24	14:43:
	REPC		****			ANNUAL BY FUEL	CLASS REPOF		PAGE
LAN	1								
	YEAR	TOTAL S ENERGY, GWH	COST, M\$	**************************************	- STRG COST, M\$	FUEL CLASS ENERGY, GWH	COST, M\$	FUEL CLASS ENERGY, GWH	COST, M
	2024	3251.00	70.446	0.00	0.000	1492.55			9.375
	2025	3262.90	72 927	0 00	0 000	1533 31	40 578	0.00	
	2026	3276.40	89 903	0.00	0 000	1492.55 1533.31 1469.40 1227.08 1474.17 1469.69	39 629	0.04	9.650 9.948
	2020	3291.30	92 320	0.00	0.000	1227 08	33 427	0.08	10.249
	2027	3291.30	100 450	0.00	0.000	1474 17	10 007	0.08	
		3304.30	106.459	0.00	0.000	14/4.1/	42.967	0.09	10.55
	2029	3319.40	107.716	0.00	0.000	1469.69	41.234	0.10	10.874
	2030	3333.00	110.539	0.00	0.000	1506.88	43.312	0.12	11.201
	2031	3351.60	116.063	0.00	0.000	1581.16	43.312 48.163 47.565	0.12	11.538
	2032	3370.70	120.632	0.00	0.000	1506.00	47.565	0.15	11.880
	2033	3389.80	124.598	0.00	0.000	1550.04	50.742	0.18	12.244
	2034	3408.90	128.897	0.00	0.000	1714.71	56.061	0.19	12.612
	2035	3428.20	131.509	0.00	0.000	1761.40	58.074	0.22	12.993
	2036	3448.90	142.279	0.00	0.000	1906.25	64.210	0.26	17.702
	2037	3469.80	146 230	0.00	0 000	1854.66	63 019	0 30	18.23
	2038	3490.20	140.200	0.00	0.000	2107 20	72 167	0.30	18.81
	2038	2511 20	167 105	0.00	0.000	2107.20 2090.12	72.107	0.75	
		3511.20	157.185	0.00	0.000	2090.12	/0.58/	0.83	19.38
	2040	3532.20	160.111	0.00	0.000	2130.39	/8.535	1./4	20.03
	2041	3555.86	187.125	0.00	0.000	2190.00	90.294	25.60	22.469
	2042	3579.90	200.148	0.00	0.000	2190.23	91.672	38.69	24.121
	2043	3604.03	206.839	0.00	0.000	2190.29	94.152	46.28	25.434
	EXT.	3604.03	1108.559	0.00	0.000	2190.29	538.091	$\begin{array}{c} 0.15\\ 0.18\\ 0.19\\ 0.22\\ 0.26\\ 0.30\\ 0.75\\ 0.83\\ 1.74\\ 25.60\\ 38.69\\ 46.28\\ 46.28\\ 46.28\\ \end{array}$	129.162
	YEAR	FUEL CLASS ENERGY, GWH	- DSM Cost, M\$	FUEL CLASS ENERGY, GWH	- COAL COST, M\$	FUEL CLASS ENERGY, GWH	- WIND COST, M\$	FUEL CLASS ENERGY, GWH	COST, N
		0.00	2.072	966.71	34.944	736.70	-15.926	$\begin{array}{c} 40.70\\ 40.70\\ 40.70\\ 40.70\\ 40.70\\ 40.70\\ 40.70\\ 40.70\\ 40.70\\ 40.70\\ 40.70\\ 40.70\\ 40.70\\ 40.70\\ 40.70\\ 40.70\\ 40.70\\ \end{array}$	1.279
	2025	0.00	2 223	937 85	34 565	736 70	-15 752	40 70	1.31
	2025	0.00 0.00 0.00	2.225	1015 21	37 333	736.70	_1 079	40.70	1.34
	2020	0.00	2.223 2.381 2.546	1010.21			_0 804	40.70	1.38
	2027	0.00	2.540	1020 20	43.203	736.70	-0.094	40.70	1.41
			2.023	1050.29	42.010	730.70	0.332	40.70	1.41
	2029	0.00	2.702	1057.86	44.379	/36./0	6.728	40.70	1.45
	2030	0.00	2.783 2.866 2.953	1034.26	44.4/5	/36./0	6.930	40.70	1.493
	2031	0.00	2.866	978.57	44.481	736.70	7.138	40.70	1.533
	2032	0.00	2.953	1072.80	48.960	736.70	7.352	40.70	1.573
	2033	0.01 0.01	3.041	1047.84	49.039	736.70	7.572	40.70	1.615
	2034	0.01	3.133	961.91	47.877	677.04	7.212	40.70	1.65
	2035	0.01	3.227	934.49	47.741	677.04	7.428	40.70	1.701
	2036	0.00	3.323	934.49 900.69 973.14 740.54	48.461	736.70 736.70 736.70 736.70 736.70 736.70 736.70 677.04 677.04 586.65 586.65 586.65	6.492	40.70	1.740
	2037	0.00	3.423	973.14	52.729	586.65 586.65 586.65 586.65 586.65 195.59 0.00	6.686	40.70 40.70 40.70 40.70 40.70 40.70 40.70	1.793
	2038	0.02	3.530	740.54	44.722	586.65	6.887	40.70	1.840
	2039	0.02	3 635	778 53	48 250	586 65	7 094	40 70	1.889
	2039	0.02	3 755	750.33	10.200	586 65	7 206	10.70	1.940
		0.03	J./JJ 1 1 2 1	100.00	40.190	105 50	2 500	40.70	
	2041	0.94	4.131	1004.00	03.300	193.39	2.309	40.70	1.991
	2042	1.47 1.82 1.82	4.406	740.54 778.53 758.30 1088.68 1294.46 1310.59 1310.59	//.560	0.00	0.000	40.70 40.70 40.70	2.045
	2043 EXT.	1.82	4.632	T3T0.28	80.1//	0.00	0.000	40.70	2.099

1ELECTRIC POWER RESEARCH INSTITUTE	2024 IRP	4/ 1/24	14:43:50
 EGEAS REPORT	PRODUCTION COST - ANNUAL BY FUEL CLASS REPORT		PAGE 15

PLAN 1

YEAR	FUEL CLASS ENERGY, GWH	- HYDR COST, M\$	FUEL CLASS ENERGY, GWH	- SOLR COST, M\$
2024	14.35	0.344	0.00	0.000
2025	14.35	0.344	0.00	0.000
2026	14.35	0.344	0.00	0.000
2027	14.35	0.344	0.00	0.000
2028	14.35	0.344	0.00	0.000
2029	14.35	0.344	0.00	0.000
2030	14.35	0.344	0.00	0.000
2031	14.35	0.344	0.00	0.000
2032	14.35	0.344	0.00	0.000
2033	14.35	0.344	0.00	0.000
2034	14.35	0.344	0.00	0.000
2035	14.35	0.344	0.00	0.000
2036	14.35	0.344	0.00	0.000
2037	14.35	0.344	0.00	0.000
2038	14.35	0.344	0.00	0.000
2039	14.35	0.344	0.00	0.000
2040	14.35	0.344	0.00	0.000
2041	14.35	0.344	0.00	0.000
2042	14.35	0.344	0.00	0.000
2043	14.35	0.344	0.00	0.000
EXT.	14.35	1.229	0.00	0.000

NOTES - ANNUAL COSTS ARE IN MILLIONS OF CURRENT DOLLARS.

- EXTENSION PERIOD COSTS ARE IN MILLIONS OF DOLLARS DISCOUNTED TO THE BEGINNING OF 2023.

- COSTS INCLUDE FUEL, VARIABLE O+M, AND FIXED O+M.

GEAS REPORT	* * * * * * * * * * * *	* * * * * * * * *				ANNUAL BY U			******	PAGI * * * * * * * * *	
lan 1 year	2024			* CAPA	ACITY FA	CTOR ORDER *					
UNIT NAME			BTU/KWH		FACTOR %	GENERATION GWH	FUEL K\$		FIXED O + M K\$	PRODUCT: K\$	\$/MWH
DIAMOND WILLOW	NDT	30.000	0.	0.000		91.79				673.	7.3
CEDAR HILLS	NDT	19.500	Ο.	0.000	34.20			0.		578.	9.9
THUNDER SPIRIT		150.000	Ο.	0.000	44.77			-21730.	4553.	-17176.	-29.2
ENERGY		75.000	10500.	0.000	98.90	647.98	Ο.	15552.	0.	15552.	24.0
BIG STONE	MUST	107.800	10145.	2.250	74.53	701.84	16021.	2747.	3086.	21853.	31.1
GLEN ULLIN ORMAT	MUST	7.500	1.	0.000	62.12	40.70	0.	336.	943.	1279.	31.4
WAPA PUR-FT PECK	MUST	2.800	Ο.	0.000	58.67	14.35		344.		344.	24.0
MISO - Off peak	HYDR	250.000	10500.	0.000	38.61	843.25	Ο.	21865.	Ο.	21865.	25.9
COYOTE	MUST	106.800	12773.	2.350	28.39	264.87	7951.	1419.	3721.	13091.	49.4
MISO - On peak	HYDR	250.000	10500.	0.000	0.06	1.32	0.	41.	0.	41.	30.9
GLENDIVE CT #1		31.300	0.	0.000	0.00	0.00	0.	0.	216.	216.	0.0
GLENDIVE CT #2		43.300	Ο.	0.000	0.00	0.00	0.	Ο.	330.	330.	0.0
DIESEL 2		2.000	Ο.	0.000	0.00	0.00	Ο.	0.	40.	40.	0.0
DIESEL 3		2.000	Ο.	0.000	0.00	0.00	Ο.	0.	40.	40.	0.0
HESKETT #3		84.500	0.	0.000	0.00	0.00	0.	0.	3506.	3506.	0.0
HESKETT #4		88.000	0.	0.000	0.00	0.00	0.	0.	3545.	3545.	0.0
LEWIS & CLARK2		18.500	Ο.	0.000	0.00	0.00	0.	Ο.	1501.	1501.	0.0
CAPACITY		30.000	Ο.	0.000	0.00	0.00	0.	Ο.	900.	900.	0.0
INTERRUPTIBLES	D	15.200	Ο.	0.000	0.00	0.00	0.	Ο.	783.	783.	0.0
	D	25.000	Ο.	0.000	0.00	0.00	0.	Ο.	1289.	1289.	0.0
MILES CITY C.T.		20.700	0.	0.000	0.00	0.00	0.	0.	198.	198.	0.0

	* * * * * * * * * * * * *	* * * * * * * * * * *				• ANNUAL BY U *****			******	PAGI * * * * * * * *	
an 1 year	2025			* CAPA	CITY FA	CTOR ORDER *					
UNIT NAME	INST YEAR LODNG		HEAT RATE BTU/KWH	FUEL COST \$/MBTU	FACTOR %	GENERATION GWH	K\$	VAR. O + M K\$	FIXED O + M K\$	PRODUCT: K\$	\$/MWH
DIAMOND WILLOW	NDT	30.000	Ο.	0.000	35.02	91.79	0.	Ο.	693.	693.	7.5
CEDAR HILLS	NDT	19.500	Ο.	0.000	34.20	58.26			595.	595.	10.2
THUNDER SPIRIT	NDT	150.000	Ο.	0.000	44.77	586.65	Ο.	-21730.	4690.	-17040.	-29.0
ENERGY			10500.	0.000	99.20	649.97	Ο.	16249.	Ο.		25.0
BIG STONE	MUST	107.800	10143.	2.290	74.81	704.55	16365.	2840.	3178.	22384.	31.7
GLEN ULLIN ORMAT	MUST	7.500	1.	0.000	62.12	40.70	0.	341.	971.	1312.	32.2
WAPA PUR-FT PECK	MUST	2.800	Ο.	0.000	58.67	14.35	Ο.	344.	Ο.	344.	24.0
MISO - Off peak	HYDR	250.000	10500.	0.000	40.38	881.81	Ο.	23200.	Ο.	23200.	26.3
COYOTE	MUST	106.800	12771.	2.370	25.01	233.30	7061.	1287.	3833.	12181.	52.2
MISO - On peak	HYDR	250.000	10500.	0.000	0.07	1.53	0.	49.	0.	49.	31.9
GLENDIVE CT #1		31.300	0.	0.000	0.00	0.00	0.	0.	222.	222.	0.0
GLENDIVE CT #2		43.300	Ο.	0.000	0.00	0.00	Ο.		340.	340.	0.0
DIESEL 2		2.000	Ο.	0.000	0.00	0.00	Ο.	0.	41.	41.	0.0
DIESEL 3		2.000	Ο.	0.000	0.00	0.00	0.		41.	41.	0.0
HESKETT #3		84.500	0.	0.000	0.00	0.00	0.	0.	3611.	3611.	0.0
HESKETT #4		88.000	0.	0.000	0.00	0.00	0.	0.	3651.	3651.	0.0
LEWIS & CLARK2		18.500	Ο.	0.000	0.00	0.00	0.	Ο.	1546.	1546.	0.0
CAPACITY		30.000	Ο.	0.000	0.00	0.00	0.	Ο.	1080.	1080.	0.0
	D	15.200	Ο.	0.000	0.00	0.00	0.	Ο.	807.	807.	0.0
COMMERCIAL DSM	D	26.667	0.	0.000	0.00	0.00	0.	0.	1416.	1416.	0.0
MILES CITY C.T.		20.700	0.	0.000	0.00	0.00	0.	0.	204.	204.	0.0

GEAS REPORT ********	* * * * * * * * * * * * * * *	* * * * * * * * * *				ANNUAL BY U			* * * * * * * * *	PAGE	
lan 1 year	2026			* CAPA	ACITY FA	CTOR ORDER *					
			BTU/KWH	\$/MBTU	FACTOR %	GENERATION GWH	FUEL K\$	VAR. 0 + M K\$	FIXED 0 + M K\$	PRODUCTI K\$	\$/MW
DIAMOND WILLOW	NDT	30.000	Ο.	0.000	35.02	91.79	0.	0.	714.	714.	7.7
CEDAR HILLS	NDT	19.500		0.000	34.20	58.26			613.	613.	10.5
THUNDER SPIRIT		150.000		0.000	44.77	586.65			4830.		
GLEN ULLIN ORMAT				0.000		40.70			1001.	1346.	
BIG STONE	MUST	107.800	10216.	2.360	62.08	584.64	14096.	2428.	3274.	19797.	33.8
WAPA PUR-FT PECK	MUST	2.800	0.	0.000	58.67	14.35	0.	344.	0.	344.	24.0
MISO - Off peak	HYDR	250.000	10500.	0.000	50.14	1095.00	Ο.	28557.	Ο.	28557.	26.0
COYOTE	MUST	106.800	11709.	2.210	46.15	430.57	11142.	2447.	3948.	17536.	40.7
				0.000	44.20	289.62	Ο.	7241.	Ο.	7241.	25.0
MISO - On peak	HYDR	250.000	10500.	0.000	3.88	84.78	0.	2751.	0.	2751.	32.4
HESKETT #3		84.500	18553.	3.240	0.00	0.02	1.	0.	3719.	3720.18	9471.8
LEWIS & CLARK2		18.500	8900.	4.720	0.00	0.00	Ο.	Ο.	1592.	1593.51	3417.3
HESKETT #4		88.000	18088.	3.240	0.00	0.01	1.	Ο.	3761.	3761.38	8491.6
GLENDIVE CT #2		43.300	11128.	4.721	0.00	0.00	Ο.	Ο.	351.	351.12	2633.0
GLENDIVE CT #1		31.300	14522.	4.721	0.00	0.00	0.	0.	229.	229.14	3715.8
INTERRUPTIBLES	D	15.200	1.	0.000	0.00	0.00	0.	0.	831.	831.**	* * * * * *
DIESEL 2		2.000	8687.	14.401	0.00	0.00	0.	Ο.	42.	42.58	5102.0
DIESEL 3		2.000	8687.	14.401	0.00	0.00	0.	Ο.	42.	42.59	8814.5
MILES CITY C.T.		20.700	18471.	4.721	0.00	0.00	Ο.	Ο.	210.	210.30	6876.0
COMMERCIAL DSM	D	28.333	1.	0.000	0.00	0.00	0.	0.	1549.	1549.**	* * * * * *
CAPACITY		30.000	0.	0.000	0.00	0.00	0.	0.	1080.	1080.	0.0

LECTRIC POWER RESE	ARCH INSTITU 	TE 		2024 IRI					4/	1/24	14:43:50
GEAS REPORT ******	* * * * * * * * * * * *					ANNUAL BY U					
Lan 1 year	2027			* CAP	ACITY FA	CTOR ORDER *					
UNIT NAME	INST		RATE BTU/KWH	\$/MBTU	FACTOR %	GENERATION GWH	K\$	VAR. O + M K\$	FIXED 0 + M K\$	PRODUCT K\$	
DIAMOND WILLOW CEDAR HILLS	NDT NDT	30.000 19.500	0. 0.	0.000 0.000	35.02 34.20	91.79 58.26	0. 0.	0. 0.	735. 631.	735. 631.	8.0 10.8
THUNDER SPIRIT BIG STONE GLEN ULLIN ORMAT	MUST	150.000 107.800 7.500	10192.	0.000 2.430 0.000	74.71	586.65 703.58 40.70	17425.	3009.	4975. 3372. 1031.	-2261. 23806. 1382.	33.8
MISO - Off peak	MUST	250 000	0.	2.190 0.000 0.000	58.67 50.14	568.81 14.35 1095.00	0.	29039.	0.	21459. 344. 29039.	
MISO - On peak HESKETT #3	HYDR	250.000 84.500	10500. 18176.	0.000 3.540	6.05 0.01	132.08 0.04	0. 3.	4388. 0.	0. 3831.	4388. 3834.	33.2 88968.8
LEWIS & CLARK2 HESKETT #4		88.000	8830. 17472.	4.700 3.540	0.00	0.01	1.		1640. 3873.	3875.2	78432.2
GLENDIVE CT #2 INTERRUPTIBLES GLENDIVE CT #1	D	15.200	11176. 1. 14639.	4.701 0.000 4.701	0.00 0.00 0.00	0.01 0.00 0.00					56989.7 00158.5 86689.0
DIESEL 3		2.000	8687.	14.972 14.972	0.00	0.00		0.	43. 43.	43.3	95419.3 11087.5
MILES CITY C.T. COMMERCIAL DSM	D		18478. 1.	4.701 0.000	0.00 0.00	0.00 0.00	0. 0.	0. 0.	216.	216.1 1690.*	56822.5

LECTRIC POWER RESE											14:43:5
GEAS REPORT	* * * * * * * * * * * * *					ANNUAL BY U					
LAN 1 YEAR	2028			* CAP	ACITY FA	CTOR ORDER *					
		RATED	HEAT		CAP.			VAR.	FIXED O + M	DDODUGE	TON 000
UNIT NAME	INST YEAR LODNG		BTU/KWH	17	olo	GENERATION GWH	K\$	0 + M K\$	K\$	PRODUCT K\$	\$/MW
DIAMOND WILLOW	 NDT	30.000		0.000	35.02	91.79	0.	0.	 757.	757.	
CEDAR HILLS	NDT	19.500	Ο.	0.000	34.20	58.26	Ο.	Ο.	650.	650.	11.1
THUNDER SPIRIT	NDT	150.000		0.000	44.77	586.65	Ο.	Ο.	5125.	5125.	8.7
BIG STONE	MUST	107.800	10202.	2.500	85.60	806.12		3551.	3473.	27585.	34.2
GLEN ULLIN ORMAT	MUST	7.500	1.	0.000	62.12	40.70	0.	357.	1061.	1418.	34.8
WAPA PUR-FT PECK	MUST	2.800	0.	0.000	58.67	14.35	0.	344.	0.	344.	24.0
MISO - Off peak	HYDR	250.000	10500.	0.000	50.14	1095.00	Ο.	29893.	Ο.	29893.	27.3
COYOTE	MUST			2.980	24.88	232.17		1400.	4189.	14433.	62.1
MISO - On peak	HYDR	250.000	10500.	0.000	17.36	379.17	Ο.	13074.	Ο.	13074.	34.4
MISO - On peak HESKETT #3		84.500	17989.	3.310	0.01	379.17 0.05	3.	0.	3946.	3949.	81257.
LEWIS & CLARK2		18.500	8849.	4.710	0.00	0.01	0.	0.	1689.	1690.2	46514.9
HESKETT #4		88.000	17271.	3.310	0.00	0.02	1.	Ο.	3990.	3991.1	83604.0
GLENDIVE CT #2		43.300	11141.	4.711	0.00	0.01	Ο.	Ο.	372.	372.	51111.8
INTERRUPTIBLES	D	15.200	1.	0.000	0.00	0.00	Ο.	1.	882.	882.5	27328.0
GLENDIVE CT #1		31.300	14700.	4.711	0.00	0.00	0.	0.	243.	243.	74595.0
DIESEL 2			8687.	14.972	0.00	0.00	0.		45.		68251.5
DIESEL 3		2.000	8687.	14.972	0.00	0.00	Ο.	0.	45.	45.2	85181.9
MILES CITY C.T.		20.700	18454.	4.711	0.00	0.00	0.	Ο.	222.	223.1	43220.3
COMMERCIAL DSM	D	30.000	1.	0.000	0.00	0.00	Ο.	Ο.	1740.	1740.*	* * * * * * *

GEAS REPORT	* * * * * * * * * * * * *					ANNUAL BY U					
JAN 1 YEAR	2029			* CAP	ACITY FA	CTOR ORDER *					
	ALT	RATED	HEAT	FUEL	CAP.			VAR.	FIXED		
	INST	CAPACITY		COST		GENERATION		0 + M	0 + M	PRODUCT	
UNIT NAME	YEAR LODNG	MW	BTU/KWH	\$/MBTU 	90	GWH		K\$	K\$ 	K\$	
DIAMOND WILLOW	NDT	30.000		0.000	35.02	91.79	0.	0.	780.	780.	
CEDAR HILLS	NDT	19.500	Ο.	0.000	34.20	58.26	Ο.	Ο.	670.	670.	11.
THUNDER SPIRIT	NDT		0.	0.000	44.77	586.65	Ο.	Ο.	5278.	5278.	9.
BIG STONE	MUSI	107.800	10219.	2.575	84.32	794.04		3603.	3577.	28074.	35.
GLEN ULLIN ORMAT	MUSI	7.500	1.	0.000	62.12	40.70	0.	362.	1093.	1455.	35.
WAPA PUR-FT PECK	MUSI	2.800	0.	0.000	58.67	14.35	0.	344.	0.	344.	24.
MISO - Off peak	HYDF	250.000	10500.	0.000	50.14	1095.00	Ο.	28809.	Ο.	28809.	26.
COYOTE	MUSI		12784.	3.069	28.28	263.82	10353.	1638.	4314.	16305.	61.
MISO - On peak HESKETT #3	HYDR	250.000	10500.	0.000	17.16	374.69	Ο.	12424.	Ο.	12424.	33.
HESKETT #3		84.500	17807.	3.409	0.01	0.05	3.	0.	4064.	4068.	74535.
LEWIS & CLARK2		18.500	8851.	4.851	0.00	0.01	0.	0.	1740.	1740.2	31801.
HESKETT #4		88.000	16993.	3.409	0.00	0.03	1.	Ο.	4109.	4111.1	64088.
GLENDIVE CT #2		43.300	11077.	4.852	0.00	0.01	Ο.	Ο.	383.	384.	47521.
INTERRUPTIBLES	D	15.200	1.	0.000	0.00	0.00	0.	1.	908.	909.4	76401.
GLENDIVE CT #1		31.300	14515.	4.852	0.00	0.00	0.	0.	250.	251.	67144.
DIESEL 2			8687.	15.421	0.00	0.00	0.	0.	46.		47388.
DIESEL 3		2.000	8687.	15.421	0.00	0.00	0.	Ο.	46.	46.2	56395.
MILES CITY C.T.		20.700	18435.	4.852	0.00	0.00	Ο.	Ο.	229.	229.1	30575.
COMMERCIAL DSM	D	30.000	1.	0.000	0.00	0.00	Ο.	Ο.	1793.	1793.*	* * * * * *

 Geas report						ANNUAL BY U					E 22
*****	* * * * * * * * * * * * *										
LAN 1 YEAR	2030			* CAP	ACITY FA	CTOR ORDER *					
	ALT	RATED	HEAT	FUEL	CAP.			VAR.	FIXED		
	INST	CAPACITY	RATE	COST		GENERATION	FUEL	0 + M	0 + M	PRODUCT	ION COS
UNIT NAME	YEAR LODNG	MW	BTU/KWH	\$/MBTU		GWH		K\$	K\$ 	K\$	
DIAMOND WILLOW	NDT	30.000		0.000	35.02	91.79	0.	0.	803.		8.7
CEDAR HILLS	NDT	19.500	0.	0.000	34.20	58.26	Ο.	Ο.	690.	690.	
THUNDER SPIRIT	NDT		Ο.	0.000	44.77	586.65	Ο.	Ο.	5437.	5437.	9.2
BIG STONE	MUST	107.800	10215.	2.652	85.17	802.06	21729.	3748.	3684.	29162.	36.3
GLEN ULLIN ORMAT	MUST	7.500	1.	0.000	62.12	40.70	0.	367.	1126.	1493.	36.6
WAPA PUR-FT PECK	MUST	2.800	0.	0.000	58.67	14.35	0.	344.	0.	344.	24.0
MISO - Off peak	HYDR	250.000	10500.	0.000	50.14	1095.00	Ο.	29028.	0.	29028.	26.5
COYOTE	MUST		12784.	3.162	24.89	232.20	9385.	1485.	4444.	15313.	65.9
MISO - On peak	HYDR	250.000	10500.	0.000	18.86	411.88				14284.	34.6
MISO - On peak HESKETT #3		84.500	17784.	3.512	0.01	0.06	4.	0.	4186.	4190.	70230.4
LEWIS & CLARK2		18.500	8873.	4.997	0.01	0.01	0.	0.	1792.	1793.2	07808.0
HESKETT #4		88.000	17030.	3.512	0.00	0.03	2.	Ο.	4232.	4234.1	43019.5
GLENDIVE CT #2		43.300	11027.	4.997	0.00	0.01	1.	Ο.	395.	395.	39697.9
INTERRUPTIBLES	D	15.200	1.	0.000	0.00	0.00	Ο.	1.	935.	936.3	95467.1
GLENDIVE CT #1		31.300	14434.	4.997	0.00	0.00	0.	0.	258.	258.	55384.9
DIESEL 2		2.000	8687.	15.883	0.00	0.00	0.	0.	47.		07344.2
MILES CITY C.T.		20.700	18779.	4.997	0.00	0.00	Ο.	Ο.	236.	236.1	03977.0
DIESEL 3		2.000	8687.	15.883	0.00	0.00	0.	Ο.	47.	47.2	16020.3
COMMERCIAL DSM	D	30.000	1.	0.000	0.00	0.00	Ο.	Ο.	1846.	1847.*	* * * * * * *

LECTRIC POWER RESE	ARCH INSTIT	UTE 		2024 IR					4/	1/24	14:43:5
GEAS REPORT	****					ANNUAL BY U					
AN 1 YEAR	2031			* CAP	ACITY FA	CTOR ORDER *					
		RATED	HEAT		CAP.			VAR. O + M	FIXED O + M	DDODUG	TON 000
UNIT NAME	INST YEAR LODN		BTU/KWH	COST \$/MBTU	olo	GENERATION GWH	K\$	0 + M K\$	K\$	PRODUCI K\$	\$/MW
DIAMOND WILLOW	NDT		Ο.	0.000	35.02	91.79	0.	0.	827.	827.	
CEDAR HILLS	NDT		Ο.	0.000	34.20	58.26	Ο.	Ο.	711.	711.	
THUNDER SPIRIT				0.000		586.65			5600.		9.
	MUS			2.732		714.69			3795.	27181.	
GLEN ULLIN ORMAT	MUS	T 7.500	1.	0.000	62.12	40.70	0.	373.	1160.	1533.	37.
WAPA PUR-FT PECK	MUS	T 2.800	0.	0.000	58.67	14.35	0.	344.	0.	344.	24.
MISO - Off peak	HYD	R 250.000	10500.	0.000	50.14	1095.00	Ο.	31328.	Ο.	31328.	28.
COYOTE	MUS			3.256		263.88		1738.		17300.	65.
MISO - On peak HESKETT #3	HYD	R 250.000	10500.	0.000		486.16	Ο.	16836.		16836.	34.
HESKETT #3		84.500	18844.	3.617	0.01	0.06	4.	0.	4312.	4316.	68305.
LEWIS & CLARK2		18.500	8829.	5.147	0.01	0.01	0.	0.	1846.	1846.1	98664.2
HESKETT #4		88.000	16420.	3.617	0.00	0.03	2.	Ο.	4359.	4361.1	58992.
GLENDIVE CT #2		43.300	11221.	5.147	0.00	0.01	1.		406.	407.	42249.8
GLENDIVE CT #1		31.300	14596.	5.147	0.00	0.00	Ο.	Ο.	266.	266.	54207.5
INTERRUPTIBLES	D	15.200	1.	0.000	0.00	0.00	0.	1.	964.	964.4	87090.0
MILES CITY C.T.		20.700	18730.	5.147	0.00	0.00	0.	0.	243.	243.1	04853.7
DIESEL 2		2.000	8687.	16.360	0.00	0.00	Ο.	Ο.	49.	49.2	50837.8
DIESEL 3		2.000		16.360	0.00	0.00	0.		49.	49.2	
COMMERCIAL DSM	D	30.000	1.	0.000	0.00	0.00	Ο.	Ο.	1902.	1902.*	******

 Geas report						ANNUAL BY U				 РАС	E 24
****	*****										
LAN 1 YEAR	2032			* CAP	ACITY FA	CTOR ORDER *					
	ALT	RATED	HEAT	FUEL	CAP.			VAR.	FIXED		
	INST	CAPACITY	RATE	COST	FACTOR	GENERATION	FUEL	0 + M	0 + M	PRODUCI	ION COS
UNIT NAME	YEAR LODNG	MW	BTU/KWH	\$/MBTU		GWH		K\$	K\$	K\$	\$/MW
DIAMOND WILLOW	NDT	30.000		0.000	35.02	91.79	0.	0.	852.	852.	
CEDAR HILLS	NDT	19.500	Ο.	0.000	34.20	58.26	Ο.	Ο.	732.	732.	12.5
THUNDER SPIRIT		150.000	Ο.	0.000			Ο.	Ο.	5768.	5768.	9.8
BIG STONE	MUST	107.800	10202.	2.814	85.90	808.93	23221.	4011.	3909.	31141.	38.5
GLEN ULLIN ORMAT	MUST	7.500	1.	0.000	62.12	40.70	0.	378.	1195.	1573.	38.6
WAPA PUR-FT PECK	MUST	2.800	0.	0.000	58.67	14.35	0.	344.	0.	344.	24.0
MISO - Off peak	HYDR	250.000	10500.	0.000	50.14	1095.00	Ο.	32576.	0.	32576.	29.7
COYOTE	MUST		12784.	3.354	28.28	263.87	11314.	1790.	4714.	17819.	67.5
MISO - On peak	HYDR	250.000	10500.	0.000	18.82	411.00	Ο.	14989.	0.	14989.	36.4
MISO - On peak HESKETT #3		84.500	17287.	3.726	0.01	0.08	5.	0.	4441.	4446.	55723.6
LEWIS & CLARK2		18.500	8873.	5.301	0.01	0.01	1.	0.	1901.	1902.1	71698.9
HESKETT #4		88.000	17259.	3.726	0.00	0.04	2.	Ο.	4490.	4493.1	17618.2
GLENDIVE CT #2		43.300	10961.	5.302	0.00	0.01	1.	Ο.	419.	419.	34692.9
INTERRUPTIBLES	D	15.200	1.	0.000	0.00	0.00	Ο.	1.	992.	993.3	41624.8
GLENDIVE CT #1		31.300	14370.	5.302	0.00	0.01	0.	0.	274.	274.	48608.1
DIESEL 2		2.000	8687.	16.851	0.00	0.00	0.	0.	50.		56098.9
MILES CITY C.T.		20.700	18419.	5.302	0.00	0.00	Ο.	Ο.	250.	251.	84438.7
DIESEL 3		2.000	8687.	16.851	0.00	0.00	Ο.	Ο.			88985.5
COMMERCIAL DSM	D	30.000	1.	0.000	0.00	0.00	Ο.	1.	1959.	1959.*	******

JECTRIC POWER RESEA										1/24 1	
GEAS REPORT	* * * * * * * * * * * * *					ANNUAL BY U					
JAN 1 YEAR	2033			* CAP	ACITY FA	CTOR ORDER *					
UNIT NAME	INST	RATED CAPACITY MW	BTU/KWH	\$/MBTU	FACTOR %	GENERATION	FUEL K\$	VAR. O + M K\$		PRODUCTI K\$	\$/MWH
DIAMOND WILLOW CEDAR HILLS THUNDER SPIRIT	NDT NDT	30.000 19.500 150.000	0. 0.		35.02 34.20	91.79 58.26 586.65	0. 0.	0. 0.	878.		9.5
	MUST	107.800 7.500	10201. 1.	2.898 0.000		815.58 40.70		4165. 384.	4026. 1230.	32303. 1615.	39.6 39.6
WAPA PUR-FT PECK MISO - Off peak COYOTE MISO - On peak HESKETT #3	MUST HYDR	250.000 106.800 250.000	10500. 12783.	0.000 0.000 3.455 0.000 3.837	50.14 24.89 20.83	14.35 1095.00 232.25 455.04 0.09	0. 10257. 0.	33945. 1623. 16636.	0. 4856. 0.	344. 33945. 16736. 16636. 4581. 4	36.5
LEWIS & CLARK2 HESKETT #4 GLENDIVE CT #2 INTERRUPTIBLES GLENDIVE CT #1		18.500 88.000 43.300 15.200 31.300	17116. 10939. 1.	5.460 3.837 5.461 0.000 5.461	0.01 0.01 0.00 0.00 0.00	0.01 0.04 0.01 0.00 0.01		0.	431.		7608.0 9917.4
DIESEL 3 MILES CITY C.T. COMMERCIAL DSM	D 2033	2.000 20.700 30.000		17.356 17.356 5.461 0.000 0.000	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0. 0. 0. 0.	0. 0. 1.	52. 258. 2017.	258. 7	3252.3 0983.1 4553.8

LECTRIC POWER RESE		JTE		2024 IRI	2				4/	1/24 1	L4:43:50
GEAS REPORT ******				PRODUCTIO	I COST -	ANNUAL BY U	NITS REF	ORT			
lan 1 year	2034			* CAP	ACITY FA	CTOR ORDER *					
UNIT NAME	INST YEAR LODNG		BTU/KWH	FUEL COST \$/MBTU	FACTOR %	GENERATION GWH	K\$	VAR. O + M K\$	FIXED O + M K\$	PRODUCTI K\$	\$/MWH
DIAMOND WITTOW	NDT	10 500	0.	0.000	35.02	32.13	0.	0.	316.		9.85
CEDAR HILLS THUNDER SPIRIT	NDT	19.500	Ο.	0.000		58.26	Ο.	Ο.		777.	
THUNDER SPIRIT	NDT	150.000	Ο.	0.000		586.65			6119.	6119.	
BIG STONE	MUSI	107.800	10152.		74.12	698.01		3672.		28972.	
GLEN ULLIN ORMAT	MUSI	7.500	1.	0.000	62.12	40.70	0.	390.	1267.	1657.	40.7
WAPA PUR-FT PECK	MUSI			0.000	58.67	14.35	0.	344.	0.	344.	24.0
MISO - Off peak	HYDF	250.000	10500.	0.000	50.14	1095.00				33573.	30.6
MISO - On peak COYOTE HESKETT #3	HYDF	250.000	10500.	0.000	28.38			22322.		22322.	
COYOTE	MUSI	106.800	12784.	3.558		263.90	12004.	1900.	5001.		71.6
HESKETT #3		84.500	17186.	3.953	0.01	0.10	7.	0.	4711.	4718. 4	18020.9
LEWIS & CLARK2		18.500	8884.	5.624	0.01	0.01	1.	Ο.	2017.	2018.14	13073.6
HESKETT #4		88.000	17368.	3.953	0.01	0.05	з.	Ο.	4764.	4767. 9	98446.3
GLENDIVE CT #2			10929.	5.625	0.00	0.02	1.	Ο.	444.	445. 2	
INTERRUPTIBLES	D	15.200	1.	0.000	0.00	0.00	Ο.	1.		1054.26	50872.8
GLENDIVE CT #1		31.300	14348.	5.625	0.00	0.01	1.	0.	290.	291. 3	39911.1
DIESEL 2		2.000	8687.	17.877	0.00	0.00	0.	0.	53.	53.13	31948.7
DIESEL 3		2.000	8687.	17.877	0.00	0.00	Ο.	Ο.	53.	53.13	38138.3
MILES CITY C.T.		20.700	18382.	5.625	0.00	0.00	Ο.	Ο.	266.	266.6	58899.0
COMMERCIAL DSM	D	30.000	1.	0.000	0.00	0.00	Ο.	1.	2078.	2079.85	57339.9
PURCHASE POWER	2034	10.000	1.	0.000	0.00	0.00	Ο.	0.	166.	166.**	******

GEAS REPORT	* * * * * * * * * * * * *	* * * * * * * * * *				ANNUAL BY U			*******	PAGE	
lan 1 year	2035			* CAPA	ACITY FA	CTOR ORDER *					
UNIT NAME		RATED CAPACITY MW	BTU/KWH	FUEL COST \$/MBTU	FACTOR %	GENERATION GWH	FUEL K\$	VAR. O + M K\$	FIXED 0 + M K\$	PRODUCTI K\$	\$/MW
DIAMOND WILLOW		10.500	0.	0.000	35.02	32.13	Ο.	0.	326.	326.	10.1
	NDT	19.500		0.000		58.26			800.	800.	
THUNDER SPIRIT			0.	0.000	44.77			0.	6303.	6303.	10.7
	MUST			3.075		702.20		3804.	4271.	29985.	42.7
GLEN ULLIN ORMAT	MUST	7.500	1.	0.000	62.12	40.70	0.	396.	1305.	1701.	41.8
WAPA PUR-FT PECK	MUST	2.800	Ο.	0.000	58.67	14.35				344.	24.0
MISO - Off peak	HYDR	250.000	10500.	0.000	50.14	1095.00				33781.	
MISO - On peak	HYDR	250.000	10500.	0.000	30.51	666.40		23950.		23950.	
COYOTE	MUST	106.800	12783.	3.665	24.90			1722.		17756.	76.4
MISO - Off peak MISO - On peak COYOTE HESKETT #3		84.500	17189.	4.071	0.01	0.11	8.	0.	4853.	4861. 4	4167.9
LEWIS & CLARK2		18.500		5.793	0.01	0.02	1.	0.	2078.	2079.12	24971.9
HESKETT #4		88.000	16938.	4.071	0.01	0.06	4.	Ο.	4907.	4911. 8	35690.2
GLENDIVE CT #2			10900.	5.793	0.01	0.02	1.		457.	459.2	
INTERRUPTIBLES	D	15.200		0.000	0.00	0.01	0.		1084.	1086.19	
GLENDIVE CT #1		31.300	14313.	5.793	0.00	0.01	1.	0.	299.	300. 3	32308.0
DIESEL 2		2.000	8687.	18.413	0.00	0.00	0.	0.	55.	55.10	05903.5
DIESEL 3		2.000		18.413	0.00	0.00	0.	Ο.	55.	55.11	10917.6
MILES CITY C.T.		20.700		5.793	0.00	0.00	1.		274.	274. 5	5202.2
COMMERCIAL DSM	D	30.000		0.000	0.00	0.00	Ο.	1.	2140.	2141.65	
PURCHASE POWER	2035	10.000	1.	0.000	0.00	0.00	0.	Ο.	171.	171.85	4164.5
PURCHASE POWER	2035	10.000	1.	0.000	0.00	0.00	0.	0.	171.	171.**	* * * * * *

LECTRI	**************************************				2024 IRE					4/	1/24 1	4:43:50		
		-	* * * * * * *	*****					ANNUAL BY U					
LAN	1	YEAR	2036				* CAP	ACITY FA	CTOR ORDER *					
UNIT	NAME		ALT INST YEAR		RATED CAPACITY MW		FUEL COST \$/MBTU	CAP. FACTOR %	GENERATION GWH	FUEL	VAR. 0 + M K\$	FIXED O + M K\$	PRODUCTI K\$	
THUNE	DER SPII	RIT		NDT	150.000		0.000	44.77	586.65	0.	0.	6492.	6492.	
BIG S	STONE			MUST	107.800	10141.	3.167	67.61	636.71	20448.	3553.	4399.	28401.	44.6
GLEN	ULLIN (ORMAT		MUST	7.500	1.	0.000	62.12	40.70	Ο.	402.	1345.	1746.	42.9
WAPA	PUR-FT			MUST	2.800	Ο.	0.000	58.67	14.35	Ο.	344.	0.	344.	24.0
MISO	- Off]	peak		HYDR	250.000	10500.	0.000	50.14	1095.00	0.	34438.	0.	34438.	31.4
MISO	- On pe	eak		HYDR	250.000	10500.	0.000	37.15	811.25	0.	29773.	0.	29773.	36.7
COYOI				MUST	106.800	12783.	3.775	28.29	263.98		2016.	5306.	20060.	75.9
	STT #3					17972.	4.193	0.02			Ο.	4998.	5008. 3	88442.8
	S & CLA	rk2					5.967	0.01	0.02	1.	0.	2140.		
HESKE	STT #4				88.000	17031.	4.193	0.01	0.06	5.	0.	5054.	5059.7	8101.0
GLEND	DIVE CT	#2			43.300		5.967	0.01	0.02	1.	0.		473. 2	
	RUPTIB					1.	0.000	0.00	0.00	Ο.	1.	1117.	1118.34	
GE 7E	EA		2036			17864.	5.220	0.00	0.01	1.	0.	4316.	4317.30	
GLEND	DIVE CT	#1			31.300		5.967	0.00	0.01	0.	0.		308. 5	
DIESE	SL 2				2.000	8687.	18.966	0.00	0.00	0.	0.	57.	57.18	81144.4
DIESE	EL 3				2.000		18.966	0.00	0.00	0.	0.		57.18	
MILES	S CITY (20.700		5.967	0.00	0.00				282. 9	
COMME	ERCIAL	DSM		D	30.000	1.	0.000	0.00	0.00	Ο.	Ο.	2205.	2205.**	*****

LECTRIC POWER	**************************************			2024 IRI	?				4/	1/24 1	4:43:50	
	*****	* * * * * * * * * *	* * * * * * * * * *				ANNUAL BY U					
LAN 1 Y	YEAR 2	037			* CAPA	ACITY FA	CTOR ORDER *					
		ALT	RATED	HEAT	FUEL	CAP.			VAR.	FIXED		
		INST	CAPACITY	RATE	COST	FACTOR	GENERATION	FUEL	0 + M	0 + M	PRODUCTI	ON COS
UNIT NAME		YEAR LODN	g MW	BTU/KWH	\$/MBTU		GWH	K\$	K\$	K\$	K\$	
THUNDER SPIRI	т	NDT	150.000	0.	0.000	44.77		0.	0.	6686.	6686.	
BIG STONE		MUS	r 107.800	10141.	3.262	75.30	709.14	23459.	4076.	4531.	32066.	45.2
GLEN ULLIN OR	RMAT	MUS' MUS'	r 7.500	1.	0.000	62.12	40.70	Ο.	408.	1385.	1793.	44.0
WAPA PUR-FT P		MUS		Ο.	0.000	58.67	14.35	Ο.	344.	Ο.	344.	24.0
MISO - Off pe	eak	HYDI	R 250.000	10500.	0.000	50.14	1095.00	0.	34449.	0.	34449.	31.4
MISO - On pea	ak	HYDI	R 250.000	10500.	0.000	34.78	759.66	0.	28571.	0.	28571.	37.6
			r 106.800		3.888	28.30	264.00	13121.	2076.	5465.	20663.	78.2
HESKETT #3			84.500	16892.	4.319	0.02	0.15	11.	Ο.	5148.	5159. 3	4495.1
LEWIS & CLARK	ζ2		18.500	8892.	6.146	0.01	0.02	1.	Ο.	2204.	2206.10	1481.7
HESKETT #4				17213.	4.319	0.01		6.		5205.	5211. 6	9520.3
GLENDIVE CT #	≢2		43.300	10847.	6.146	0.01	0.02	2.	Ο.	485.	487.2	0295.5
INTERRUPTIBLE	IS	D	15.200	1.	0.000	0.00	0.00	Ο.	1.	1150.	1152.32	9984.4
GE 7EA		2036	77.900	17271.	5.376	0.00	0.02	1.	Ο.	4446.	4447.28	6272.2
GLENDIVE CT #	1		31.300	14307.	6.146	0.00	0.01	1.	Ο.	317.	318. 5	4270.5
DIESEL 2			2.000	8687.	19.534	0.00	0.00	0.	0.	58.	58.17	4822.1
			2.000	8687.	19.534	0.00	0.00	0.	0.	58.		5001.5
MILES CITY C.	т.		20.700	18348.	6.146	0.00	0.00	Ο.	Ο.	290.	291. 9	3301.8
COMMERCIAL DS	SM	D	30.000	1.	0.000	0.00	0.00	Ο.	1.	2271.	2271.**	* * * * * *

LECTRIC POWER RESE	EARCH INS	STITUTH	E 		2024 IRE	? 				4/	1/24	14:43:50
GEAS REPORT *************	******						ANNUAL BY U					
lan 1 year	2038				* CAP	ACITY FA	CTOR ORDER *					
	INST		CAPACITY	HEAT RATE	COST	CAP. FACTOR	GENERATION	FUEL	VAR. O + M	FIXED O + M	PRODUCT	
UNIT NAME	IEAR I	LODNG	MW	BTU/KWH	\$/MBTU	%	GWH	КŞ 	K\$	K\$	K\$. ,
THUNDER SPIRIT GLEN ULLIN ORMAT		MUST	150.000 7.500	1.	0.000	62.12	586.65 40.70	0.	414.	6887. 1426.	6887. 1840.	45.2
WAPA PUR-FT PECK BIG STONE			2.800	0. 10330.	0.000 3.360	58.67 53.92	14.35 507.83	0. 17626.	344. 3006.	0. 4667.	344. 25299.	24.0 49.8
MISO - Off peak			250.000	10500.	0.000	50.14			34898.		34898.	49.0 31.8
MISO - On peak		HYDR	250.000	10500.	0.000	46.35	1012.19				37269.	
COYOTE		MUST		12778.	4.005	24.94			1885.	5629.	19423.	
HESKETT #3			84.500	16199.	4.449	0.05			1.	5303.	5331.	
LEWIS & CLARK2 HESKETT #4			18.500 88.000	8864. 16380.	6.330 4.449	0.03 0.02	0.06 0.18	3. 13.		2270. 5362.	2274. 5375.	
GLENDIVE CT #2			43.300	10665.	6.331	0.02	0.07	4.	0.	500.	505.	7751.1
	1		15.200	1.	0.000	0.01	0.01	0.	З.	1185.	1188.1	
GLENDIVE CT #1			31.300	14157.	6.331	0.01	0.02	2.	0.	327.		18728.0
GE 7EA			77.900	16422.	5.537	0.01	0.04	4.	0.	4579.		
DIESEL 3			2.000	8687.	20.121	0.01	0.00	0.	0.	60.	60.	61174.1
			2.000	8687.	20.121	0.01	0.00	0.	0.		60.	
MILES CITY C.T.			20.700		6.331	0.01	0.01	1.	Ο.		300.	
COMMERCIAL DSM	1	D	30.000	1.	0.000	0.00	0.01	0.	З.	2339.	2341.2	69409.6

LECTRIC POWER RESE	ARCH INSTIT	JTE 		2024 IR	? 				4/	1/24	14:43:50
GEAS REPORT	* * * * * * * * * * *					ANNUAL BY U					
JAN 1 YEAR	2039			* CAP	ACITY FA	CTOR ORDER *					
UNIT NAME	INST	RATED CAPACITY G MW		COST	CAP. FACTOR %	GENERATION GWH	FUEL	VAR. O + M K\$	FIXED O + M K\$	PRODUCT K\$	
THUNDER SPIRIT	 NDT	150.000	0.	0.000	44.77	586.65			 7094.	7094.	
GLEN ULLIN ORMAT	MUS		1.	0.000	62.12	40.70			1469.	1889.	46.4
WAPA PUR-FT PECK	MUS	r 2.800	Ο.	0.000	58.67	14.35	0.	344.	0.	344.	24.0
BIG STONE	MUS		10323.	3.461	54.59	514.12	18366.	3135.	4807.	26308.	51.1
MISO - Off peak	HYD	R 250.000	10500.	0.000	50.14	1095.00	0.	37559.	0.	37559.	34.3
MISO - On peak	HYD	R 250.000	10500.	0.000	45.56	995.12	0.	39029.	0.	39029.	39.2
COYOTE	MUS	r 106.800	12778.	4.125	28.34	264.42			5798.	21942.	82.9
HESKETT #3		84.500	16026.	4.582	0.06			1.	5462.	5493.	13188.2
LEWIS & CLARK2		18.500	8863.	6.520	0.04	0.06			2338.	2342.	
HESKETT #4		88.000	16436.	4.582	0.03	0.21	16.	0.	5522.	5539.	26233.7
GLENDIVE CT #2		43.300	10642.	6.520	0.02	0.07	5.	0.	515.	520.	7719.7
	D			0.000	0.01	0.01	Ο.	З.	1221.	1224.1	
ge 7ea	2036		16481.	5.704	0.01	0.05	4.	0.	4716.	4721.	
GLENDIVE CT #1		31.300		6.520	0.01	0.02	2.	Ο.		338.	
DIESEL 2		2.000	8687.	20.724	0.01	0.00	0.	0.	62.	62.	62284.0
		2.000	8687.	20.724	0.01	0.00				62.	
MILES CITY C.T.		20.700		6.520	0.01	0.01				309.	
COMMERCIAL DSM	D	30.000	1.	0.000	0.00	0.01	Ο.	З.	2409.	2412.2	83116.5

LECTRIC POWER RE	**************************************			2024 IRE					4/	1/24	14:43:50	
	* * * * * * * * * *	* * * * * * *					ANNUAL BY U					
lan 1 yea	R 2040				* CAP	ACITY FA	CTOR ORDER *					
	ALT		RATED	HEAT	FUEL	CAP.			VAR.	FIXED		
	INST		CAPACITY	RATE	COST	FACTOR	GENERATION		0 + M	0 + M	PRODUC	FION COS
UNIT NAME	YEAR		MW	BTU/KWH	\$/MBTU	%	GWH	K\$	K\$	K\$	K\$	\$/MW
THUNDER SPIRIT		NDT	150.000	Ο.	0.000		586.65	0.	0.	7306.	7306.	
GLEN ULLIN ORMA	Т	MUST	7.500	1.	0.000	62.12	40.70	Ο.	426.	1513.	1940.	47.6
WAPA PUR-FT PEC	K	MUST	2.800	Ο.	0.000	58.67		Ο.	344.	Ο.	344.	24.0
				10316.	3.564	55.68	524.40	19283.	3294.	4952.	27528.	52.4
MISO - Off peak		HYDR	250.000	10500.	0.000	50.14	1095.00	0.	38796.	0.	38796.	35.4
MISO - On peak		HYDR	250.000	10500.	0.000	47.41	1035.40	0.	39739.	0.	39739.	38.3
COYOTE		MUST	106.800	12763.	4.249	25.07	233.90	12684.	2010.	5972.	20666.	88.3
HESKETT #3			84.500	15523.	4.719	0.11	0.83	61.	1.	5626.	5688.	6878.4
LEWIS & CLARK2			18.500	8840.	6.715	0.08	0.12	7.	1.	2409.	2417.	19447.0
HESKETT #4			88.000	15793.	4.719	0.06	0.45			5688.	5722.	12762.5
GLENDIVE CT #2			43.300	10492.	6.716	0.04	0.16	11.	1.	530.	542.	3448.4
INTERRUPTIBLES		D	15.200	1.	0.000	0.02	0.03	Ο.	9.	1257.	1266.	44668.7
GE 7EA	2036		77.900	15798.	5.875	0.02	0.11	11.	Ο.	4858.	4868.	42770.3
GLENDIVE CT #1			31.300	14014.	6.716	0.02	0.04	4.	Ο.	347.	351.	8198.7
DIESEL 3			2.000	8687.	21.346	0.01	0.00	0.	0.	64.	64.	26071.7
DIESEL 2			2.000	8687.	21.346	0.01	0.00	0.	0.		64.	
MILES CITY C.T.			20.700	18092.	6.716	0.01	0.02	з.	Ο.	317.	320.	13565.5
COMMERCIAL DSM			30.000	1.	0.000	0.01	0.03	Ο.	8.	2481.	2489.	95963.0

ELECTRI	**************************************					2024 IRI	? 				4/	1/24	14:43:50	
			* * * * * * *	*****	*******	:*******	PRODUCTION	J COST -	ANNUAL BY U	NITS REE ******	ORT ********	*******	PAG	E 33
LAN	1	YEAR	2041				* CAPA	ACITY FA	CTOR ORDER *					
UNIT	NAME		ALT INST YEAR		RATED CAPACITY MW		COST	CAP. FACTOR %	GENERATION GWH	FUEL	VAR. O + M K\$	FIXED O + M K\$		ION COS \$/MW
BIG S	DER SPI STONE ULLIN	RTT		NDT	50.010 107.800 7.500	0.	0.000 3.671 0.000	44.77 76.34	718.89	26856.	0. 4651. 433.	2509. 5100. 1559.	2509. 36607.	
WAPA	PUR-FI	PECK		MUST	2.800 250.000	Ο.	0.000	58.67	14.35 1095.00	0.	344.	0.	344.	48.9 24.0 38.4
COYOT HESKE	TE STT #3			MUST	250.000 106.800 84.500	11960.	0.000 4.376 4.861	50.14 39.64 1.74		19355. 921.	3274. 20.	0. 6151. 5794.	48158. 28779. 6735.	
LEWIS	3 & CLA STT #4	ARK2			18.500	8802. 15096.	6.917 4.861	0.94 0.82	1.53 6.28		9. 9.	2481. 5859.	2583. 6329.	1692.8 1008.0
INTER GE 7E GLEND	DIVE CI	3LES 7 #1	2036	D	77.900 31.300	1. 15053. 13845.	6.918 0.000 6.051 6.918	0.56 0.35 0.26 0.23	0.64	62.			5169. 423.	3082.6 2888.20 658.54
	EL 3 5 CITY	с.т.			2.000 2.000 20.700	8687. 17928.	21.986 21.986 6.918	0.22 0.21 0.19	0.04 0.35	43.	0. 2.	66. 327.	372.	1958.1 1071.3
COMME	ERCIAL	DSM		D	30.000	1.	0.000	0.18	0.47	Ο.	141.	2556.	2697.	5726

LECTRIC POWER RESE	ARCH IN	ISTITUI	ГЕ 		2024 IRI	?				4/	1/24	14:43:50
GEAS REPORT *************	* * * * * * *	*****	******	* * * * * * * * * *	PRODUCTION *********						PAG	E 34
lan 1 year	2042				* CAPA	ACITY FA	CTOR ORDER *					
	ALT		RATED	HEAT	FUEL	CAP.			VAR.	FIXED		
	INST		CAPACITY	RATE	COST	FACTOR	GENERATION			0 + M	PRODUCT	ION COST
UNIT NAME	YEAR		MW		\$/MBTU		GWH		K\$	K\$	K\$	\$/MW
			107.800 7.500			87.79	826.73	31845.	5509.	5253.	42607.	51.5
GLEN ULLIN ORMAT		MUST	7.500	1.	0.000	62.12	40.70	Ο.	439.	1606.	2045.	50.2
WAPA PUR-FT PECK		MUST	2.800	Ο.	0.000	58.67	14.35	Ο.	344.	Ο.	344.	24.0
MISO - Off peak		HYDR	250.000	10500.	0.000		1095.00				42387.	38.7
MISO - On peak		HYDR	250.000	10500.	0.000	50.14	1095.00	0.	48465.	0.	48465.	44.2
COYOTE		MUST	106.800	11550.	4.508	50.13	467.74	24352.	4265.	6335.	34953.	74.7
HESKETT #3			84.500	14309.	5.007	2.57	18.96	1358.	30.	5968.	7356.	388.0
LEWIS & CLARK2			18.500		7.124	1.46	2.37	148.	15.	2555.	2718.	1149.2
HESKETT #4			88.000	14814.	5.007	1.25	9.64	715.	15.	6035.	6764.	701.6
GLENDIVE CT #2			43.300	10206.	7.125	0.87	3.29	239.	24.	563.	826.	251.1
INTERRUPTIBLES		D	15.200	1.	0.000	0.54	0.71	0.	214.	1334.	1548.	2170.1
GE 7EA	2036		77.900	14813.	6.232	0.41	2.81	260.	4.	5154.	5417.	1927.2
GLENDIVE CT #1			31.300	13788.	7.125	0.35	0.96	95.	7.	368.	470.	486.8
DIESEL 2			2.000	8687.	22.646	0.33	0.06	11.	0.	68.	79.	1361.0
GLENDIVE CT #1 DIESEL 2 DIESEL 3			2.000	8687.	22.646	0.33	0.06	11.	0.	68.	79.	1388.1
				17881.	7.125	0.30	0.55	70.	4.	336.	410.	749.8
				1.	0.000	0.29	0.75	Ο.	226.	2632.	2858.	3795.2
PURCHASE POWER	2042		10.000	1.	0.000	0.15	0.13	0.	232.	210.	443.	3343.2
PURCHASE POWER	2042		10.000	1.	0.000	0.11	0.10	Ο.	167.	210.	377.	3964.1

	STONE MUST 107.800 10196. 3.895 90.50 852.29 33848. 5849. 5411. 45108. A PUR-FT PECK MUST 2.800 0. 0.000 58.67 14.35 0. 344. 0. 344. O - Off peak HYDR 250.000 10500. 0.000 50.14 1095.00 0. 44282. 0. 44282. O - On peak HYDR 250.000 10500. 0.000 50.14 1095.00 0. 48914. 0. 48914. OTE MUST 106.800 11392. 4.643 49.12 458.30 24239. 4304. 6526. 35069. KETT #3 84.500 14188. 5.157 3.15 23.23 1700. 38. 6147. 7885. 3 IS & CLARK2 18.500 8795. 7.338 1.75 2.83 183. 18. 2632. 2833. 10 NDIVE CT #2 43.300 10192. 7.339 1.02 3.88 290. 29. 579. 899. 2 ERRUP												
GEAS REPORT	*****	* * * * * *	*****	******	* * * * * * * * * *	PRODUCTION	I COST -	ANNUAL BY U	NITS REF ******	ORT *******	******		
LAN 1	YEAR	2043				* CAPA	ACITY FA	CTOR ORDER *					
		ALT		RATED	HEAT	FUEL	CAP.			VAR.	FIXED		
		INST		CAPACITY	RATE	COST	FACTOR	GENERATION	FUEL	0 + M	0 + M	PRODUCT	ION COS
UNIT NAME		YEAR	LODNG	MW	BTU/KWH	\$/MBTU		GWH					
BIG STONE			MUST	107.800	10196.	3.895		852.29					52.9
GLEN ULLIN O	RMAT		MUST	7.500	1.	0.000	62.12	40.70	Ο.	446.	1654.	2099.	51.5
WAPA PUR-FT	PECK		MUST	2.800	0.	0.000	58.67						24.0
MISO - Off p	eak		HYDR	250.000	10500.	0.000	50.14	1095.00	Ο.	44282.	0.	44282.	40.4
MISO - On pe	ak		HYDR	250.000	10500.	0.000	50.14	1095.00	0.	48914.	0.	48914.	44.6
COYOTE			MUST	106.800	11392.	4.643	49.12	458.30	24239.	4304.	6526.	35069.	76.5
heskett #3				84.500		5.157	3.15	23.23	1700.	38.	6147.	7885.	339.4
LEWIS & CLAR	K2			18.500	8795.	7.338	1.75	2.83	183.	18.	2632.	2833.	1000.2
HESKETT #4				88.000	14773.	5.157	1.43	11.01	839.	17.	6216.	7072.	642.0
GLENDIVE CT	#2			43.300	10192.	7.339	1.02	3.88	290.	29.	579.	899.	231.9
INTERRUPTIBL	ES		D	15.200	1.	0.000	0.66	0.88	0.	264.	1374.	1638.	1862.4
GE 7EA		2036		77.900	14764.	6.419	0.49	3.31	314.	5.	5308.	5627.	1700.3
GLENDIVE CT	#1			31.300	13782.	7.339	0.44	1.20	121.	9.	379.	509.	425.3
DIESEL 2				2.000	8687.	23.325	0.41	0.07			70.	85.	1188.8
DIESEL 3				2.000	8687.	23.325	0.39	0.07	14.	1.	70.	84.	1230.3
MILES CITY C	.т.			20.700	17881.	7.339	0.38	0.68	89.	5.	347.	441.	649.3
COMMERCIAL D	SM		D	30.000	1.	0.000	0.36	0.95	Ο.	284.	2711.	2995.	3168.4
PURCHASE POW	ER	2043		10.000	1.	0.000	0.19	0.17	Ο.	304.	217.	521.	3094.0
PURCHASE POW	ER	2043		10.000	1.	0.000	0.14	0.12	Ο.	219.	217.	436.	3589.9

1ELECTRI	IC POWER RESEARCH	INSTITUTE 2024 IRP	4/ 1/24	14:43:	:50
EGEAS	REPORT	RELIABILITY - ANNUAL REPORT	P	PAGE	36
* * * * * * *	* * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	*******************************	* * * * * * * *	* * *

PLAN 1

			RESERVE	RESERVE	EMERGENCY			OPERATING		
	PEAK LOAD	ENERGY	CAPACITY	MARGIN	CAPACITY	LOSS ()F LOAD	CAPACITY	UNSERVED	ENERGY
YEAR	MW	GWH	MW	PCT.	MW	HOURS	PROB.	MM	GWH	PCT.
2024	485.0	3251.00	580.9	21.45	1357.4	0.00	0.00000	1332.2	0.00	0.00
2025	487.9	3262.90	582.6	21.13	1359.1	0.00	0.000000	1333.8	0.00	0.00
2026	491.1	3276.40	584.3	20.73	1360.7	0.00	0.000000	1335.5	0.00	0.00
2027	494.3	3291.30	556.0	13.68	1257.4	0.00	0.000000	1232.2	0.00	0.00
2028	497.4	3304.30	556.0	12.91	1257.4	0.00	0.000000	1232.2	0.00	0.00
2029	500.5	3319.40	556.0	12.14	1257.4	0.00	0.000000	1232.2	0.00	0.00
2030	503.8	3333.00	556.0	11.34	1257.4	0.00	0.000000	1232.2	0.00	0.00
2031	507.4	3351.60	556.0	10.48	1257.4	0.00	0.000000	1232.2	0.00	0.00
2032	511.0	3370.70	556.0	9.63	1257.4	0.00	0.000000	1232.2	0.00	0.00
2033	514.6	3389.80	566.0	10.91	1267.4	0.00	0.000000	1242.2	0.00	0.00
2034	518.2	3408.90	562.1	9.25	1247.9	0.00	0.000000	1222.7	0.00	0.00
2035	521.8	3428.20	572.1	10.52	1257.9	0.00	0.000000	1232.7	0.00	0.00
2036	525.5	3448.90	620.4	19.66	1285.8	0.00	0.000000	1254.3	0.00	0.00
2037	529.3	3469.80	620.4	18.73	1285.8	0.00	0.000000	1254.3	0.00	0.00
2038	533.1	3490.20	620.4	17.81	1285.8	0.00	0.000000	1254.3	0.00	0.00
2039	536.9	3511.20	620.4	16.90	1285.8	0.00	0.000000	1254.3	0.00	0.00
2040	540.6	3532.20	620.4	16.03	1285.8	0.00	0.000000	1254.3	0.01	0.00
2041	544.6	3556.10	595.9	10.23	1185.8	0.00	0.000000	1154.3	0.24	0.01
2042	548.6	3580.10	603.7	10.89	1155.8	0.00	0.000000	1124.3	0.21	0.01
2043	552.7	3604.30	603.7	10.00	1155.8	0.00	0.000000	1124.3	0.27	0.01
EXT.	552.7	3604.30	603.7	10.00	1155.8	0.00	0.000000	1124.3	0.27	0.01

NOTE - RESERVE MARGIN: ANNUAL CALCULATION, CAPACITIES NOT DERATED FOR MAINTENANCE. SEE RESERVE REPORT FOR DETAIL.

- LOSS OF LOAD: ANNUAL CALCULATION, CAPACITIES DERATED FOR MAINTENANCE.

- RESERVE, EMERGENCY AND OPERATING CAPACITIES SHOWN ABOVE ARE NOT DERATED FOR MAINTENANCE.

- CAPACITY TOTALS INCLUDE BOTH SUPPLY-SIDE AND DEMAND-SIDE RESOURCES.

1ELECTRI	IC POWER RESEARCH INSTITUTE	2024 IRP	4/ 1/24	14:43	3:50
EGEAS	REPORT	RESERVE - ANNUAL REPORT	F	PAGE	37
******	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *	* * * * * * * *	* * * *

PLAN 1

	LOADS				RESOURCES				RESERVE
YEAR	PEAK LOAD MW	PURCH./SALE CONTRACTS	DEMAND-SIDE MANAGEMENT	NET LOADS MW	CAPACITY MW	RESERVE SHARING	PURCH./SALE CONTRACTS	NET RESOURCES MW	MARGIN PCT.
2024	485.0	0.0	-37.9	447.1	543.0	0.0	0.0	543.0	21.45
2025	487.9	0.0	-39.6	448.3	543.0	0.0	0.0	543.0	21.13
2026	491.1	0.0	-41.3	449.8	543.0	0.0	0.0	543.0	20.73
2027	494.3	0.0	-43.0	451.3	513.0	0.0	0.0	513.0	13.68
2028	497.4	0.0	-43.0	454.4	513.0	0.0	0.0	513.0	12.91
2029	500.5	0.0	-43.0	457.5	513.0	0.0	0.0	513.0	12.14
2030	503.8	0.0	-43.0	460.8	513.0	0.0	0.0	513.0	11.34
2031	507.4	0.0	-43.0	464.4	513.0	0.0	0.0	513.0	10.48
2032	511.0	0.0	-43.0	468.0	513.0	0.0	0.0	513.0	9.63
2033	514.6	0.0	-43.0	471.6	523.0	0.0	0.0	523.0	10.91
2034	518.2	0.0	-43.0	475.2	519.1	0.0	0.0	519.1	9.25
2035	521.8	0.0	-43.0	478.8	529.1	0.0	0.0	529.1	10.52
2036	525.5	0.0	-43.0	482.5	577.3	0.0	0.0	577.3	19.66
2037	529.3	0.0	-43.0	486.3	577.3	0.0	0.0	577.3	18.73
2038	533.1	0.0	-43.0	490.1	577.3	0.0	0.0	577.3	17.81
2039	536.9	0.0	-43.0	493.9	577.3	0.0	0.0	577.3	16.90
2040	540.6	0.0	-43.0	497.6	577.3	0.0	0.0	577.3	16.03
2041	544.6	0.0	-43.0	501.6	552.9	0.0	0.0	552.9	10.23
2042	548.6	0.0	-43.0	505.6	560.6	0.0	0.0	560.6	10.89
2043	552.7	0.0	-43.0	509.7	560.6	0.0	0.0	560.6	10.00
EXT.	552.7	0.0	-43.0	509.7	560.6	0.0	0.0	560.6	10.00

1ELECTRIC POWER RESEARCH INSTITUTE 2024 IRP

EGEAS	REPORT	FUEL USAGE -	ANNUAL REPORT	PAGE	38
*****	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * *	* * * *

FUEL	ENERGY A GENERATED A	AVERAGE UNIT HT. RATE OF	HEAT CONTENI MBTU/	-	EL CONSUMPTI	ON, MASS UNI	TS	FUEL COST	TOTAL FUI	EL COST
TYPE	GWH	BTU/KWH MASS	MASS UNIT	TOTAL	NOT USED	MINIMUM	MAXIMUM	\$/MBTU	K\$	\$/MWH
WH	40.70	1.NONE	0.01 4	1.07000E+03				0.00	Ο.	0.00
COAL	701.84	10145.TON	16.44 4	.33106E+05				2.25	16021.	22.83
COAL	264.87	12773.TON	14.13 2	2.39436E+05				2.35	7951.	30.02
PURC	1492.55	10500.NONE	0.01 1	.56718E+09				0.00	Ο.	0.00

1ELECTRIC POWER RESEARCH INSTITUTE

2024 IRP

EGEAS	REPORT	FUEL USAGE -	- ANNUAL R	REPORT	PAGE	39
* * * * * * *	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * *	* * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	*******	* * *

FUEL	ENERGY A GENERATED I	AVERAGE UNIT HT. RATE OF	HEAT CONTENT MBTU/	-	EL CONSUMPTI	ION, MASS UNI	TS	FUEL COST	TOTAL FUI	EL COST
TYPE	GWH	BTU/KWH MASS	MASS UNIT	TOTAL	NOT USED	MINIMUM	MAXIMUM	\$/MBTU	K\$	\$/MWH
WH	40.70	1.NONE	0.01 4	1.07000E+03				0.00	0.	0.00
COAL	704.55	10143.TON	16.44 4	1.34702E+05				2.29	16365.	23.23
COAL	233.30	12771.TON	14.13 2	2.10856E+05				2.37	7061.	30.27
PURC	1533.31	10500.NONE	0.01 1	.60998E+09				0.00	Ο.	0.00

EGEAS	REPORT	FUEL USAGE - ANNUAL REPORT	PAGE	40
*****	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	*******	* * * *

FUEL TYPE	ENERGY GENERATED GWH	AVERAGE UNIT HT. RATE OF BTU/KWH MASS	HEAT CONTENT MBTU/ MASS UNIT		EL CONSUMPTI NOT USED	ION, MASS UNI MINIMUM	TS MAXIMUM	FUEL COST \$/MBTU	TOTAL FU K\$	EL COST \$/MWH
GAS	0.01	13158.DKT	1.14 5	5.93155E+01				4.72	0.	62.11
OIL2	0.00	8687.GAL	39.17 3	3.15505E-02				14.40	0.	125.11
DSM	0.00	1.NONE	0.01 1	L.19816E-01				0.00	0.	0.00
WH	40.70	1.NONE	0.01 4	1.07000E+03				0.00	0.	0.00
COAL	584.64	10216.TON	16.44 3	3.63309E+05				2.36	14096.	24.11
COAL	430.57	11709.TON	14.13 3	3.56787E+05				2.21	11142.	25.88
PURC	1469.40	10500.NONE	0.01 1	L.54287E+09				0.00	Ο.	0.00
GAS	0.00	8900.DKT	1.14 2	2.42165E+01				4.72	Ο.	42.01
GAS	0.03	18399.DKT	1.14 4	1.73172E+02				3.24	2.	59.62

EGEAS	REPORT	FUEL USAGE - ANNUAL REPORT	PAGE 41	
******	* * * * * * * * * * * * * * * * * * * *	*****	* * * * * * * * * * * * * * * * * * * *	

FUEL TYPE	ENERGY GENERATED GWH	AVERAGE UNIT HT. RATE OF BTU/KWH MASS	HEAT CONTEN MBTU/ MASS UNIT	-	EL CONSUMPTI NOT USED	ON, MASS UNI MINIMUM	TS MAXIMUM	FUEL COST \$/MBTU	TOTAL FU K\$	EL COST \$/MWH
		12042 DVT	1 1 4	1 105140.00						
GAS	0.01	13043.DKT		1.19514E+02				4.70	1.	61.31
OIL2	0.00	8687.GAL	39.17	6.34832E-02				14.97	Ο.	130.06
DSM	0.00	1.NONE	0.01	1.92171E-01				0.00	0.	0.00
WH	40.70	1.NONE	0.01	4.07000E+03				0.00	0.	0.00
COAL	703.58	10192.TON	16.44	4.36179E+05				2.43	17425.	24.77
COAL	568.81	11290.TON	14.13	4.54479E+05				2.19	14064.	24.72
PURC	1227.08	10500.NONE	0.01	1.28844E+09				0.00	0.	0.00
GAS	0.01	8830.DKT	1.14	4.56322E+01				4.70	0.	41.50
GAS	0.06	17958.DKT	1.14	9.82897E+02				3.54	4.	63.58

EGEAS	REPORT	FUEL USAGE -	ANNUAL REPORT	PAGE	42
* * * * * * *	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	* * * *

FUEL TYPE 		AVERAGE UNIT HT. RATE OF BTU/KWH MASS	HEAT CONTENT MBTU/ MASS UNIT	FU TOTAL 	EL CONSUMPTI NOT USED	ON, MASS UNI MINIMUM	ITS MAXIMUM	FUEL COST \$/MBTU	TOTAL FU K\$	EL COST \$/MWH
GAS	0.01	13039.DKT	1.14 1.	.38423E+02				4.71	1.	61.42
OIL2	0.00	8687.GAL	39.17 7.	.16807E-02				14.97	0.	130.06
DSM	0.00	1.NONE	0.01 2.	.28327E-01				0.00	0.	0.00
WH	40.70	1.NONE	0.01 4.	.07000E+03				0.00	0.	0.00
COAL	806.12	10202.TON	16.44 5.	.00266E+05				2.50	20561.	25.51
COAL	232.17	12784.TON	14.13 2.	.10063E+05				2.98	8845.	38.10
PURC	1474.17	10500.NONE	0.01 1.	.54788E+09				0.00	0.	0.00
GAS	0.01	8849.DKT	1.14 5.	.32062E+01				4.71	0.	41.68
GAS	0.07	17767.DKT	1.14 1.	.09614E+03				3.31	4.	58.81

EGEAS	REPORT	FUEL USAGE ·	- ANNUAL REPORT	PAGE	43
* * * * * * *	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	* * *

FUEL TYPE	ENERGY GENERATED GWH	AVERAGE UNIT HT. RATE OF BTU/KWH MASS	HEAT CONTENT MBTU/ MASS UNIT		EL CONSUMPTI NOT USED	ON, MASS UN MINIMUM	TTS MAXIMUM	FUEL COST \$/MBTU	TOTAL FU K\$	EL COST \$/MWH
GAS	0.01	12977.DKT	1.14 1	.54369E+02				4.85	1.	62.96
OIL2	0.00	8687.GAL	39.17 8	.10624E-02				15.42	0.	133.96
DSM	0.00	1.NONE	0.01 2	.71016E-01				0.00	0.	0.00
WH	40.70	1.NONE	0.01 4	.07000E+03				0.00	0.	0.00
COAL	794.04	10219.TON	16.44 4	.93571E+05				2.57	20894.	26.31
COAL	263.82	12784.TON	14.13 2	.38701E+05				3.07	10353.	39.24
PURC	1469.69	10500.NONE	0.01 1	.54317E+09				0.00	0.	0.00
GAS	0.01	8851.DKT	1.14 5	.82952E+01				4.85	0.	42.94
GAS	0.08	17551.DKT	1.14 1	.22584E+03				3.41	5.	59.84

EGEAS	REPORT	FUEL USAGE	- ANNUAL	REPORT	PAGE	44
*****	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * *	*****	* * * * * * * * * * * * * * * * * * * *	* * * * * * *

FUEL TYPE	ENERGY GENERATED GWH	AVERAGE UNIT HT. RATE OF BTU/KWH MASS	HEAT CONTEN MBTU/ MASS UNIT		EL CONSUMPTI NOT USED	ION, MASS UNI MINIMUM	ITS MAXIMUM	FUEL COST \$/MBTU	TOTAL FU K\$	EL COST \$/MWH
1175	GWH	BIU/NWH MASS	MASS UNII	IUIAL	NOI USED	MINIMOM	MAXIMUM	Ş/MBIU	L9	Ş/™W⊓
GAS OIL2	0.02	13010.DKT 8687.GAL		1.92765E+02 9.93768E-02				5.00 15.88	1.	65.02 137.98
DSM	0.00	1.NONE		3.51733E-01				0.00	0.	0.00
WH	40.70	1.NONE	0.01 4	4.07000E+03				0.00	0.	0.00
COAL	802.06	10215.TON	16.44	4.98344E+05				2.65	21729.	27.09
COAL	232.20	12784.TON	14.13 2	2.10081E+05				3.16	9385.	40.42
PURC	1506.88	10500.NONE	0.01	1.58222E+09				0.00	Ο.	0.00
GAS	0.01	8873.DKT	1.14	6.71428E+01				5.00	Ο.	44.34
GAS	0.09	17534.DKT	1.14	1.37295E+03				3.51	5.	61.57

1ELECTRIC POWER RESEARCH INSTITUTE 2024 IRP

EGEAS	REPORT	FUEL USAGE - AN	NNUAL REPORT	PAGE	45
*****	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	* * *

FUEL TYPE	ENERGY GENERATED GWH	AVERAGE UNIT HT. RATE OF BTU/KWH MASS	HEAT CONTENT MBTU/ MASS UNIT	-	EL CONSUMPTI NOT USED	ON, MASS UNI MINIMUM	TS MAXIMUM	FUEL COST \$/MBTU	TOTAL FU K\$	EL COST \$/MWH
GAS	0.02	13236.DKT	1.14 1	L.95794E+02				5.15	1.	68.13
OIL2	0.00	8687.GAL	39.17 8	3.53554E-02				16.36	0.	142.12
DSM	0.00	1.NONE	0.01 3	3.04440E-01				0.00	0.	0.00
WH	40.70	1.NONE	0.01 4	1.07000E+03				0.00	0.	0.00
COAL	714.69	10216.TON	16.44 4	1.44117E+05				2.73	19946.	27.91
COAL	263.88	12784.TON	14.13 2	2.38744E+05				3.26	10985.	41.63
PURC	1581.16	10500.NONE	0.01 1	L.66022E+09				0.00	0.	0.00
GAS	0.01	8829.DKT	1.14 7	7.19839E+01				5.15	0.	45.44
GAS	0.09	18110.DKT	1.14 1	L.43957E+03				3.62	6.	65.51

EGEAS	REPORT	FUEL USAGE -	ANNUAL REPORT	PAGE	46
* * * * * * *	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	* * *

FUEL		AVERAGE UNIT HT. RATE OF	HEAT CONTENT MBTU/	FU		ION, MASS UNI		FUEL COST		EL COST
TYPE	GWH	BTU/KWH MASS	MASS UNIT	TOTAL	NOT USED	MINIMUM	MAXIMUM	\$/MBTU	K\$	\$/MWH
GAS	0.02	12960.DKT	1.14 2	2.35279E+02				5.30	1.	68.71
OIL2	0.00	8687.GAL	39.17 1	30504E-01				16.85	Ο.	146.38
DSM	0.00	1.NONE	0.01 4	1.58084E-01				0.00	Ο.	0.00
WH	40.70	1.NONE	0.01 4	1.07000E+03				0.00	0.	0.00
COAL	808.93	10202.TON	16.44 5	5.01993E+05				2.81	23221.	28.71
COAL	263.87	12784.TON	14.13 2	2.38733E+05				3.35	11314.	42.88
PURC	1506.00	10500.NONE	0.01 1	.58130E+09				0.00	0.	0.00
GAS	0.01	8873.DKT	1.14 8	3.62168E+01				5.30	1.	47.04
GAS	0.12	17278.DKT	1.14 1	.78827E+03				3.73	8.	64.37

EGEAS	REPORT	FUEL	USAGE -	ANNUAL		PAGE	47
* * * * * * *	* * * * * * * * * * * * * * * * * * * *	*******	* * * * * * *	* * * * * * * *	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * *	* * *

FUEL TYPE	ENERGY GENERATED GWH	AVERAGE UNIT HT. RATE OF BTU/KWH MASS	HEAT CONTEN MBTU/ MASS UNIT	=	EL CONSUMPTI NOT USED	ON, MASS UNI MINIMUM	ITS MAXIMUM	FUEL COST \$/MBTU	TOTAL FU K\$	EL COST \$/MWH
		10074 545								
GAS	0.02	12974.DKT		2.84267E+02				5.46	۷.	70.85
OIL2	0.00	8687.GAL	39.17	1.64719E-01				17.36	Ο.	150.77
DSM	0.01	1.NONE	0.01 !	5.72831E-01				0.00	0.	0.00
WH	40.70	1.NONE	0.01 4	4.07000E+03				0.00	0.	0.00
COAL	815.58	10201.TON	16.44 !	5.06062E+05				2.90	24112.	29.56
COAL	232.25	12783.TON	14.13 2	2.10120E+05				3.45	10257.	44.16
PURC	1550.04	10500.NONE	0.01	1.62754E+09				0.00	Ο.	0.00
GAS	0.01	8865.DKT	1.14	1.00275E+02				5.46	1.	48.41
GAS	0.14	17272.DKT	1.14 2	2.06992E+03				3.84	9.	66.28

EGEAS	REPORT	FUEL USAGE -	- ANNUAL REPORT	PAGE	48
* * * * * * *	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	* * * *

FUEL TYPE	ENERGY GENERATED GWH	AVERAGE UNIT HT. RATE OF BTU/KWH MASS	HEAT CONTENT MBTU/ MASS UNIT		EL CONSUMPTI NOT USED	ON, MASS UNI MINIMUM	TS MAXIMUM	FUEL COST \$/MBTU	TOTAL FU K\$	EL COST \$/MWH
GAS	0.03	12955.DKT	1.14 3	.01182E+02				5.62	2.	72.87
OIL2	0.00	8687.GAL	39.17 1	.75435E-01				17.88	Ο.	155.30
DSM	0.01	1.NONE	0.01 6	.46519E-01				0.00	Ο.	0.00
WH	40.70	1.NONE	0.01 4	.07000E+03				0.00	Ο.	0.00
COAL	698.01	10152.TON	16.44 4	.31036E+05				2.99	21153.	30.31
COAL	263.90	12784.TON	14.13 2	.38758E+05				3.56	12004.	45.49
PURC	1714.71	10500.NONE	0.01 1	.80045E+09				0.00	Ο.	0.00
GAS	0.01	8884.DKT	1.14 1	.09919E+02				5.62	1.	49.97
GAS	0.15	17246.DKT	1.14 2	.21891E+03				3.95	10.	68.16

EGEAS	REPORT	FUEL USAGE - A	ANNUAL REPORT	PAGE	49
*****	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	* * *

FUEL TYPE	ENERGY GENERATED GWH	AVERAGE UNIT HT. RATE OF BTU/KWH MASS	HEAT CONTEN MBTU/ MASS UNIT		EL CONSUMPTI NOT USED	ON, MASS UNI MINIMUM	TS MAXIMUM	FUEL COST \$/MBTU	TOTAL FU K\$	EL COST \$/MWH
GAS	0.03	12932.DKT	1.14	3.83802E+02				5.79	3.	74.92
OIL2	0.00	8687.GAL	39.17	2.25167E-01				18.41	Ο.	159.95
DSM	0.01	1.NONE	0.01	8.73136E-01				0.00	0.	0.00
WH	40.70	1.NONE	0.01	4.07000E+03				0.00	0.	0.00
COAL	702.20	10148.TON	16.44	4.33437E+05				3.07	21909.	31.20
COAL	232.29	12783.TON	14.13	2.10147E+05				3.67	10883.	46.85
PURC	1761.40	10500.NONE	0.01	1.84947E+09				0.00	0.	0.00
GAS	0.02	8869.DKT	1.14	1.29397E+02				5.79	1.	51.38
GAS	0.17	17103.DKT	1.14	2.51083E+03				4.07	12.	69.63

EGEAS	REPORT	FUEL USAGE - ANNUA	AL REPORT	PAGE	50
******	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * *	* * *

FUEL TYPE	ENERGY GENERATED GWH	AVERAGE UNIT HT. RATE OF BTU/KWH MASS	HEAT CONTEN MBTU/ MASS UNIT		EL CONSUMPT: NOT USED	ION, MASS UNI MINIMUM	ITS MAXIMUM	FUEL COST \$/MBTU	TOTAL FU K\$	EL COST \$/MWH
GAS	0.03	12368.DKT	1.14	3.30478E+02				5.97	2.	73.80
OIL2	0.00	8687.GAL	39.17	1.36808E-01				18.97	0.	164.75
GAS	0.01	17864.DKT	1.14	2.25306E+02				5.22	1.	93.24
DSM	0.00	1.NONE	0.01	4.85927E-01				0.00	Ο.	0.00
WH	40.70	1.NONE	0.01	4.07000E+03				0.00	Ο.	0.00
COAL	636.71	10141.TON	16.44	3.92751E+05				3.17	20448.	32.12
COAL	263.98	12783.TON	14.13	2.38813E+05				3.78	12739.	48.26
PURC	1906.25	10500.NONE	0.01	2.00156E+09				0.00	Ο.	0.00
GAS	0.02	8877.DKT	1.14	1.58098E+02				5.97	1.	52.97
GAS	0.20	17659.DKT	1.14	3.02146E+03				4.19	14.	74.05

EGEAS	REPORT	FUEL USAGE - ANNUAL REPORT	PAGE	51
*****	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	*******	* * * *

FUEL TYPE	ENERGY GENERATED GWH	AVERAGE UNIT HT. RATE OF BTU/KWH MASS	HEAT CONTENT MBTU/ MASS UNIT	FU TOTAL	EL CONSUMPTI NOT USED	ION, MASS UNI MINIMUM	ITS MAXIMUM	FUEL COST \$/MBTU	TOTAL FU K\$	JEL COST \$/MWH
GAS	0.03	12170.DKT	1 1/1 3	 .51968E+02				6.15	2	74.80
OIL2	0.00	8687.GAL		.43902E-01				19.53	0.	169.70
GAS	0.02	17271.DKT		.35344E+02				5.38	1.	92.85
DSM	0.01	1.NONE	0.01 5	.70695E-01				0.00	Ο.	0.00
WH	40.70	1.NONE	0.01 4	.07000E+03				0.00	Ο.	0.00
COAL	709.14	10141.TON	16.44 4	.37452E+05				3.26	23459.	33.08
COAL	264.00	12783.TON	14.13 2	.38824E+05				3.89	13121.	49.70
PURC	1854.66	10500.NONE	0.01 1	.94739E+09				0.00	Ο.	0.00
GAS	0.02	8892.DKT	1.14 1	.69517E+02				6.15	1.	54.65
GAS	0.22	16999.DKT	1.14 3	.34799E+03				4.32	16.	73.42

EGEAS	REPORT	FUEL USAGE - A	ANNUAL REPORT	PAGE	52
******	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	****

FUEL TYPE	ENERGY GENERATED GWH	AVERAGE UNIT HT. RATE OF BTU/KWH MASS	HEAT CONTEN MBTU/ MASS UNIT		EL CONSUMPT: NOT USED	ION, MASS UNI MINIMUM	ITS MAXIMUM	FUEL COST \$/MBTU	TOTAL FU K\$	VEL COST \$/MWH
GAS	0.09	12109.DKT	1.14	9.78748E+02				6.33	7.	76.66
OIL2	0.00	8687.GAL	39.17 4	4.34959E-01				20.12	0.	174.79
GAS	0.04	16422.DKT	1.14	6.06586E+02				5.54	4.	90.94
DSM	0.02	1.NONE	0.01	1.97315E+00				0.00	Ο.	0.00
WH	40.70	1.NONE	0.01 4	4.07000E+03				0.00	Ο.	0.00
COAL	507.83	10330.TON	16.44 3	3.19103E+05				3.36	17626.	34.71
COAL	232.71	12778.TON	14.13 2	2.10439E+05				4.00	11909.	51.17
PURC	2107.20	10500.NONE	0.01 2	2.21255E+09				0.00	Ο.	0.00
GAS	0.06	8864.DKT	1.14 4	4.32969E+02				6.33	3.	56.11
GAS	0.56	16257.DKT	1.14	7.93953E+03				4.45	40.	72.32

2024 IRP

EGEAS	REPORT	FUEL USAGE - ANNUAL REPORT	PAGE	53
*****	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	*******	* * * *

FUEL TYPE		AVERAGE UNIT HT. RATE OF BTU/KWH MASS	HEAT CONTENT MBTU/ MASS UNIT		EL CONSUMPT: NOT USED	ION, MASS UN MINIMUM	ITS MAXIMUM	FUEL COST \$/MBTU	TOTAL FU K\$	VEL COST \$/MWH
GAS	0.09	12022.DKT	1 1 4 0	 .86703E+02				6.52		78.39
									/.	
OIL2	0.00	8687.GAL	39.17 4	1.28446E-01				20.72	0.	180.03
GAS	0.05	16481.DKT	1.14 6	5.82802E+02				5.70	4.	94.00
DSM	0.02	1.NONE	0.01 1	.93393E+00				0.00	Ο.	0.00
WH	40.70	1.NONE	0.01 4	1.07000E+03				0.00	Ο.	0.00
COAL	514.12	10323.TON	16.44 3	3.22818E+05				3.46	18366.	35.72
COAL	264.42	12778.TON	14.13 2	2.39117E+05				4.13	13937.	52.71
PURC	2090.12	10500.NONE	0.01 2	2.19463E+09				0.00	0.	0.00
GAS	0.06	8863.DKT	1.14 4	43152E+02				6.52	З.	57.79
GAS	0.63	16164.DKT	1.14 8	8.89919E+03				4.58	46.	74.06

1ELECTRIC POWER RESEARCH INSTITUTE 2024 IRP

EGEAS	REPORT	FUEL USAGE - ANNUAL REPORT	PAGE	54
******	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * *	* * * *

FUEL TYPE	ENERGY GENERATED GWH	AVERAGE UNIT HT. RATE OF BTU/KWH MASS	HEAT CONTENT MBTU/ MASS UNIT		EL CONSUMPTI NOT USED	ION, MASS UNI MINIMUM	TS MAXIMUM	FUEL COST \$/MBTU	TOTAL FU K\$	EL COST \$/MWH
GAS	0.22	 11968.DKT	1 1 / 2	 2.34868E+03				6.72	18.	80.38
									10.	
OIL2	0.00	8687.GAL	39.17 1	.07732E+00				21.35	1.	185.43
GAS	0.11	15798.DKT	1.14 1	.57740E+03				5.87	11.	92.81
DSM	0.05	1.NONE	0.01 5	5.42720E+00				0.00	Ο.	0.00
WH	40.70	1.NONE	0.01 4	1.07000E+03				0.00	0.	0.00
COAL	524.40	10316.TON	16.44 3	3.29071E+05				3.56	19283.	36.77
COAL	233.90	12763.TON	14.13 2	2.11279E+05				4.25	12684.	54.23
PURC	2130.40	10500.NONE	0.01 2	2.23691E+09				0.00	0.	0.00
GAS	0.12	8840.DKT	1.14 9	0.63627E+02				6.72	7.	59.36
GAS	1.28	15618.DKT	1.14 1	.74703E+04				4.72	94.	73.71

1ELECTRIC POWER RESEARCH INSTITUTE 2024 IRP

EGEAS	REPORT	FUEL USAGE - ANNUAL REPORT	PAGE	55
*****	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * *	* * * *

FUEL TYPE	ENERGY GENERATED GWH	AVERAGE UNIT HT. RATE OF BTU/KWH MASS	HEAT CONTEN MBTU/ MASS UNIT		JEL CONSUMPT NOT USED	ION, MASS UN MINIMUM	ITS MAXIMUM	FUEL COST \$/MBTU	TOTAL FU K\$	JEL COST \$/MWH
GAS	3.11	11862.DKT	1.14	3.23349E+04				6.92	255.	82.05
OIL2	0.08	8687.GAL	39.17	1.66959E+01				21.99	14.	190.99
GAS	1.79	15053.DKT	1.14	2.36324E+04				6.05	163.	91.08
DSM	0.94	1.NONE	0.01	9.36305E+01				0.00	Ο.	0.00
WH	40.70	1.NONE	0.01	4.07000E+03				0.00	Ο.	0.00
COAL	718.89	10176.TON	16.44	4.44955E+05				3.67	26856.	37.36
COAL	369.80	11960.TON	14.13	3.12997E+05				4.38	19355.	52.34
PURC	2190.00	10500.NONE	0.01	2.29950E+09				0.00	Ο.	0.00
GAS	1.53	8802.DKT	1.14	1.17815E+04				6.92	93.	60.88
GAS	19.10	14876.DKT	1.14	2.49268E+05				4.86	1381.	72.31

EGEAS	REPORT	FUEL USAGE - A	ANNUAL REPORT	PAGE	56
******	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	*******	* * * * * * * * * * * * * * * * * * * *	* * *

FUEL TYPE	ENERGY GENERATED GWH	AVERAGE UNIT HT. RATE OF BTU/KWH MASS	HEAT CONTENT MBTU/ MASS UNIT		EL CONSUMPTI NOT USED	ION, MASS UNI MINIMUM	TS MAXIMUM	FUEL COST \$/MBTU	TOTAL FU K\$	EL COST \$/MWH
GAS	4.80	11800.DKT	1.14 4	1.96937E+04				7.13	404.	84.08
OIL2	0.12	8687.GAL	39.17 2	2.55993E+01				22.65	23.	196.72
GAS	2.81	14813.DKT	1.14 3	8.65261E+04				6.23	260.	92.32
DSM	1.47	1.NONE	0.01 1	L.46632E+02				0.00	0.	0.00
WH	40.70	1.NONE	0.01 4	1.07000E+03				0.00	0.	0.00
COAL	826.73	10186.TON	16.44 5	5.12247E+05				3.78	31845.	38.52
COAL	467.74	11550.TON	14.13 3	3.82345E+05				4.51	24352.	52.06
PURC	2190.23	10499.NONE	0.01 2	2.29950E+09				0.00	0.	0.00
GAS	2.37	8795.DKT	1.14 1	L.82491E+04				7.12	148.	62.66
GAS	28.60	14479.DKT	1.14 3	3.63194E+05				5.01	2073.	72.50

EGEAS	REPORT	FUEL USAGE - ANNUAL REPORT	PAGE 57
* * * * * * *	* * * * * * * * * * * * * * * * * * * *	***************************************	* * * * * * * * * * * * * * * * * * * *

FUEL TYPE	ENERGY GENERATED GWH	AVERAGE UNIT HT. RATE OF BTU/KWH MASS	HEAT CONTENT MBTU/ MASS UNIT		EL CONSUMPT: NOT USED	ION, MASS UNI MINIMUM	ITS MAXIMUM	FUEL COST \$/MBTU	TOTAL FU K\$	EL COST \$/MWH
GAS	5.75	11847.DKT	1.14 5	.97556E+04				7.34	500.	86.94
OIL2	0.14	8687.GAL	39.17 3	.08899E+01				23.33	28.	202.63
GAS	3.31	14764.DKT	1.14 4	.28595E+04				6.42	314.	94.77
DSM	1.82	1.NONE	0.01 1	.82445E+02				0.00	Ο.	0.00
WH	40.70	1.NONE	0.01 4	.07000E+03				0.00	Ο.	0.00
COAL	852.29	10196.TON	16.44 5	.28602E+05				3.89	33848.	39.71
COAL	458.30	11392.TON	14.13 3	.69487E+05				4.64	24239.	52.89
PURC	2190.29	10499.NONE	0.01 2	.29950E+09				0.00	Ο.	0.00
GAS	2.83	8795.DKT	1.14 2	.18511E+04				7.34	183.	64.54
GAS	34.24	14376.DKT	1.14 4	.31835E+05				5.16	2539.	74.14

EGEAS	REPORT	FUEL USAGE - ANNUAL REPORT	PAGE	58
******	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * *	* * * *

PLAN 1 EXTENSION PERIOD

	ENERGY	AVERAGE UNIT	HEAT CONTENT				тщо	FUEL		
FUEL TYPE	GENERATED GWH	HT. RATE OF BTU/KWH MASS	MBTU/ MASS UNIT	TOTAL	EL CONSUMPT: NOT USED	MINIMUM	ITS MAXIMUM	COST \$/MBTU	TOTAL FU K\$	JEL COST \$/MWH
GAS	5.75	11847.DKT	1.14 5	5.97556E+04				37.27	2539.	441.52
OIL2	0.14	8687.GAL	39.17 3	3.08899E+01				118.45	143.	1029.00
GAS	3.31	14764.DKT	1.14 4	1.28595E+04				32.60	1593.	481.30
DSM	1.82	1.NONE	0.01 1	L.82445E+02				0.00	Ο.	0.00
WH	40.70	1.NONE	0.01 4	1.07000E+03				0.00	Ο.	0.00
COAL	854.13	10197.TON	16.44 5	5.29780E+05				19.78	172273.	201.69
COAL	456.46	11398.TON	14.13 3	8.68197E+05				23.58	122665.	268.73
PURC	2190.29	10499.NONE	0.01 2	2.29950E+09				0.00	Ο.	0.00
GAS	2.83	8795.DKT	1.14 2	2.18511E+04				37.27	928.	327.75
GAS	34.24	14376.DKT	1.14 4	1.31835E+05				26.19	12893.	376.49

1ELECTRIC POWER RESEARCH INSTIT	TUTE	2024 IRP		4/ 1/24 14:43:50
EGEAS REPORT ************************************	******	****	INDEX OF REPORTS	PAGE 59
CONTROL REPORT	PAGE	1		
MIRROR IMAGE REPORT	PAGE	2		
ERROR REPORT	PAGE	4		
REPORT SELECTION	PAGE	5		
EXPANSION PLAN DIH PLAN 1 EXPANSION PLAN SUN			PAGE 6 PAGE 8	
PLAN 1 PROD. COST - AREAS PLAN 1 PROD. COST - FUEL			PAGE 13 PAGE 14	
PLAN 1 PROD. COST - UNIT PLAN 1 RELIABILITY - ANNU			PAGE 16 PAGE 36	
PLAN 1 RESERVE - ANNUAL PLAN 1 FUEL USAGE - ANNUA	ΑL		PAGE 37 PAGE 38	

Attachment D

PUBLIC ADVISORY GROUP DOCUMENTATION

ATTACHMENT D PUBLIC ADVISORY GROUP DOCUMENTATION

This Attachment is comprised of the official Public Advisory Group roster as well as the description of the meetings and the topics discussed at each meeting. No minutes of the meetings were taken.

MONTANA-DAKOTA UTILITIES CO. INTEGRATED RESOURCE PLANNING 2023-2024 PUBLIC ADVISORY GROUP ROSTER

NORTH DAKOTA

Darin Scherr Bismarck Public School Bismarck, North Dakota

Dr. Patrick O'Neill Department of Economics University of North Dakota Grand Forks, North Dakota

Rich Garman ND Department of Commerce Bismarck, North Dakota

Rich Wardner Former ND State Senate Dickinson, North Dakota

Martin Fritz Kadrmas Lee & Jackson Bismarck, North Dakota

Adam Renfandt *

North Dakota Public Service Commission Bismarck, North Dakota * Invited as an observer

MONTANA

Kevin Thompson Action for Eastern Montana Glendive, Montana

Kyla Maki Montana Department of Environmental Quality Helena, Montana

Jeff Blend – Replaced Kyla Montana Department of Environmental Quality Helena, Montana

Stephen Schreibeis Glendive Public Schools Glendive, Montana

SOUTH DAKOTA

Patrick Steffensen

South Dakota Public Utilities Commission Pierre, South Dakota

MONTANA-DAKOTA UTILITIES CO.

Darcy Neigum

Director of Electric System Operations & Planning (701) 222-7757 darcy.neigum@mdu.com

Brian Giggee

Manager Engineering Services (701) 222-7907 brian.giggee@mdu.com

Travis Jacobson Director of Regulatory Affairs (701)222-7855 travis.jacobson@mdu.com

Joanne Mahrer Load Forecast Coordinator (701) 222-7851 Joanne.Mahrer@mdu.com

Kathy Baerlocher Manager Energy Efficiency and Demand Response (701) 222-7982 kathy.baerlocher@mdu.com

Larry Oswald Director of Business Development and Energy Service (701) 222-7939 larry.oswald@mdu.com

In addition to the PAG members and Montana-Dakota personnel included on the roster, the following Montana-Dakota personnel and invited guests participated in one or more of the Public Advisory Group meetings as presenters:

Abbie Krebsbach	Director of Environmental
Jacob Hein	Engineer – Power Production
Jay Skabo	VP Electric Supply
Joe Geiger	Director Generation
Andy McDonald	Manager Environmental Compliance
Shawn Nieuwsma	Director Gas Supply

MEETINGS OF THE IRP PUBLIC ADVISORY GROUP

November 2, 2023 Meeting Agenda

2021 IRP Action Plan Updates	Brian Giggee			
Heskett plant closures/Heskett 4	Joe Geiger			
Environmental Update	Andy McDonald			
MISO Resource Adequacy	Brian Giggee			
Gas Supply Update	Shawn Nieuwsma			
MISO Transmission/Generation	Darcy Neigum			
Wrap-up Meeting Logistics Discussion Topics for Future Meetings	Group Discussion			
March 12, 2024 Meeting Agenda				

Load Forecast

Joanne Mahrer

Potential Study Results	Larry Oswald/ Kathy Baerlocher
Resource Alternatives	Jake Hein
Base Case Results & Next Steps	Brian Giggee
Wrap-up	
Meeting Logistics	
Discussion Topics for Future Meetings	
<u>May 29, 2024 Meeting Agenda</u>	
MISO LRTP & GI Queue Update	Brian Giggee
MT Select Committee Resource Planning	Darcy Neigum
Demand Side Recap	Kathy Baerlocher
Environmental Update	Andy McDonald
Supply-Side Analysis	Brian Giggee
2024 IRP Action Plan	Darcy Neigum
Wrap-up	
IRP Filing Timeline	
Feedback from the PAG members	
Future PAG membership for 2027 IRP	

Attachment E

SUPPLY-SIDE RESOURCES STUDY

2024 TECHNOLOGY ASSESSMENT REPORT

MONTANA-DAKOTA UTILITIES CO. 2024 TECHNOLOGY ASSESSMENT PROJECT NO. 163084

FINAL DRAFT February 6, 2024

Disclaimer

1898 & Co.® is a part of Burns & McDonnell that performs or provides business, technology, and consulting services. 1898 & Co. does not provide legal, accounting, or tax advice. The reader is responsible for obtaining independent advice concerning these matters. That advice should be considered by reader, as it may affect the content, opinions, advice, or guidance given by 1898 & Co. Further, 1898 & Co. has no obligation and has made no undertaking to update these materials after the date hereof, notwithstanding that such information may become outdated or inaccurate. These materials serve only as the focus for consideration or discussion; they are incomplete without the accompanying oral commentary or explanation and may not be relied on as a stand-alone document.

The information, analysis, and opinions contained in this material are based on publicly available sources, secondary market research, and financial or operational information, or otherwise information provided by or through 1898 & Co. clients whom have represented to 1898 & Co. they have received appropriate permissions to provide to 1898 & Co., and as directed by such clients, that 1898 & Co. is to rely on such client-provided information as current, accurate, and complete. 1898 & Co. has not conducted complete or exhaustive research, or independently verified any such information utilized herein, and makes no representation or warranty, express or implied, that such information is current, accurate, or complete. Projected data and conclusions contained herein are based (unless sourced otherwise) on the information described above and are the opinions of 1898 & Co. which should not be construed as definitive forecasts and are not guaranteed. Current and future conditions may vary greatly from those utilized or assumed by 1898 & Co.

1898 & Co. has no control over weather; cost and availability of labor, material, and equipment; labor productivity; energy or commodity pricing; demand or usage; population demographics; market conditions; changes in technology, and other economic or political factors affecting such estimates, analyses, and recommendations. To the fullest extent permitted by law, 1898 & Co. shall have no liability whatsoever to any reader or any other third party, and any third party hereby waives and releases any rights and claims it may have at any time against 1898 & Co. and any Burns & McDonnell affiliated company, with regard to this material, including but not limited to the accuracy or completeness thereof.

Any entity in possession of, or that reads or otherwise utilizes information herein is assumed to have executed or otherwise be responsible and obligated to comply with the contents of any Confidentiality Agreement and shall hold and protect its contents, information, forecasts, and opinions contained herein in confidence and not share with others without prior written authorization.

CONTENTS

1.0	Introd	duction	3
	1.1	Evaluated Technologies	3
	1.2	Assessment Approach	4
	1.3	Conclusions & Recommendations	4
	1.4	Statement of Limitations	5
2.0	Study	6	
	2.1	Scope Basis and Assumptions Matrix	6
	2.2	General Assumptions	6
	2.3	EPC Project Indirect Costs	7
	2.4	Owner Costs	7
	2.5	Cost Estimate Exclusions	8
	2.6	Operating and Maintenance Assumptions	8
3.0	Simpl	10	
	3.1	Simple Cycle Gas Turbine Technology Description	10
		3.1.1 Aeroderivative Gas Turbines	10
		3.1.2 Frame Gas Turbines	11

	3.2	Simple Cycle Gas Turbine Emissions Controls	11
	3.3	Simple Cycle Gas Turbine Performance	12
	3.4	Simple Cycle Gas Turbine Cost Estimates	13
	3.5	Simple Cycle O&M	14
4.0	Recip	procating Engine Technology	15
	4.1	Reciprocating Engine Technology Description	15
	4.2	Reciprocating Engine Emissions Controls	15
	4.3	Reciprocating Engine Performance	16
	4.4	Reciprocating Engine Cost Estimates	16
	4.5	Reciprocating Engine O&M	16
5.0	Comb	nined Cycle Gas Turbine Technology	18
	5.1	Combined Cycle Emissions Controls	18
	5.2	Combined Cycle Emissions Controls	18
	5.3	Combined Cycle Performance	18
	5.4	Combined Cycle Cost Estimates	19
	5.5	Combined Cycle Plant O&M	20
6.0	Wind	Generation Technology	22
	6.1	Wind Energy Technology Description	22
	6.2	Wind Energy Emission Controls	22
	6.3	Wind Performance	22
	6.4	Wind Cost Estimate	23
	6.5	Wind Energy O&M Estimates	23
	6.6	Wind Energy Production Tax Credit	24
7.0	Solar	Photovoltaic Technology	25
	7.1	PV Technology Description	25
	7.2	PV Emission Controls	25
	7.3	PV Performance	25
	7.4	PV Cost Estimates	25
	7.5	PV O&M Cost Estimate	26
	7.6	Co-located Solar PV and Battery Systems	26
8.0	Lithiu	um-ion Battery Storage Technology	27
	8.1	Lithium-ion Battery Storage Technology Description	27
	8.2	Lithium-ion Battery Emissions Controls	28
	8.3	Lithium-ion Battery Storage Performance	28
	8.4	Lithium-ion Battery Storage Regulatory Trends	28
	8.5	Lithium-ion Battery Storage Cost Estimate	28
	8.6	Lithium-ion Battery Storage O&M Cost Estimate	29
9.0	Emer	ging Technologies	30
	9.1	Hydrogen Technology	30

		9.1.1	Gas Turbine	30
		9.1.2	Reciprocating Internal Combustion Engines	30
		9.1.3	Hydrogen Fuel Cell Technology	30
	9.2	Small Modular Reactor Technology		31
	9.3	Non-L	31	
		9.3.1	Air Energy Storage	32
		9.3.2	Pumped Hydroelectric Energy Storage	33
		9.3.3	Thermal Energy Storage Technology	33
		9.3.4	High Temperature Battery Technology	34
		9.3.5	Flow Battery Technology	34
		9.3.6	Other Notable Emerging Storage Technologies	34
	9.4 Biofue		els	35
		9.4.1	Biomass	35
		9.4.2	Renewable Natural Gas	36
		9.4.3	Carbon Capture & Sequestration	37
10.0	Conclusions			39
11.0	Appendices			41

TABLES

Table 6-1: Summary of Indicative Capital Expenditures Budget by Year

24

1.0 Introduction

Montana-Dakota Utilities Co. ("MDU") retained 1898 & Co., a division of Burns & McDonnell Engineering Company, Inc. ("1898 & Co,") to evaluate various power generation technologies in support of its power supply planning efforts. The 2024 Technology Assessment ("Assessment") is screening-level in nature and includes a comparison of technical features, cost, performance, and emissions characteristics of the generation technologies listed below.

It is the understanding of 1898 & Co. that this Assessment will be used for preliminary information in support of MDU's long-term power supply planning process. Any technologies of interest to MDU should be followed by additional detailed studies to further investigate each technology and its direct application within MDU's long-term plans.

1.1 Evaluated Technologies

The following technologies were considered as part of this Assessment:

- Simple Cycle Gas Turbines ("SCGT")
 - GE LM6000 PF+ Aeroderivative
 - Option for Selective Catalytic Reduction ("SCR").
 - Option for Dual Fuel.
 - Evaporative cooler installed.
 - GE LMS 100 PB+ Aeroderivative
 - SCR and carbon monoxide ("CO") oxidation catalyst included.
 - Evaporative cooler installed.
 - GE 7E.03 LLI SCGT
 - Option for SCR.
 - Option for Dual Fuel.
 - Evaporative cooler installed.
- Reciprocating Internal Combustion Engines ("RICE")
 - 4 x Wärtsilä 20V34SG (9 megawatt ("MW")) engine plant
 - SCR and CO catalyst included.
 - Natural gas operation only.
 - 3 x Wärtsilä 18V50SG (18 MW) engine plant
 - SCR and CO catalyst included.
 - Natural gas operation only.
 - 4 x Wärtsilä 31DF (11 MW) engine plant
 - SCR and CO catalyst included.
 - Dual fuel included (requires natural gas and fuel oil for operation). Additional dual fuel costs broken out as an option to support fuel oil only operation.
- Combined Cycle Gas Turbines ("CCGT")

- o 2 x 1 GE SGT-800
 - SCR and CO oxidation catalyst included.
 - Option for duct firing capability.
 - Evaporative coolers installed.
- o 1 x 1 GE 7F.05
 - SCR and CO oxidation catalyst included.
 - Option for duct firing capability.
 - Evaporative cooler installed.
- 2 x 1 GE 7E.03 LLI Heskett expansion
 - Option for SCR.
 - Option for duct firing capability.
 - Evaporative coolers installed.
- Wind Generation
 - o 50 MW
 - 100 MW
- Solar Photovoltaic ("PV") Systems
 - o 5 MWac
 - Single axis tracking
 - Add-on cost for 1 MW / 4 megawatt-hour ("MWh") lithium-ion energy storage colocation
 - **50 MWac**
 - Single axis tracking
 - Add-on cost for 10 MW / 40 MWh lithium-ion energy storage co-location
- Battery Storage
 - o 50 MW / 200 MWh
 - Standalone lithium-ion energy storage co-location

1.2 Assessment Approach

This report compiles the assumptions and methodologies used by 1898 & Co. during the Assessment. Its purpose is to articulate that the delivered information is in alignment with MDU's intent to advance its resource planning initiatives. A detailed summary of the cost, performance, and emissions information developed for each technology is included in Appendix B ("Summary Table"). A scope assumptions matrix is provided in Appendix C to document the basis for the information provided in the Summary Table.

1.3 Conclusions & Recommendations

This Assessment provides information to support MDU's power supply planning efforts for further evaluation within their long-term power supply planning. The information provided in this assessment is preliminary in nature and is intended to highlight indicative, differential costs associated between each technology. After identifying the preferred combination of resources within the Study, MDU should pursue additional engineering studies to define specific items such as project scope, design, and equipment, budgets, and implementation timeline for the preferred technologies of interest.

1.4 Statement of Limitations

Estimates and projections prepared by 1898 & Co. relating to performance, construction costs, and operating and maintenance costs are based on experience, qualifications, and judgment as a professional consultant. 1898 & Co. has no control over weather, cost and availability of labor, material and equipment, labor productivity, construction contractor's procedures and methods, unavoidable delays, construction contractor's method of determining prices, economic conditions, government regulations and laws (including interpretation thereof), competitive bidding, and market conditions or other factors affecting such estimates or projections. Actual rates, costs, performance ratings, schedules, etc., may vary from the data provided.

2.0 Study Basis and Assumptions

2.1 Scope Basis and Assumptions Matrix

Scope and economic assumptions used in developing the Assessment are presented below. A spreadsheetbased scope matrix is included in Appendix C.

2.2 General Assumptions

The assumptions below govern the overall approach of the Assessment:

- All estimates are screening-level in nature, do not reflect guaranteed costs, and are not intended for budgetary purposes. Estimates concentrate on differential values between options and not absolute information.
- All information is preliminary and should not be used for construction purposes.
- All capital cost and operations and maintenance ("O&M") estimates are stated in 2024 US dollars ("USD"). Escalation is excluded.
- Estimates assume an Engineer, Procure, Construct ("EPC") fixed price contract for project execution.
- Unless stated otherwise, all options are based on a generic site with no existing structures or underground utilities and with sufficient area to receive, assemble and temporarily store construction material.
- Sites are assumed to be flat with minimal rock and with soils suitable for spread footings.
- Technologies were evaluated for Bismarck, North Dakota.
- Ambient conditions are based on MDU requests for integrated resource plan ("IRP") studies:
 - Elevation: 1,695 feet ("ft")
 - Winter Conditions: 6.8 degrees Fahrenheit ("°F") and 70% relative humidity ("RH")
 - Summer Conditions: 84.5 °F and 40% RH
 - Generator Power Factor ("PF"): 0.85
- The primary fuel for the SCGT, CCGT, and RICE options is pipeline quality natural gas. The assumed gas constituency is provided below. Several options include options to operate on fuel oil as a backup fuel. All performances are based on natural gas operation.
 - Methane: 68.90 %mol
 - Ethane: 22.30 %mol
 - Propane: 3.83 %mol
 - Iso-Butane: 0.10 %mol
 - o n-Butane: 0.20 %mol
 - Iso-Pentane: 0.01 %mol
 - o n-Pentane: 0.01 %mol
 - Carbon Dioxide ("CO2"): 0.95 %mol
 - Nitrogen: 3.70 %mol
 - Fuel Gas Temperature: 80 °F
 - Fuel Gas Pressure: 900 pounds per square inch gauge ("psig")

- All performance estimates assume new and clean equipment. Operating degradation is excluded.
- Fuel oil add-on costs are broken out in the Summary Table.
- Natural gas pipeline interconnection costs are included in Owner's Costs. Natural gas assumed to be delivered to site at sufficient pressure. Gas compression is not included for all options.
- Duct firing costs and performance information is included as a broken-out option for combined cycle options.
- Fuel and power consumed during construction, startup, and/or testing are included in the Owners' Costs section of the Summary Table.
- Piling is included under heavily loaded foundations.
- Water interconnection costs are included in Owner's Costs. Costs assume on-site wells and pipe for raw water supply.
- Wastewater is assumed to be delivered to site boundary. Treatment facilities are excluded.
- Electrical scope is assumed to end at the high side of the generator step up unit ("GSU"). Unless otherwise stated, GSU costs assume 115 kilovolts ("kV") transmission voltage.
- Demolition or removal of hazardous materials is not included.
- Emissions estimates are based on a preliminary review of Best Available Control Technology ("BACT") requirements and provide a basis for the assumed air pollution control equipment included in the capital and O&M costs.
 - \circ Emissions are estimated at base load operation at winter conditions.

2.3 EPC Project Indirect Costs

The following project indirect costs are included in capital cost estimates:

- Performance Testing and Continuous Emissions Monitoring System ("CEMS")/Stack Emissions Testing (where applicable)
- Construction/Startup Technical Service
- Engineering and Construction Management
- EPC Fees & Contingency

2.4 Owner Costs

Allowances for the following Owner costs are included in the pricing estimates:

- Project Development
- Owner's Operational Personnel
- Owner's Engineering
- Owner's Project Management
- Startup and Commissioning
- Land Allowance, as applicable
 - \$5,000/acre was assumed for the purpose of this Assessment based on a high-level analysis of land costs in the area surrounding Bismarck, ND.
 - Exceptions:

- Wind, PV, and battery storage projects assume leased land and cost is included in O&M costs.
- Legal Fees
- Permitting/Licensing
- Construction Power, Temporary Utilities, Startup Consumables
- Initial Fuel Inventory, as applicable
- Site Security
- Operating Spare Parts
- Switchyard (assumes 115 kV for transmission voltage)
- Political Concessions / area development fees
- Permanent plant equipment and furnishings
- Builder's risk insurance at 0.45% of construction cost
- Owner project contingency at 5% of total costs for screening purposes
- Property Tax Value, provided by MDU (0.44%)
- Network Upgrade Costs, provided by MDU (\$150/kW)
- Transmission Interconnection Cost was included and assumes of 15 miles of transmission line at 115 kV. Land cost for transmission lines was excluded.
- Natural Gas Interconnection Cost was included and assumes five miles of interconnection, an easement allowance, and associated piping.

2.5 Cost Estimate Exclusions

The following costs are excluded from all estimates:

- Financing Fees
- Interest During Construction ("IDC")
- Escalation
- Sales Tax
- Water Rights
- Off-Site Infrastructure
- Utility Demand Costs
- Decommissioning Costs
- Salvage Values

2.6 Operating and Maintenance Assumptions

O&M estimates are based on the following assumptions:

- O&M costs are based on a greenfield facility with new and clean equipment.
- O&M costs are in 2024 USD.
- O&M estimates exclude emissions credit costs and property insurance.
- Property taxes allowance included for PV and onshore wind options. Allowance assumption provided by MDU.

- Land lease allowance included for PV and onshore wind options. Allowance assumption provided by MDU.
- Where applicable, fixed O&M cost estimates include labor, office and administration, training, contract labor, safety, building and ground maintenance, communication, and laboratory expenses.
- Personnel counts for each technology are included in the scope matrix in Appendix C.
- Where applicable, variable O&M costs include routine maintenance, makeup water, water treatment, water disposal, ammonia, SCR replacements, and other consumables not including fuel.
- Fuel costs are excluded from O&M estimates.
- Where applicable, major maintenance costs are shown separately from variable O&M costs.
- Gas turbine ("GT") and reciprocating engine major maintenance assumes third party maintenance based on the recommended maintenance schedule set forth by the original equipment manufacturer ("OEM").
- Base O&M costs are based on performance estimates in winter conditions unless otherwise stated.

3.0 Simple Cycle Gas Turbine Technology

This Assessment includes three SCGT options, including two aeroderivative unit types and one frame unit type.

3.1 Simple Cycle Gas Turbine Technology Description

A SCGT plant utilizes natural gas to produce power in a GT generator ("GTG"). The GT (Brayton) cycle is one of the most efficient cycles for the conversion of gaseous fuels to mechanical power or electricity. Simple cycle GTs are typically used for peaking power due to their fast load ramp rates and relatively low capital costs. However, the units have high heat rates compared to combined cycle technologies. Simple cycle GT generation is a widely used, mature technology.

Evaporative coolers or inlet foggers are often used to cool the air entering the GT by evaporating additional water vapor into the air, which increases the mass flow through the turbine and therefore increases the output. Evaporative coolers are included on all SCGT technologies in this assessment.

While this is a mature technology category, it is also a highly competitive marketplace. Manufacturers are continuously seeking incremental gains in output and efficiency while reducing emissions and onsite construction time. Frame unit manufacturers are striving to implement faster starts and improved efficiency. Combustor design updates allow improved ramp rates, turndown, fuel variation, efficiency, and emissions characteristics. Aeroderivative turbines also benefit from the research and development ("R&D") efforts of the aviation industry, including advances in metallurgy and other materials.

Low load or part load capability may be an important characteristic depending on the expected operational profile of the plant. Low load operation allows the SCGT's to remain online and generate a small amount of power while having the ability to quickly ramp to full load without going through the full start sequence. Most turbines can sustain stable operation at synchronous idle when the SCGT generator is synced with the grid but there is virtually no load on the turbine. At synchronous idle, a turbine runs on minimal fuel input and generates minimal power.

3.1.1 Aeroderivative Gas Turbines

Aeroderivative GT technology is based on aircraft jet engine design, built with high quality materials that allow for increased turbine cycling. The output of commercially available aeroderivative turbines ranges from less than 20 MW to approximately 100 MW in generation capacity. In simple cycle configurations, these machines typically operate more efficiently than larger frame units and exhibit shorter ramp up and turndown times, making them ideal for peaking and load-following applications. Aeroderivative units typically require fuel gas to be supplied at higher pressures (i.e., 675 psig to 960 psig for many models) than traditional frame units.

A desirable attribute of aeroderivative turbines is the ability to start and ramp quickly. Most manufacturers will guarantee ten-minute starts, measured from the time the start sequence is initiated to when the unit is at 100 percent load. Simple cycle starts are generally not affected by cold, warm, or hot conditions. However, all GTs start times in this Assessment assume that all start permissives are met, which can include purge credits, lube oil temperature checks, fuel pressure, etc. Available aeroderivative GTs models include both dry low NOx ("DLN") and water injection methods to control emissions during natural gas operation. The LM6000 PF+ utilized in this Assessment utilizes a DLN system and therefore does not consume water for NOx control. Additionally, the LMS-100 PB+ includes an intercooler that would require greater water usage.

Both factors can greatly influence variable O&M to acquire water of the quality necessary to meet these needs.

Aeroderivative turbines are considered mature technology and have been used in power generation applications for decades. These machines are commercially available from several vendors, including General Electric ("GE"), Siemens (including Rolls Royce turbines), and Mitsubishi-owned Pratt & Whitney Power Systems ("PWPS"). This assessment includes GE LM6000 PF+ and LMS100 PB+ options, which are wellestablished in the marketplace.

3.1.2 Frame Gas Turbines

Frame style turbines are industrial engines, more conventional in design, that are typically used in intermediate to baseload applications. In simple cycle configurations, these engines typically have higher heat rates when compared to aeroderivative engines. The smaller frame units have simple cycle heat rates around 11,000 British thermal units per kilowatt-hour ("Btu/kWh") (HHV) or higher while the largest units exhibit heat rates approaching 9,000 Btu/kWh (HHV). However, frame units have higher exhaust temperatures (\approx 1,100°F) compared to aeroderivative units (\approx 850°F), making them more efficient in combined cycle operation because exhaust energy is further utilized. Frame units typically require fuel gas at lower pressures than aeroderivative units (\approx 500 psig). Most available frame GT models utilize DLN to control emissions during natural gas operation. This can result in decreased water usage in comparison to aeroderivative GTs, which reduces variable O&M costs.

Traditionally, frame turbines exhibit slower startup times and ramp rates than aeroderivative models, but manufacturers are consistently improving these characteristics. Conventional start times are commonly 30 minutes for frame turbines, but fast start options allow 10-to-15-minute starts. Fast start times are shown in the Summary Table.

Frame engines are offered in a large range of sizes by multiple suppliers, including GE, Siemens, and Mitsubishi. Commercially available frame units range in size from approximately 50 MW to 400 MW and advancements in turbine control systems and further testing has led equipment manufacturers to tout capacities greater than 420 MW. Continued development by GT manufacturers has resulted in the separation of GTs into several classes, grouped by output and firing temperature: E class turbines (nominal 85 to 100 MW); F class turbines (nominal 200 to 240 MW); G/H class turbines (nominal 270 to 300 MW); and J class turbines (nominal 325 to 400 MW). This Assessment includes an E class SCGT option based on the GE 7E.03 LLI.

3.2 Simple Cycle Gas Turbine Emissions Controls

Emissions levels and required oxides of nitrogen ("NOx") and CO controls vary by technology and site constraints. Historically, natural gas SCGT peaking plants have not required post-combustion emissions control systems because they normally operate at low capacity factors. However, permitting trends suggest post-combustion controls may be required depending on annual number of GT operating hours, proximity of the site to a non-attainment area, and current state regulations.

In addition, there is a New Source Performance Standard ("NSPS") limit for NOx emissions measured in parts per million ("ppm"), independent of operating hours. Per NSPS, units with heat inputs below 850 million British thermal units per hour ("MMBtu/hr") have a NOx limit of 25 ppm, but units with heat inputs greater than 850 MMBtu/hr have a NOx limit of 15 ppm. Furthermore, in the event the overall facility has the potential to emit greater than 250 tons per year of NOx emissions, SCR may be required or the number of operating hours available for the facility may be limited.

Most turbine manufacturers will guarantee emissions down to a specified minimum load, commonly 40 to 50 percent load. Below this load, turbine emissions may spike. As such, emissions on a ppm basis may be significantly higher at low loads.

The E class GT in this evaluation uses DLN combustors to achieve NOx emissions of 5 ppm at 15 percent oxygen (" O_2 ") at full load and ISO conditions while operating on natural gas fuel. Since these units emit less than 15 ppm NOx, it is assumed that SCR is not required. SCR systems are included as optional costs for E class simple cycle options in this Assessment.

Units operating on fuel oil require water injection for NOx control. It should be noted that OEMs may offer to tune the turbines to balance output and emissions targets depending on site specific needs.

Aeroderivative units commonly have options for DLN combustors or water injection to control NOx emissions to approximately 15-25 ppm. The GE LM6000 PF+ option in this Assessment utilizes a DLN system to achieve NOx emissions of 25 ppm at 15 percent O_2 while operating on natural gas fuel without the use of water injection. An SCR system is included as an optional cost. The LMS 100 PB+ uses SCR to control NOx emissions to approximately 2.5 ppm.

The LM6000 PF+ and 7E.03LLI are capable of dual fuel operation and will control NOx through water injection to 42 ppm when operating on fuel oil.

Oxidation catalysts can be used to control CO emissions to 2-2.5 ppm at 15 percent O_2 while operating on natural gas fuel. It is assumed that CO controls are not required on the base E class and aeroderivative options, but the costs of the CO catalyst are included in the SCR option costs.

Outside of good combustion practices, it is assumed that emissions control equipment is not required for CO_2 and particulate matter ("PM"). Sulfur dioxide emissions are not controlled and are therefore a function of the sulfur content of the fuel burned in the GTs.

Emissions estimates are shown in the Summary Tables for full load operation at ISO. Emissions are shown for the bare turbine operating on natural gas fuel and are also shown for units equipped with SCR and CO catalyst systems.

3.3 Simple Cycle Gas Turbine Performance

Performance results are shown in the Summary Table files provided to MDU. Estimated performance results are based on data requested from GE at nominal performance points across winter and summer ambient conditions adjusted for small differences between these nominal performance conditions and those in the assessment. Full load and minimum load performance estimates are shown for winter and summer conditions. Summer ratings include a separate, incremental performance with evaporative coolers.

Minimum load is defined as the minimum emissions compliant load ("MECL"), as reflected in the OEM ratings. 1898 & Co. provided 50% load as the standard MECL.

The general assumptions in Section 2.0 apply to the evaluation of all SCGT options, and additional assumptions are listed in the scope matrix.

- All performance ratings are based on natural gas fuel.
- Base load ratings include evaporative coolers.

The Summary Tables include startup time and ramp rate estimates for SCGT options. SCGT start times assume that purge credits and other permissives are achieved prior to start.

Outage and availability statistics, collected using the North American Electric Reliability Corporation ("NERC") Generating Availability Data System ("GADS"), are also shown in the Summary Tables. Simple cycle GADS data are based on the 2013 to 2022 operating statistics for applicable North American units that are no more than 10 years old. The GADS data delivered was changed from weighted rates which correct for derating or dependable plant capacity impacts by weighting each term in the calculation by the Net Maximum Capacity, to unweighted time-based calculation methods. The outage statistics included in the analysis are now Scheduled Outage Factor ("SOF"), Forced Outage Factor ("FOF"), and Availability Factor ("AF") which are additive to 100% of the potential uptime for the generating facility.

3.4 Simple Cycle Gas Turbine Cost Estimates

The simple cycle cost estimate results are included in the Summary Tables. The EPC cost includes all equipment procurement, construction, and indirect costs for a greenfield simple cycle project.

Additional cost clarifications and assumptions are shown below:

- The EPC capital cost is divided into the following categories:
 - o Engineering
 - o GT
 - o GSU
 - Environmental Equipment (for options with SCR in the base cost). SCR/CO system option costs are shown separately for LM6000 PF + and 7E.03 options.
 - Balance of Plant ("BOP")
 - Mechanical equipment, electrical equipment, instrumentation and controls, chemical storage, fire protection equipment, and other miscellaneous items are required.
 - Includes supplemental fuel gas metering equipment for verification of billing/consumption information provided by gas supplier.
 - Fuel gas metering and conditioning equipment owned by the gas supplier is excluded.
 - SCGT plants assume that demineralized water trailers are used to treat raw water if dual fuel option is not selected. Permanent onsite water treatment systems are included as part of the dual fuel option breakout cost.
 - Demineralized water tank and related pumps are included for onsite storage.
 - Fuel oil tank assumes 72 hours of storage.
 - Construction
 - Accounts for labor adjustments for each service area.
 - Includes major equipment erection, civil/structural construction, mechanical construction, and electrical construction.
 - Indirect Costs and Fees
 - EPC Contingency
- Base unit estimates assume natural gas operation with evaporative coolers. Optional add costs are shown separately.
- It is assumed that natural gas is available at approximately 900 psig. Fuel compression is excluded.
- Dual fuel capability is included as an option for the LM6000 PF+ and 7E.03 LLI options. Initial fuel oil fill is included in associated Owner's Costs.
- The estimate assumes the turbines are installed outdoors with OEM standard enclosures.
- Cost estimates include a building with administrative/control spaces and a warehouse.

3.5 Simple Cycle O&M

The results of the simple cycle O&M evaluations are shown in the Summary Tables. Additional assumptions are listed in the scope matrix.

Major maintenance costs for aeroderivative engines, representative of the LM6000, are estimated on a dollar per GT hourly operation ("\$/GTG-hr") basis and are not affected by number of starts. Variable O&M and major maintenance costs are based on natural gas operation. Fixed costs for all simple cycle units include an allowance for seven full time employees for a plant containing one turbine.

Major Maintenance costs for the frame engines are estimated on a dollar per GT start ("\$/GT-start") basis. In general, if there are more than 27 operating hours per start, the maintenance will be hours based. If there are less than 27 hours per start, maintenance will be start-based. Note that the \$/GT-hr and \$/start costs are not meant to be additive or combined in any way. The operational profile determines which value to use to determine annual major maintenance costs. It is assumed that there is no penalty for 10-minute starts, but some OEMs may have penalties depending on specific project conditions including calculation adjustments to the hours in between major maintenance events that increase the equivalent run hours by a multiplicative factor based on the number of these 10-minute starts. The major maintenance \$/MWh cost shown in the summary is calculated using the \$/hr major maintenance cost (it is intended as another way to show the same cost, so it is also not intended to be added to \$/start or \$/hr). If a start-based maintenance scheme is desired, it should be noted that the applicable \$/MWh will need to be calculated based on the start-based annual cost expectations.

4.0 Reciprocating Engine Technology

This Assessment includes three simple cycle reciprocating engine plants for comparison among the SCGT options.

4.1 Reciprocating Engine Technology Description

The internal combustion, reciprocating engine operates on a four-stroke cycle for the conversion of pressure into rotational energy. Utility scale engines are commonly compression-ignition models, but some are spark-ignition engines. By design, cooling systems are typically closed-loop radiators, minimizing water consumption.

Reciprocating engines are generally less impacted by altitude and ambient temperature differences than GTs. With site conditions below 3,000 ft and 95°F, altitude and ambient temperature have minimal impact on the electrical output of reciprocating engines, though the efficiency may be slightly affected.

Reciprocating engines can start up and ramp load more quickly than most GTs, but it should be noted that the engine jacket temperature must be kept warm to accommodate start times under 10 minutes. However, it is common to keep water jacket heaters energized during all hours that the engines may be expected to run (associated costs have been included within the fixed O&M costs).

Many different vendors, such as Wärtsilä, Fairbanks Morse (MAN Engines), Caterpillar, Hyundai, GE (Jenbacher), Rolls Royce, etc. offer reciprocating engines. They are a popular option to pair with wind turbine generation with their quick start times and operational flexibility. There are slight differences between manufacturers in engine sizes and other characteristics, but all largely share the common characteristics of quick ramp rates and quick start up when compared to GTs.

One unique characteristic of reciprocating engine technologies is the fundamental difference in design between dual fuel engines and natural gas only engines. Natural gas only engines utilize spark ignition to ignite the natural gas at the top end of the compression stroke, while dual fuel engines do not utilize spark ignition and rely on compression alone to ignite the fuel. Compression ignition engines require fuel oil to begin combustion. Therefore, dual fuel engines are designed to consume a small amount of fuel oil even when operating on natural gas. During fuel oil operation, however, natural gas is not required for operation.

Utility scale applications most commonly rely on medium speed engines in the 9-10 MW and 18-20 MW classes. All OEMs indicated above offer a spark ignition engine in the 9-10 MW class, but only Wärtsilä and MAN have commercially available 18-20 MW class engines in the US. Wärtsilä and MAN are also the only major OEMs who offer compression ignition engines in either class that can operate on natural gas or liquid fuels.

This Assessment includes single fuel (20V34SG and 18V50SG) options with nominal plant sizes of 36 MW and 54 MW, respectively, and a dual fuel capable (31DF) option with a nominal plant size of 44 MW. These heavy duty, medium speed engines are easily adaptable to grid-load variations.

4.2 Reciprocating Engine Emissions Controls

Emissions estimates are shown in the Summary Tables for full load at winter conditions on natural gas fuel. In addition to good combustion practices, it is expected that reciprocating engines will require SCR and CO catalysts to control NOx and CO emissions. Operation on natural gas fuel with an SCR yields reduction of NOx emissions to 5 ppm at 15 percent excess O_2 , while a CO catalyst results in anticipated CO emissions of 15 ppm. It is assumed that emissions control equipment is not required for CO_2 and PM. Sulfur dioxide emissions are not controlled and are therefore a function of the sulfur content of the fuel. It is assumed that CEMS monitoring systems are also not required.

4.3 Reciprocating Engine Performance

Performance results are shown in the Summary Tables. Estimated performance results are based on data from OEM ratings. Full load and minimum load performance estimates are shown for winter and summer conditions. Minimum load assumes 40% load for SG engines. Currently, only Wärtsilä and MAN (licensed by Fairbanks in the United States) offer dual fuel engines in this class. The general assumptions in Section 2.0 apply to the evaluation of reciprocating engine options, and additional assumptions are listed in the scope matrix.

The Summary Tables includes startup times for engine options. Start times of 5-10 minutes require that the engine jacket temperatures be kept warm for standby operation (this is addressed in the O&M costs). Outage and availability statistics, collected using the NERC GADS, are also shown in the Summary Tables. The GADS data delivered was changed from weighted rates which correct for derating or dependable plant capacity impacts by weighting each term in the calculation by the Net Maximum Capacity, to unweighted time-based calculation methods. The outage statistics included in the analysis are now SOF, FOF, and AF which are additive to 100% of the potential uptime for the generating facility. It should be noted that EFOR data from GADS may not accurately represent the benefits of a reciprocating engine plant, depending on how outage events are recorded. Typically, a maintenance event will not impact all engines simultaneously, so only a portion of the plant would be unavailable.

Reciprocating engines consume minimal water (approximately 5 gallons per engine, per week for cooling loop makeup, plus a gallon per day for turbo rinses). Depending on site conditions and access to water, the low water consumption rate can be advantageous for comparison to other simple cycle plants.

Emissions estimates are shown for full load at ISO conditions on natural gas fuel. It is assumed that SCR and CO catalyst technologies are installed and operating.

4.4 Reciprocating Engine Cost Estimates

The cost estimate results are included in the Summary Tables. The EPC costs include all equipment procurement, construction, and indirect costs for a greenfield reciprocating engine project.

Additional cost clarifications and assumptions are shown below:

- SCR and CO catalysts are included for reciprocating engines. It is assumed that CEMS equipment is not required.
- It is assumed that natural gas is available at approximately 125 psig. Fuel compression is not required.
- The reciprocating engine plant includes an indoor engine hall with associated administrative/ control/warehouse facilities.
- Each RICE option is tied to its own three-winding GSU.
- Fuel oil storage tank assumes 72 hours of storage.

4.5 Reciprocating Engine O&M

The results of the O&M evaluations are shown in the Summary Tables. Additional assumptions are listed in the scope matrix.

Fixed O&M costs include seven (7) full-time equivalent ("FTE") personnel. Fixed O&M also includes an estimate for standby electricity costs to keep the engines warm and accommodate start times of less than

ten minutes. Additional fixed O&M costs include allowances for administrative, communications, and other routine maintenance items.

Major maintenance costs are shown per engine, regardless of configuration. It is assumed that a long-term service agreement ("LTSA") with the OEM or other third party would include parts and labor for major overhauls and catalyst replacements.

Variable costs account for lube oil, SCR reagent, routine BOP maintenance, and scheduled minor engine maintenance. It is expected that the LTSA would include supervision and parts for these minor intervals (i.e. ~2,000 hour intervals), but that these may not be considered capital maintenance intervals, so they are included in the variable O&M.

5.0 Combined Cycle Gas Turbine Technology

This Assessment includes three CCGT options, including a 1x1 configuration and two 2x1 configurations.

5.1 Combined Cycle Emissions Controls

The basic principle of the CCGT plant is to utilize natural gas to produce power in a GT which can be converted to electric power by a coupled generator, and to also use the hot exhaust gases from the GT to produce steam in a heat recovery steam generator ("HRSG"). This steam is then used to drive a steam turbine and generator to produce electric power. The use of both gas and steam turbine cycles (Brayton and Rankine) in a single plant to produce electricity results in high conversion efficiencies and low emissions. Additionally, natural gas can be fired in the HRSG to produce additional steam and associated output for peaking load, a process commonly referred to as duct firing. The heat rate will increase during duct fired operation, though this incremental duct fired heat rate is generally less than the resultant heat rate from a similarly sized SCGT peaking plant.

As discussed in prior sections, continued development by GT manufacturers has resulted in the separation of GT technology into various classes. For the purposes of this Assessment, 1898 & Co. is evaluating greenfield configurations with Siemens SGT-800 and GE 7F.05 technologies and a potential brownfield expansion for the existing GE 7E.03 technology at Heskett Station to best assess the potential of bookends of turbine technology for combined cycle purposes.

5.2 Combined Cycle Emissions Controls

Emissions estimates are shown in the Summary Tables for base load and peak (duct-fired) load, assuming natural gas operation at winter conditions.

Combined cycle plants are designed for capacity factors consistent with intermediate or base load operation, and therefore it is expected that NOx and CO emissions will need to be controlled. An SCR will be required to reduce NOx emissions by approximately 90%, which correlates to approximately 0.01 lb/MMBtu. It is expected that a CO catalyst will also be required to reduce CO emissions. This assessment assumes CO emissions will be controlled to 2 ppm CO at 15 percent O₂, which correlates to approximately 0.004 lb/MMBtu.

The use of an SCR and CO catalyst requires additional site infrastructure. An SCR system injects ammonia into the exhaust gas to absorb and react with NOx molecules. This requires on-site ammonia storage and provisions for ammonia unloading and transfer. The costs associated with these requirements have been included in this Assessment. For all CCGT options, untreated CO_2 emissions are estimated to be 120 lb/MMBtu.

Sulfur dioxide emissions are not controlled and are therefore a function of the sulfur content of the fuel burned in the GTs. Sulfur dioxide emissions of a CCGT plant are very low compared to coal technologies, and the emission rate of sulfur dioxide for a combined cycle unit is estimated to be less than 0.002 lb/MMBtu.

5.3 Combined Cycle Performance

For this Assessment, the F class is based on the GE 7F.05 turbine, and the E class is based on the GE 7E.03 turbine.

Estimated performance results are shown in the Summary Tables, based on data outputs from EBSILON® Professional thermal models. The general assumptions in Section 2.0 apply to the evaluation of CCGT options, and additional assumptions are listed in the scope matrix.

- Evaporative cooling is included in base plant.
- Incremental performance ratings with duct firing are shown for all configurations at winter and summer conditions. These values can be added directly to the corresponding base load performances.
- Base performance is based on heat rejection through wet cooling towers.
- Duct fired options include capability for duct firing capability to 1,400 °F. Incremental duct fired output and heat rate are provided. The incremental heat rate is only applicable to the fired output. It does not represent the total plant heat rate when duct firing is operational.
- All CCGT plants assume SCR and CO catalyst technologies are installed.

The Summary Tables include combined cycle start times to stack emissions compliance and base load according to cold, warm, and hot start conditions. Stack emissions compliance is commonly driven by the time required for the CO catalyst to reach its optimum temperature, which typically occurs after the turbine reaches MECL. Start times reflect unrestricted, conventional starts for all GTs. GT fast start options are not reflected in combined cycle startup information.

Outage and availability statistics, collected using the NERC GADS, are also shown in the Summary Tables. Combined cycle GADS data are based on the 2013-2022 operating statistics for applicable North American units that are no more than 10 years old. The GADS data delivered was changed from weighted rates which correct for derating or dependable plant capacity impacts by weighting each term in the calculation by the Net Maximum Capacity, to unweighted time-based calculation methods. The outage statistics included in the analysis are now SO, FOF, and AF which are additive to 100% of the potential uptime for the generating facility.

Full load, part load, and minimum load performance estimates are shown for winter and summer conditions. All performance assumes new and clean equipment. Emissions estimates assume that SCR and CO catalyst systems are installed.

5.4 Combined Cycle Cost Estimates

The combined cycle cost results are included in the Summary Tables. The project cost includes all equipment procurement, construction, and indirect costs for combined cycle projects. The general cost assumptions in Section 2.0 apply to the combined cycle options.

Cost estimates were developed using in-house information based on 1898 & Co. project experience. Cost estimates assume an EPC project plus typical Owner's costs. This methodology assumes that the combined cycle plant would be constructed up front in a single project at the same site, and therefore the estimates are not valid for adding a unit to an existing plant at a later date. For the 2x1 7E.03 expansion at the existing Heskett Station, 1898 & Co. assumes that MDU would utilize the existing simple cycle 7E.03 turbines and would construct the remainder of the combined cycle facility in a single project at the same site. In line with the assumptions matrix, the following items are highlighted:

- The EPC capital cost is divided into the following categories:
 - o Engineering
 - o GTs
 - o HRSGs

- Includes duct firing capability
- Includes SCR/CO catalyst
- Steam Turbine
- GSU Transformers
- BOP Equipment and Materials
 - Mechanical equipment, electrical equipment, instrumentation and controls, chemical storage, fire protection equipment, and other miscellaneous items required.
 - Includes supplemental fuel gas metering equipment for verification of billing/consumption information provided by gas supplier.
 - Fuel gas compression is excluded.
 - Fuel gas metering and conditioning equipment owned by the gas supplier is excluded.
 - Onsite water treatment systems.
- Construction
 - Accounts for labor adjustments
 - Includes major equipment erection, civil/structural construction, mechanical construction, and electrical construction.
- Indirect Costs and Fees
- EPC Contingency
- Base unit estimates assume natural gas operation with no inlet conditioning and no dual fuel capability.
- The estimate assumes that GTs are installed outdoors in OEM standard enclosures.
- The estimate assumes that HRSGs are installed indoors.
- The estimate assumes that steam turbines are installed indoors.
- An administrative/control building and a warehouse are included.
- Generic well water is assumed for all sites. No intake structures or supply piping outside the plant boundary are included.
- Cost estimates exclude escalation, interest during construction, financing fees, off-site infrastructure, and transmission.
- The owner's cost for a switchyard assumes a breaker and $\frac{1}{2}$ configuration for 230kV interconnection.

5.5 Combined Cycle Plant O&M

The results of the combined cycle O&M evaluations are shown in the Summary Tables. In line with the assumptions matrix, the following items are highlighted:

- O&M estimates are based on plant performance at winter conditions.
- Incremental O&M costs for optional items are meant to be added directly to the base fixed or variable O&M costs, as applicable.
- Combined cycle plants assume the following FTE personnel quantities.
 - o 1x1: 22 FTE
 - o 2x1: 25 FTE
- SCR systems are included in the O&M evaluations for all combined cycle plants. SCR systems assume 19 percent aqueous ammonia and six-year catalyst life.
- Major maintenance costs are based on \$/GT-hr but are also shown in \$/MWh. These numbers reflect the same total annual cost and are not meant to be combined.

- Note that major maintenance costs vary by term coverage and scope, OEM, and operational profile.
- Incremental O&M for alternative heat rejection options account for the reduced water and chemical consumption at summer conditions.
- Chemical costs were updated based on recent 1898 & Co. experience.

6.0 Wind Generation Technology

This Assessment includes options for 50 MW and 100 MW wind generation.

6.1 Wind Energy Technology Description

Wind turbines convert the kinetic energy of wind into mechanical energy, which can be used to generate electrical energy that is supplied to the grid. Wind turbine energy conversion is a mature technology and is generally grouped into two types of configurations:

- Vertical-axis wind turbines, with the axis of rotation perpendicular to the ground.
- Horizontal-axis wind turbines, with the axis of rotation parallel to the ground.

Almost all percent of turbines over 100 kW used for utility bulk energy generation in operation are horizontal-axis, instead of vertical-axis turbines generally restricted to distributed urban installations. Subsystems for either configuration typically include the following: a blade/rotor assembly to convert the energy in the wind to rotational shaft energy; a drive train, usually including a gearbox and a generator; a tower that supports the rotor and drive train; and other equipment, including controls, electrical cables, ground support equipment and interconnection equipment.

Wind turbine capacity is directly related to wind speed and equipment size, particularly to the rotor/blade diameter. The power generated by a turbine is proportional to the cube of the prevailing wind, that is, if the wind speed doubles, the available power will increase by a factor of eight. Because of this relationship, proper siting of turbines at locations with the highest possible average wind speeds is vital. 1898 & Co. notes that average site wind speeds of at least 7.0 meters per second ("m/s") are generally considered to have suitable wind resources for wind generation development.

Appendix A includes sample NREL wind resource map for the North Dakota service area.

6.2 Wind Energy Emission Controls

No emission controls are necessary for a wind energy installation.

6.3 Wind Performance

This Assessment includes up to 100 MW onshore wind generating facilities. 1898 & Co. relied on publicly available data and proprietary computational programs to complete the net capacity factor characterization. Generic project locations were selected for their proximity to relatively high wind speeds in accordance with NREL wind maps, but they are otherwise arbitrary. They were not selected with respect to actual, expected, or preferred locations for current or future wind development. Instead, they were intended to represent the average expected wind speeds available if the project were to be built within each service area.

The General Electric GE2.82-127 wind turbine model was assumed for this analysis, with a nameplate capacity of 2.82 MW at a hub height of 89 meters ("m"). For maximum tip heights above 500 feet, a permitting process through the Federal Aviation Administration ("FAA") would be required (as is typical for utility scale wind energy installations) since the tip height reaches altitudes available for general aircraft. A generic power curve at standard atmospheric conditions (i.e., sea level air density, normal turbulence intensity) was utilized for the GE2.82-127. Note that this turbine is intended only to be representative of a typical wind turbine utility scale projects. Because this analysis assumes generic site locations,

the turbine selection is not optimized for a specific location or condition. Actual turbine selection requires further site-specific analysis.

Using the NREL wind resource maps, the mean annual hub height wind speed at each potential project location was estimated and then extrapolated for the 89 m hub height for the GE2.82-127 to determine a representative wind speed. Using a Rayleigh distribution and power curve for the turbine technology described above, a gross annual capacity factor ("GCF") was subsequently estimated for each site.

Annual losses for a wind energy facility were estimated at approximately 21 percent, which is a common assumption for screening level estimates in the northern part of the United States in the wind industry. This loss factor was applied to the gross capacity factor estimates to derive a net annual capacity factor ("NCF") for each potential site. Ideally, a utility-scale generation project should have an NCF of 30 percent or better. The NCF estimates for the MDU service areas are shown in the Summary Table.

6.4 Wind Cost Estimate

The wind energy cost estimate is shown in the Summary Tables. The cost estimate assumes a two-contract approach with the Owner awarding a turbine supply contract and a separate BOP contract. Typical Owner's costs are also shown. Costs are based on 100 MW plant with 2.82 MW turbines (36 total turbines) and a 50 MW plant with 2.82 MW turbines (18 total turbines).

- Equipment and construction costs are broken down into subcategories per MDU's request. These breakouts represent the general scale of 100 MW and 50 MW wind project but are not intended to indicate the expected scope for a specific site.
- The BOP scope includes a GSU transformer for interconnection at 115 kV.
- Land costs are excluded from the BOP and Owner's cost. For the 2024 Study, it is assumed that land is leased, and those costs are incorporated into the O&M estimate.
- Cost estimates also exclude escalation, interest during construction, financing fees, off-site infrastructure, and transmission.

6.5 Wind Energy O&M Estimates

O&M costs in the Summary Tables are derived from in-house information based on 1898 & Co. project experience and vendor information. Wind O&M costs are modeled as fixed O&M, including all typical operating expenses with the following breakdown:

- Labor costs
- Turbine O&M
- BOP O&M and other fixed costs (general and administrative ("G&A"), insurance, environmental costs, etc.)
- Property taxes
- Land lease payments

An allowance for capital replacement costs is not included within the annual O&M estimate in the Summary Table. A capital expenditures budget for a wind farm is generally a reserve that is funded over the life of the project that is dedicated to major component failures. An adequate capital expenditures budget is important for the long-term viability of the project, as major component failures are expected to occur, particularly as the facility ages.

If a capital replacement allowance is desired for planning purposes, the table below shows indicative budget expectations as a percentage of the total operating cost. As with operating expenses, however, these costs

can vary with the type, size, or age of the facility, and project-specific considerations may justify deviations in the budgeted amounts.

Operational Years	Capital Expenditure Budget
0 - 2	None (warranty)
3 - 5	3% - 5%
6 - 10	5% - 10%
11 - 20	10% - 15%
21 - 30	15% - 20%
31 - 40	20% - 25%

Table 6-1: Summary of Indicative Capital Expenditures Budget by Year

6.6 Wind Energy Production Tax Credit

Tax credits such as the production tax credit ("PTC") and investment tax credit ("ITC") are not factored into the cost or O&M estimates in this Assessment, but an overview of the PTC is included below for reference.

To incentivize wind energy development, the PTC for wind was first included in the Energy Policy Act of 1992. It began as a \$15/MWh production credit and has since been adjusted for inflation, worth approximately \$18/MWh following the credit's extension in December 2020 through December 31, 2022. As a result of the IRA, the PTC has been extended to 2032 with 100% credit at a 2022 value of approximately \$27.50/MWh and no anticipated step-downs in credit percentages.

The PTC is awarded annually for the first 10 years of a wind facility's operation. Unlike the ITC that is common in the solar and storage industry, there is no upfront incentive to offset capital costs. The PTC value is calculated by multiplying the \$/MWh credit times the total energy sold during a given tax year. At the end of the tax year, the total value of the PTC is applied to reduce or eliminate taxes that the owners would normally owe. If the PTC value is greater than the annual tax bill, the excess credits can potentially go unused unless the owner has a suitable tax equity partner.

Since 1992, the changing PTC expiration/phaseout schedules have directly impacted market fluctuations, driving wind industry expansions and contractions. Previous PTC legislation required wind projects to start construction in 2016 to qualify for 100% of the PTC; this percentage decreased 20% each year from 2017 through 2019. In 2020, the PTC was raised back to 60% and was set to expire by the end of the year. However, the Taxpayer Certainty and Disaster Relief Act of 2020 extended the deadline for eligible systems to qualify for PTC in 2022. Once the IRA was announced in 2022, many developers were no longer in a rush to complete projects by the end of 2022, causing a temporary slow-down in wind projects.

7.0 Solar Photovoltaic Technology

This Assessment includes two single axis tracking PV options at 5 MWac and 50 MWac. Both contain add-on cost options for co-located 1 MW / 4 MWh or 10 MW / 40 MWh lithium-ion energy storage systems respectively.

7.1 PV Technology Description

The conversion of solar radiation to useful energy in the form of electricity is a mature concept with extensive commercial experience that is continually developing into a diverse mix of technological designs. PV cells consist of a base material (most commonly silicon), which is manufactured into thin slices and then layered with positively (i.e., phosphorus) and negatively (i.e., boron) charged materials. A "depletion" layer forms at the junction of these oppositely charged materials. When sunlight strikes the cell, the separation of charged particles generates an electric field that forces current to flow from the negative material to the positive material. This flow of current is captured via wiring connected to an electrode array on one side of the cell and an aluminum back-plate on the other. Approximately 15% of the solar energy incident on the solar cell can be converted to electrical energy by a typical silicon solar cell. As the cell ages, the conversion efficiency degrades at a rate of approximately 2% in the first year and 0.5% per year thereafter. At the end of a typical 30-year period, the conversion efficiency of the cell will still be approximately 80% of its initial efficiency.

7.2 PV Emission Controls

No emission controls are necessary for a PV system.

7.3 PV Performance

1898 & Co. ran simulations using PVsyst software. The resultant capacity factors for single axis tracking systems are shown in the Summary Tables. An Inverter Loading Ratio ("ILR") of 1.35 was assumed for all simulations.

Single axis tracking systems have better capacity factors when compared to fixed tilt systems, but costs are higher for similar ILR ratios. Panel technologies may also exhibit different performance characteristics depending on the site. Thin film technologies are typically cheaper per panel, but they are also less energy dense, so it is likely that more panels would be required to achieve the same output. Further analysis would be required to select which mounting system is best suited for a given site. Additional assumptions are listed in the scope matrix.

7.4 PV Cost Estimates

Cost estimates were developed using in-house information based on 1898 & Co. project experience. Cost estimates assume an EPC project plus typical Owner's costs.

PV cost estimates for the single axis tracking system with 840 kW central inverters are included in the Summary Table. The project scope assumes a medium voltage interconnection and the Owner's costs include an allowance for interconnection downstream of the 34.5kV circuit breaker. The 2024 Assessment excludes land costs from capital and Owner costs. It is assumed that all PV projects will be on leased land with allowances provided in the O&M costs.

PV installed costs have steadily declined for years. The main drivers of general cost decreases include substantial module price reductions, lower inverter prices, and higher module efficiency. US tariffs on PV panels and steel imports also impact PV prices. Recently, however, trade and supply chain headwinds have

caused considerable delays in upcoming solar installations. Federal policy also affects PV costs and in recent years has spurred growth in renewable technologies. The Inflation Reduction Act ("IRA") extends the current solar investment tax credit of 30% and production tax credit of 27.5 \$/MWh until 2032 at the earliest. A new incentive included is "direct pay" ITC: it gives direct cash payments to developers in lieu of investors claiming tax credits, allowing projects to quickly monetize the ITC.

7.5 PV O&M Cost Estimate

O&M costs for the PV options are shown in the Summary Tables. O&M costs are derived from 1898 & Co. project experience and vendor information. The 2024 Assessment includes allowances for land lease and property tax costs.

The following assumptions and clarifications apply to PV O&M:

- O&M costs assume that the system is remotely operated and that all O&M activities are performed through a third-party contract. Therefore, all O&M costs are modeled as fixed costs, shown in terms of millions of dollars ("\$MM") per year.
- Land lease and property tax allowances are based on input from MDU.
- Equipment O&M costs account for inverter maintenance and other routine equipment inspections.
- BOP costs account for monitoring & security and site maintenance (vegetation, fencing, etc.).
- Panel cleaning and snow removal are not included in O&M costs. Panel cleaning and snow removal are not cost-effective and not recommended.
- The capital replacement allowance is a sinking fund for inverter replacements, assuming they will be replaced once during the project life. It is a 15-year levelized cost based on the current inverter capital cost.

7.6 Co-located Solar PV and Battery Systems

The add-on costs for the 10 MW / 40 MWh and 1 MW / 4 MWh batteries are shown in each respective solar PV column within the Summary Tables. The add-on costs assume each battery is co-located with the solar PV system.

Coupling renewables with storage is one common use case for lithium-ion batteries. In regions with high solar PV penetration, coupling solar PV with storage allows for energy shifting to alleviate the high ramping and sufficient production needs for generation at sunset. During periods of low demand, the battery can be charged using the renewable energy resource and then discharged during periods of high demand. For storage projects, pairing with solar PV as a co-located hybrid project was historically driven by the solar ITC. Prior to the IRA, ITC benefits were only achievable for storage projects if they were coupled and charged with solar. This is no longer the case, as the IRA allowed for standalone energy storage projects to qualify for ITC benefits.

There are two methods for connecting solar PV and battery technologies in a co-located environment: ACcoupled or direct current ("DC")-coupled. For this Assessment, 1898 & Co. assumes an AC-coupled system. Alternating current ("AC")-coupled technologies are connected after each respective inverter via a medium voltage ("MV") collection bus. DC-coupled technologies are connected before the system-wide inverter via DC cabling. AC-coupled solar PV and battery systems are more common amongst utility-scale applications due to the fact the systems are easier to retrofit to existing solar PV, allow for flexibility in inverter selection, are more resilient amidst outage scenarios, and offer versatile charging options for the battery. There are some notable advantages to DC-coupled systems though, as DC-coupled systems are more efficient in charging the battery, tend to be more affordable, and allow for solar PV systems to be oversized beyond inverter limitations if needed.

8.0 Lithium-ion Battery Storage Technology

This Assessment includes a 50 MW / 200 MWh standalone storage option using lithium-ion technology.

8.1 Lithium-ion Battery Storage Technology Description

Electrochemical energy storage systems utilize chemical reactions within a battery cell to facilitate electron flow, converting electrical energy to chemical energy when charging and generating an electric current when discharged. Electrochemical technology is continually developing as one of the leading energy storage and load following technologies due to its modularity, ease of installation and operation, and relative design maturity. Lithium-ion chemistries have been the leading technology in the electrochemical energy storage market due to the maturity of the technology as well as its competitive cost per unit of energy. There are other emerging technologies in the electrochemical energy storage market that have recently gained traction in the energy storage market but have yet to be substantially proven at utility-scale. Most of this section will focus on lithium-ion energy storage technologies due to the technology selection by MDU.

A lithium-ion battery contains a cathodic and an anodic electrode and an electrolyte sealed within a cell container. Cells can be connected in series to increase overall facility storage and output. During charging, a reduction-oxidation reaction ("redox") occurs and liberates lithium ions from the cathode to the anode via a high-conductivity electrolyte. During discharging, the reverse redox reaction occurs, which forces electrons to migrate from the anode to the cathode through an external circuit, thereby generating electric current. Lithium-ion technology has seen a resurgence of development in recent years due to its high energy density, low self-discharge, and cycling tolerance. Consequently, lithium-ion has gained traction in several markets including the utility and automotive industries.

Batteries are designated by the electrochemistry utilized within the cell; the most common lithium-ion chemistries utilized for utility-scale applications include lithium-iron phosphate ("LFP") and nickel manganese cobalt ("NMC"). NMC is prominent in the automotive industry due to the chemistry's high energy density, and is also competitive in the stationary storage industry. LFP has recently been seen a majority share in stationary storage because it is less expensive than NMC, has higher thermal stability, and contains no cobalt. One of the most notable drawbacks to NMC batteries is its use of cobalt.

At its core, a battery energy storage system ("BESS") begins with the battery cell. There are three distinct types of cells used in the stationary storage market: the cylindrical cell (preferred by Panasonic), a pouch-type battery (preferred by LG Chem), and a prismatic cell (preferred by CATL, Samsung SDI, BYD, EVE, and other battery OEMs). These battery cells are then incorporated into a battery module which consists of series and parallel combinations of battery cells. The modules are then placed into racks which contain a manufacturer-specific number of modules based on the application. At the top of each rack, there is typically a battery management system ("BMS"), which acts as a small control system for each individual rack. Cables from the racks connect to a DC panel, which is connected to the power conversion system ("PCS") to convert the current to AC. The PCS may be connected to a series of transformers and protection devices before transmitting power to the grid.

The controls system is an integral part for operating the battery and monitoring its health. Each battery rack contains a BMS, which is used to protect the batteries and provide cell balancing functions when needed.

The BMS includes an electronic switch that can be used to disconnect the battery from the charger or load under critical conditions.

Advanced system functions may also be desired including a variety of market participation algorithms that are designed to autonomously optimize the battery's value in the market. Some of these functions include price forecasting for charge and discharge, automatically bidding into the market, and automatically scheduling charge discharge cycles.

8.2 Lithium-ion Battery Emissions Controls

No emission controls are currently required for battery storage facilities.

8.3 Lithium-ion Battery Storage Performance

This assessment includes the performances of a 50 MW / 200 MWh system based on lithium-ion batteries. Lithium-ion systems can respond in seconds and exhibit excellent ramp rates and round-trip efficiencies. The systems in this Assessment are assumed to perform 365 cycles (or equivalent cycles) per year. The project life is assumed to be 20 years, which is common in the industry. Energy capacity degradation is a known characteristic of lithium-ion BESS. To maintain useable capacity throughout the life of the project, additional capacity may be "overbuilt" during the initial installation or added to the project throughout the life. This is known as "augmentation." There are various strategies for augmentation that are driven by project specific technical and economic concerns.

8.4 Lithium-ion Battery Storage Regulatory Trends

There are several FERC Orders that provide clarity on the role of storage in wholesale markets and encourage its growth in the US. FERC Order 841, upheld in July 2020, requires regional transmission organizations ("RTO") and ISOs to develop clear rules regulating the participation of energy storage systems in wholesale energy, capacity, and ancillary services markets, which includes batteries as small as 100 kW connected behind-the-meter. FERC Order 842 addresses requirements for some generating facilities to provide frequency response, including accommodations for storage technologies. FERC Order 2222 mandates reforms by grid operators to enable participation of distributed energy resources ("DER"), which can include storage resources, in electricity markets.

The most recent major catalyst for spurring energy storage growth is the IRA, which was signed into law on August 16, 2022. The IRA directs nearly \$250.6 billion in federal funding to the energy industry to stimulate the domestic market for clean energy generation and storage. The legislation aims to accelerate clean energy deployment, generate domestic manufacturing jobs, and reduce greenhouse gas emissions by offering investment tax credits (ITC), production tax credits (PTC), grants, and loan programs. The IRA unlocked new federal ITC benefits for standalone energy storage projects. Prior to the IRA, energy storage projects were only eligible for the ITC if connected to solar energy generation. Now, standalone storage projects are eligible for ITC benefits as well as bonus credits should the project qualify under IRA eligibility requirements. Those interested in pursuing ITC benefits for standalone energy storage projects should consult tax professionals to determine the correct ITC basis from which ITCs are generated.

8.5 Lithium-ion Battery Storage Cost Estimate

The estimated costs of the lithium-ion battery systems are included in the Summary Tables and are based on 1898 & Co. experience and vendor correspondence. Costs are indicative of the general market trend toward modular battery designs, which include battery racks inside a purpose-built enclosure with integrated controls. Key cost components include the modular, purpose-built enclosures, inverters, medium voltage

transformers, project collector substation with main power transformer, and related installation and indirect costs. The capital costs account for energy capacity overbuild to account for approximately 3 years of capacity degradation. Costs associated with augmentation are covered in the O&M costs. It is assumed that the scope includes a transformer to connect at 115 kV.

The costs provided in this Assessment are overnight costs indicative of the current market. The current market has undergone massive cost swings that have been driven by supply chain issues, commodity price fluctuation, and manufacturing limitations. With the rapid increase in lithium demand, the commodity price for lithium carbonate has varied drastically. Stationary storage product prices increased approximately 25% - 40% during 2020-2022 and plateaued until approximately Q2 2023. This brought installed project costs during that time frame to levels that were at or higher than pre-2020 levels. As of Q4 2023, observed battery pricing for stationary storage projects is now falling again, in alignment with raw material pricing and a healthier functioning supply chain. However, there is no observable consensus among industry analysts on future pricing of battery modules; some expect increases while others expect decreases.

8.6 Lithium-ion Battery Storage O&M Cost Estimate

O&M estimates for lithium-ion battery system are shown in the Summary Tables, based on 1898 & Co. experience and recent market trends. The battery storage system is assumed to be operated remotely with no permanent onsite personnel.

The technical life of a battery project is expected to be 20 years. O&M costs have been levelized for the assumed 20-year project life and are intended to include routine maintenance and augmentation for BESS, routine maintenance for the PCS and BOP, and an inverter replacement fund. Auxiliary load energy is excluded, as it is assumed that the AC-AC RTE accounts for HVAC and auxiliary loads.

9.0 Emerging Technologies

To meet carbon reduction targets, dispatchable carbon free or low carbon generation technologies will likely be required. This section is intended to cover emerging technologies that should be monitored and potentially evaluated in the future as the technologies develop further.

9.1 Hydrogen Technology

High hydrogen fuel blends or 100% hydrogen combustion is an attractive low carbon / carbon free fuel due to the potential of long duration dispatchable generation and the potential for retrofitting existing units. Low carbon sources of hydrogen include steam methane reforming (with carbon capture utilization and sequestration) and water electrolysis. Methane reforming requires superheated steam to form hydrogen from a natural gas stream. This process also results in carbon monoxide and carbon dioxide that requires sequestration to limit the carbon emissions from the process. Water electrolysis generates hydrogen through the decomposition of water into its formative atoms using an electrical current. Electrolysis has been touted as a potential source of green hydrogen in the future thanks to potential utilization of curtailed energy from renewable sources. However, this mode of operation has seen limited deployment due to the high cost to produce hydrogen and the limited pipeline infrastructure to transport hydrogen. Due to the low density of the hydrogen atom, storage and transportation cost can be significant.

In the following sections some discussion is provided about hydrogen combustion specific performance and cost concerns for GT and RICE applications.

9.1.1 Gas Turbine

To combust high hydrogen fuels, current commercially available GT models typically require either steam injection or water injection methods to control NOx emissions and flashback. Additionally, high hydrogen capable combustors are not typically available on the "state-of-the-art" GT models. Therefore, there is typically a significant heat rate impact for using a high hydrogen combustor. Commercially available GT models with dry low NOx ("DLN") combustors are typically only capable of combusting approximately 30-percent hydrogen by volume at this time. The prominent GT OEMs are all working on developing DLN combustors capable of combusting 100% hydrogen with similar NOx emission limits and minimal heat rate impact compared to natural gas. The OEMs are targeting these combustors to be commercially available in the next 5-10 years. It is anticipated that existing GTs will be able to be modified to burn 100% hydrogen in the future. This would include modifications to fuel piping, combustors, GT controls, gas and flame detection, and the turbine enclosure. Additionally, costs for simple cycle applications are impacted by potential requirement of on-site hydrogen production, compression, and storage of the hydrogen fuel.

9.1.2 Reciprocating Internal Combustion Engines

Existing RICE units have recently been tested at a commercial facility with up to 25% hydrogen by volume. Similar to the GT OEMs, RICE OEMs are working towards 100% hydrogen capable engines. This is anticipated to be tested in 2025 and commercially available in the next 5 years. It is unclear at this point whether existing engines will be able to be modified to burn 100% hydrogen in the future.

9.1.3 Hydrogen Fuel Cell Technology

Hydrogen fuel cell technology has a plethora of applications including vehicles, power plants, and backup generators. Hydrogen fuel cells generate electricity through an electrochemical reaction rather than combustion. In a fuel cell, hydrogen is passed through an anode and oxygen through a cathode - both on either side of a porous electrolyte membrane. A catalyst separates the hydrogen atoms into protons and

electrons, and while the protons travel through the membrane to the cathode, the electrons are forced through a circuit, generating an electric current and excess heat. This process is similar to a battery with a key difference being that there is no need for recharging; the cell will continue to produce electricity as long as a fuel source (the hydrogen) is provided. The byproducts of the reaction are simply heat and water, with no carbon emissions. Hydrogen fuel cells can also achieve a higher efficiency than natural gas power plants (~60%) and produce minimal noise comparably.

As of 2022, there are 205 operating fuel cell power generators across the United States for a total of approximately 350 MW. The largest of which is a 14.9 MW fuel cell facility, the Bridgeport Fuel Cell, LLC located in Connecticut. Most of the fuel cells are less than 1 MW in size. Additionally, most fuel cell power plants currently use pipeline natural gas instead of hydrogen due to the lack of infrastructure for hydrogen transportation. Fuel cell technology is currently more expensive than GT or RICE technologies and the increased efficiency is not sufficient to provide competitive levelized cost of energy.

9.2 Small Modular Reactor Technology

Nuclear power has provided a reliable base load generation in many countries for decades. The nuclear industry is continuing to innovate with the small modular reactor ("SMR"). The SMR is intended to provide a carbon-free solution that is lower cost, safer, and more flexible than traditional nuclear generation. The SMR technologies utilize passive safety systems and are designed to be more flexible than larger reactors. Additionally, the hope is that by moving fabrication and construction from the field to the factory and creating a repeatable design, that costs can be reduced as well. SMRs have a smaller footprint requirement and can be easier to site. Finally, refueling can be staggered between multiple reactors in order maintain a portion of generation at all times.

Currently, SMRs are considered developmental. Several OEMs have been awarded DOE grants to advance research into SMRs, including NuScale, X-energy, and TerraPower. These manufacturers have completed conceptual design of these modular units to target lower output and costs and are in various stages of permitting applications with the Nuclear Regulator Committee ("NRC"). However, there are currently no units in commercial operation. Therefore, the information provided in this assessment for the SMR option is based on 1898 & Co. vendor correspondence and publicly available studies.

SMRs provide emissions-free operation, however, spent fuel management should be carefully considered by establishing and monitoring infrastructure to contain and dispose of spent fuel. These nuclear plants will have on-site storage facilities until the US develops a permanent repository for spent nuclear fuel and high-level nuclear waste.

9.3 Non-Lithium Energy Storage

Lithium-ion batteries are still the dominant technology in the energy storage market due to the technology's cost competitiveness, maturity, and cycling ability. Despite this, research, development, and product commercialization spending on alternative battery technologies specifically targeted at stationary energy storage has been increasing dramatically in the last decade. This is predominantly motivated by industry analysts forecasting significant increases in demand for storage capacity and for longer storage duration as renewable generation capacity increases. Several of these emerging technologies are competing with lithium-ion and are working on improving their product in four main ways: safety, capacity degradation, life-cycle cost, and environmental impact.

9.3.1 Air Energy Storage

Air energy storage provides a long-duration energy storage solution by storing energy in various high-pressure states of air. There are two main technologies that fall under air energy storage: compressed air energy storage and liquid air energy storage.

Compressed Air Energy Storage

Compressed air energy storage ("CAES") is another mature form of energy storage that has been in operation globally for over 30 years. CAES systems utilize off-peak electricity to power a compressor train that compresses ambient air. The compressed ambient air is cooled and then injected into underground storage formations. During peak demand, the compressed air is brought to the surface, heated, and expanded through turbine to run a generator. CAES systems require suitable underground storage at the development site, which is typically a salt cavern or a mined hard-rock cavern.

There are two main types of CAES systems: diabatic and adiabatic. Diabatic CAES ("D-CAES") utilizes natural gas to reheat the compressed air during expansion. An example of an operational D-CAES system is a 110 MW facility located in McIntosh, Alabama. This facility was the first operational case of D-CAES in the US and is one of two globally operating D-CAES facilities. These are considered hybrid systems combining the attributes of a traditional fossil generating plant and a pure energy storage system. The McIntosh site for example still requires about one-third the natural gas per kilowatt-hour ("kWh") produced when compared to a conventional gas turbine plant.

Alternatively adiabatic CAES ("A-CAES") reuses heat stored from compression to reheat the compressed air during expansion. Therefore, A-CAES loses less energy to waste heat and has a higher round trip efficiency than D-CAES. Hydrostor, a Toronto-based company founded in 2010, has proven A-CAES feasibility at a pilot scale in Canada utilizing thermal storage units to capture the CAES process heat. Hydrostor is currently working to execute a few of its first utility scale plants, each to utilize purpose-built caverns for compressed air storage.

Liquid Air Energy Storage

Liquid air energy storage ("LAES") stores energy in the form of liquid air (or liquid nitrogen) at cryogenic temperatures. Ambient air is cleaned, compressed, cooled, and liquified in the charging stage of LAES. Once liquified, the air is stored until electricity demand rises. To discharge the system, the liquid air is evaporated, heated, and expanded through a turbine to produce electricity. The waste heat from compressing the air is stored as a hot thermal stream for future discharge processes. The waste cold from evaporating the air is stored as a cold thermal stream for future charging processes. The LAES process resembles CAES but stores air at a much higher energy density and therefore does not have nearly as many geographical constraints as CAES. Highview Power, a UK-based energy storage system designer and developer, launched the world's first grid-scale LAES 5 MW/15 MWh pilot plant in 2018. Following the success of their pilot plant, Highview Power announced the development of the CRYOBattery in 2019, which is a modular cryogenic LAES system that is intended to be scalable up to multiple gigawatts. Highview Power states that the CRYOBattery can be located "just about anywhere" and provides essential services such as "time shifting, synchronous voltage support, frequency regulation and reserves, synchronous inertia, and black start capabilities". Highview Power has announced CRYOBattery projects in Europe, South America, and North America.

9.3.2 Pumped Hydroelectric Energy Storage

Pumped hydroelectric energy storage ("PHES") is another mature form of long duration energy storage that accounts for a vast majority of the world's energy storage capacity. PHES stores energy in the gravitational potential energy of water that is kept in two reservoirs of varying elevation and cycles through a pump-turbine generator-motor system. During peak demand, water flows from the higher reservoir to the lower reservoir and passes through a turbine that produces electricity. To "charge" the PHES system, water from the lower reservoir is pumped back up to the higher reservoir typically using surplus off-peak electrical power. PHES systems can either be open-loop or closed-loop systems. Open-loop systems are continuously connected to a natural waterbody, typically a lake or river. Closed-loop systems operate independently of natural water sources. Given that PHES requires significant land and infrastructure for larger capacity systems, PHES is not optimal for all regions of the U.S. One notable technology that has recently gained attention is sub-surface PHES. This technology assumes that one or both water reservoirs are located below ground, typically in abandoned mines or caverns. This technology has gained a lot of interest in geographic areas not traditionally suitable for PHES.

9.3.3 Thermal Energy Storage Technology

Thermal Energy Storage ("TES") has existed in commercial operations for years in a variety of applications, such as residential and commercial water heating, space heating, and space cooling. In recent years, TES has proved to be a viable technology option for utility-scale energy storage. There are three types of TES that are currently being explored from a utility-scale energy storage standpoint: sensible TES, latent TES, and thermochemical TES.

Sensible TES

Sensible TES utilizes a storage medium to store and release sensible heat through heating and cooling processes. Storage mediums can range from molten salt, concrete blocks, rocks, or sand-like particles. The energy capacity of a sensible TES system is defined by the density, specific heat, and volume of the storage medium as well as the temperature change expected of the system.

Malta's "Long Duration Storage Technology" is the current industry leader for TES utility-scale commercial development. Malta's technology utilizes sensible TES with molten salt as the storage medium creating a "pumped heat energy storage" system. The system operates using a recuperated air-loop Brayton-cycle. During off-peak periods of surplus energy, the system charges by sending electricity to a heat pump, which converts the electricity to thermal energy by creating a temperature difference. The heat stream is stored in molten salt and the cold stream is stored in anti-freeze liquid. When the system needs to discharge, a heat engine converts the temperature difference back to electrical energy which is then sent to the grid. Malta-provided information indicates their system may be scaled up to 100 MW in capacity and can provide between 8-200 hours of long duration storage.

Latent TES

Latent TES is similar to sensible TES from a process flow perspective but not from a storage medium perspective. Latent TES utilizes the latent heat of phase change to store energy in phase change materials ("PCM"). To change a solid to a liquid, the latent heat of fusion is the energy capacity considered. To change a liquid to a gas, the latent heat of evaporation is the energy capacity considered. Various mediums can provide different energy capacities depending on the material and the original phase of the medium.

Thermochemical TES

Thermochemical TES utilizes chemical reactions typically involving breaking and reforming chemical bonds to release and store heat. Common storage mediums for thermochemical TES include carbonates, hydroxides, metal hydrides, oxides, ammonia, and sulfur-based cycles.

9.3.4 High Temperature Battery Technology

Battery cells that require high temperatures to keep a metal in its molten state for operation are referred to as "high temperature batteries". In their charged state, high temperature batteries have the pure form of a metal anode and the pure form of another element as its cathode. The battery chemistry leverages the natural electrochemical potential difference of the two elements. The operation of these technologies is typically considered reversible alloying. The two leading chemistries of high temperature batteries are Sodium-Sulfur (most notably supplied by BASF) and Calcium-Antimony (most notably supplied by Ambri). High temperature batteries have the most similar performance attributes to Lithium-ion systems and are currently the most competitive non-lithium technology on a cost basis.

9.3.5 Flow Battery Technology

Flow batteries have recently emerged as an attractive research and development investment for companies looking for a lower cost-per-kWh, flexible-duration, and stationary energy storage product. There are a variety of types of flow batteries: a fully aqueous redox vs. hybrid, inorganic vs. organic, vanadium vs. zinc-bromine vs. iron chemistries, etc. For all combinations of flow battery types, the electrode does not contain any active elements that participate in electrochemical reactions. Therefore, the electrodes are not subject to the same deterioration that depletes electrical performance of traditional batteries, resulting in theoretically high cycle life for flow batteries. In many cases, however, stack components are prone to mechanical deterioration that will cause some performance degradation over time. This performance degradation will result in lower round-trip efficiencies ("RTEs") and therefore slight reductions in discharge capacity over time. Per 1898 & Co. experience, flow battery suppliers that have recently gained significant market share include ESS, Invinity, Redflow, VRB, and CMBlu.

9.3.6 Other Notable Emerging Storage Technologies

Recent technological developments in the energy storage industry have allowed for new electrochemical technologies to be brought to early-commercial maturity. A few notable technologies are described below. Monitoring the progression of these technologies will be important in the selection of long duration technology appropriate for MDU's needs.

Metal-Hydrogen Batteries

Metal-hydrogen batteries were invented in the 1970s originally for the purpose of aerospace energy storage. The battery combines the reactions of a Nickel ("Ni")-Cadmium battery and a fuel cell. The cathode consists of a nickel hydroxide composition while the anode is made up of a platinum hydrogen composition. During charge, hydrogen is produced and pressurized while the active portion of the cathode oxidizes its Ni(II) to Ni(III). During discharge the process reverses and hydrogen is oxidized back to water at the anode surface and Ni(III) becomes Ni(II). Metal-H2 batteries are known for their high efficiencies, flexible power/current operating ranges, and low lifetime capacity degradations. Aside from low volumetric energy density, these batteries are considered some of the highest performance on the market making them popular for less price sensitive aerospace applications. NASA has been known to use this type of battery in a myriad of their technologies and this battery is still commonly used on satellites.

Enervenue, a Fremont, CA based company started in 2020, is targeting a Metal-H2 battery for stationary storage applications and attempting to deliver the industry leading performance characteristics of metal-H2 systems while solving the cost challenges typically associated with this technology. Enervenue's metal-

hydrogen batteries consist of containers filled with metal-H2 battery vessels. Enervenue is claiming to be meeting cost targets by innovating a low-cost H2-splitting anode used in place of platinum and leveraging low-cost higher volume pressure vessel manufacturing methods. Enervenue currently has a manufacturing plant in Kentucky that is under construction. They have a large advertised backlog but have yet to demonstrate their product with a completed and operational utility-scale project.

Iron-Air Batteries

Iron-air batteries were first explored by NASA in the 1960s but have recently regained interest in the eyes of the storage world after recent development and commercialization investment into the technology motivated by a perception of utility-scale LDES potential. Iron-air batteries use a process known as "reversible rusting" in which a pure iron anode is oxidized via O₂ to form iron (III) in a reversible reaction that releases 3 electrons. The rust is reduced back to pure iron (0) during a battery charge.

Form Energy is an iron-air battery vendor that is currently headquartered in the Boston area with applications engineering taking place in San Francisco. Form's 100-hour duration iron-air battery has won many long-duration energy storage projects across the U.S., as they claim over 3 GWh of commercial contracts in place. The Form 2.5 MW/250 MWh Power Block consists of 64 enclosures and equates to approximately an acre of development area.

Aqueous Zinc Batteries

Aqueous-zinc batteries were first explored in the 1980s, but research activity has recently surged due to technological developments and the need for a safer and cheaper and easier to source raw materials on alternatives to lithium-ion batteries. Aqueous-zinc batteries take on a similar chemistry to a zinc-bromine flow battery, but all the necessary electrolyte is contained within a battery cell instead of being stored in tanks and pumped into and out of the battery stack.

EOS is a vendor of U.S.-designed and manufactured aqueous-zinc batteries. EOS has had 250+ 500 kWh containers shipped since its technology first came to market. EOS can accommodate for between 3- and 12- hour discharge durations. The technology is based on the Z3 battery module that can be scaled and adapted for various system size needs.

9.4 Biofuels

9.4.1 Biomass

The term "biomass" refers to any regenerative organic material used as a fuel for energy production. Biomass fuel typically consists of forestry materials, wood residues, agricultural residues, and crops. Biomass power generation facilities are typically located near the source of the fuel to reduce transportation costs in fuel delivery. The most common process to create energy from biomass is high-temperature deconstruction which utilizes extreme heat and pressure to break down the organic biomass material into liquid or gaseous intermediates. Biomass generation can be paired with carbon capture utilization and sequestration ("CCUS") systems to further reduce CO_2 emissions. There are two predominant solid-fuel boiler technologies commonly used with biomass generation: Stoker and bubbling fluidized bed ("BFB") boilers.

In a stoker boiler, mechanical grates are used to introduce biomass materials into the boiler. Fuel is directed to the grate through multiple fuel delivery chutes and is distributed throughout the grate with the use of a pneumatic distributor. Stokers can burn many types of fuel individually or in combination. For biomass combustion, an overfeed stoker system is used. Underfired and overfire air is supplied to the boiler for combustion air. The bed can be burned in low oxygen environments with underfired air, but overfire air is utilized to complete combustion higher in the furnace. Since reserve fuel is maintained in the boiler, units

can quickly respond to increased demand. Stoker boilers can fire a wide range of biomass fuels including wood waste, agricultural waste, and municipal solid wastes. Hot gases from fuel combustion are then directed through heat transfer surfaces for recovery of thermal energy. Thermal energy captured within the boiler generates superheated steam which is used to drive a steam turbine and generator to produce electric power.

In a BFB boiler, combustion occurs on a sand bed at the base of the boiler. The bed becomes fluidized upon the introduction of air flow from the bottom of the boiler. Solid fuels are introduced on the bed for combustion by way of air-swept spouts, and ash particles fall to the bottom for periodic removal. A gas-oil burner above and below the circulating fluidized bed allows the furnace to maintain stable temperatures with variations of fuel while allowing for almost complete carbon burnout. Typically, this system and others alike operate with a ~90% thermal efficiency and leave a remaining < 0.5% carbon content, and any remaining carbon particles are trapped via filters within the system before flue gasses are released back into the atmosphere.

9.4.2 Renewable Natural Gas

Renewable natural gas ("RNG") is a phrase used to describe anaerobically generated "biogas" that is produced from organic matter and then refined for utilization in place of fossil natural gases ("FNG"). RNG is derived from a wide range of sources that include but are not limited to waste landfills, digesters at wastewater treatment plants, organic waste management operations, livestock farms, and food production facilities. Options for RNG delivery and use are pipeline injection or local use (at or nearby the site where the RNG is produced). The technology behind RNG involves multiple treatments and purification processes to meet fuel specifications that allow for the replacement of fossil fuels.

There are three main steps to convert biogas into viable RNG. The first treatment involves the removal of moisture and particulates. The second treatment consists of removing additional moisture, contaminant removal and compression. The third treatment consists of removing CO_2 , O_2 , nitrogen (" N_2 "), and volatile organic compounds ("VOCs"). During primary treatment, the gas passes through a knockout pot, filter, and then a blower to remove particles and moisture. A knockout pot is a vessel within a flare header (a large piping system used to relieve gases to the flare) that removes liquids and particles from gas streams at large levels. During secondary treatment, an aftercooler removes additional moisture from the gas and removes contaminants such as sulfur and siloxanes, and further compression can occur if necessary. Aftercoolers are effective in cooling compressed air or gases and use cold air to absorb heat from the system. The level at which contaminants are removed is relative to quantity and quality of biogas obtained. Primary and secondary treatments produce medium-Btu gas, which means that the heat value (the amount of heat released during combustion) is lower than that of FNG. However, the medium-Btu gas can be used in boilers, electricity generation such as in engines and turbines, and other direct thermal applications. The last step, advanced treatment, routes CO_2 , O_2 , O_2 , N_2 , some CH_4 , hydrogen sulfide ("H₂S"), and other VOCs to destruction via a flare or thermal oxidizer. With any RNG site, the amount and frequency at which gases are refined is project and site specific and depends on the technology used to refine the gas and the specification for the RNG. For example, for pipeline injection projects, CH₄ content (which has higher energy contents relative to other fuel variations) of the RNG produced after refining is about 96-98%, but at the start of treatment, the biogas has a CH₄ content of between 45-65%.

A 2022 revised report curated by the U.S. Environmental Protection Agency states that 100 RNG systems exist across 34 states, all of which vary from landfill gas ("LFG") systems, livestock operations that utilize digesters, wastewater treatments plants that employ anerobic digestion to produce biogas, commercial entities, and organic waste management operations. Benefits of RNG include diversifying fuel supply,

improving local air quality, and reducing greenhouse gas emissions. While there is great potential for growth of RNG systems in the U.S., there are still technical and economic barriers to producing RNG.

There are currently incentive programs and policies for pipeline injection, which is the most common delivery method of RNG, in states like California, Washington, and Missouri. For instance, California Senate Bill 1383 directed the California Air Resources Board to implement guidelines to reduce CH₄ emissions into the atmosphere by 40% by 2030. The California biomethane interconnection incentive program has been extended to provide up to \$3 and \$5 million for non-dairy and dairy clusters respectively that operate by December 31, 2026. However, further policy changes such as interconnection incentives along with pliable biogas quality guidelines for pipeline injection would help developers offset any capital costs and allow them to better design the appropriate treatment systems to meet specifications. Currently, there are strict specifications and requirements of gas systems across the country which may limit or prohibit RNG systems entirely. Examples of these requirements include the level of elevated heating and inlet biogas quality. If specifications and requirements were standardized nationally, then developers would be more encouraged to invest, which would promote prolonged purchase agreements and potential for RNG to grow.

9.4.3 Carbon Capture & Sequestration

CCUS essentially captures CO₂ from post-combustion flue gas emitted into the atmosphere and deposits CO₂ in underground geologic formations. Emission sources such as coal and natural gas-fired power plants are prime candidates for CCUS. Commercial technology for capturing CO₂ is limited to advanced amine systems. Geological storage options currently being investigated for secure storage include but are not limited to:

- Depleted oil and gas reservoirs (with or without enhanced oil recovery ("EOR"))
- Deep unused saline water-saturated reservoir rocks
- Deep coal seams unable to be mined
- Shallow coal seams unable to be mined (CO₂ storage with coal bed methane recovery)
- Other options include deep basalts, oil shales, and cavities.

The CCUS process consists of three main steps: capture, transportation, and sequestration. CO_2 capture separates CO_2 from other gases contained in post-combustion flue gas. Following capture, the CO_2 is dehydrated and compressed into a supercritical fluid for transportation and injection. Due to the potential for well corrosion and subsurface gas migration, the super critical fluid is more suitable for CO_2 geologic storage. In addition, many of the sites where the CO_2 emissions occur do not have an adjacent geological storage unit, resulting in the need to transport the compressed gas to a suitable injection site. The supercritical state is also more suitable for CO_2 transport via pipeline. Upon arrival at the storage facility, CO_2 is injected into the targeted subsurface formation via one or more wells. The minimum injection depth, based on the hydrostatic head needed to maintain the supercritical state, is approximately 2,600 feet.

When considering CCUS as a method to mitigate CO_2 emissions, tax credit eligibility is conditional on multiple components of the actual CCUS process. If eligible, the entity claiming the tax credits must either capture and dispose of the CO_2 itself or contract another entity to do so. The capture equipment owner can permit the entity disposing of the CO_2 to claim the tax credits. As new technologies emerge and potential environmental liabilities continue to pose issues, tax credit eligibility is subject to change yearly.

There are currently only two operating power plants with CCUS capabilities in North America. Petra Nova, located near Houston, Texas, was a retrofitted coal-fired power plant that captured CO_2 from a slipstream for use in EOR. It began operation in 2017, but has been temporarily suspended in response to low oil prices. The CCUS facility is a 240 MW system and is designed to capture about 90% of the CO_2 emissions from the flue gas slipstream of the unit. The total cost of Petra Nova's CCUS system was reported to be approximately

\$1 billion, and the project is not supported by 45Q tax credits. The Boundary Dam Carbon Capture Project in Saskatchewan, Canada also consists of a retrofitted coal-fired power plant that uses captured CO_2 for EOR. CCUS operation began on Unit #3 in 2014. This unit produces 110 MW. The total cost of the Boundary Dam retrofit was reported to be approximately \$345 million.

The Department of Energy has announced nine project selections for CCUS facilities in the United States, most of which have comprehensive commercial-scale site characterization and all of which are still undergoing development. In the meantime, the Department of Energy's Carbon Storage Program aims to further develop CCUS technologies to guarantee 99% storage performance and advance widescale commercial deployment between 2025-2035. An emerging approach to geologic carbon storage is carbon mineralization. When exposed to igneous or metamorphic rocks, CO₂ reacts with the mineral in these rocks to form solid carbonate precipitates. The CO₂ can either be injected into deep underground rock formations or exposed to broken pieces of rock at the ground surface (e.g., mining spoils). The benefit of carbon mineralization is that the creation of a solid mineral precipitate prevents leakage of CO₂ to drinking water aquifers or the atmosphere.

10.0 Conclusions

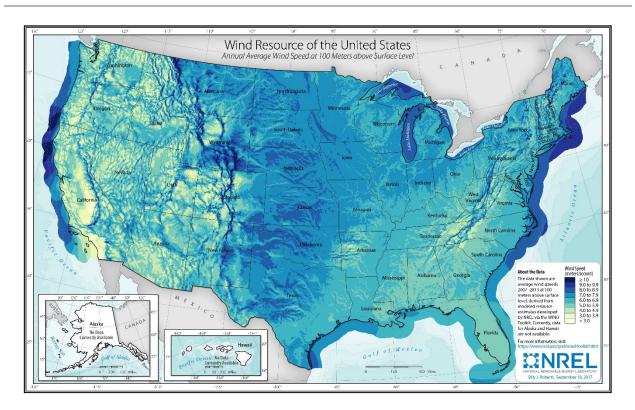
This Generation Technology Assessment provides information to support MDU's power supply planning efforts. Information provided in this Assessment is preliminary in nature and is intended to highlight indicative, differential costs associated with each technology. 1898 & Co. recommends that MDU use this information to update production cost models for comparison of generation alternatives and their applicability to future resource plans. MDU should pursue additional engineering studies to define project scope, budget, and timeline for technologies of interest.

Of all technologies evaluated, the simple cycle E class plant without an SCR exhibits the lowest capital cost per kW generated. Frame turbines are a mature technology, and the developments of the advanced class turbines in capacity, turndown capability, and efficiency have made them a considerable option in long-term planning of generation. Additionally, these improvements in performance and efficiency have come while the market for these engines is highly competitive, resulting in costs that remain steady or have decreased over the last couple of years. If an SCR is required for the simple cycle application, then the simple cycle E class cost would increase but still remain competitive for lowest cost per kW with either of the aeroderivative turbines. Siemens, Mitsubishi, and GE all have J class turbines, and the technologies are rapidly advancing as OEMs vie for the highest output and best efficiencies. In future Assessments, it is recommended to track the progress of advanced class turbines as they pursue these improvements and consider including the latest models as an option.

Aeroderivative turbines generally exhibit excellent heat rates, fast start and ramp rates, and reliable operation, but they also tend to be more expensive than frame units on a \$/kilowatt ("kW") scale.

Reciprocating engine plants offer the lowest heat rates and fastest start times when compared to simple cycle GT options. Reciprocating engine plants are also likely to exhibit the greatest capacity range among simple cycle options, with a minimum load of a single engine at 25% - 50% load. Variable O&M for engine plants is higher than frame GTs and should be considered in an analysis. It is expected that reciprocating engine plants will require SCR systems and CO catalysts to control emissions.

CCGT plants offer better heat rates than all combustion plants evaluated, and the advanced class GTs perform the best in combined cycle. Multiple combined cycle plants with G/H class turbines are operating in the U.S., and several J class plants are in development.


Renewable options include PV and wind systems. Wind and PV are proven technologies for daytime peaking power and a viable option to pursue renewable goals.

Utility-scale battery storage systems are being installed in varied applications from frequency response to arbitrage, and recent cost reduction trends are expected to continue once supply chain issues settle. Lithium-ion technology is achieving the greatest market penetration, aided in large part by its dominance in the automotive industry, but other technologies like flow batteries should be monitored as well.

Several developmental technologies are currently being deployed in controlled settings, with hydrogen fuelburning capabilities highlighting the list, along with fuel cell technology, SMRs, non-Lithium-ion energy storage, and CCUS. Though each provides a unique method of power production or storage with minimal or no carbon footprint, wide-scale application is limited by technology maturity and the lack of infrastructure to support the transportation of hydrogen fuel. These technologies are expected to become more costeffective over the coming years, but 1898 & Co. recognizes that progress in the form of minimizing financial risk and increasing generation and/or storage reliability must be made before the pursuit of such technologies is feasible.

11.0 Appendices

APPENDIX A - RENEWABLE ENERGY MAPS

APPENDIX B - SUMMARY TABLE

MONTANA-DAKOTA UTILITIES CO. 2024 GENERIC UNIT ASSESSMENT SUMMARY TABLE SIMPLE CYCLE TECHNOLOGY ASSESSMENT PROJECT OPTIONS PRELIMINARY AND CONFIDENTIAL - NOT FOR CONSTRUCTION NORTH DAKOTA FEBRUARY 2024 - FINAL DRAFT						
PROJECT TYPE	TEB 1x Aeroderivative SCGT - Natural Gas	RUARY 2024 - FINAL 1x Aeroderivative SCGT - Natural Gas	DRAFT 1x Frame SCGT - Natural Gas	Reciprocating Engine (9 MW) X 4 - Natural Gas	Reciprocating Engine (18 MW) X 3 - Natural Gas	Reciprocating Engine (11 MW) X 4 - Natural Gas
BASE PLANT DESCRIPTION		I	I			640
Number of Gas Turbines/Engines/Units	1	1	1	4	3	4
Representative Class Gas Turbine	GE LM6000 PF+	LMS 100 PB+	7E.03 LLI Booking (15%)	Wartsila 20V34SG	Wartsila 18V50SG	Wartsila 31DF
Capacity Factor, % Startup Time to Base Load, min (Notes 1, 2)	Peaking (15%) 5	Peaking (15%) 8	Peaking (15%) 23	Peaking (15%) 5	Peaking (15%) 5	Peaking (15%) 3
Startup Time to MECL, min (Note 3)	4	7	20	4	4	2
Cold Startup Time to SCR Compliance, min (Note 3)	N/A	45	25	45	45	45
Maximum Ramp Rate, MW/min (Online) Book Life, Years	50 35	50 35	40 35	18 35	27 35	22 35
Scheduled Outage Factor (SOF), % (Note 4)	6%	6%	6%	4%	4%	4%
Forced Outage Factors (FOF), % (Note 4)	3%	3%	3%	4%	4%	4%
Availability Factor (AF), % (Notes 4)	92%	92% 25	90%	93%	93%	93% 20
Assumed Land Use, Acres	20	25	25	20	15	20 Dual Fuel (Natural Gas
Fuel Design	Natural Gas Dual Fuel Option	Natural Gas	Natural Gas Dual Fuel Option	Natural Gas	Natural Gas	and Low Sulfur Fuel Oil)
Heat Rejection	Fin Fan Heat Exchanger	Fin Fan Heat Exchanger	Fin Fan Heat Exchanger	Fin Fan Heat Exchanger	Fin Fan Heat Exchanger	Fin Fan Heat Exchanger
	Dry Low NOx		Dry Low NOx			
NO _x Control		SCR		SCR	SCR	SCR
	Nominal 25ppm NOx		Nominal 5ppm NOx			
CO Control	Good Combustion	Oxidation Catalyst	Good Combustion	Oxidation Catalyst	Oxidation Catalyst	Oxidation Catalyst
	Practice		Practice			
Particulate Control	Good Combustion Practice	Good Combustion Practice	Good Combustion Practice	Good Combustion Practice	Good Combustion Practice	Good Combustion Practice
Technology Rating	Mature	Mature	Mature	Mature	Mature	Mature
EPC Execution Schedule Duration (Months)*	20	24	24	24	24	24
Does not account for long lead times. Permitting Schedule Duration (Months)	10	10	10	10	10	10
"Does not account for long permitting durations.	18	18	18	18	18	18
ESTIMATED PERFORMANCE (ALL BASED ON NATURAL GAS	OPERATION) (Note 6)				1	
Base Load Performance @ 6.8° F (Winter Design) Gross Plant Output, kW	54,500	112,700	97,300	37,500	56,500	45,500
Net Plant Output, kW	53,100	109,900	94,800	36,500	55,000	43,500
Net Plant Heat Rate, Btu/kWh (HHV)	9,450	8,770	11,330	8,470	8,330	8,280
Heat Input, MMBtu/h (HHV)	500	960	1,070	310	460	370
Min Load Operational Status @ 6.8° F (Winter Design)						
Gross Plant Output, kW	27,400	56,300	48,600	3,800	7,500	4,600
Net Plant Output, kW	26,700	54,900	47,400	3,700	7,300	4,400
Net Plant Heat Rate, Btu/kWh (HHV) Heat Input, MMBtu/h (HHV)	12,090 320	10,740 590	14,670 700	9,550 30	9,410 70	9,380 40
	520	550	700	30	70	40
Base Load Performance @ 84.5 ° F (Summer Design)						
Gross Plant Output, kW Net Plant Output, kW	46,200 45,000	102,400 99,900	79,900 77,900	37,500 36,500	56,500 55,000	45,500 44,400
Net Plant Heat Rate, Btu/kWh (HHV)	9,730	8,970	11,800	8,470	8,330	8,370
Heat Input, MMBtu/h (HHV)	440	900	920	310	460	370
Min Load Operational Status @ 84.5° F (Summer Design)						
Gross Plant Output, kW	22,700	51,200	40,000	3,800	7,500	4,600
Net Plant Output, kW	22,200	49,900	39,000	3,700	7,300	4,400
Net Plant Heat Rate, Btu/kWh (HHV)	13,750	11,140	15,570	9,620	9,480	9,460
Heat Input, MMBtu/h (HHV)	300	560	610	40	70	40
ESTIMATED CAPITAL AND O&M COSTS (Note 7, Note 8)				4-0		
EPC Project Capital Costs, 2024 MM\$ (w/o Owner's Costs) EPC Cost Per Summer kW, 2024 \$/kW	\$82 \$1,832	\$169 \$1,688	\$89 \$1,146	\$78 \$2,131	\$123 \$2,228	\$86 \$1,944
Owner's Costs, 2024 MM\$	\$64	\$80	\$73	\$61	\$66	\$63
Owner's Project Development	\$0.3	\$0.3	\$0.3	\$0.3	\$0.3	\$0.3
Owner's Operational Personnel Prior to COD Owner's Engineer	\$0.2 \$0.8	\$0.3 \$1.0	\$0.3 \$1.0	\$0.3 \$1.0	\$0.3 \$1.0	\$0.3 \$1.0
Owner's Project Management	\$1.0	\$1.2	\$1.0	\$1.2	\$1.2	\$1.2
Owner's Legal Costs	\$0.5	\$0.5	\$0.5	\$0.5	\$0.5	\$0.5
Owner's Start-up Engineering and Commissioning Land	\$0.2 \$0.1	\$0.2 \$0.1	\$0.2 \$0.1	\$0.2 \$0.1	\$0.2 \$0.1	\$0.2 \$0.1
Construction Power and Water	\$0.5	\$0.6	\$0.1 \$0.6	\$0.6	\$0.6	\$0.6
Permitting and Licensing Fees	\$0.5	\$0.5	\$0.5	\$0.5	\$0.5	\$0.5
Switchyard	\$8.5 \$0.5	\$8.5 \$0.5	\$8.5 \$0.5	\$8.5 \$0.5	\$8.5 \$0 F	\$8.5 \$0.5
Political Concessions & Area Development Fees Startup/Testing (Fuel & Consumables)	\$0.5 \$0.6	\$0.5 \$0.8	\$0.5 \$0.8	\$0.5 \$0.9	\$0.5 \$0.9	\$0.5 \$1.4
Site Security	\$0.4	\$0.4	\$0.4	\$0.4	\$0.4	\$0.4
Operating Spare Parts	\$1.8	\$2.0	\$1.5	\$0.4	\$0.4	\$0.4
Permanent Plant Equipment and Furnishings	\$0.3 \$0.4	\$0.3 \$0.8	\$0.3 \$0.4	\$0.3 \$0.3	\$0.3 \$0.6	\$0.3 \$0.4
Builders Risk Insurance (0.45% of Construction Costs) Owner's Contingency (5% for Screening Purposes)	\$0.4 \$4.9	\$0.8 \$9.3	\$0.4 \$5.3	\$0.3 \$4.7	\$0.6 \$6.9	\$0.4 \$5.1
Transmission Network Upgrades (\$150/kW)	\$8.0	\$16.5	\$14.2	\$5.5	\$8.3	\$6.7
Transmission Interconnection Costs	\$25.5	\$25.5	\$25.5	\$25.5	\$25.5	\$25.5
Natural Gas Interconnection Costs Water Interconnection Costs	\$8.5 \$0.2	\$10.0 \$0.2	\$10.0 \$0.2	\$8.5 \$0.2	\$8.5 \$0.2	\$8.5 \$0.2
MISO Queue Fees	\$0.2	\$0.2	\$0.2	\$0.2	\$0.2	\$0.2
Total Project Costs 2024 MMS (Unloaded)	¢116		¢160		¢100	¢140
Total Project Costs, 2024 MM\$ (Unloaded)	\$146	\$248	\$162	\$138	\$188	\$149

Total Cost Per Summer kW, 2024 \$/kW (Unloaded)	\$3,252	\$2,485	\$2,077	\$3,789	\$3,425	\$3,356
Loaded Costs Interest During Construction, 2024 \$MM	\$9.2	\$15.4	\$11.7	\$10.1	\$13.6	\$10.8
Total Project Costs, 2024 MM\$ (Loaded) Total Cost Per Summer kW, 2024 \$/kW (Loaded)	\$156 \$3,457	\$264 \$2,639	\$174 \$2,227	\$148 \$4,065	\$202 \$3,672	\$160 \$3,599
FIXED O&M COSTS (Note 10) Fixed O&M Cost - LABOR, 2024 \$MM//Yr	\$1.1	\$1.1	\$1.1	\$1.1	\$1.1	¢1.1
Fixed O&M Cost - LABOR, 2024 \$MM//11 Fixed O&M Cost - OTHER, 2024 \$MM//Yr	\$0.9	\$0.9	\$0.9	\$0.9	\$0.9	\$1.1 \$0.9
Property Tax, 2024 \$/kW-mo	\$0.99	\$0.83	\$0.73	\$1.39	\$1.22	\$1.23
Property Insurance, 2024 \$/kW-mo	\$0.34	\$0.28	\$0.25	\$0.47	\$0.42	\$0.42
LEVELIZED CAPITAL MAINTENANCE COSTS (Note 11) Major Maintenance Cost, 2024 \$/GT-hr or \$/engine-hr	\$200	\$416	\$350	\$37.22	\$72.11	\$52.12
Major Maintenance Cost, 2024 \$/GT-start	N/A	N/A	\$8,400.0	N/A	N/A	N/A
Major Maintenance Cost, 2024 \$/MWh	\$3.70	\$3.78	\$4.28	\$4.07	\$3.83	\$4.71
Catalyst Replacement Cost, 2024 \$/MWh	N/A	\$0.36	N/A	\$0.26	\$0.16	\$0.22
NON-FUEL VARIABLE 0&M COSTS (EXCLUDES LEVELIZED C			¢0.00	ΦE 11	¢5.00	¢5.70
Total Variable O&M Cost, 2024 \$/MWh - ISO Water Related O&M, \$/MWh	\$0.90 \$0.00	\$1.33 \$0.20	\$0.90 \$0.00	\$5.11 \$0.00	\$5.29 \$0.00	\$5.76 \$0.00
SCR Reagent, \$/MWh	N/A	\$0.23	N/A	\$0.88	\$0.90	\$1.45
Other Consumables and Variable O&M, \$/MWh	\$0.90	\$0.90	\$0.90	\$4.23	\$4.38	\$4.31
SCR ADD-ON COSTS						
Capital Costs, 2024 MM\$	\$13.4	Included	\$34.7	Included	Included	Included
Owner's Costs, 2024 MM\$ Loaded Costs (Interest During Construction), 2024 \$MM	\$1.30 \$0.9	Included Included	\$2.40 \$2.6	Included Included	Included Included	Included Included
	φ0.9	included	ψ2.0	included	included	included
SCR O&M COSTS	AA 55		AA 55			
Catalyst Replacement Cost, 2024 \$/MWh Incremental Fixed O&M Cost, 2024 \$MM/yr	\$0.55 \$0.00	Included Included	\$0.55 \$0.00	Included Included	Included Included	Included Included
Incremental Variable O&M Cost, 2024 \$/MWh	\$0.14	Included	\$0.00	Included	Included	Included
	••••					
DUAL FUEL ADD-ON COSTs (Note 20, Note 21) Capital Costs, 2024 MM\$	\$23.9	N/A	\$33.2	N/A	N/A	\$3.9
Owner's Costs, 2024 MM\$	\$1.85	N/A	\$2.35	N/A	N/A	\$0.75
Loaded Costs (Interest During Construction), 2024 \$MM	\$1.6	N/A	\$2.5	N/A	N/A	\$0.3
ESTIMATED BASE LOAD OPERATING EMISSIONS (ISO) (Note 5	i)					
Turbine/Engine Only	1 1 2 0	N1/A	1 250	N1/A	N//A	N1/A
Gross Carbon Intensity (lb/MWh) NO _x [lb/MMBtu, HHV]	1,130 0.090	N/A N/A	1,350 0.020	N/A N/A	N/A N/A	N/A N/A
NO _x [ppmvd @ 15% O ₂]	25	N/A	5.0	N/A	N/A	N/A
NO _X [lb/hr]	40.0	N/A	19.0	N/A	N/A	N/A
CO [lb/MMBtu, HHV]	0.050	N/A	0.050	N/A	N/A	N/A
CO [ppmvd @ 15% O ₂]	25	N/A	25	N/A	N/A	N/A
CO [lb/hr]	24.0	N/A	55.0	N/A	N/A	N/A
CO ₂ [lb/MMBtu, HHV]	120	N/A	120	N/A	N/A	N/A
CO ₂ [lb/hr]	53,200	N/A	121,000	N/A	N/A	N/A
PM/PM ₁₀ [lb/MMBtu, HHV]	0.007	N/A	0.004	N/A	N/A	N/A
PM/PM ₁₀ [lb/hr]	3.00	N/A	4.20	N/A	N/A	N/A
Turbine /Engine with SCR and CO Catalyst						
Gross Carbon Intensity (Ib/MWh)	1,130	1,050	1,350	1,020	1000	1000
NO _X [lb/MMBtu, HHV]	0.010	0.010	0.010	0.020	0.020	0.020
NO _X [ppmvd @ 15% O ₂]	2.5	2.5	2.0	5.0	5.0	5.0
NO _X [lb/hr]	4.40	8.60	8.30	1.20	2.50	1.50
CO [lb/MMBtu, HHV]	0.000	0.010	0.010	0.030	0.030	0.030
CO [ppmvd @ 15% O ₂]	2.0	4.0	2.0	15.0	15.0	15.0
CO [lb/hr]	2.20	8.40	5.00	2.50	5.00	3.06
CO ₂ [lb/MMBtu, HHV]	120	120	120	120	120	120
CO ₂ [lb/hr]	60,000	115,200	128,400	37,200	55,200	44,400
PM/PM ₁₀ [lb/MMBtu, HHV]	0.010	0.008	0.008	0.020	0.020	0.020
PM/PM ₁₀ [lb/hr]	4.40	6.70	7.40	1.70	3.30	2.10
Notes		1	1	1	1	

Notes

Note 1: Simple cycle GT starts are not affected by hot, warm or cold conditions. Simple cycle starts assume purge credits are available.

Note 2: Fast start capability for peaking combustion turbines has largely been included within base OEM packages as a response to market demand for quick reacting firm power. Market trends suggest that O&M impacts from fast starts affect the overall equivalent hours of operation (or similar operating time measures across OEMs) and might result in accelerated maintenance schedules. The GE 7E.03 LLI does not include a fast start package.

Note 3: MECL start time assumes the min load at which the GT achieves the steady state NOx emissions ppm rate. The SCR compliance start time assumes a cold start, ending at the time when the catalysts

are heated and the NOx levels meet the desired SCR emissions. Note 4: Outage and availability statistics are collected using the NERC Generating Availability Data System. Simple cycle data is based on North American units that came online in 2013 or later. Reporting period is 2013-2022.

Note 5: Emissions estimates are shown for steady state operation at annual average conditions as provided by MDU for natural gas, unless otherwise stated. Estimates account for the impacts of SCR and CO catalysts, as applicable. Emissions estimates should not be used for permitting.

Note 6: New and clean performance assumed for all scenarios. All performance ratings based on NATURAL GAS operation. Minimum loads are based on OEM information at 1695 ft above sea level and

ambient conditions. Evaporative cooler is assumed to be operating during full load operation weather conditions above 59 °F. Note 7: Capital and fixed O&M costs are presented in 2024 USD \$MM and presented as overnight costs (exclude forward-looking escalation). Estimated costs exclude decommisioning costs and salvage values.

Note 8: SCR O&M costs are assumed to be at ISO conditions.

Note 9: All gas turbine FOM costs assume 7 full time personnel for first unit. FOM costs do not include engine lease fees that may be available with LTSA, depending on OEM.

Note 10: Major maintenance \$/hr holds for aero gas turbines. Major maintenance \$/hr holds for frame gas turbines where hours per start is >27. Note 11: VOM assumes the use of temporary trailers for demineralized water treatment, where applicable.

Note 12: EFOR data from GADS may not accurately represent the benefits of a reciprocating plant, depending on how events are recorded. Typically, a maintenance event will not impact all engines simultaneously, so the plant would not be completely offline as it may be during an event at 1x gas turbine plant.

Note 13: Transmission interconnect allowance assumes 15 miles of transmission line at 115 kV interconnection voltage (land costs excluded).

Note 14: Natural gas interconnection includes an allowance for 5 mile pipeline.

Note 15: Water interconnection allowance includes on-site wells and pipe for raw water supply. Note 16: MISO Queue Fees includes M1 and M2 milestone payments. M1 milestone payment includes the application fee and funding for applicable transmission studies. M2 milestone payment is calculated as \$8,000 per MW of interconnection studied as part of the application.

Note 17: Reciprocating engine major maintenance cost assumes a minor overhaul at 18,000 operating hours and a major overahul at 36,000 operating hours.

Note 18: Land allowance assumes \$5,000/acre.

Note 19: Property tax and property insurance rate provided by MDU. Note 20: Dual fuel cost breakout for the Wartsila 31DF option includes cost to support operation with fuel oil only. Base cost for the Wartsila 31DF includes pricing for minimal dual fuel equipment needed to support fuel oil injection for natural gas operation.

Note 21: Dual fuel cost breakout for the LM6000 and 7E.03 turbines includes permanent water treatment system.

MONTANA-DAKOTA UTILITIES CO. 2024 GENERIC UNIT ASSESSMENT SUMMARY TABLE COMBINED CYCLE TECHNOLOGY ASSESSMENT PROJECT OPTIONS PRELIMINARY AND CONFIDENTIAL - NOT FOR CONSTRUCTION NORTH DAKOTA

FEBRUARY 2024 - FINAL DRAFT

FEBRUARY 202	FEBRUARY 2024 - FINAL DRAFT				
PROJECT TYPE	2x1 SGT-800 CCGT - Fired	1x1 F Class CCGT - Fired	2x1 E Class CCGT - Fired, Hesket Expansion		
BASE PLANT DESCRIPTION					
Number of Gas Turbines	2	1	2		
Number of Steam Turbines	1	1	1		
Representative Class Gas Turbine	SGT-800	GE 7F.05	GE 7E.03		
Steam Conditions (Main Steam / Reheat)	850 °F / 850 °F	1,050 °F / 1,050 °F	1,000 °F		
Main Steam Pressure	1,500 psia	2,400 psia	1,500 psia		
Steam Cycle Type	Subcritical	Subcritical	Subcritical		
Capacity Factor (%)	70%	70%	70%		
Startup Time, Minutes (Cold Start to Unfired Base Load) (Note 1)	180	180	180		
Startup Time, Minutes (Warm Start to Unfired Base Load) (Note 1)	120	120	120		
Startup Time, Minutes (Hot Start to Unfired Base Load) (Note 1)	80	80	80		
Startup Time, Minutes (Cold Start to Stack Emissions Compliance) (Note 2)	60	60	60		
Maximum Ramp Rate, MW/min (Online)	15	32	26		
Book Life (Years)	35	35	35		
Scheduled Outage Factor (SOF), % (Note 3)	11%	11%	11%		
	2%	2%	2%		
Forced Outage Factor (FOF), % (Note 3)	87%	87%	87%		
Availability Factor (AF), % (Note 3)					
Assumed Land Use (Acres)	35	45	40		
Fuel Design	Natural Gas	Natural Gas	Natural Gas		
Heat Rejection	Wet Cooling Towers	Wet Cooling Towers	Wet Cooling Towers		
			Dry Low NOx		
			Nominal 5ppm Nox		
NO _x Control	DLN/SCR	DLN/SCR			
			Option for SCR w/ Duct		
			Firing		
CO Control	Oxidation Catalyst	Oxidation Catalyst	Option for Oxidation		
Particulate Control	Good Combustion	Good Combustion	Good Combustion		
Technology Rating	Mature	Mature	Mature		
EPC Execution Schedule Duration (Months)*					
*Does not account for long lead times.	36	36	36		
Permitting Schedule Duration (Months)*	18	18	18		
*Does not account for long permitting durations.	10	10	10		
ESTIMATED PERFORMANCE (Note 4)					
Base Load Performance @ 6.8 °F (Winter)					
Gross Plant Output, kW	184,400	345,300	289,100		
Net Plant Output, kW	177,400	334,900	279,100		
Net Plant Heat Rate, Btu/kWh (HHV)	6,790	6,690	7,710		
Heat Input, MMBtu/h (HHV)	1200	2,240	2,150		
Incremental Duct Fired Performance @ 6.8 °F (Winter)					
Incremental Gross Duct Fired Output, kW	50,100	92,100	88,400		
Incremental Duct Fired Output, kW	47,700	90,500	86,300		
Incremental Heat Rate, Btu/kWh (HHV)	9,980	8,140	10,210		
Incremental Heat Input, MMBtu/h (HHV)	480	740	880		
Minimum Load (Single Turbine at MECL) @ 6.8 °F (Winter)					
Gross Plant Output, kW	48,100	192,100	115,700		
Net Plant Output, kW		-	108,800		
	42 /00	182 600			
Net Plant Heat Bate, Btu/kWh (HHV)	42,700 8 740	182,600 7 520			
Net Plant Heat Rate, Btu/kWh (HHV)	8,740	7,520	8,300		
Net Plant Heat Rate, Btu/kWh (HHV) Heat Input, MMBtu/h (HHV)	,				
Heat Input, MMBtu/h (HHV)	8,740	7,520	8,300		
Heat Input, MMBtu/h (HHV) Base Load Performance @ 84.5 °F (Summer)	8,740 370	7,520 1,370	8,300 900		
Heat Input, MMBtu/h (HHV) Base Load Performance @ 84.5 °F (Summer) Gross Plant Output, kW	8,740 370 159,900	7,520 1,370 336,400	8,300 900 250,200		
Heat Input, MMBtu/h (HHV) Base Load Performance @ 84.5 °F (Summer) Gross Plant Output, kW Net Plant Output, kW	8,740 370 159,900 152,400	7,520 1,370 336,400 323,900	8,300 900 250,200 239,300		
Heat Input, MMBtu/h (HHV) Base Load Performance @ 84.5 °F (Summer) Gross Plant Output, kW Net Plant Output, kW Net Plant Heat Rate, Btu/kWh (HHV)	8,740 370 159,900 152,400 6,900	7,520 1,370 336,400 323,900 6,660	8,300 900 250,200 239,300 7,700		
Heat Input, MMBtu/h (HHV) Base Load Performance @ 84.5 °F (Summer) Gross Plant Output, kW Net Plant Output, kW	8,740 370 159,900 152,400	7,520 1,370 336,400 323,900	8,300 900 250,200 239,300		
Heat Input, MMBtu/h (HHV) Base Load Performance @ 84.5 °F (Summer) Gross Plant Output, kW Net Plant Output, kW Net Plant Heat Rate, Btu/kWh (HHV) Heat Input, MMBtu/h (HHV)	8,740 370 159,900 152,400 6,900	7,520 1,370 336,400 323,900 6,660	8,300 900 250,200 239,300 7,700		
Heat Input, MMBtu/h (HHV) Base Load Performance @ 84.5 °F (Summer) Gross Plant Output, kW Net Plant Output, kW Net Plant Heat Rate, Btu/kWh (HHV) Heat Input, MMBtu/h (HHV) Incremental Duct Fired Performance @ 84.5 °F (Summer)	8,740 370 159,900 152,400 6,900 1050	7,520 1,370 336,400 323,900 6,660 2,160	8,300 900 250,200 239,300 7,700 1,840		
Heat Input, MMBtu/h (HHV) Base Load Performance @ 84.5 °F (Summer) Gross Plant Output, kW Net Plant Output, kW Net Plant Heat Rate, Btu/kWh (HHV) Heat Input, MMBtu/h (HHV) Incremental Duct Fired Performance @ 84.5 °F (Summer) Incremental Gross Duct Fired Output, kW	8,740 370 159,900 152,400 6,900 1050 47,700	7,520 1,370 336,400 323,900 6,660 2,160 86,600	8,300 900 250,200 239,300 7,700 1,840 91,300		
Heat Input, MMBtu/h (HHV) Base Load Performance @ 84.5 °F (Summer) Gross Plant Output, kW Net Plant Output, kW Net Plant Heat Rate, Btu/kWh (HHV) Heat Input, MMBtu/h (HHV) Incremental Duct Fired Performance @ 84.5 °F (Summer) Incremental Gross Duct Fired Output, kW Incremental Duct Fired Output, kW	8,740 370 159,900 152,400 6,900 1050 47,700 46,200	7,520 1,370 336,400 323,900 6,660 2,160 86,600 85,700	8,300 900 250,200 239,300 7,700 1,840 91,300 90,400		
Heat Input, MMBtu/h (HHV) Base Load Performance @ 84.5 °F (Summer) Gross Plant Output, kW Net Plant Output, kW Net Plant Heat Rate, Btu/kWh (HHV) Heat Input, MMBtu/h (HHV) Incremental Duct Fired Performance @ 84.5 °F (Summer) Incremental Gross Duct Fired Output, kW Incremental Duct Fired Output, kW Incremental Duct Fired Output, kW	8,740 370 159,900 152,400 6,900 1050 47,700 46,200 9,590	7,520 1,370 336,400 323,900 6,660 2,160 86,600 85,700 8,030	8,300 900 250,200 239,300 7,700 1,840 91,300 90,400 9,990		
Heat Input, MMBtu/h (HHV) Base Load Performance @ 84.5 °F (Summer) Gross Plant Output, kW Net Plant Output, kW Net Plant Heat Rate, Btu/kWh (HHV) Heat Input, MMBtu/h (HHV) Incremental Duct Fired Performance @ 84.5 °F (Summer) Incremental Gross Duct Fired Output, kW Incremental Duct Fired Output, kW	8,740 370 159,900 152,400 6,900 1050 47,700 46,200	7,520 1,370 336,400 323,900 6,660 2,160 86,600 85,700	8,300 900 250,200 239,300 7,700 1,840 91,300 90,400		
Heat Input, MMBtu/h (HHV) Base Load Performance @ 84.5 °F (Summer) Gross Plant Output, kW Net Plant Output, kW Net Plant Heat Rate, Btu/kWh (HHV) Heat Input, MMBtu/h (HHV) Incremental Duct Fired Performance @ 84.5 °F (Summer) Incremental Gross Duct Fired Output, kW Incremental Duct Fired Output, kW Incremental Duct Fired Output, kW Incremental Heat Rate, Btu/kWh (HHV) Incremental Heat Rate, Btu/kWh (HHV)	8,740 370 159,900 152,400 6,900 1050 47,700 46,200 9,590	7,520 1,370 336,400 323,900 6,660 2,160 86,600 85,700 8,030	8,300 900 250,200 239,300 7,700 1,840 91,300 90,400 9,990		
Heat Input, MMBtu/h (HHV) Base Load Performance @ 84.5 °F (Summer) Gross Plant Output, kW Net Plant Output, kW Net Plant Heat Rate, Btu/kWh (HHV) Heat Input, MMBtu/h (HHV) Incremental Duct Fired Performance @ 84.5 °F (Summer) Incremental Gross Duct Fired Output, kW Incremental Duct Fired Output, kW Incremental Heat Rate, Btu/kWh (HHV) Incremental Heat Rate, Btu/kWh (HHV) Incremental Heat Input, MMBtu/h (HHV)	8,740 370 159,900 152,400 6,900 1050 47,700 46,200 9,590 440	7,520 1,370 336,400 323,900 6,660 2,160 86,600 85,700 8,030 690	8,300 900 250,200 239,300 7,700 1,840 91,300 90,400 9,990 900		
Heat Input, MMBtu/h (HHV) Base Load Performance @ 84.5 °F (Summer) Gross Plant Output, kW Net Plant Output, kW Net Plant Heat Rate, Btu/kWh (HHV) Heat Input, MMBtu/h (HHV) Incremental Duct Fired Performance @ 84.5 °F (Summer) Incremental Gross Duct Fired Output, kW Incremental Duct Fired Output, kW Incremental Heat Rate, Btu/kWh (HHV) Incremental Heat Rate, Btu/kWh (HHV) Incremental Heat Input, MMBtu/h (HHV) Minimum Load (Single Turbine at MECL) @ 84.5 °F (Summer) Gross Plant Output, kW	8,740 370 159,900 152,400 6,900 1050 47,700 46,200 9,590 440 40,000	7,520 1,370 336,400 323,900 6,660 2,160 86,600 85,700 8,030 690 184,000	8,300 900 250,200 239,300 7,700 1,840 91,300 90,400 9,990 900 94,200		
Heat Input, MMBtu/h (HHV) Base Load Performance @ 84.5 °F (Summer) Gross Plant Output, kW Net Plant Output, kW Net Plant Heat Rate, Btu/kWh (HHV) Heat Input, MMBtu/h (HHV) Incremental Duct Fired Performance @ 84.5 °F (Summer) Incremental Gross Duct Fired Output, kW Incremental Duct Fired Output, kW Incremental Heat Rate, Btu/kWh (HHV) Incremental Heat Rate, Btu/kWh (HHV) Incremental Heat Input, MMBtu/h (HHV) Minimum Load (Single Turbine at MECL) @ 84.5 °F (Summer) Gross Plant Output, kW Net Plant Output, kW	8,740 370 159,900 152,400 6,900 1050 47,700 46,200 9,590 440 40,000 34,000	7,520 1,370 336,400 323,900 6,660 2,160 86,600 85,700 8,030 690 184,000 174,400	8,300 900 250,200 239,300 7,700 1,840 91,300 90,400 9,990 900 900 94,200 86,500		
Heat Input, MMBtu/h (HHV) Base Load Performance @ 84.5 °F (Summer) Gross Plant Output, kW Net Plant Output, kW Net Plant Heat Rate, Btu/kWh (HHV) Heat Input, MMBtu/h (HHV) Incremental Duct Fired Performance @ 84.5 °F (Summer) Incremental Gross Duct Fired Output, kW Incremental Duct Fired Output, kW Incremental Heat Rate, Btu/kWh (HHV) Incremental Heat Rate, Btu/kWh (HHV) Incremental Heat Input, MMBtu/h (HHV)	8,740 370 159,900 152,400 6,900 1050 47,700 46,200 9,590 440 40,000	7,520 1,370 336,400 323,900 6,660 2,160 86,600 85,700 8,030 690 184,000	8,300 900 250,200 239,300 7,700 1,840 91,300 90,400 9,990 900 94,200		

PC Project Capital Costs, 2024 MM\$ (w/o Owner's Costs) PC Cost Per UNFIRED kW, 2024 \$/kW	\$335 \$2,199	\$486 \$1,500	\$318 \$1,328
Owner's Costs, 2024 MM\$	\$141	\$165	\$64
Owner's Project Development	\$3.5	\$3.5	\$3.5
Owner's Operational Personnel Prior to COD	\$1.9	\$1.7	\$1.8
Owner's Engineer	\$2.6	\$2.3	\$2.6
Owner's Project Management	\$6.8	\$5.9	\$6.8
Owner's Legal Costs	\$1.0	\$1.0	\$0.8
Owner's Start-up Engineering and Commissioning	\$0.3	\$0.3	\$0.3
Land	\$0.2	\$0.2	\$0.0
Temporary Utilities	\$1.7	\$1.6	\$0.1
Permitting and Licensing Fees	\$0.5	\$0.5	\$0.5
Switchyard	\$14.5	\$10.5	\$3.3
Political Concessions & Area Development Fees	\$0.5	\$0.5	\$0.0
Startup/Testing (Fuel & Consumables) Initial Fuel Inventory	\$1.9 \$6.5	\$1.9	\$1.9 \$0.0
Site Security	\$6.5 \$0.8	\$3.3 \$0.8	\$0.0 \$0.4
Operating Spare Parts	\$0.0 \$7.2	\$0.0 \$6.0	\$0.4 \$1.0
Permanent Plant Equipment and Furnishings	\$1.3	\$1.3	\$1.0
Builders Risk Insurance (0.45% of Construction Costs)	\$1.4	\$2.2	\$1.4
Owner's Contingency (5% for Screening Purposes)	\$1.4	\$26.2	\$15.6
Transmission Network Upgrades (\$150/kW)	\$10.7	\$48.6	\$21.7
Transmission Interconnection Costs	\$25.5	\$25.5	\$0.6
Natural Gas Interconnection Costs	\$11.5	\$11.5	\$0.5
Water Interconnection Costs	\$9.2	\$9.2	\$0.0
MISO Queue Fees	\$0.3	\$0.4	\$0.4
otal Project Costs, UNFIRED, 2024 MM\$ (Unloaded) otal Cost Per UNFIRED kW, 2024 \$/kW (Unloaded)	\$476 \$3,122	\$651 \$2,009	\$382 \$1,598
oaded Costs	\$00 F	#50.0	1 01 0
Interest During Construction, 2024 \$MM	\$39.5	\$53.8	\$31.8
otal Project Costs UNFIRED, 2024 MM\$ (Loaded) otal Cost Per UNFIRED kW, 2024 \$/kW (Loaded)	\$515 \$3,381	\$705 \$2,176	\$414 \$1,731
DUCT FIRING ADD-ON COST	\$10.0	A 44 A	\$10.0
Capital Costs, 2024 \$MM	\$12.8	\$11.3	\$12.9
Owner's Costs, 2024 \$MM .oaded Costs, Interest During Construction, 2024 MM\$	\$0.8 \$1.1	\$0.7 \$1.0	\$0.8 \$1.1
· · · · · · · · · · · · · · · · · · ·	\$	\$\$	~
SCR ADD-ON COST	Included	Included	¢6.6
Capital Costs, 2024 \$MM	Included	Included	\$6.6 \$0.4
Owner's Costs, 2024 \$MM .oaded Costs, Interest During Construction, 2024 MM\$	Included Included	Included Included	\$0.4 \$0.6
· · · · ·	included	Included	φ0.6
otal Project Cost, FIRED, 2024 \$MM (Unloaded) otal Cost Per FIRED Summer kW, 2024 \$/kW (Unloaded)	\$489 \$2,464	\$663 \$1,618	\$396 \$1,201
otal Project Cost, FIRED, 2024 \$MM (Loaded) otal Cost Per FIRED Summer kW, 2024 \$/kW (Loaded)	\$529 \$2,664	\$717 \$1,750	\$428 \$1,299
IXED O&M COSTS (Note 6)			
Fixed O&M Cost - LABOR, 2024 \$MM/Yr	\$3.8	\$3.3	\$3.8
ixed O&M Cost - OTHER, 2024 \$MM/Yr	\$2.5	\$2.4	\$2.5
Property Tax, 2024 \$/kW-mo	\$0.99	\$0.71	\$0.38
roperty Insurance, 2024 \$/kW-mo	\$0.34	\$0.24	\$0.13
EVELIZED CAPITAL MAINTENANCE COSTS (Note 7)			
lajor Maintenance Cost, 2024 \$/GT-hr	\$200	\$450	\$350
lajor Maintenance Cost, 2024 \$/MWh	\$2.10	\$1.30	\$2.51
atalyst Replacement Cost, 2024 \$/MWh	\$0.30	\$0.20	Included in SCR Opti
ION-FUEL VARIABLE O&M COSTS (EXCLUDES LEVELIZED CAP. MAINT. (* 0.00	¢0.00
otal Variable O&M Cost, 2024 \$/MWh Water Related O&M (\$/MWh)	\$3.50 \$1.30	\$2.80 \$0.70	\$3.00 \$1.20
SCR Reagent, \$/MWh	\$1.30 \$0.30	\$0.70 \$0.40	Included in SCR Opti
Other Consumables and Variable O&M (\$/MWh)	\$1.90	\$0.40	\$1.80
ncremental Duct Fired Variable O&M, 2024 \$/MWh (excl. GT major maint.)	\$1.70	\$1.20	\$1.60
Water Related O&M (\$/MWh)	\$1.00	\$0.50	\$0.90
SCR Reagent, \$/MWh	\$0.20	\$0.20	\$0.90
Other Consumables and Variable O&M (\$/MWh)	\$0.20	\$0.20	\$0.50

Incremental SCR O&M Costs Catalyst Replacement Cost, 2024 \$/MWh SCR Reagent, \$/MWh	Included in Base Included in Base	Included in Base Included in Base	\$0.47 \$0.20
ESTIMATED BASE LOAD OPERATING EMISSIONS, (ISO) (Note 9			
Unfired			
Gross Carbon Intensity (Ib/MWh)	810	840	430
NO _X [lb/MMBtu, HHV]	0.010	0.010	0.020
NO _X [ppmvd @ 15% O ₂]	2.0	2.0	5.0
NO _X [lb/hr]	4.0	17.0	19.0
CO [lb/MMBtu, HHV]	0.004	0.004	0.050
CO [ppmvd @ 15% O ₂]	2.0	2.0	10.0
CO [lb/hr]	2.30	11.0	55.0
CO ₂ [lb/MMBtu, HHV]	120	120	120
CO ₂ [lb/hr]	144,000	280,200	121,000
PM/PM ₁₀ [lb/MMBtu, HHV]	0.006	0.006	0.004
PM/PM ₁₀ [lb/hr]	3.00	13.5	4.2
Fired			
Gross Carbon Intensity (Ib/MWh)	900	840	1,000
NO _x [lb/MMBtu, HHV]	0.010	0.010	0.040
NO _X [ppmvd @ 15% O ₂]	2.0	2.0	10.0
NO _X [lb/hr]	41.0	78.0	58.0
CO [lb/MMBtu, HHV]	0.004	0.004	0.060
CO [ppmvd @ 15% O ₂]	2.0	2.0	28.0
CO [lb/hr]	3.00	10.6	94.1
CO ₂ [lb/MMBtu, HHV]	120	120	120
CO ₂ [lb/hr]	201,600	357,600	363,600
PM/PM ₁₀ [lb/MMBtu, HHV]	0.008	0.008	0.007
PM/PM ₁₀ [lb/hr]	3.00	13.5	11.1
Natao		<u>i</u>	

Notes

Note 1: Startup times reflect unrestricted, conventional starts for all gas turbines. These start times assume the inclusion of terminal point desuperheaters, full bypass, and associated controls. Cold start is >72 hours after shutdown. Hot start is <8 hours after shutdown.

Note 2: Startup time to stack emissions compliance is not the same as the start time for gas turbine MECL. Stack emissions compliance is expected to be limited by the temperature of the CO catalyst, which impacts VOC emissions.

Note 3: Outage and availability statistics are collected using the NERC Generating Availability Data System. Combined cycle data is based on North American units that came online in 2013 or later. Reporting period is 2013-2022.

Note 4: New and clean performance assumed. All performance ratings are based on NATURAL GAS operation and are inclusive of incremental performance for duct firing option. Min load ratings are based on OEM performance information at specified ambient conditions.

Note 5: Capital and fixed O&M costs are presented in 2024 USD \$MM. Capital costs include duct firing to 1,400 °F for all fired options. Estimated costs exclude decommisioning costs and salvage values.

Note 6: Base O&M costs are based on performance at annual average conditions. Fixed O&M assumes 22 FTE for 1x1 and 25 FTE for 2x1 configurations.

Note 7: Major maintenance \$/hr holds for frame gas turbines where hours per start is >27.

Note 8: Variable O&M costs assume onsite demin treatment system.

Note 9: Emissions estimates are shown for steady state operation at ISO conditions. Estimates account for the impacts of SCR and CO catalysts.

Note 10: Transmission interconnect allowance assumes 15 miles of transmission line at 115 kV interconnection voltage (land costs excluded).

Note 11: Natural gas interconnection includes an allowance for 5 mile pipeline.

Note 12: Water interconnection allowance includes on-site wells and pipe for raw water supply.

Note 13: MISO Queue Fees includes M1 and M2 milestone payments. M1 milestone payment includes the application fee and funding for applicable transmission studies. M2 milestone payment is calculated as \$8,000 per MW of interconnection studied as part of the application.

Note 14: Reciprocating engine major maintenance cost assumes a minor overhaul at 18,000 operating hours and a major overahul at 36,000 operating hours.

Note 15: Land allowance assumes \$5,000/acre.

Note 16: Property tax and property insurance rate provided by MDU

OT FOR CONSTRUCTIO A LI DRAFT Wind Energy 100 GE 2.82-127 36 x 2.82 MW 47.5% N/A N/A 95%	Solar Photovoltaic 50 MW PV Opt: 10 MW / 40 MWh Storage PV: Single Axis Tracking Storage: Lithium-Ion Batteries N/A 24% 1.35 0.5%/yr 99%	Solar Photovoltaic 5 MW PV Opt: 1 MW / 4 MWh Storage PV: Single Axis Tracking Storage: Lithium-Ion Batteries N/A 24% 1.35 0.5%/yr
L DRAFT Wind Energy 100 GE 2.82-127 36 x 2.82 MW 47.5% N/A N/A 95%	50 MW PV Opt: 10 MW / 40 MWh Storage PV: Single Axis Tracking Storage: Lithium-Ion Batteries N/A 24% 1.35 0.5%/yr	5 MW PV Opt: 1 MW / 4 MWh Storage PV: Single Axis Tracking Storage: Lithium-Ion Batteries N/A 24% 1.35 0.5%/yr
Wind Energy 100 GE 2.82-127 36 x 2.82 MW 47.5% N/A N/A 95%	50 MW PV Opt: 10 MW / 40 MWh Storage PV: Single Axis Tracking Storage: Lithium-Ion Batteries N/A 24% 1.35 0.5%/yr	5 MW PV Opt: 1 MW / 4 MWh Storage PV: Single Axis Tracking Storage: Lithium-Ion Batteries N/A 24% 1.35 0.5%/yr
GE 2.82-127 36 x 2.82 MW 47.5% N/A N/A 95%	Opt: 10 MW / 40 MWh Storage PV: Single Axis Tracking Storage: Lithium-Ion Batteries N/A 24% 1.35 0.5%/yr	Opt: 1 MW / 4 MWh Storage PV: Single Axis Tracking Storage: Lithium-Ion Batteries N/A 24% 1.35 0.5%/yr
GE 2.82-127 36 x 2.82 MW 47.5% N/A N/A 95%	Opt: 10 MW / 40 MWh Storage PV: Single Axis Tracking Storage: Lithium-Ion Batteries N/A 24% 1.35 0.5%/yr	Opt: 1 MW / 4 MWh Storage PV: Single Axis Tracking Storage: Lithium-Ion Batteries N/A 24% 1.35 0.5%/yr
36 x 2.82 MW 47.5% N/A N/A 95%	Storage: Lithium-Ion Batteries N/A 24% 1.35 0.5%/yr	Storage: Lithium-Ion Batteries N/A 24% 1.35 0.5%/yr
47.5% N/A N/A 95%	24% 1.35 0.5%/yr	24% 1.35 0.5%/yr
N/A N/A 95%	1.35 0.5%/yr	1.35 0.5%/yr
N/A 95%	0.5%/yr	0.5%/yr
95%		
100.005		97%
100.005		
100,000	50,000	5,000
\$182	\$93	\$9
\$1,820	\$1,864	\$1,860
\$34	\$21	\$3
Allowance Included	Allowance Included	Allowance Included
Excluded	Allowance Included	Allowance Included
Allowance Included	Allowance Included	Allowance Included
Included	\$0.3	\$0.3
Excluded	Allowance Included	Allowance Included
ed - Development Phase	Excluded - Assumes Lease	Excluded - Assumes Lease
Included	\$0.3	\$0.1
Included	\$0.1	\$0.1
Included	\$0.1	\$0.1
Included \$0.0	\$0.3 \$0.0	\$0.3 \$0.0
٥٥.0 Allowance Included	Allowance Included	۵۵.0 Allowance Included
Allowance Included	\$5.6	\$0.3
Allowance Included	Allowance Included	Allowance Included
\$18.2	Allowance Included	Allowance Included
\$15.0	\$7.5	\$0.8
\$0.3	\$0.2	\$0.2
\$0.0	\$0.	\$0. <u> </u>
\$216	\$114	\$12
\$2,156	\$2,280	\$2,467
\$4.9	\$5.9	\$1.0
		-
\$221 \$2,205	\$120 \$2,398	\$13 \$2,671
\$3.70	\$1.50	\$1.90
\$0.70	\$0.80	\$0.80
\$0.30	\$0.60	\$0.60
Included in EOM	Included in EOM	Included in FOM
Included in FOM	Included in FOM	Included in FOM
	10 MW / 40 MWh	1 MW / 4 MWh
	\$18.0	\$2.7
N/A		\$0.5
N/A N/A	\$3.33	\$4.75
	\$0.94	\$0.16
	N/A N/A	Included in FOM Included in FOM 10 MW / 40 MWh N/A \$18.0 N/A \$1.4 N/A \$3.33

Notes:

Note 1: Wind capacity factor represents Net Capacity Factor (NCF), which accounts for typical system losses. Capacity factor is based on GE 2.82-127 turbines with 89 meter hub height and 8.5 m/s average wind speed.

Note 2: Solar capacity factor accounts for typical losses. Fixed tilt systems assumes 42 degree tilt.

Note 3: PV degradation based on typical warranty information for polycrystalline products. Assuming factory recommended maintenance is performed, PV performance is estimated to degrade ~2% in the

Note 5. PV degradation based on typical matrixity and the providence of the providence and industry publications. First year and 0.5% each remaining year. Note 4: NERC GADS performance statistics are not available for PV, battery storage, and wind technologies. Availability estimates are based on vendor correspondence and industry publications. Note 5: Estimated Costs exclude decommisioning costs and salvage values.

Note 6: Wind projects assume that there are temporary land leases during development period (which is included in the Owner's Costs) of fifty acres per MW based on MISO land requirements. However, the leases executed for post-development Project operation are categorized in Fixed O&M, not capital costs, and are based on empirical data represented by an overall \$/kW-yr cost.

PV projects assume that land is leased and therefore land costs are included in O&M, not capital costs. Land lease and property tax allowances are included in the Fixed O&M. PV assumes seven acres Projects during that and eight acres per MW for tracking options. Note 7: EPC costs for wind include 34.5 kV collection system and GSU to 115 kV. Owner's costs include 3 position ring bus switchyard for interconnection at 115 kV. Note 8: PV scope for EPC includes 34.5 kV collector bus and circuit breaker. Owner costs include allowance for interconnection at 115 kV.

Note 9: Builder's risk insurance assumes 0.45% of project cost.

Note 10: Owner's contigency assumes 10% for screening purposes. Note 11: Property tax rate of 0.44% provided by MDU.

Note 12: Property Insurance rate of 0.33% provided by MDU.

Note 13: Separate substation / switchyard cost not included in owner's cost for co-located energy storage

MONTANA-DAKOTA UTILITIES CO. 2024 GENERIC UNIT ASSESSMENT SUMMARY TABLE ENERGY STORAGE TECHNOLOGY ASSESSMENT PROJECT OPTIONS PRELIMINARY AND CONFIDENTIAL - NOT FOR CONSTRUCTION NORTH DAKOTA FEBRUARY 2024 - FINAL DRAFT

FEBRUARY 2024 - FINAL DRAFT	
PROJECT TYPE	Battery Storage
BASE PLANT DESCRIPTION	
Nominal Output, MW Representative Technology Use Case Assumption Book Life (Years) Assumed Land Use (Acres) Total System Cycles Interconnection Voltage Assumption Storage System AC Capacity at POI (MWh) Storage System Capacity Installed at POI (MWh) (Note 1) Storage System Degradation Assumption (%/yr) Storage System AC Roundtrip Efficiency (%) Technology Rating Permitting & Construction Schedule (Years from FNTP)	50 MW / 200 MWh Lithium-Ion Batteries 365 cycles per year 20 5 7,300 115 kV 200 240 2% 85% Mature 2.5
ESTIMATED PERFORMANCE	
	1
Base Load Performance @ (Annual Average) Net Plant Output, kW	50,000
ESTIMATED CAPITAL AND O&M COSTS	
Project Capital Costs, 2024 MM\$ (w/o Owner's Costs) (Note 2) Project Cost Per kWh, 2024 \$/kWh (Note 3) Owner's Costs, 2024 MM\$ Owner's Project Development Owner's Engineer Owner's Project Management Owner's Startup Personnel Land (Note 4) Permitting and Licensing Fees Switchyard / Substation (Note 5) Builder's Risk Insurance (Note 6) Owner's Contingency (Note 7) Transmission Network Upgrades (\$150/kW) MISO Queue Fees	\$81 \$338 \$22 Allowance Included Allowance Included Allowance Included Allowance Included Excluded - Assumes Lease Allowance Included Allowance Included Allowance Included Allowance Included \$7.5 \$0.2
Total Project Costs, 2024 MM\$ (Unloaded) Total Cost Per kWh, 2024 \$/kWh (Unloaded)	\$103 \$517
Loaded Costs Interest During Construction, 2024 \$MM	\$7.4
Total Project Costs, 2024 MM\$ (Loaded) Total Cost Per kWh, 2024 \$/kWh (Loaded)	\$111 \$554
Fixed O&M Cost Fixed O&M Cost, 2024 \$/kW-mo (Note 8) Property Tax, 2024 \$/kW-mo (Note 9) Property Insurance, 2024 \$/kW-mo (Note 10)	\$2.51 \$0.70 \$0.53

Non-Fuel Variable & Maintenance Cost

Major Maintenance Cost, 2024 \$/MWh Variable O&M Cost, 2024 \$/MWh

Notes

Note 1: Installed MWh capacity is in terms of AC capacity and accounts for 3 years of overbuild.

Note 2: Estimated project capital costs assume full-wrap engineering, procurement, and construction

(EPC). Estimated project capital costs exclude decommissioning costs and salvage values.

Note 3: Project cost per kWh is based on installed AC kWh.

Note 4: BESS projects assume that land is leased and therefore land costs are included in O&M, not capital costs. Land lease and property tax allowances are included in the Fixed O&M. BESS projects assume one-tenth acres per MW.

Note 5: Switchyard/substation estimate assumes three-position ring bus.

Note 6: Builder's risk insurance assumes 0.45% of project cost.

Note 7: Owner's contingency assumes 5%.

Note 8: Estimated fixed O&M costs include allowances for scheduled O&M, augmentation, and warranties. Fixed O&M cost assumes the site is remotely controlled.

Note 9: Property tax rate of 0.44% provided by MDU.

Note 10: Property Insurance rate of 0.33% provided by MDU.

APPENDIX C - SCOPE ASSUMPTIONS MATRIX

MONTANA-DAKOTA UTILITIES TECHNOLOGY ASSESSMENT ASSUMPTIONS

	Simple Cycle - Aero	Simple Cycle - Frame	Reciprocating Engines	Combined Cycle	Wind	PV / PV + Storage	Storage
Project Description							
	1 x LM6000 PF+	1 x 7E.03 LLI	4 x 20V34SG (9 MW)	2x1 SGT-800	GE 2.82-127 (50 MW)	50 MW PV Single-Axis Tracking	
Plant Size(s):		1 X / E.03 LEI				(10 MW / 40 MWh Li-ion Battery)	50 MW / 200 MWh Li-ion Battery
Fiant 3126(5).	1 x LMS100 PB+		3 x 18V50SG (18 MW)	1x1 F-Class	GE 2.82-127 (100 MW)	5 MW PV Single-Axis Tracking	30 WWW / 200 WWWT EPIOT Dattery
			4 x 31DF (11 MW)	2x1 E-Class (Heskett Expansion)		(1 MW / 4 MWh Li-ion Battery)	
	Primary Fuel Type: Natural Gas;	Primary Fuel Type: Natural Gas;	Primary Fuel Type: Natural Gas for				
	Dual Fuel Option for LM6000;	Dual Fuel Option;	20V34SG and 18V50SG; Dual Fuel for 31DF	Primary Fuel Type: Natural Gas;			
Fuel:	Performance shown for Gas Only in	Performance shown for Gas Only in	Performance shown for Gas Only in	Performance shown for Gas Only in	N/A	N/A	N/A
	Summary Table	Summary Table	Summary Table	Summary Table			
Designed Lagrantiana	-			North Dolote			
Project Location:				North Dakota			
Contract Philosophy:				Engineer, Procure, Construct (EPC) Methodolo			
Project COD:				Costs shown in 2023 USD (i.e. no escalation)		
Labor Type:				Union Labor			
				General Site Layout;			
Site Description:	General Site Layout 2x1 E-Class assumes existing Heskett					General Site Layout	
				Station layout			
Scope Basis / Assumptions:							
Redundancy:		Reflective o	f typical utility service. Redundant installed co	mponents (2 x 100%, 3 x 50%) where compor	nent failure could cause outage of the plant. N	o spare GSU.	
Site Condition:			Flat, minimal rock, soils stable	e for spread footings for all foundations except	turbines and coal plant stacks.		
Site Elevation:	1,695 ft						
Site Summer Ambient Conditions:				84.5 °F / 40% RH			
Site Winter Ambient Conditions:				6.8 °F / 70% RH			
Water Supply:			Fresh Water supp	ly from wells or surface water; pipeline/intake	excluded from cost.		
Waste Water Disposal:		Discharge offsite, piping be	yond site boundary excluded.			N/A	
Performance Basis							
Inlet Cooling	Evaporative C	ooler Included	N/A	Evaporative Cooler Included	1		
-	2 topolative c	Fin Fan Heat Exchanger			1	N/A	
Heat Rejection Design:				Cooling Tower, Wet-Cooled			
Availability Metrics		NERC GADS data for SOF	FOF, and AF, as applicable.			NERC GADS data for EAF, as applicable	
Fuel and Reagent Storage & Disposal							
Design Fuel:		Natu	ral Gas				
Design Fuel Supply:		Assumed pipeline quality of natural	gas at sufficent operating pressures.				
Back-up Fuel:	Ultra-low Sulfur Diesel for LM6000	Ultra-low Sulfur Diesel		Diesel for 31DF	1		
					N/A		
Start-up Fuel:	Natural Gas / Oil	Natural Gas / Oil		Gas / Oil			
Fuel Oil Delivery and Unloading:			g station included.				
Fuel Oil Storage:			e, 3 day storage				
Ammonia:		Aqueous Ammoni	a delivered by truck.				
Enclosures:							
Gas Turbine or Engine:	Oute	door	Indoor	Outdoor			
	Out		INdoor	Indoor	-	NIA	
Steam Turbine	-	N/A				N/A	
HRSG				Indoor			
	Warehouse, Maintenance Hall, and Adn	ninistration Building included for General Lavo	out sites. Heskett expansion option assumes ex	sisting facilities are utilized as applicable.			
Buildings:			uded for electrical equipment, CEMS enclosure		Maintenance Hall Allowance Included	Exclu	ided
Emissions and Emissions Controls*			1		1		
NOx Control:	LM6000: DLN Included, SCR Option DLN Included COD Option DLN 8 SCB Included						
	LM6000: DLN Included, SCR Option	LIMBOUD. DLV Included, SCR Option DLN & SCR Included DLN Included, SCR Option DLN & SCR Included					
	LM6000: DLN Included, SCR Option LMS 100: DLN & SCR Included			CO catalyst paired with SCR options, as applicable.			
CO Control:	LM6000: DLN Included, SCR Option LMS 100: DLN & SCR Included	CO catalyst paired with S					
SO ₂ Control:	LM6000: DLN Included, SCR Option LMS 100: DLN & SCR Included	CO catalyst paired with S	CR options, as applicable. Jlfur Fuel				
	LM6000: DLN Included, SCR Option LMS 100: DLN & SCR Included	CO catalyst paired with S			-	N/A	
SO ₂ Control: SO ₃ Control:	LM600: DLN Included, SCR Option LMS 100: DLN & SCR Included	CO catalyst paired with S Low St				N/A	
SO ₂ Control: SO ₃ Control: PM10 Control (filterable & condensable particulate):	LM6000: DLN Included, SCR Option LMS 100: DLN & SCR Included	CO catalyst paired with S Low St	ulfur Fuel			N/A	
SO ₂ Control: SO ₃ Control: PM10 Control (filterable & condensable particulate): Mercury Control:	LM6000: DLN Included, SCH Option LMS 100: DLN & SCR Included	CO catalyst paired with S Low St	ilfur Fuel		-	N/A	
SO ₂ Control: SO ₂ Control: PM10 Control (filterable & condensable particulate): Mercury Control: VOC Control:	LM6000: DLN Included, SCH Option LMS 100: DLN & SCR Included	CO catalyst paired with S Low St	ulfur Fuel			N/A	
SO ₂ Control: SO ₂ Control: PM10 Control (filterable & condensable particulate): Mercury Control: VOC Control: Transmission/Interconnection:	LM6000: DLN Included, SCR Option LMS 100: DLN & SCR Included	CO catalyst paired with S Low St	Jifur Fuel VIA ustion practice.		-	NA	
SO ₂ Control: SO ₃ Control: PM10 Control (filterable & condensable particulate): Mercury Control: VOC Control: Transmission/Interconnection: Switchyard:	LM6000: DLN Included, SCH Option LMS 100: DLN & SCR Included	CO catalyst paired with S Low St	Jfur Fuel J/A Justion practice.	uded with position for generators & 2 outgoing		NA	
SO ₂ Control: SO ₃ Control: PM10 Control (filterable & condensable particulate): Mercury Control: VOC Control: VOC Control: Transmission/Interconnection: Switchyard: Transmission Interconnection:	LM6000: DLN Included, SCH Option LMS 100: DLN & SCR Included	CO catalyst paired with S Low St	Jfur Fuel J/A Justion practice.	f transmission line at interconnection voltage,		NA	
SO ₂ Control: SO ₃ Control: PM10 Control (filterable & condensable particulate): Mercury Control: VOC Control: Transmission/Interconnection: Switchyard:	LM6000: DLN Included, SCH Option LMS 100: DLN & SCR Included	CO catalyst paired with S Low St	Jfur Fuel J/A Justion practice.			NA	
SO ₂ Control: SO ₃ Control: PM10 Control (filterable & condensable particulate): Mercury Control: VOC Control: VOC Control: Transmission/Interconnection: Switchyard: Transmission Interconnection:	LM6000: DLN Included, SCH Option LMS 100: DLN & SCR Included	CO catalyst paired with S Low Si M Good combu	Jfur Fuel J/A Justion practice.	f transmission line at interconnection voltage,			
SO2 Control: SO3 Control: PM10 Control (filterable & condensable particulate): Mercury Control: VOC Control: Transmission/Interconnection: Switchyard: Transmission Interconnection: Interconnection Voltage: Gas Interconnection:	LM6000: DLN Included, SCH Option LMS 100: DLN & SCR Included	CO catalyst paired with 5 Low Si Good combu Included, 5 mi. of interconnection	Jfur Fuel VA ustion practice. Incle Cost for 15 mile o	f transmission line at interconnection voltage,		N/A	
SO ₂ Control: SO ₃ Control: PM10 Control (filterable & condensable particulate): Mercury Control: VOC Control: Transmission/Interconnection: Switchyard: Transmission Interconnection: Interconnection Voltage: Gas Interconnection: Water Interconnection: Water Interconnection:	LM6000: DLN Included, SCH Option LMS 100: DLN & SCR Included	CO catalyst paired with S Low Si Good combu Included, 5 mi. of interconnection	Jfur Fuel J/A Justion practice. Incl Cost for 15 mile o easement allowance and metering.	f transmission line at interconnection voltage, 115 kV			
SO ₂ Control: SO ₂ Control: PM10 Control (lilterable & condensable particulate): Mercury Control: VOC Control: Transmission/Interconnection: Switchyard: Transmission Interconnection: Interconnection Voltage: Gas Interconnection: Water Interconnection: MISO Queue Fees:	LM6000: DLN Included, SCR Option LMS 100: DLN & SCR Included	CO catalyst paired with S Low Si Good combu Included, 5 mi. of interconnection	Jfur Fuel J/A Justion practice. Incl Cost for 15 mile o easement allowance and metering.	f transmission line at interconnection voltage, 115 kV Included			
SO ₂ Control: SO ₂ Control: PM10 Control (filterable & condensable particulate): Mercury Control: VOC Control: Transmission/Interconnection: Switchyard: Transmission Interconnection: Interconnection Voltage: Gas Interconnection: Water Interconnection: MISO Queue Fees: Network Upgrades:	LM6000: DLN Included, SCR Option LMS 100: DLN & SCR Included	CO catalyst paired with S Low Si Good combu Included, 5 mi. of interconnection	Jfur Fuel J/A Justion practice. Incl Cost for 15 mile o easement allowance and metering.	f transmission line at interconnection voltage, 115 kV			
SO ₂ Control: SO ₂ Control: PM10 Control (lilterable & condensable particulate): Mercury Control: VOC Control: Transmission/Interconnection: Switchyard: Transmission Interconnection: Interconnection Voltage: Gas Interconnection: Water Interconnection: MISO Queue Fees:	LM6000: DLN Included, SCR Option LMS 100: DLN & SCR Included	CO catalyst paired with S Low Si Good combu Included, 5 mi. of interconnection Interconnection includes ons	Jfur Fuel VA viation practice. Incl Cost for 15 mile o easement allowance and metering, te wells and associated piping.	f transmission line at interconnection voltage, 115 kV Included			
SO ₂ Control: SO ₂ Control: PM10 Control (filterable & condensable particulate): Mercury Control: VOC Control: VOC Control: Transmission/Interconnection: Switchyard: Transmission Interconnection: Interconnection: Gas Interconnection: Miso Queue Fees: Network Upgrades: Miscellaneous Equipment: Fire protection:		CO catalyst paired with S Low St Good combu Included, 5 mi. of interconnection, Interconnection includes ons New Fire Pump and Emergency Dies	Jfur Fuel J/A Justion practice. Cost for 15 mile of easement allowance and metering. Te wells and associated piping.	f transmission line at interconnection voltage, 115 kV Included Included as provided by MDU (\$150/kW).			
SO ₂ Control: SO ₂ Control: PM10 Control (filterable & condensable particulate): Mercury Control: VOC Control: Transmission/Interconnection: Switchyard: Transmission Interconnection: Interconnection Voltage: Gas Interconnection: Water Interconnection: MISO Queue Fees: Network Upgrades:		CO catalyst paired with S Low St Good combu Included, 5 mi. of interconnection, Interconnection includes ons New Fire Pump and Emergency Dies	Jfur Fuel VA viation practice. Incl Cost for 15 mile o easement allowance and metering, te wells and associated piping.	f transmission line at interconnection voltage, 115 kV Included Included as provided by MDU (\$150/kW).			
SO ₂ Control: SO ₂ Control: PM10 Control (filterable & condensable particulate): Mercury Control: VOC Control: VOC Control: Transmission/Interconnection: Switchyard: Transmission Interconnection: Interconnection: Gas Interconnection: Miso Queue Fees: Network Upgrades: Miscellaneous Equipment: Fire protection:		CO catalyst paired with S Low St Good combu Included, 5 mi. of interconnection, Interconnection includes ons New Fire Pump and Emergency Dies	Jfur Fuel J/A Justion practice. Cost for 15 mile of easement allowance and metering. Te wells and associated piping.	f transmission line at interconnection voltage, 115 kV Included Included as provided by MDU (\$150/kW).			
SO2 Control: SO3 Control: PM10 Control (filterable & condensable particulate): Mercury Control: VCC Control: Transmission/Interconnection: Switchyard: Transmission Interconnection: Interconnection Voltage: Gas Interconnection: Misco Queue Fees: Network Upgrades: Miscellaneous Equipment: Fire protection: Emergency Generator: Auxiliary Boiler:		CO catalyst paired with S Low Si Good combu Included, 5 mi. of interconnection Interconnection includes ons New Fire Pump and Emergency Dies lew Diesel Generator included for greenfield s	Ifter Fuel VA VA vistion practice. Incl Cost for 15 mile o easement allowance and metering, tte wells and associated piping. vel Backup for dedicated onsite storage ites, not included for Heskett Expansion optior	f transmission line at interconnection voltage, 115 kV Included Included as provided by MDU (\$150/kW).		N/A	
SO2 Control: SO2 Control: PM10 Control (iliterable & condensable particulate): Mercury Control: VOC Control: VOC Control: Transmission/Interconnection: Switchyard: Transmission Interconnection: Interconnection: Mister Connection: Mister Connection: Mister Connection: Mister Connection: Mister Connection: Mister Connection: Fire protection: Emergency Generator: Auxiliary Boiler: Black Start:		CO catalyst paired with S Low Si Good combu Included, 5 mi. of interconnection Interconnection includes ons New Fire Pump and Emergency Dies lew Diesel Generator included for greenfield s	Jfur Fuel J/A Justion practice. Cost for 15 mile of easement allowance and metering. Te wells and associated piping.	f transmission line at interconnection voltage, 115 kV Included Included as provided by MDU (\$150/kW).		N/A	
SO2 Control: SO2 Control: PM10 Control (iliterable & condensable particulate): Mercury Control: VOC Control: VOC Control: VOC Control: Transmission Interconnection: Switchyard: Transmission Interconnection: Interconnection: Miso Queue Fees: Network Upgrades: Miso Queue Fees: Network Upgrades: Miso Queue Fees: Network Upgrades: Miso Queue Fees: Network Upgrades: Emergency Generator: Auxiliary Boiler: Black Start: Bypass Dampers		CO catalyst paired with S Low Si Good combu Included, 5 mi. of interconnection Interconnection includes ons New Fire Pump and Emergency Dies lew Diesel Generator included for greenfield s	Ifter Fuel VA VA vistion practice. Incl Cost for 15 mile o easement allowance and metering, tte wells and associated piping. vel Backup for dedicated onsite storage ites, not included for Heskett Expansion optior	f transmission line at interconnection voltage, 115 kV Included Included as provided by MDU (\$150/kW).		N/A	
SO ₂ Control: SO ₂ Control: PM10 Control (lilterable & condensable particulate): Mercury Control: VOC Control: Transmission/Interconnection: Switchyard: Transmission Interconnection: Interconnection: Water Interconnection: MISO Queue Fees: Network Upgrades: Miscollaneous Equipment: Fire protection: Emergency Generator: Auxiliary Boiler: Black Start: Bypass Dampers Miscellaneous Contract Costs:		CO catalyst paired with S Low St Good combu Included, 5 mi. of interconnection. Interconnection includes ons New Fire Pump and Emergency Diese Iew Diesel Generator included for greenfield s	Ifter Fuel	f transmission line at interconnection voltage, 115 kV Included Included as provided by MDU (\$150/kW).	excludes land costs.	N/A	
SO2 Control: SO3 Control: PM10 Control (filterable & condensable particulate): Mercury Control: VOC Control: Transmission/Interconnection: Switchyard: Transmission Interconnection: Interconnection Voltage: Gas Interconnection: Miscourbergeres: Network Upgrades: Miscellaneous Equipment: Fire protection: Emergency Generator: Auxiliary Boiler: Black Start: Bypass Dampers Miscellaneous Contract Costs: Startup Spare Parts:		CO catalyst paired with S Low Si Good combu Included, 5 mi. of interconnection Interconnection includes ons Interconnection includes ons New Fire Pump and Emergency Diese New Diesel Generator included for greenfield s	Jfur Fuel Incl Cost for 15 mile o cost for 15 mile o cost for 15 mile o reasement allowance and metering. It wells and associated piping. It wells and associated onsite storage It accurate the storage It accura	I transmission line at interconnection voltage, 115 kV Included Included as provided by MDU (\$150/kW). Is.	excludes land costs.	NA NA	Allowance Included
SO ₂ Control: SO ₂ Control: PM10 Control (lilterable & condensable particulate): Mercury Control: VOC Control: Transmission/Interconnection: Switchyard: Transmission Interconnection: Interconnection: Water Interconnection: MISO Queue Fees: Network Upgrades: Miscollaneous Equipment: Fire protection: Emergency Generator: Auxiliary Boiler: Black Start: Bypass Dampers Miscellaneous Contract Costs:		CO catalyst paired with S Low Si Good combu Included, 5 mi. of interconnection Interconnection includes ons Interconnection includes ons New Fire Pump and Emergency Diese New Diesel Generator included for greenfield s	Ifter Fuel	I transmission line at interconnection voltage, 115 kV Included Included as provided by MDU (\$150/kW). Is.	excludes land costs.	NA NA	Allowance Included
SO2 Control: SO3 Control: PM10 Control (filterable & condensable particulate): Mercury Control: VOC Control: Transmission/Interconnection: Switchyard: Transmission Interconnection: Interconnection Voltage: Gas Interconnection: Miscourse Fees: Network Upgrades: Miscellaneous Equipment: Fire protection: Emergency Generator: Auxiliary Boiler: Black Start: Byass Dampers Miscellaneous Contract Costs: Startup Spare Parts:		CO catalyst paired with S Low Si Good combu Included, 5 mi. of interconnection Interconnection includes ons Interconnection includes ons New Fire Pump and Emergency Diese New Diesel Generator included for greenfield s	Jfur Fuel Incl Cost for 15 mile o cost for 15 mile o cost for 15 mile o reasement allowance and metering. It wells and associated piping. It wells and associated onsite storage It accurate the storage It accura	I transmission line at interconnection voltage, 115 kV Included Included as provided by MDU (\$150/kW). Is.	excludes land costs.	NA NA	Allowance Included
SO2 Control: SO2 Control: PM10 Control (filterable & condensable particulate): Mercury Control: VOC Control: VOC Control: Transmission/Interconnection: Switchyard: Transmission Interconnection: Interconnection: MISO Queue Fees: Network Upgrades: MiSO Queue Fees: Network Upgrades: Network Upgrade		CO catalyst paired with S Low Si Good combu Included, 5 mi. of interconnection Interconnection includes ons Interconnection includes ons New Fire Pump and Emergency Diese New Diesel Generator included for greenfield s	Jfur Fuel Incl Cost for 15 mile o cost for 15 mile o cost for 15 mile o reasement allowance and metering. It wells and associated piping. It wells and associated onsite storage It accurate the storage It accura	I transmission line at interconnection voltage, 115 kV Included Included as provided by MDU (\$150/kW). Included as provided by MDU (\$150/kW). Included as provided by MDU (\$150/kW).	excludes land costs.	NA NA	Allowance Included
SO2 Control: SO3 Control: PM10 Control (filterable & condensable particulate): Mercury Control: VOC Control: Transmission/Interconnection: Switchyard: Transmission Interconnection: Interconnection Voltage: Gas Interconnection: Water Interconnection: MISO Queue Fees: Network Upgrades: Miscellaneous Equipment: Fire protection: Emergency Generator: Auxiliary Boiler: Black Start: Bypass Dampers Miscellaneous Contract Costs: Startup Spare Parts: Construction Indirects: Performance Bonds: Indirect / Owner's Indirect Costs:		CO catalyst paired with S Low Si Good combu Included, 5 mi. of interconnection Interconnection includes ons Interconnection includes ons New Fire Pump and Emergency Diese New Diesel Generator included for greenfield s	Jfur Fuel Incl Cost for 15 mile o cost for 15 mile o cost for 15 mile o reasement allowance and metering. It wells and associated piping. It wells and associated onsite storage It accurate the storage It accura	f transmission line at Interconnection voltage, 115 kV Included Included as provided by MDU (\$150/kW). Is. Itesting and start-up, initial fills and consumat Included. Allowance is 1% of project cost.	excludes land costs.	NA NA	Allowance Included
SO ₂ Control: SO ₃ Control: PM10 Control (filterable & condensable particulate): Mercury Control: VOC Control: Transmission/Interconnection: Switchyard: Transmission Interconnection: Interconnection Voltage: Gas Interconnection: Water Interconnection: MISO Queue Fees: Network Upgrades: Miscellaneous Equipment: Fire protection: Emergency Generator: Auxiliary Boiler: Black Start: Bypas Dampers Miscellaneous Contract Costs: Startup Spare Parts: Construction Indirects: Performance Bonds: Indirect / Owner's Indirect Costs:		CO catalyst paired with S Low Si Good combu Included, 5 mi. of interconnection Interconnection includes ons Interconnection includes ons New Fire Pump and Emergency Diese New Diesel Generator included for greenfield s	Jfur Fuel Jfur F	I transmission line at interconnection voltage, 115 kV Included Included as provided by MDU (\$150/kW). Included as provided by MDU (\$150/kW). Included as provided by MDU (\$150/kW).	excludes land costs.	N/A N/A uded d.	
SO2 Control: SO3 Control: PM10 Control (filterable & condensable particulate): Mercury Control: VOC Control: VOC Control: Transmission/Interconnection: Switchyard: Transmission Interconnection: Interconnection: Miso Queue Fees: Network Upgrades: Misoellaneous Equipment: Fire protection: Emergency Generator: Auxiliary Boiler: Black Start: Bypass Dampers Miscellaneous Contract Costs: Startup Spare Parts: Construction Indirects: Performance Bonds: Indirect / Owner's Indirect Costs: Project Development Owner's Operations Personnel Prior to COD		CO catalyst paired with S Low Si Good combu Included, 5 mi. of interconnection Interconnection includes ons Interconnection includes ons New Fire Pump and Emergency Diese New Diesel Generator included for greenfield s	Jfur Fuel Incl Cost for 15 mile o cost for 15 mile o cost for 15 mile o reasement allowance and metering. It wells and associated piping. It wells and associated onsite storage It accurate the storage It accura	Irransmission line at Interconnection voltage, 115 kV Included Included as provided by MDU (\$150/kW). is. testing and start-up, initial fills and consumat Included. Allowance is 1% of project cost. Allowance Included	excludes land costs.	NA NA	
SO ₂ Control: SO ₂ Control: PM10 Control (iliterable & condensable particulate): Mercury Control: VOC Control: VOC Control: Transmission/Interconnection: Switchyard: Transmission Interconnection: Interconnection Voltage: Gas Interconnection: Water Interconnection: MISO Queue Fees: Network Upgrades: Miscellaneous Equipment: Fire protection: Emergency Generator: Auxiliary Boiler: Black Start: Bypass Dampers Miscellaneous Contract Costs: Startup Spare Parts: Construction Indirects: Performance Bonds: Indirect / Owner's Indirect Costs: Project Development Owner's Operations Personnel Prior to COD Owner's Project Management		CO catalyst paired with S Low Si Good combu Included, 5 mi. of interconnection Interconnection includes ons Interconnection includes ons New Fire Pump and Emergency Diese New Diesel Generator included for greenfield s	Jfur Fuel Jfur Fuel Jfur Fuel Jfactor Jfur Fuel Jfur Fuel Jfur Fuel Jfur Fuel Jfur Fuel Inclu Cost for 15 mile o Cost for 15 mile o Cost for 15 mile o Leasement allowance and metering, Leasement allowance and metering, Leasement allowance and metering, Leasement allowance and metering, Leasement allowance Included Allowance Included	f transmission line at Interconnection voltage, 115 kV Included Included as provided by MDU (\$150/kW). Included as provided by MDU (\$150/kW). Its. Itesting and start-up, initial fills and consumate Included. Allowance is 1% of project cost. Allowance Included Allowance Included	excludes land costs.	N/A N/A uded d.	
SO2 Control: SO2 Control: PM10 Control (iliterable & condensable particulate): Mercury Control: VOC Control: VOC Control: Transmission/Interconnection: Switchyard: Transmission Interconnection: Interconnection: Misco Queue Fees: Network Upgrades: Misco Queue Fees: Startup Ganerator: Auxiliary Boiler: Black Start: Bypass Dampers Misco Queue Fees: Performance Bonds: Indirect / Owner's Indirect Costs: Project Development Owner's Operations Personnel Prior to COD		CO catalyst paired with S Low Si Good combu Included, 5 mi. of interconnection Interconnection includes ons Interconnection includes ons New Fire Pump and Emergency Diese New Diesel Generator included for greenfield s	Jfur Fuel Jfur Fuel Jfur Fuel Jfactor Jfur Fuel Jfur Fuel Jfur Fuel Jfur Fuel Jfur Fuel Inclu Cost for 15 mile o Cost for 15 mile o Cost for 15 mile o Leasement allowance and metering, Leasement allowance and metering, Leasement allowance and metering, Leasement allowance and metering, Leasement allowance Included Allowance Included	Irransmission line at Interconnection voltage, 115 kV Included Included as provided by MDU (\$150/kW). is. testing and start-up, initial fills and consumat Included. Allowance is 1% of project cost. Allowance Included	excludes land costs.	N/A N/A uded d.	
SO2 Control: SO2 Control: PM10 Control (filterable & condensable particulate): Mercury Control: VOC Control: VOC Control: Transmission/Interconnection: Interconnection Voltage: Gas Interconnection: MISO Queue Fees: Network Upgrades: Miscellaneous Equipment: Fire protection: Emergency Generator: Auxiliary Boiler: Black Start: Bypass Dampers Miscellaneous Contract Costs: Startup Spare Parts: Construction Indirects: Performance Bonds: Indirect / Owner's Indirect Costs: Project Development Owner's Operations Personnel Prior to COD Owner's Project Management		CO catalyst paired with S Low Si Good combu Included, 5 mi. of interconnection Interconnection includes ons Interconnection includes ons New Fire Pump and Emergency Diese New Diesel Generator included for greenfield s	Jfur Fuel Jfur Fuel Jfur Fuel Jfactor Jfur Fuel Jfur Fuel Jfur Fuel Jfur Fuel Jfur Fuel Inclu Cost for 15 mile o Cost for 15 mile o Cost for 15 mile o Leasement allowance and metering, Leasement allowance and metering, Leasement allowance and metering, Leasement allowance and metering, Leasement allowance Included Allowance Included	f transmission line at Interconnection voltage, 115 kV Included Included as provided by MDU (\$150/kW). Included as provided by MDU (\$150/kW). Its. Itesting and start-up, initial fills and consumate Included. Allowance is 1% of project cost. Allowance Included Allowance Included	excludes land costs.	N/A N/A uded d.	
SO2 Control: SO2 Control: PM10 Control (iliterable & condensable particulate): Mercury Control: VOC Control: VOC Control: Transmission/Interconnection: Switchyard: Transmission Interconnection: Interconnection: Miscolaneous Mater Interconnection: Miscolaneous Equipment: Fire protection: Emergency Generator: Auxiliary Boiler: Black Start: Bypass Dampers Miscolaneous Contract Costs: Startup Spare Parts: Construction Indirects: Performance Bonds: Indirect / Owner's Indirect Costs: Project Development Owner's Project Management Owner's Engineering Owner's Legal Costs		CO catalyst paired with S Low Si Good combu Included, 5 mi. of interconnection Interconnection includes ons Interconnection includes ons New Fire Pump and Emergency Diese New Diesel Generator included for greenfield s	Ifter Fuel	f transmission line at Interconnection voltage, 115 kV Included Included as provided by MDU (\$150/kW). Included as provided by MDU (\$150/kW). Its. Itesting and start-up, initial fills and consumate Included. Allowance is 1% of project cost. Allowance Included Allowance Included	excludes land costs.	N/A N/A uded d. Exclu	ded
SO2 Control: SO2 Control: PM10 Control (iliterable & condensable particulate): Mercury Control: VOC Control: Transmission/Interconnection: Switchyard: Transmission Interconnection: Interconnection Voltage: Gas Interconnection: Miscellaneous Equipment: Fire protection: Miscellaneous Equipment: Fire protection: Auxiliary Boiler: Black Start: Bypass Dampers Miscellaneous Contract Costs: Startup Spare Parts: Construction Indirects: Perioden Bonds: Indirect / Owner's Indirect Costs: Project Development Owner's Operations Personnel Prior to COD Owner's Engineering		CO catalyst paired with S Low Si Good combu Included, 5 mi. of interconnection Interconnection includes ons Interconnection includes ons New Fire Pump and Emergency Diese New Diesel Generator included for greenfield s	Jfur Fuel Cost for 15 mile o Cost for 15 mile o easement allowance and metering. The wells and associated piping. If a wells and associated piping. If a wells and associated onsite storage ites, not included for Heskett Expansion option Jfu Particulated Construction Mgmt, Engineering, Performance Allowance Included Allowance Included	f transmission line at Interconnection voltage, 115 kV Included Included as provided by MDU (\$150/kW). Included as provided by MDU (\$150/kW). Its. Itesting and start-up, initial fills and consumate Included. Allowance is 1% of project cost. Allowance Included Allowance Included	excludes land costs.	N/A N/A uded d. Excluded	ided Allowance Included Allowance Included

Permitting & License Fees	Allowance Included			
Land	Allowance Included Excluded, Assumes Lease			
Labor Camp	Assumed to not be required. Assumes generic site has local	towns/ housing.		
Construction Power	Allowance Included Excluded		Allowance Included	
Fuel Consumed during Commissioning	Allowance Included	Excluded		
Power generated & sold during commissioning	Allowance Included	Excluded		
Initial Fuel Inventory	Allowance Included (as applicable)	Excluded		
Builder's Risk Insurance	Allowance Included			
Operating Spare Parts	Allowance Included for critical equipment only & minor parts. No spare GSU included		Allowance Included	
Workshop Tools & Test Equipment	Allowance Included	Excluded		
Warehouse Shelves	Allowance Included	Excluded		
Mobile Equipment, Vehicles	Allowance Included	Excluded		
Permanent Plant Equipment and Furnishings	Allowance Included Excluded			
Owner's Contingency	Included to reflect anticipated spent contingency for screening purposes. Additional contin	gency is recommended for budgetary estimate.		
Property Insurance				
Property Tax	Included, rate provided by MDU.			
Financing Fees	Excluded			
Interest During Construction	Included, provided by MDU.			
Sales Tax:	Excluded from EPC and Owners Costs.			

1898andco.com

Attachment F

TRANSMISSION SERVICE CHARGE IMPACTS

TRANSMISSION SERVICE CHARGE IMPACTS

Montana-Dakota's electric service customers in the Interconnected System will continue to see transmission service charges resulting from (1) the termination of the Transmission Services Agreement (TSA) with Western Area Power Administration (WAPA) on December 31, 2015; (2) WAPA and Basin Electric Power Cooperative (BEPC) joining Southwest Power Pool (SPP) as a transmission owning member on October 1, 2015; (3) revenue credits provided to BEPC for facilities used by Montana-Dakota's customers; (4) the Midcontinent Independent System Operator, Inc. (MISO) allocation of cost sharing for baseline reliability and market efficiency projects under Regional Economic Criteria Benefit (RECB) I and II criteria; and (5) the allocation of MISO Multi-Value Projects (MVP) which includes Long-Range Transmission Plan (LRTP) projects.

Transmission Services Agreement with Western Area Power Administration

Montana-Dakota and WAPA had a long history of sharing transmission facilities and providing service across each other's systems using a reciprocal wheeling arrangement. This arrangement expired on December 31, 2015. On October 1, 2015, WAPA and BEPC joined Southwest Power Pool (SPP) as a transmission owning member and, as such, transmission service across their facilities are now covered under the SPP Tariff. As part of a Federal Energy Regulatory Commission (FERC) settlement that Montana-Dakota entered into with SPP, WAPA, and BEPC regarding WAPA and BEPC's integration into the SPP footprint, Montana-Dakota agreed to take Network Integrated Transmission Service (NITS) under the SPP Tariff for service that was historically provided under the WAPA TSA, which basically covers Montana-Dakota's customer load west of Beulah, ND and west of Glenham, SD. Montana-Dakota has only a single 115kV transmission path west of Beulah to provide a connection back to the rest of Montana-Dakota's interconnected service territory and MISO. In return for taking NITS service under the SPP Tariff, Montana-Dakota is eligible for Facility Credits under Section 30.9 of the SPP Tariff for transmission facilities that WAPA and BEPC require service from Montana-Dakota which were previously provided under the WAPA TSA and BEPC Interconnection and Common Use Agreement (ICCUA). The impacts of the SPP NITS service is reduced by the Section 30.9 Facility Credit arrangement whereby Montana-Dakota is able to net a significant portion of its SPP transmission bill. BEPC is required to take MISO NITS service in areas that Montana-Dakota does not rely on SPP transmission facilities to serve its customer load providing additional offsets to the SPP NITS payments. Montana-Dakota received approval from FERC in 2021 for a Settlement Agreement in docket ER20-108 and an Amendment to a Partial Settlement Agreement in ER21-169 which provides for addition future Section 30.9 Credits to Montana-Dakota.

Montana-Dakota continues to see greater value in remaining a MISO transmission owning member as compared to exiting MISO and joining SPP as a full member. The greater MISO membership value is largely related to a difference in resource adequacy requirements between MISO and SPP. SPP requires each load serving entity to carry capacity resources for their full forecasted customer load plus a planning reserve margin while MISO includes a diversity factor reduction as not all MISO customer load experiences their peak at the same time. Montana-Dakota receives a significant benefit from being the western most transmission owning member in MISO As such, Montana-Dakota's customers currently only need to supply 82.6% of their full capacity requirements in the summer and 92% in the winter which provides 111 MWs of capacity savings in the summer and 59.2 MWs in the winter. If Montana-Dakota were to join SPP, Montana-Dakota would have to add approximately 151 MW of additional capacity resources to its generation portfolio as SPP has a lower planning reserve margin than MISO. Using the MISO Cost of New Entry (CONE)¹ value of \$341.21 per MW-day for 2024/2025, the resource adequacy diversity value that Montana-Dakota receives in MISO is equal to \$13.8 million versus having to carry one hundred percent non-coincident peak requirements. The monetary value of MISO's resource adequacy requirements versus SPP's resource adequacy requirements is \$18.9 million per year if Montana-Dakota would exit MISO and join SPP as a transmission owning member and move all its load and generation into SPP's energy market.

To verify that the current netting arrangement is in the best interest of serving its customer obligations, Montana-Dakota annually calculates the cost differential of the two options: 1) continuing to take both SPP and MISO NITS service, versus, 2) withdrawing from MISO membership and switching to SPP.

Based on Montana-Dakota's 2024 load forecast, the estimated cost of taking MISO transmission service is \$9.4 million per year. Using the company's Plexos modeling software and removing the MISO market energy purchase option, the increased cost for Montana-Dakota to self-schedule its own generation without access to the MISO energy market is \$9.3 million. This value is used as a rough estimate of MISO market benefits that the Company receives versus the self-scheduling of only resources owned by the Company. Additional MISO membership benefits include reliability oversight through Reliability Coordinator services, resource adequacy diversification (\$13.8

¹ 2024/2025 Planning Resource Auction (PRA) Results. Page 26. <u>2024 PRA Results Posting 20240425632665.pdf</u> (misoenergy.org)

million benefit as calculated above), tariff management, coordinated transmission planning studies, and generator interconnection queue management.

In 2024, the total net cost of taking both MISO and SPP transmission services is estimated at \$14.2 million or \$4.8 million above MISO only tariff costs. This estimate includes the SPP Section 30.9 Facility Credits provided under the SPP Tariff as well as the payments from Basin Electric for Transmission Service taken from MISO and the Basin Electric Facility Sharing Agreement. For Montana-Dakota to have its load and generation in MISO's resource adequacy requirements versus SPP, provides a net savings of \$18.9 million using the current MISO CONE value for capacity resources calculated above. If Montana-Dakota would exit MISO and join SPP as a transmission owning member, it would continue to make annual transmission investment payments of \$7.4 million (2024 amount) to MISO for Schedule 26 and 26a projects that it has on-going cost responsibility to make under the MISO Tariff.

MISO Allocation of Cost Sharing under RECB I Criteria

The MISO RECB I cost allocations allow for the cost sharing of approved network transmission facilities with the benefiting transmission owners or with the entire MISO footprint. Contained in MISO's FERC Order 1000 compliance filing was the removal of the requirement to cost share future MISO RECB I projects, also referred to as baseline reliability projects, from the MISO Tariff beginning with MTEP 2014. Previously approved MISO RECB I projects will continue to be cost shared as before. Schedule 26 allocations are directly assigned revenue requirements for approved projects to an individual Transmission Owner or all MISO load through a system-wide postage-stamp rate. The CapX2020 Alexandria to Fargo 345 kV transmission line was approved in 2008 as a baseline reliability project eligible for cost sharing under the MISO Tariff and was placed into service in 2015. As defined in RECB I, eighty percent (80%) of the revenue requirements for these projects are allocated under a line outage distribution factor (LODF) calculation to determine beneficiaries, and the remaining twenty percent (20%) are allocated to all MISO load through a postage-stamp rate. Montana-Dakota's allocated investment share of the Alexandria to Fargo 345 kV line is \$6.6 million. Annual revenue requirements for all RECB I projects allocated to Montana-Dakota's transmission pricing zone in MISO are forecasted to equal \$2.5 million dollars in 2024, which includes the cost of the Mandan 230 kV Junction Substation. Montana-Dakota also receives RECB I (MISO Schedule 26) revenues from Otter Tail Power for the reliability benefits they are assigned for the Mandan 230kV Junction Substation.² The MISO

² MISO Indicative Annual charges for approved Baseline Reliability Projects (Schedule 26). <u>Schedule 26 Indicative</u> <u>Annual Charges106363.xlsx (live.com)</u>

NITS transmission service that BEPC takes for its customer load in Montana-Dakota's transmission pricing zone is allocated a load ratio portion of the Montana-Dakota RECB I cost responsibilities. Montana-Dakota also receives Schedule 26 revenues as part of its ownership of the Twin Brooks 345 kV substation in South Dakota which is located on the Ellendale 345kV substation to Big Stone South substation transmission line. The Twin Brooks Substation was the cost allocation responsibility of the interconnecting generator and because the voltage of the network upgrade is 345 kV, ten percent of the project cost is allocated to the MISO system wide postage allocation for which Montana-Dakota receives Schedule 26 revenues.

MISO Allocation of Cost Sharing under RECB II Criteria

The MISO RECB II cost allocation allows for the cost sharing of approved market efficiency projects (MEPs) with the benefiting transmission owners or with the entire MISO footprint.

To qualify as an MEP, network transmission upgrades must be shown to have regional economic benefits as demonstrated through multi-future and multi-year planning. MEP's currently involve transmission facilities operating at voltages of 345kV and higher. Project costs must be at least \$5 million or more with at least 50% of the project cost associated with 345kV or above facilities. MEPs must have a benefit-cost ratio of 1.25 or higher with annual benefits calculated using 100% adjusted production cost savings for multiple future scenarios with the present value of benefits and costs calculated over the first 20 years after the in-service date, but not to exceed 25 years from the project's approval year.

Revenue requirements for MEP's are allocated 80% to all load within the MISO Local Resource Zone that receives benefits with the remaining 20% allocated to the MISO footprint wide postage stamp.

On February 25, 2019, MISO filed FERC Docket No. ER19-1124-000 to modify cost allocation for MEP's using existing and newly adopted metrics that allow for added precision in allocating costs and facilitate 100% allocation of MEP costs to benefitting Transmission Pricing Zones (eliminating the 20% allocation to all of MISO on a postage stamp basis). The filing also provides an expanded framework for the designation of MEPs at lower voltages, including lowering the voltage threshold from 345 kV to 230 kV and the creation of a new local economic project category between 230kV and 100kV.

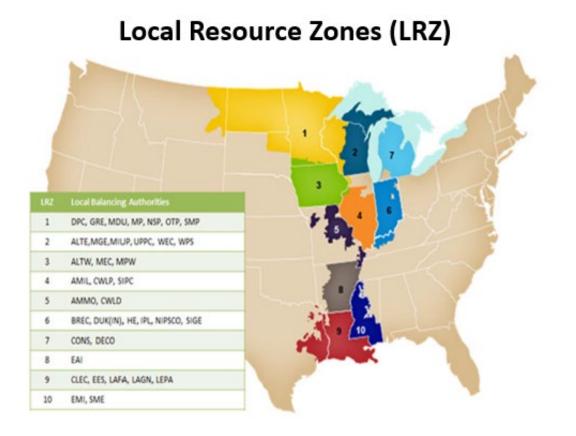


Figure 1 – Map of MISO Local Resource Zones

MISO continues to engage stakeholders through the RECB Task Force to review the MEP metrics and potential additional benefit calculations for things like (1) reduced planning reserve margin, (2) reduction in transmission losses, (3) avoided costs by deferring or eliminating future baseline reliability transmission investments, and (4) avoidance of market-to-market settlement payments. Montana-Dakota believes the current cost allocation for MEPs is sufficient and no changes are needed. If changes to voltage threshold or additional benefit criteria are implemented, then MISO should also look to allocate the costs for MEPs to local transmission pricing zones which benefit directly from the MEPs.

Allocation of MISO Multi-Value Projects

On December 17, 2010, the FERC approved a joint application filing by MISO and various MISO Transmission Owners to create a new cost allocation methodology for qualifying multi-value high-voltage transmission facilities called Multi-Value Projects (MVPs). MVPs are one or more network transmission upgrades that, when considered as part of a portfolio, provide widespread regional benefits, respond to documented public policy requirements, and/or provide multiple

benefits such as reliability and economic value. Network transmission projects classified as MVPs will be cost-shared on a one hundred percent (100%) basis to all MISO load and system exports to PJM.

MVP Eligibility Criteria

To be eligible as an MVP, the project must meet at least one of the following:

- A project that enables the transmission system to deliver energy in support of documented energy policy mandates or laws that have been adopted through state or federal legislation or regulatory requirement and deliver such energy in a manner that is more reliable and/or more economic than it otherwise would be without the transmission upgrade.
- A project that provides multiple types of economic value across multiple pricing zones with a total project benefit-to-cost ratio of 1.0 or higher.
- A project that addresses at least one transmission issue associated with a projected reliability violation and at least one economic-based transmission issue, and that provides economic value across multiple pricing zones and generates financially quantifiable benefits in excess of the total project cost.

2011 MVP Portfolio

MTEP 2011 approved \$5.6 billion for 17 Multi-Value Projects that were selected as part of a regional portfolio to improve reliability of the transmission system, meet public policy targets, and distribute economic benefits across the entire MISO footprint.³ The MTEP 2011 Report identified potential benefits of at least 1.8 to 3.0 times their cost for all MISO Local Resource Zones. The MTEP 2014 MVP Triennial Review Report calculates potential benefits from the 2011 MVP Portfolio of at least 2.6 to 3.9 times their cost for all MISO Local Resource Zones. The MTEP17 results provide benefits in excess of its costs, with its benefit-to-cost ratio ranging from 2.2 to 3.4; an increase from the 1.8 to 3.0 range calculated in MTEP11.⁴

One of the 2011 MVP Portfolio projects is a 345 kV transmission line from Big Stone, SD to Ellendale, ND. Montana-Dakota completed this project in partnership with Otter Tail Power Company in February 2019 with a construction cost of \$247 million.

³ MISO Transmission Expansion Plan 2011.

https://cdn.misoenergy.org/2011%20MVP%20Portfolio%20Analysis%20Full%20Report117059.pdf ³ MTEP17 MVP Triennial Review.

https://cdn.misoenergy.org/MTEP17%20MVP%20Triennial%20Review%20Report117065.pdf

The 2024 forecasted MISO Schedule 26-A (MVP Cost Adder) charge is \$1.54 per MWh.⁵ Assuming a 2024 Total Energy Requirements of 3,251,040 MWh, this would result in a total charge of \$5,006.602 to Montana-Dakota's interconnected customers.

Montana-Dakota's cost allocation share of all MVP investments is less than one percent.

Long-Range Transmission Planning

A key part of MISO's Reliability Imperative is the need for additional high voltage electric transmission across the MISO footprint as plant retirements and increasing renewables continue to transform the grid. MISO is responding to this need with the Long-Range Transmission Planning (LRTP) effort. LRTP provides as a road map for investment decisions as the grid evolves.

LRTP is designed to assess the region's future transmission needs holistically, in concert with utility and state plans on where to site and build new generation resources.

The model building process used for LRTP is representative of the MTEP process but has a different data set and time frame of study. Load and renewable availability are dependent on time of day that is accounted for in the reliability base model set. The dispatch method for LRTP captures the ability to realize the target renewable energy levels with the various MISO Futures.

MISO is looking for the development in the LRTP to move forward in various stages or tranches. Tranches 1 and 2 will focus on the northern portion of the MISO footprint. Tranche 3 will look at the MISO South region. And Tranche 4 is expected to look at projects between MISO North and MISO South.

In July of 2022, MISO's Board of Directors approved \$10.3 billion for 18 new transmission projects as part of LRTP Tranche 1 which included a 345kV transmission line between Jamestown and Ellendale, ND that Montana-Dakota will construct and operate in partnership with Otter Tail Power Company.

⁵ MISO Indicative Annual charges for approved Multi-Value Projects (Schedule 26-A). <u>Schedule 26A Indicative</u> <u>Annual Charges106365.xlsx (live.com)</u>

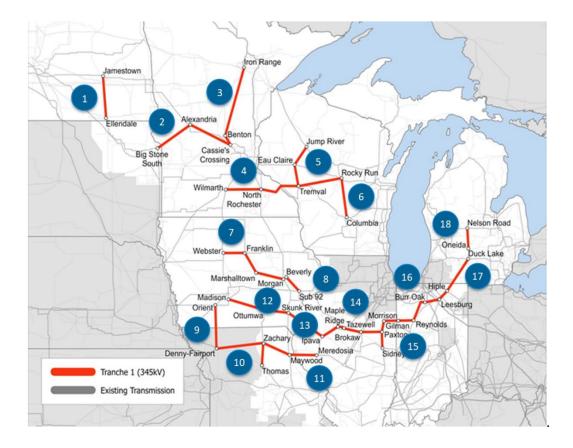


Figure 2 - MISO LRTP Tranche 1 project portfolio⁶

Cost allocation for the LRTP Tranche 1 portfolio will utilize the existing MVP cost allocation methodology but on a sub-region basis assigning costs to only MISO North customers.

MISO is working on the Tranche 2.1 set of LRTP project which is expected to be approved and constructed in two phases. The first phase of LRTP Tranche 2.1 is expected to have a cost of \$23 - \$27 billion. MISO is expecting Board of Director approval of the LRTP Tranche 2 set of projects in Q4 of 2024.

⁶ From MISO Website. Long Range Transmission Planning (misoenergy.org)

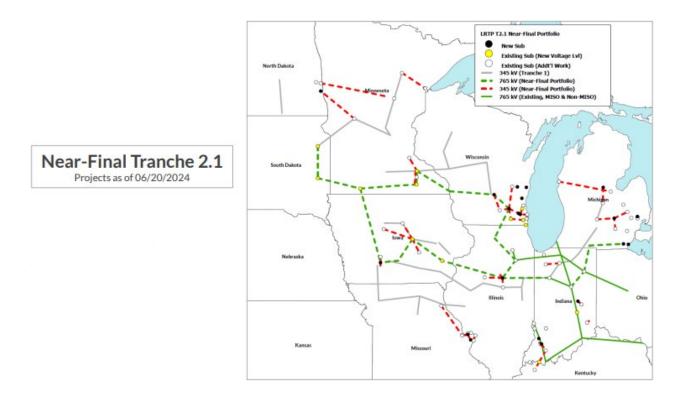


Figure 3 - Anticipated tranche 2 project portfolio (6/20/2024)⁷

No timeframe is set for additional Tranche 2 project portfolios or Tranche 3 or 4 study work.

⁷ From MISO Website. <u>20240621 LRTP Workshop Item 02 Reliability & Economic Deep Dive (misoenergy.org)</u> Page 5.

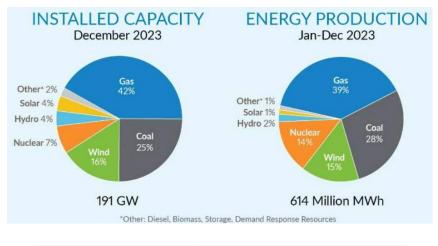
Attachment G

MISO Overview

MISO OVERVIEW

Established in 2001 as part of a broader restructuring of the electric power industry, Midcontinent Independent System Operator (MISO) operates as a not-for-profit, member-based organization responsible for overseeing the reliable operation and efficient management of the high-voltage electric grid across 15 U.S. states and the Canadian province of Manitoba. At its core, MISO ensures the reliable functioning of the transmission grid, overseeing its operations, maintenance, and expansion to meet the region's evolving energy needs. One of its primary responsibilities involves the coordination of electric transmission, enabling seamless interconnection among utilities, power generators, and consumers. MISO also administers robust energy markets, facilitating the buying and selling of electricity while striving to maintain a fare and competitive marketplace. Additionally, the organization plays a crucial role in integrating renewable energy resources and promoting grid resilience and cybersecurity measures. Through collaborative efforts with stakeholders, MISO continues to navigate the complexities of the modern energy landscape to uphold reliability, affordability, and sustainability in power supply.

MISO's Reliability Footprint



MISO Scope of Operations¹

• Managing the flow of high-voltage electricity across 15 U.S. states and the Canadian province of Manitoba

¹ January 2024 MISO Fact Sheet <u>https://cdn.misoenergy.org/2024%20January%20Fact%20Sheet631433.pdf</u>

- Facilitating one of the world's largest energy markets with more than \$40 billion in annual transactions
- Planning the grid of the future

15 U.S. States and Manitoba, Canada
45 Million
75,000 Miles
2,956
127.1 GW 7/20/2011
25.6 GW 1/12/2024
3.3 GW 8/31/2023
54 Transmission Owners
143 Non-transmission Owners
+500
Approximately 32% since 2014

Non-Discriminatory Open Access Transmission Service to Facilitate Competition between Generation Resources

The primary goal of MISO's open access transmission service is to promote competition and efficiency in the energy market by ensuring that all transmission customers, whether utilities, independent power producers, or other entities, have fair access to the transmission system.

MISO is required to offer transmission services without preference to any market participant. This ensures that no entity is unfairly prioritized over another, allowing for a competitive market where all players can plan and operate on a level playing field.

MISO operates under a tariff that is approved by the Federal Energy Regulatory Commission (FERC). This tariff outlines the rates, terms, and conditions under which MISO offers transmission services. It includes provisions for both point-to-point and network transmission services.

- **Point-to-Point Transmission Service** provides reserved, dedicated capacity for transmitting electricity between specific points on the network.
- Network Transmission Service offers more comprehensive access and is typically used by utilities to serve their retail customers. It allows for the integration of a customer's resources to meet its entire load demand.

MISO's processes for requesting and managing transmission service are designed to be open and transparent. This includes public stakeholder meetings and documentation that are accessible to all interested parties, promoting transparency and enabling active participation in the planning and decision-making processes.

MISO adheres to FERC regulations and works closely with regulatory bodies to ensure compliance with all legal and regulatory requirements. This oversight helps maintain the integrity and reliability of the transmission service.

Platform for Wholesale Energy & Capacity Markets to Incentivize Efficient, Cost-Effective Dispatch and New Generation

MISO's wholesale energy and capacity markets play a critical role in managing the electricity supply for millions of consumers, facilitating competition, and promoting efficient market operations across multiple states.

Day-Ahead (DA) Market: In the DA Market, participants submit bids (offers to sell) and offers (requests to buy) for electricity one day before the actual delivery. This market allows participants to lock in prices for the next day and manage risks related to price fluctuations. Prices are determined on the submitted bids and offers, matched with the anticipated demand and cheapest generation options available.

Real-Time (RT) Market: The RT is a spot market where participants submit bids to buy and sell energy and operating reserves at least 30 minutes prior to the operating hour. It operates continuously throughout the day and adjusts for differences between the day-ahead forecasts and actual conditions. This market responds to real-time fluctuations in demand and supply, such as unexpected changes in weather or generator availability. This market helps balance supply and demand and enables real-time adjustments based on current system conditions.

Financial Transmission Rights (FTR) Market: The primary function of MISO's FTR market is the allocation of Auction Revenue Rights (ARRs) and the auction of Financial Transmission Rights (FTRs).

ARRs are financial instruments that entitle holders to a share of the revenue (credit or charge) generated in the Annual FTR Auction. ARRs are acquired in the Annual ARR Allocation process and allocated to Market Participants (MPs) based on firm historical usage of the transmission network and to MPs to fund Network Upgrades. ARRs entitle holders to a share of the FTR Auction revenue, which may then be used to offset the cost of transmission congestion.

FTRs are point-to-point financial instruments settled based on congestion in the Day-Ahead Market. They do not represent the right for the physical delivery of energy. If the FTR path is in the direction of congestion, the MP receives a payment. If the FTR path is in the opposite direction of congestion, the MP incurs a charge. FTRs are acquired in the Annual or Monthly FTR Auctions or in the secondary market. MPs eligible to participate in FTR Auctions include ARR holders converting ARRs into FTRs or any creditworthy MP. MISO conducts the Annual FTR Auction immediately following the Annul ARR Allocation. Multi-Period Monthly FTR Auctions (MPMA) take place over the course of the Planning Year.

Planning Resource Auction (PRA) Market: MISO's Planning Resource Auction is a significant component of its market mechanisms aimed at ensuring the reliability and adequacy of resources within its footprint. The PRA allows market participants, including generators, demand response providers, and other capacity resources, to offer their available capacity into the market through competitive auctions. Key elements of the PRA are Seasonal Peak Demand Forecast, Local Clearing Requirements, and Transmission Limitations. These auctions determine the price and quantity of capacity procured. The PRA facilitates long-term resource planning by incentivizing investment in and availability of capacity resources necessary to maintain grid reliability during peak demand periods and unexpected contingencies.

Performs System Operations to Ensure Least-Cost Dispatch that Accounts for Reliability Needs

MISO oversees the real-time management of electricity, transmission, generation, and distribution to meet demand while maintaining grid stability and reliability. MISO continuously monitors the transmission grid's performance, assessing factors such as voltage levels, line capacities, and generation outputs. Through advanced control systems and grid management tools, operators make

real-time adjustments to ensure the grid operates within safe operating limits and meets demand requirements.

MISO dispatches generating units and other grid assets to match electricity supply with demand in real-time. Utilizing economic dispatch principles, MISO optimizes the use of available generation resources while considering factors such as fuel costs, environmental regulations, and system reliability requirements.

MISO collaborates with neighboring transmission system operators and balancing authorities to ensure seamless coordination and reliability across interconnected grids. Through coordinated planning, communication, and emergency response protocols, MISO enhances grid resilience and mitigates risks associated with system disturbances or emergencies.

MISO actively integrates renewable energy resources, such as wind and solar, into its grid operations. Advanced forecasting techniques and grid modeling enables operators to anticipate and manage the variability and intermittency of renewable generation, ensuring reliable grid operation while maximizing the use of clean energy resources.

In the event of system disturbances, outages, or emergencies, MISO System Operations coordinates emergency response efforts and restoration activities. Rapid assessment, prioritization, and coordination of resources help minimize disruptions and resort service to affected areas efficiently.

Transmission & Resource Planning Studies

MISO conducts comprehensive assessments of future transmission system needs and resource adequacy requirements, considering factors such as load growth, generation retirements, renewable energy integration goals, and reliability standards. These assessments serve as the foundation for identifying transmission projects and resource adequacy initiatives necessary to ensure grid reliability and meet forecasted electricity demand. In its planning approach, MISO follows its Tariff, NERC reliability standards, and standards adopted by Regional Reliability Organizations.

MISO Transmission Expansion Plan (MTEP)²

The annual MISO Transmission Expansion Plan (MTEP) provides value for customers by ensuring a cost-effective, reliable system that supports policy requirements. Projects that mostly address

² MISO Website <u>https://www.misoenergy.org/planning/transmission-planning/mtep/#t=10&p=0&s=&sd=</u>

local reliability and/or NERC requirements are submitted by transmission owners and vetted through an 18-month process with more than 75 stakeholder meetings.

The annual plan, including Appendix A which lists projects deemed ready for build, is reviewed by the Planning Advisory Committee which recommends approval by MISO's System Planning Committee of the Board of Directors, and the full Board provides final approval each December.

MTEP Appendix A projects typically fall into one of the following categories:

- **Baseline Reliability Projects (BRP)**, which are required to meet standards for both North American Electric Reliability Corporation (NERC) and local reliability.
- Generator Interconnection Projects (GIP) are needed to reliably connect new generation to the transmission grid.
- Market Efficiency Projects (MEP) address congestion within the MISO region or as an interregional project along the seam.
- Market Participant Funded Projects (MPFP) provide network upgrades fully funded by a Market Participant but owned and operated by an incumbent transmission owner.
- **Multi-Value Projects (MVP)** top-down projects developed by MISO through Long Range Transmission Planning with stakeholder input to address regional public policy, economic and/or reliability benefits.
- Other Projects address local reliability issues and/or provide local economic benefits but don't meet the threshold to qualify as Market Efficiency Projects.
- **Targeted Market Efficiency Projects (TMEP)** are low-cost interregional projects with short lead times to relieve known market-to-market congestion.
- **Transmission Deliverability Service Projects (TDSP)** are network upgrades required to facilitate long term point-to-point transmission service request.

Figure 1 summarizes the MISO MTEP approved investments from 2003-2023. Highlights in MTEP cycles include:

• MTEP11 reflects the approval of the Multi-Value Project portfolio, which accounts for the significantly higher investment totals compared to other MTEPs.

- MTEP14 reflects the inclusion of the new MISO South region projects.
- MTEP21 reflects the MTEP21 Addendum approval of the Long Range Transmission Plan (LRTP) Tranche 1 portfolio, which accounts for \$10.3 billion of the total.

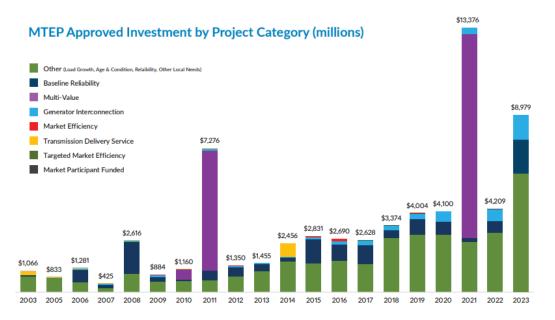


Figure 1 - MTEP Approved Investment by Project Category (millions)

Long Range Transmission Planning (LRTP)³

While MTEP addresses local, near-term needs through projects that typically go in service within 3-5 years of approval, longer-term, regional needs of the system are managed through MISO's Long Range Transmission Planning.

The LRTP initiative is MISO's response to the current and future resource evolution that has and continues to affect the bulk electric system. The scale and pace of these changes require prompt attention to develop the most efficient, cost-effective investments that will ensure grid reliability in the future. LRTP sets out to proactively identify key regional backbone transmission projects to support the resource change. This requires MISO to balance regional issues which should be addressed now as part of the LRTP study versus those more localized issues which should be addressed in the future through the interconnection process or in future MTEP cycles as specific load and generation locations are determined. Ultimately, the objective of the LRTP study is to

³ MISO Website. MTEP23 Report. <u>https://cdn.misoenergy.org/MTEP23%20Full%20Report630587.pdf</u>

identify a least-regrets transmission build-out evaluated against multiple scenarios to manage uncertainty that achieves member goals, maintains reliability, and minimizes costs.

- LRTP Tranche 1: On July 25, 2022, MISO approved Tranche 1 of its LRTP study, which included 18 transmission projects with a total estimated cost of \$10.3 billion (2022\$).
- LRTP Tranche 2.1: The solutions in the near-final Tranche 2.1 draft portfolio represent key anticipated lines to resolve issues identified in Future 2A. Alternatives assessment and business case analysis will inform the development of the final portfolio. The anticipated portfolio is expected to cost between \$23 and \$27 billion. Work on Tranche 2.1 is progressing with an anticipated approval by MISO's Board of Directors in Q4 2024.

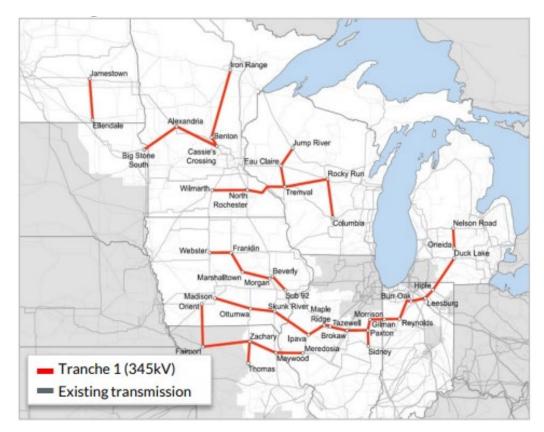


Figure 2 - LRTP Tranche 1 Portfolio

Figure 3 – LRTP Tranche 2 Anticipated Portfolio as of 06/20/2024

MISO Futures⁴

MISO's future scenarios, known as Futures, form the basis for LRTP by outlining a spectrum of potential economic, policy, and technological developments over a 20-year period. These Futures help MISO manage uncertainty by encompassing various factors such as load growth, electrification, carbon policies, generator retirements, renewable energy levels, natural gas prices, and generation capital costs.

MISO conducts resource expansion analysis to determine the optimal resource mix that minimizes overall system costs while meeting reliability and policy requirements. The resulting resource expansion plans, paired with corresponding Futures, help identify transmission issues and solutions.

In preparation for Tranche 2 and to align with recent plans, legislation, policies, and other factors, MISO updated its three Futures in 2023, illustrated in Figure 2. While the defining characteristics of each Future remained consistent, updates were made to data and information informing the potential resource mix. This included incorporating state and member plans, capital costs, operating and fuel costs, as well as defined resource additions and retirements. MISO also modeled

⁴ MISO Website. Series 1A Futures Report. <u>https://cdn.misoenergy.org/Series1A_Futures_Report630735.pdf</u>

the impacts of clean energy tax credits from the federal Inflation Reduction Act, expecting these incentives to accelerate the transition to a decarbonized grid.

Future 2A, the focus of Tranche 2, projects an accelerated pace of fleet change due to stronger renewable mandates, carbon reduction goals, and other policies. It forecasts a 60% reduction in carbon emissions by 2042 and anticipates that wind and solar energy will provide 30% of the region's energy a decade earlier than previously projected in Series 1 Futures that were used for Tranche 1.

Originally developed for MTEP, MISO's Futures are now used in multiple planning projects, including MTEP, LRTP, and the Regional Resource Assessment (RRA). The scenarios provide a consistent set of outlooks across transmission, markets, and operations.

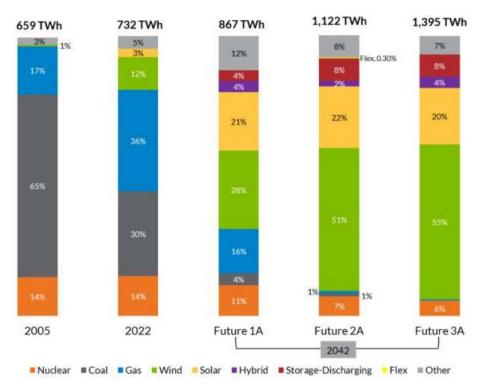


Figure 4 - Overview of MISO's Generation Fleet Mix Transition in Futures Series 1A

Future 1A Assumptions – Future 1 reflected substantial achievement of state and utility announcements, with a 40% decarbonization assumption. Future 1A continues to incorporate 100% of updated utility integrated resource plan (IRP) announcements and state legislation. Updated non-IRP utility goals and non-legislated state goals are applied at 85% of their respective levels to hedge the uncertainty of meeting them. Accordingly, Future 1A incorporates 71% decarbonization for the MISO system. Future 1A assumes that

demand and energy growth are driven by existing economic factors, with small increases in EV adoption, resulting in an annual energy growth rate of 0.22%.

Future 2A Assumptions – Future 2 incorporated 100% of utility IRPs and announced state and utility goals within their respective timelines, and a 60% decarbonization assumption. To align with 100% achievement of updated member utility goals, F2A therefore incorporates 76% decarbonization for the MISO system. Future 2A introduces an increase in electrification, driving an approximate 0.8% annual energy growth rate.

Future 3A Assumptions – This Future incorporates 100% of utility IRPs and announced state and utility goals within their respective timelines, while also including an 80% carbon dioxide reduction since the updated member utility goals in aggregate did not exceed this level of MISO-wide decarbonization. Future 3A requires a minimum penetration of 50% wind and solar and introduces a larger electrification scenario, driving an approximate 1.08% annual energy growth rate.

MISO-SPP Joint Targeted Interconnection Queue (JTIQ) Study

The JTIQ study stems from observations made by MISO and SPP cluster studies, indicating that transmission systems at their seams are operating at or near capacity. While adding generation resources and transmission infrastructure along the MISO-SPP seam can benefit both markets, the current mechanisms outlined in the Tariff and Joint Operating Agreement (JOA) don't offer a cost-sharing approach conducive to constructing the large-scale transmission necessary to interconnect the anticipated levels of new generation near the seam. Additionally, differences in processes, criteria, and schedules between the two RTOs contribute to delays in studies and raise questions about the study results.

The JTIQ Study is designed to address these barriers effectively. Its primary objective is to provide cost and timing certainty for generation interconnection customers. Under the JTIQ framework, affected system costs will be determined at the outset of the MISO or SPP queue studies, eliminating the need for separate Affected System Studies (AFS) between MISO and SPP. This streamlined approach aims to reduce study delays and uncertainties. Moreover, the JTIQ concept seeks to identify more optimized network upgrades compared to the current practice of conducting individual AFS clusters, ultimately enhancing the efficiency and effectiveness of the interconnection process between MISO and SPP.

The collaboration between MISO and SPP has led to the identification of a strategic portfolio of five transmission projects under the JTIQ study. These projects, collectively estimated to cost

\$1.06 billion at the planning level, aim to overcome significant transmission limitations hindering the interconnection of new generating resources along the MISO-SPP seam.

Besides enhancing reliability, economic analysis conducted by the RTOs indicate substantial benefits for customers. Over a 10-year period, customers within the MISO footprint can expect an Adjusted Production Cost (APC) benefit totaling \$55.7 million, while those in the SPP region may realize \$132.9 million in APC benefits.

One of the key outcomes of implementing the recommended JTIQ portfolio, with an anticipated approval by the MISO Board of Directors in 2024, is the facilitation of approximately 28.7 GW of improved interregional generation enablement. This increased capacity will be instrumental in supporting new generator interconnection projects situated near the MISO-SPP seam, thereby fostering further development and expansion of energy infrastructure in the region.

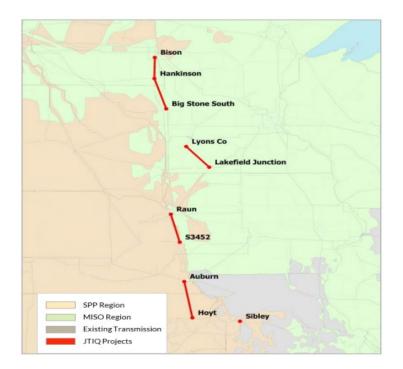
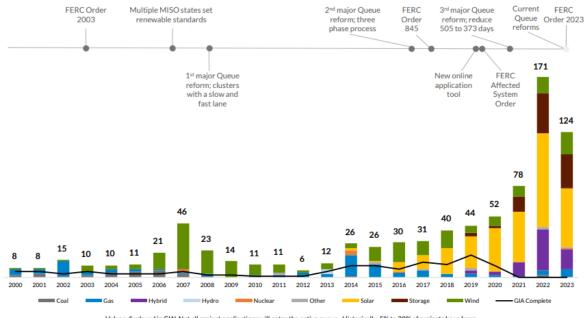


Figure 5 – JTIQ Portfolio

MISO Generation Interconnection Studies

As per its Tariff, MISO manages the generation interconnection process, which involves evaluating requests from developers seeking to connect their generation projects to the grid. This process includes studying the potential impacts of the proposed projects on grid operations and identifying any necessary upgrades or modifications to accommodate the new generation capacity.


Interconnection requests are studied in clusters under MISO's Definitive Planning Process (DPP) that defines the step-by-step process developers must follow to interconnect their generation projects to the MISO grid. This includes submitting applications, conducting feasibility and impact studies, negotiating interconnection agreements, and completing engineering and construction activities.

The DPP also outlines the principles and methodologies for allocating the costs of interconnectionrelated upgrades or modifications among developers and other stakeholders. This ensures that costs are allocated fairly and equitably based on the specific impacts of each project to the grid.

Member decarbonization goals are driving significant growth in MISO's Generation Interconnection Queue, resulting in a backlog of projects and challenges for interconnection customers. MISO has made several improvements to the queue process that reflect "first-ready, first-served" principles. FERC recently approved a generator replacement process under MISO's Tariff whereby an existing generator can be retired, and its interconnection rights can be transferred to new generator projects following a 180-day system impact study. The replacement generator does not have to go through the GI Queue process. The new generator must commence operation within 3 years of the retirement of the existing generator. Montana-Dakota Utilities Co. utilized this new generator process for the retirement of Heskett 1 & 2 and the construction of Heskett 4 which provided certainty in the interconnection timing and costs.

Additional reforms are needed to achieve reasonable queue speed and volume. Effective January 22, 2024, FERC accepted MISO's generation interconnection process (GIP) reforms which includes an increase in milestone payments, an automatic withdrawal penalty, and expanded site control requirements. These reforms in conjunction with FERC's Order 2023 aim to deter speculative projects from entering the queue. The approved GIP reforms apply to the 2023 Queue cycle.

FERC rejected MISO's cap filing which would limit the MW-value on each cluster with a narrow list of allowed exemptions. FERC had concerns over a section of the cap's formula, proposed exemptions to the cap, and MISO's lack of attention on resource adequacy when designing the cap. MISO will revise the cap filing and resubmit.

Values displayed in GW. Not all project applications will enter the active queue. Historically, 5% to 30% of projects have been withdrawn/removed during the application review phase. GIA - Generator Interconnection Agreement.

Figure 6 - Historical Queue Reforms

Value Proposition⁵

Participation in MISO has proven highly advantageous for its members and their 45 million customers, delivering increased reliability, more efficient energy dispatch, and resource sharing across the region, leading to reduced reserve requirements. As renewable investments surge and traditional thermal generation retires, alongside the escalating frequency and severity of weather events, the benefits of MISO membership are projected to expand further. MISO's Value Proposition, initiated in 2007, quantifies the annual value provided to the region. Over time, the value of MISO participation has grown significantly, reaching \$4.9 billion in 2023, with a cumulative benefit exceeding \$45 billion, while maintaining a low membership cost compared to total benefits with a 15:1 benefit-to-cost ratio in 2023. Initially focused on enhancing generator availability and optimizing existing resources, MISO's value drivers have shifted, with renewable optimization and resources sharing across its broad geographic footprint now representing the primary sources of value, expected to further amplify as members pursue renewable and decarbonization objectives.

⁵ MISO Website. MISO's 2023 Value Proposition Report. <u>https://cdn.misoenergy.org/2023%20Value%20Proposition%20Annual%20View%20-%20Detailed%20Report%20Final632082.pdf?v=20240306103856</u>

Annual Benefit, \$billions

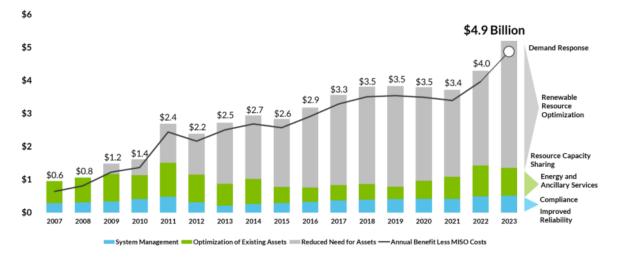


Figure 7 - MISO Annual Benefit

Improved Reliability

Anticipating a future marked by increased intermittent renewables, more severe weather events, and a surge in electrification and emerging technologies, MISO envisions leveraging transmission capacity and expansive geographic coverage to effectively navigate the uncertainties in resource supply.

Compliance

MISO's compliance benefit represents efficiencies gained through the consolidation and coordination of compliance efforts. These efficiencies include reductions in the number of full-time employees (FTEs) involved with standards development, FERC and NERC compliance, tariff compliance, system planning compliance, and operations compliance.

Energy and Ancillary Services

Ancillary services, including frequency regulation and voltage control, play a crucial role in maintaining the balance between energy supply and demand. By optimizing the provisions for both energy and ancillary services, MISO enables power plants to operate at their peak efficiency levels. This approach also facilitates the integration of increasing amounts of renewable energy.

Renewable Resource Optimization

MISO's regional planning allows for a more economic placement of wind and solar resources. This category of value captures the benefits of reduced renewable capacity needed across the footprint to achieve member goals.

Resource Capacity Sharing (formerly known as Footprint Diversity)

MISO's large geographic footprint allows members to lower planning reserve margins (PRM), ultimately reducing the amount of required installed capacity. Much of the value MISO creates comes from the value of sharing capacity across MISO's large geographic footprint by setting requirements for a system peak instead of each balancing authority keeping reserves for their own region. Savings are generated because MISO members do not need as much capacity for the same level of reliability.

Demand Response

MISO believes that the value of demand response will continue to grow as enabling technology improves, consumer preferences limit the acceptance of greenhouse gas emitting energy production, and economic and policy support for demand response continues to grow.

Cost Structure

MISO expects that member costs will increase over time, especially in the near term as MISO works to adapt to the changing resource mix. However, the ratio of benefits-to-cost is expected to continue rising over time as states and members benefit from MISO's market and planning efficiencies. Year-over-year, the 2023 ratio of benefits to cost for MISO membership increased from 12:1 to 15:1.

Qualitative Benefits

MISO operations provide services to the region that are hard to quantify but are highly valuable. These benefits include Price and Information Transparency, Planning Coordination, and Interregional Coordination.